KR101370731B1 - 가스 터빈 및 가스 터빈의 운전 방법 - Google Patents
가스 터빈 및 가스 터빈의 운전 방법 Download PDFInfo
- Publication number
- KR101370731B1 KR101370731B1 KR1020107029528A KR20107029528A KR101370731B1 KR 101370731 B1 KR101370731 B1 KR 101370731B1 KR 1020107029528 A KR1020107029528 A KR 1020107029528A KR 20107029528 A KR20107029528 A KR 20107029528A KR 101370731 B1 KR101370731 B1 KR 101370731B1
- Authority
- KR
- South Korea
- Prior art keywords
- passage
- air
- rotor
- cooling
- gas turbine
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/08—Heating, heat-insulating or cooling means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/12—Cooling of plants
- F02C7/14—Cooling of plants of fluids in the plant, e.g. lubricant or fuel
- F02C7/141—Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/08—Heating, heat-insulating or cooling means
- F01D5/085—Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/08—Heating, heat-insulating or cooling means
- F01D5/085—Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
- F01D5/087—Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor in the radial passages of the rotor disc
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/12—Cooling of plants
- F02C7/16—Cooling of plants characterised by cooling medium
- F02C7/18—Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/60—Shafts
- F05D2240/61—Hollow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
회전축인 로터의 중심축을 따라 상기 중심축을 회전축으로 하여 회전하는 회전 부재에 설치되는 동시에 냉각용 공기가 상기 로터의 회전축을 따르는 방향으로 유동하는 축 방향 통로와, 상기 회전 부재에 상기 로터의 중심으로부터 외측을 향해 설치됨으로써 상기 냉각용 공기를 압축하는 동시에, 한쪽 단부가 상기 축 방향 통로에 연통되고, 다른 쪽 단부가 상기 회전 부재의 외부에 연통되고, 상기 회전 부재의 주위 방향을 향하여 복수개 설치되는 통로인 직경 방향 통로와, 공기량 조정 수단을 구비하고, 한쪽 단부가 공기를 도입하는 공기 공급원에 연통되고, 다른 쪽 단부가 상기 직경 방향 통로에 연통되어 상기 냉각용 공기가 도입되는 외부 통로를 구비한다.
Description
본 발명은, 가스 터빈 및 가스 터빈의 운전 방법에 관한 것으로, 또한 상세하게는, 터빈측의 동익을 냉각하는 가스 터빈 및 가스 터빈의 운전 방법에 관한 것이다.
종래, 공기와 연료를 연소시킨 연소 가스로부터 에너지를 취출하는 장치로서 가스 터빈이 있다. 가스 터빈은, 연료와 압축된 공기를 연소시킴으로써 발생하는 연소 가스의 에너지를 사용하여 터빈을 회전시켜 로터로부터 회전 에너지를 출력한다. 그러나, 상기 연소 가스는, 고온인 상태로 터빈에 공급되므로, 상기 고온 연소 가스를 받는 터빈의 동익도 고온 분위기에 노출된다. 따라서, 예를 들어 특허 문헌 1에는, 로터의 중심축을 따라 설치한 구멍인 중심 구멍을 통해, 냉각용 공기 공급원인 압축기측으로부터 냉각용 공기의 공급처인 상기 동익에 공기를 공급하고, 상기 동익을 냉각하는 가스 터빈이 개시되어 있다.
특허 문헌 1에 기재된 기술은, 로터의 중심 구멍을 통해 압축기에서 압축된 공기가, 내부 통로를 통해 압축기측으로부터 터빈측으로 유동되어, 냉각용 공기로서 상기 동익에 공급되는 것이다. 그러나, 특허 문헌 1에 기재된 기술에서는, 압축기의 회전 부재인 디스크로부터 일부의 공기를 압축기 본체의 내측에 위치하는 캐비티측으로 추출하여, 내부 통로를 거쳐 동익측 통로에 공급하므로, 운전 도중에서의 추출 공기량의 조절이 곤란하다. 이로 인해, 가스 터빈의 최대 부하 운전시에 동익을 냉각하는데 필요한 유량 이상의 냉각용 공기를 압축기로부터 추출할 우려가 있고, 그 결과, 가스 터빈의 열효율을 저하시킬 우려가 있다.
또한, 특허 문헌 2에 기재된 기술도, 특허 문헌 1에 기재된 기술과 마찬가지로 압축기측으로부터 내부 통로를 거쳐 동익측에 공기를 공급하는 것으로, 동일한 문제점을 갖는다. 또한, 특허 문헌 3에 기재된 기술은, 터빈측의 로터 축 단부측에서 냉각 매체를 공급하는 것이지만, 냉각 매체의 회수를 전제로 한 시스템이며, 본원의 목적과는 다른 것이다.
또한, 일반적으로는, 가스 터빈의 부하에 의해, 동익의 냉각에 필요한 냉각용 공기량이 상이하다. 가스 터빈이 고부하 운전인 경우에는, 고압 공기를 동익측에 공급하고, 필요 공기량을 확보하여, 냉각 능력을 올릴 필요가 있다. 저부하 운전인 경우에는, 냉각용 공기량을 한정할 필요가 있으므로, 비교적 저압의 공기를 공급하고, 불필요한 공기의 소비를 억제하여, 가스 터빈의 열효율의 저하를 억제할 필요가 있다. 상기 특허 문헌은, 이러한 터빈 부하 변동에 대한 공기량의 조정 수단에 대해서, 전혀 개시되어 있지 않다.
본 발명은, 상기에 감안하여 이루어진 것이며, 열효율의 저하를 억제할 수 있는 가스 터빈을 제공하는 것을 목적으로 한다.
본 발명의 일 형태에 따르면, 가스 터빈은, 회전축인 로터의 중심축을 따라 상기 중심축을 회전축으로 하여 회전하는 회전 부재에 설치되는 동시에 냉각용 공기가 상기 로터의 회전축을 따르는 방향으로 유동하는 축 방향 통로와, 상기 회전 부재에 상기 로터의 중심으로부터 외측을 향해 설치됨으로써 상기 냉각용 공기를 압축하는 동시에, 한쪽 단부가 상기 축 방향 통로에 연통되고, 다른 쪽 단부가 상기 회전 부재의 외부에 연통되고, 상기 회전 부재의 주위 방향을 향하여 복수개 설치되는 통로인 직경 방향 통로와, 공기량 조정 수단을 구비하고, 한쪽 단부가 공기를 도입하는 공기 공급원에 연통되고, 다른 쪽 단부가 상기 직경 방향 통로에 연통되어 상기 냉각용 공기가 도입되는 외부 통로를 구비한다.
본 발명의 다른 형태에 따르면, 가스 터빈의 운전 방법은, 회전축인 로터의 중심축을 따라 상기 중심축을 회전축으로 하여 회전하는 회전 부재에 설치되는 동시에 냉각용 공기가 상기 로터의 회전축을 따르는 방향으로 유동하는 축 방향 통로와, 상기 회전 부재에 상기 로터의 중심으로부터 외측을 향하여 설치됨으로써 상기 냉각용 공기를 압축하는 동시에, 한쪽 단부가 상기 축 방향 통로에 연통되고, 다른 쪽 단부가 상기 회전 부재의 외부에 연통되고, 상기 회전 부재의 주위 방향을 향하여 복수개 설치되는 통로인 직경 방향 통로와, 한쪽 단부가 공기를 도입하는 공기 공급원에 연통되어 상기 냉각용 공기가 도입되고, 다른 쪽 단부가 상기 직경 방향 통로에 축 단부 시일을 통해 연통되는 복수의 통로로부터 구성되어, 상기 공기 공급원을 전환하는 전환 수단을 구비하는 외부 통로를 구비하는 가스 터빈의 부하에 따라 상기 공기 공급원을 전환한다.
본 발명에 관한 가스 터빈의 운전 방법을 사용하면, 가스 터빈의 부하에 따른 냉각 공기의 공기 공급원의 선택이 가능하므로, 운전 상황에 따라서 적정한 공기를 채용할 수 있고, 가스 터빈 전체의 열효율의 저하를 억제할 수 있다.
도 1은 제1 실시 형태에 관한 가스 터빈 시스템의 전체도이다.
도 2는 제1 실시 형태에 관한 가스 터빈(3)의 개략 구성도이다.
도 3은 제1 실시 형태에 관한 가스 터빈의 후방 단에 위치하는 동익의 일례를 모식적으로 도시하는 단면도이다.
도 4는 냉각용 공기가 유동하는 통로를 모식적으로 설명하는 단면도이다.
도 5a는 제1 실시 형태에 관한 스월러를 중심축을 포함하는 면에서 잘라 모식적으로 도시하는 단면도이다.
도 5b는 제1 실시 형태에 관한 스월러를 도 5a의 A-A면에서 잘라 모식적으로 도시하는 단면도이다.
도 5c는 제1 실시 형태에 관한 스월러를 도 5b의 B-B면에서 잘라 모식적으로 도시하는 단면도이다.
도 6a는 제1 실시 형태에 관한 제1 직경 방향 통로를 모식적으로 도시하는 단면도이다.
도 6b는 제1 실시 형태에 관한 다른 제1 직경 방향 통로를 모식적으로 도시하는 단면도이다.
도 6c는 제1 실시 형태에 관한 다른 제1 직경 방향 통로를 모식적으로 도시하는 단면도이다.
도 7은 제2 실시 형태에 관한 가스 터빈 시스템의 전체도이다.
도 2는 제1 실시 형태에 관한 가스 터빈(3)의 개략 구성도이다.
도 3은 제1 실시 형태에 관한 가스 터빈의 후방 단에 위치하는 동익의 일례를 모식적으로 도시하는 단면도이다.
도 4는 냉각용 공기가 유동하는 통로를 모식적으로 설명하는 단면도이다.
도 5a는 제1 실시 형태에 관한 스월러를 중심축을 포함하는 면에서 잘라 모식적으로 도시하는 단면도이다.
도 5b는 제1 실시 형태에 관한 스월러를 도 5a의 A-A면에서 잘라 모식적으로 도시하는 단면도이다.
도 5c는 제1 실시 형태에 관한 스월러를 도 5b의 B-B면에서 잘라 모식적으로 도시하는 단면도이다.
도 6a는 제1 실시 형태에 관한 제1 직경 방향 통로를 모식적으로 도시하는 단면도이다.
도 6b는 제1 실시 형태에 관한 다른 제1 직경 방향 통로를 모식적으로 도시하는 단면도이다.
도 6c는 제1 실시 형태에 관한 다른 제1 직경 방향 통로를 모식적으로 도시하는 단면도이다.
도 7은 제2 실시 형태에 관한 가스 터빈 시스템의 전체도이다.
이하, 본 발명에 대해 도면을 참조하면서 상세하게 설명한다. 또한, 본 발명을 실시하기 위한 최선의 형태(이하 실시 형태라고 함)에 의해 본 발명이 한정되는 것은 아니다. 또한, 하기 실시 형태에 있어서의 구성 요소에는, 당업자가 용이하게 상정할 수 있는 것, 실질적으로 동일한 것, 소위 균등한 범위의 것이 포함된다.
(제1 실시 형태)
도 1은, 제1 실시 형태에 관한 가스 터빈 시스템의 전체도이다. 도 2는, 제1 실시 형태에 관한 가스 터빈(3)의 개략 구성도이다. 도 1 및 도 2에 도시한 바와 같이, 본 실시 형태에 관한 가스 터빈(3)에 공급되는 연소용 공기는, 공기 필터(71)를 통해 압축기(20)에 도입된다. 압축기(20)에 의해, 소정 압력으로 압축된 연소용 공기는, 연소기(30)에 공급되고, 연료와 혼합되어 연소된다. 연소기(30)에서 발생한 연소 가스는, 터빈(10)에 도입되어, 터빈측 정익(12), 터빈측 동익(13)을 유하(流下)할 때에 열 에너지가 터빈(10)에 있어서의 로터(50)의 회전 에너지로 변환되어 전력으로서 발전기(80)로부터 취출된다.
본 실시 형태의 가스 터빈(3)은, 도 2에 도시한 바와 같이, 유체의 흐름의 상류측으로부터 하류측을 향해 순서대로, 압축기(20)와, 연소기(30)와, 터빈(10)과, 배기실(40)을 포함하여 구성된다. 압축기(20)는 공기를 가압하여, 연소기(30)로 가압된 공기를 송출한다. 연소기(30)는, 상기 공기에 연료를 공급하여 연소시킨다. 터빈(10)은, 연소기(30)로부터 송출된 상기 연소 가스가 갖는 에너지를 회전 에너지로 변환한다.
압축기(20)는, 공기 도입구(21)와, 압축기 하우징(22)과, 압축기측 정익(23)과, 압축기측 동익(24)과, 추기 매니폴드(25)를 갖는다. 공기 도입구(21)는, 도 1에 도시하는 공기 필터(71)로부터 도입된 공기를 압축기 하우징(22)에 도입하는 공기의 도입구가 된다.
압축기 하우징(22) 내에는, 복수의 압축기측 정익(23)과 복수의 압축기측 동익(24)이 교대로 설치된다. 압축기(20)에 의해 압축된 공기는, 연소기(30)의 차실(36)로 유도된다. 추기 매니폴드(25)는, 압축기측 정익(23)의 외측에 설치되고, 터빈측의 정동익의 냉각을 위해, 압축기(20)의 중간 단으로부터 추기한 압축 공기를 일시적으로 저류하는 역할을 구비한다. 추기 매니폴드(25)는, 외부 배관에 접속을 위한 압축기 추기구(26)를 구비한다. 압축기 추기구(26)는, 복수의 추기구를 설치해도 좋다. 예를 들어, 압축기의 저압측 중간 단으로부터 추기한 저압 추기의 저압 추기구나 고압측 중간 단으로부터 추기한 고압 추기의 고압 추기구를 구비하여, 운전 상황에 따라 적절하게 추기구를 바꾸어도 좋다.
연소기(30)는, 하우징(31)과, 연소기 라이너(32)와, 미통(33)을 갖는다. 하우징(31)의 내부에는 차실(36)이 형성된다. 연소기 라이너(32)는, 대략 원통 형상으로 형성되어, 연소 가스의 통로로서 차실(36)의 내부에 설치된다. 또한, 차실(36)에는, 연소 가스의 통로로서 미통(33)이 설치된다. 미통(33)은 대략 원통 형상으로 형성되어, 미통(33)의 내부에, 공기와 연료가 연소하는 연소 영역(37)이 형성된다.
연소기 라이너(32)의 축 방향의 단부 중, 한쪽 단부는, 미통(33)이 접속된다. 또한, 연소기 라이너(32)의 미통(33)과는 반대측인 단부에는, 연소기 라이너(32)의 내부에 연료를 분사하는 연료 노즐(34)이 설치되어 있다. 또한, 연소기 라이너(32)의 외주면에는, 연소기 라이너(32)의 내부에 압축 공기를 도입하는 연소기 라이너 공기 도입구(35)가 복수 형성된다.
터빈(10)은, 터빈 차실(11)과, 터빈측 정익(12)과, 터빈측 동익(13)을 갖는다. 터빈 차실(11) 내에는, 복수의 터빈측 정익(12)과 복수의 터빈측 동익(13)이 교대로 배치되어 있다. 배기실(40)은, 터빈(10)에 연속하는 배기 디퓨저(41)를 갖는다. 배기 디퓨저(41)는, 터빈(10)을 통과한 연소 가스, 즉 배기 가스의 동압을 정압으로 변환한다.
가스 터빈(3)은, 회전 부재로서의 로터(50)를 갖는다. 로터(50)는, 압축기(20), 연소기(30), 터빈(10), 배기실(40)의 중심부를 관통하도록 설치된다. 로터(50)는, 압축기(20)측의 단부가 베어링(51)에 의해 회전 가능하게 지지되고, 배기실(40)측의 단부가 베어링(52)에 의해 회전 가능하게 지지된다. 또한, 로터(50)에는 복수의 디스크(14)가 고정된다. 또한, 디스크(14)는, 압축기측 동익(24) 및 터빈측 동익(13)이 연결된다. 또한, 로터(50)의 압축기(20)측의 단부에는, 도시하지 않은 발전기의 구동축이 연결된다. 상기 구성에 의해, 가스 터빈(3)은, 발전기(80)를 구동시켜 발전한다.
가스 터빈(3)은, 고압 영역으로서의 압축기(20) 중간 단에 존재하는 압축 공기를 냉각용 공기로서 축 방향 통로(60)에 공급한다. 가스 터빈(3)은, 도 1에 도시한 바와 같이, 축 단부 시일(67)과, 외부 통로(68)와, 냉각용 공기 냉각 수단으로서의 냉각기(69)와, 공기 유량 조절 밸브(70)를 구비한다. 축 단부 시일(67)은, 냉각용 공기 도입구(61)를 덮도록 설치되는 동시에, 외부 통로(68)와 연통한다. 이에 의해, 냉각용 공기 도입구(61)와 외부 통로(68)는, 도 4에 도시한 바와 같이 축 단부 시일(67)을 통해 연통한다.
구체적으로는, 외부 통로(68)는, 예를 들어 압축기(20)의 추기 매니폴드(25)에 설치되는 압축기 추기구(26)에 접속한다. 냉각기(69)는, 외부 통로(68)에 설치된다. 여기서, 압축기(20)로부터 추출한 압축 공기의 온도는, 대기중의 온도보다도 높다. 따라서, 냉각기(69)는, 외부 통로(68)의 내부를 유동하는 냉각용 공기를 냉각한다.
공기 유량 조절 밸브(70)는, 외부 통로(68)에 설치되고, 외부 통로(68)의 내부를 유동하는 냉각용 공기의 유량을 조정한다. 여기서, 압축기(20)로부터 추출되어, 외부 통로(68)를 유동하는 냉각용 공기의 유량은, 가스 터빈(3)의 운전 상황에 따라 변동한다. 구체적으로는, 가스 터빈이 고부하로 가동될수록, 외부 통로(68)를 유동하는 냉각용 공기는 증가한다.
상기 구성에 의해, 압축기(20)로부터 추출된 냉각용 공기는, 외부 통로(68)를 통해 터빈(10)에 공급된다. 다음에, 냉각용 공기는, 공기 유량 조절 밸브(70)에 의해 유량이 조절되어, 냉각기(69)에 의해 냉각된다. 냉각기(69)에 의해 냉각된 냉각용 공기는, 외부 통로(68) 및 축 단부 시일(67)을 통해 냉각용 공기 도입구(61)로 도입된다.
터빈 최종 단을 통과한 연소 가스는, 배기실(40)로부터 배열 회수부(42)로 도입되어 열 회수되고, 굴뚝(43)으로부터 대기로 방출된다. 한편, 고온의 연소 가스가 통과하는 터빈측 정익(12), 터빈측 동익(13)은, 고온의 연소 가스에 의한 블레이드의 손상을 억제하기 위해, 그 내부가 냉각용 공기로 냉각된다. 상기 냉각용 공기는, 터빈측 정익(12), 터빈측 동익(13)을 냉각 후, 최종적으로 연소 가스 중에 방출된다.
여기서 , 통상은, 냉각용 공기의 공기 공급원으로서, 압축기(20)에 의해 압축된 연소용 공기의 일부를 압축기(20)의 중간 단으로부터 추기하고, 냉각용 공기에 사용한다. 최근에는, 열효율이 비교적 높은 가스 터빈의 필요성으로부터, 보다 고온의 연소 가스를 사용하는 경향이 있다. 그로 인해, 연소 가스 흐름의 하류측에 위치하는 후방 단의 터빈측 동익(13)도 종래 이상으로 냉각의 필요성이 높아지고 있다.
도 1에서는, 터빈의 후방 단의 터빈측 동익(13)을 냉각하기 위해, 공기 공급원으로서 압축기(20)의 추기 공기의 일부가 압축기 추기구(26)로부터 추출된다. 압축기 추기구(26)로부터 추출된 냉각용 공기는, 외부 통로(68)를 유동하여 터빈(10)의 로터(50)의 축 단부측으로부터 터빈(10)으로 공급된다.
압축기 추기구(26)로부터 추출된 공기는, 냉각기(69)에서 적정한 온도로 냉각된다. 이를 위한, 냉매로서는, 예를 들어 냉각수가 사용된다. 또한, 시스템 내에 있는 배열 회수부(42)의 보일러 작동 유체 등의 비교적 저온의 유체도, 냉각기(69)의 냉매로서 사용할 수 있다. 이 경우, 열 회수에 의해 시스템 전체의 에너지 손실이 보다 저감된다. 냉각용 공기의 유량의 조절은, 가스 터빈의 부하에 따라, 공기 유량 조정 수단인 공기 유량 조절 밸브(70)에 의해 행해진다. 또한, 냉각용 공기의 온도 조정은, 가스 터빈의 부하에 따라, 냉각기(69)의 냉매 유량의 조정이나 냉각기를 바이패스하는 공기량의 조정에 의해 행해진다.
또한, 외부 통로(68)를 흐르는 냉각용 공기는, 외부 통로(68)의 하류 단부에 있는 축 단부 시일(67)을 통해, 터빈(10)으로 공급된다. 또한, 공기 유량 조정 수단으로서는, 연속적으로 제어가 가능한 공기 유량 조절 밸브(70) 이외에, 수동 밸브, 오리피스 등의 수동 조작으로 냉각용 공기의 유량을 조정하는 방법이 포함된다.
이와 같이, 가스 터빈 시스템(1)은, 도 2에 도시하는 압축기(20), 터빈(10), 연소기(30), 배기실(40)로부터 구성되는 가스 터빈(3)과, 가스 터빈(3)의 주변에 배치되는 냉각 공기를 터빈에 공급하는 외부 통로(68), 냉각기(69) 및 공기 유량 조절 밸브(70)을 구비한다.
또한, 가스 터빈 시스템(1)은, 축 단부 시일(67) 및 외부 통로(68)를 제거할 수 있도록 구성하는, 혹은, 냉각용 공기의 공급원을 대기와 압축기(20)로 전환할 수 있도록 구성함으로써, 가스 터빈(3)의 운전 상황에 따라, 냉각용 공기의 공급원인 공기 공급원을 변경할 수도 있다.
가스 터빈(3)은, 상술한 바와 같이, 냉각용 공기에 의해 터빈측 동익(13)을 냉각하는 기능을 갖는다. 또한, 냉각 대상은, 터빈측 동익(13) 이외에도, 터빈측 정익(12), 그 밖의 가스 터빈의 구성 부품의 냉각에 사용된다. 본 실시 형태에서는, 터빈측 동익(13) 중, 최종 단 동익을, 냉각용 공기에 의해 냉각하지만, 냉각 대상의 동익은 이것에 한정되지 않는다.
도 3은, 제1 실시 형태에 관한 가스 터빈의 후방 단에 위치하는 동익의 일례를 모식적으로 도시하는 단면도이다. 도 3에 도시한 바와 같이, 터빈측 동익(13)은, 기부(131)와, 터빈측 동익(13)의 선단부인 팁부(132)와, 구멍인 냉각 통로(133)를 갖는다. 터빈측 동익(13)은, 기부(131)에 의해 도 2에 도시하는 디스크(14)의 외주에 설치된다. 냉각 통로(133)는, 기부(131)에 공동 형상의 공간에 개방하여 형성된다. 냉각 통로(133)는, 기부(131)로부터 팁부(132)를 향해 대략 직선 형상으로 복수 형성된다.
본 실시 형태에서는, 냉각 통로(133)는, 기부(131)로부터 팁부(132)를 향해 대략 직선 형상으로 복수 형성된다고 했지만, 본 실시 형태는 이것에 한정되지 않는다. 도 2에 도시하는 터빈(10)에 설치되는 복수의 터빈측 동익(13)에 설치되는 경우, 냉각 통로(133)는, 예를 들어 곡선 형상(소위 서펜타인 유로)으로 설치되어도 좋다.
냉각용 공기는, 우선, 터빈측 동익(13)의 기부(131)측으로부터 냉각 통로(133)로 유입한다. 여기서, 냉각용 공기는, 냉각 통로(133) 내의 벽면과의 사이에서 열교환을 행한다. 계속하여, 냉각용 공기는, 냉각 통로(133)를 통과해, 터빈측 동익(13)의 팁부(132)측으로 유동한다. 이와 같이, 냉각 통로(133)를 유동하는 냉각용 공기는, 터빈측 동익(13)과의 사이에서 열교환을 행하고, 터빈측 동익(13)을 냉각한다.
도 4는, 냉각용 공기가 유동하는 통로를 모식적으로 설명하는 단면도이다. 도 4에 도시한 바와 같이, 본 실시 형태에 관한 가스 터빈(3)은, 축 방향 통로(60)와, 냉각용 공기 도입구(61)와, 스월(Swirl) 부여 수단으로서의 스월러(62)와, 제1 직경 방향 통로(63)와, 캐비티(64)와, 제2 직경 방향 통로(65)를 구비한다.
축 방향 통로(60)는, 배기실(40)측의 로터(50)의 중심축(RL)을 따라 통 형상으로 형성된다. 본 실시 형태에서는, 바람직한 형태로서, 축 방향 통로(60)는, 로터(50)의 중심축(RL)과 축 방향 통로(60)의 중심축이 일치하도록 형성된다. 또한, 축 방향 통로(60)는, 한쪽의 단부인 냉각용 공기 도입구(61)가, 도 1에 도시하는 외부 통로(68)에 연통한다.
냉각용 공기 도입구(61)는, 예를 들어 로터(50)의 배기실(40)측의 단부(50a)에 벨 마우스 형상으로 설치된다. 벨 마우스 형상이란, 대략 조종 형상으로 곡률을 갖도록 테이퍼를 실시한 형상이며, 냉각용 공기 흐름의 상류측 일수록 구경이 크고, 냉각용 공기 흐름의 하류측을 향함에 따라 구경이 작게 형성된다. 이에 의해, 냉각용 공기 도입구(61)는 보다 효율적으로 냉각용 공기를 외부 통로(68)로부터 축 방향 통로(60)로 도입할 수 있다.
도 5a는, 제1 실시 형태에 관한 스월러를 중심축을 포함하는 면에서 잘라 모식적으로 도시하는 단면도이다. 도 5b는, 제1 실시 형태에 관한 스월러를 도 5a의 A-A면에서 잘라 모식적으로 도시하는 단면도이다. 도 5c는, 제1 실시 형태에 관한 스월러를 도 5b의 B-B면에서 잘라 모식적으로 도시하는 단면도이다.
도 5a, 도 5b, 도 5c에 도시하는 스월러(62)는, 도 4에 도시하는 냉각용 공기 도입구(61)와는 반대측인 축 방향 통로(60)의 단부에 설치된다. 스월러(62)는, 로터(50)에 고정되어, 로터(50)와 함께 회전하는 회전 부재이다. 스월러(62)는, 가이드판(62a)를 구비한다. 가이드판(62a)은, 스월러(62)가 회전함으로써, 축 방향 통로(60)의 내부의 냉각용 공기에 대해, 로터(50)의 회전 방향으로 선회를 부여한다. 즉, 스월러(62)에 의해, 냉각용 공기는 로터(50)의 회전 방향으로 속도 성분이 부여되어 유동한다. 또한, 스월러(62)는, 축 방향 통로(60)의 다른 쪽 단부인 냉각용 공기 도입구(61)에 설치해도 좋다.
단, 스월러(62)와 캐비티측 개구(65a)의 거리가 클수록, 스월러(62)에 의해 냉각용 공기에 부여되는 선회류는 감쇠한다. 따라서, 스월러(62)는, 제1 직경 방향 통로(63) 근방에 설치되는 것이 바람직하다. 도 4에 도시한 바와 같이, 냉각용 공기 도입구(61)에 연통하는 외부 통로(68)의 단부에는, 회전 구동하는 축 방향 통로(60)와 정지 구조의 외부 통로(68)를 접속하여, 냉각용 공기를 누출 없이 터빈(10)측으로 도입하기 위한 축 단부 시일(67)이 설치된다.
축 단부 시일(67)은, 회전 정지간 타이트 시일이며, 래버린스 시일(67a)과 브러시 시일(67b)의 조합으로 이루어지는 시일 구조를 구비한다. 축 단부 시일(67)은, 냉각용 공기가 접속부로부터 외부로 누출되는 것을 억제한다. 축 단부 시일(67)은 시일 구조로서, 예를 들어 브러시 시일 대신에 리프 형상 축 시일, 그 밖의 시일재에 의해 구성되어도 좋다.
도 6a는, 제1 실시 형태에 관한 제1 직경 방향 통로를 모식적으로 도시하는 단면도이다. 도 6b는, 제1 실시 형태에 관한 다른 제1 직경 방향 통로를 모식적으로 도시하는 단면도이다. 도 6c는, 제1 실시 형태에 관한 다른 제1 직경 방향 통로를 모식적으로 도시하는 단면도이다. 또한, 도 6a 내지 도 6c는, 로터(50)의 중심축(RL)에 직교하는 면에서 단면으로 본 경우를 도시한다.
도 6a에 도시한 바와 같이, 제1 직경 방향 통로(63)는, 로터(50)에 로터(50)의 중심으로부터 외측을 향하여 복수개 형성된다. 여기서, 제1 직경 방향 통로(63)는, 예를 들어, 축 방향 통로(60)의 중심으로부터 방사선 형상으로 구멍으로서 형성된다. 제1 직경 방향 통로(63)는, 냉각용 공기 도입측 개구(63a)와 냉각용 공기 배출측 개구(63b)를 갖는다. 냉각용 공기 도입측 개구(63a)는, 축 방향 통로(60)에 개방된다. 냉각용 공기 배출측 개구(63b)는, 도 4에 도시하는 캐비티(64)에 개방된다.
또한, 본 실시 형태에서는, 제1 직경 방향 통로(63)는 축 방향 통로(60)의 중심으로부터 방사선 형상으로 형성된다고 했지만, 본 실시 형태는 이것에 한정되지 않는다. 예를 들어, 도 6b에 도시한 바와 같이, 제1 직경 방향 통로(63)는 곡선 형상으로 형성되어도 좋다. 또한, 예를 들어, 도 6c에 도시한 바와 같이, 제1 직경 방향 통로(63)의 가상 연장선은 반드시 축 방향 통로(60)의 중심을 통과하지 않아도 좋다.
도 4에 도시한 바와 같이, 캐비티(64)는, 터빈측 동익(13)이 설치되는 회전 부재로서의 디스크(14) 근방의 로터(50)에 형성된다. 또한, 디스크(14)는, 중심축(RL)을 축으로 로터(50)와 함께 회전하는 회전 부재이다. 캐비티(64)는, 제1 직경 방향 통로(63)로부터 공급된 냉각용 공기를 일시적으로 저류하여, 캐비티(64)에 개방되는 제2 직경 방향 통로(65)로 상기 냉각용 공기를 공급한다. 또한, 본 실시 형태에서는, 캐비티(64)를 통해 제1 직경 방향 통로(63)와 제2 직경 방향 통로(65)가 연통되지만, 본 실시 형태는 이것에 한정되지 않는다. 제1 직경 방향 통로(63)와 제2 직경 방향 통로(65)는, 중간에 캐비티(64)를 설치하지 않고, 관상의 통로에 의해 연통해도 좋다.
제2 직경 방향 통로(65)는, 디스크(14)에 디스크(14)의 중심으로부터 외측을 향하여 복수개 설치된다. 제2 직경 방향 통로(65)는, 한쪽 단부에 설치되는 개구인 캐비티측 개구(65a)가 캐비티(64)에 개방되고, 다른 쪽 단부에 설치되는 개구인 동익측 개구(65b)가, 터빈측 동익(13)의 냉각 통로(133)에 개방된다.
상기 구성에 의해, 축 방향 통로(60)의 내부에 존재하는 냉각용 공기는, 가스 터빈(3)이 가동되어, 로터(50)가 회전하면, 로터(50)와 함께 회전하는 스월러(62)에 의해 로터(50)의 회전 방향으로 선회가 부여된다. 다음에, 냉각용 공기는, 스월러(62)의 근방에 설치되는 냉각용 공기 도입측 개구(63a)를 통해 제1 직경 방향 통로(63)로 도입된다. 제1 직경 방향 통로(63)로 도입된 냉각용 공기는, 제1 직경 방향 통로(63)가 중심축(RL)을 중심으로 회전함으로써, 원심 압축기와 마찬가지의 펌핑 효과에 의해 승압된다. 도면 중 화살표로 도시하는 냉각용 공기류(AF02)는, 축 방향 통로(60)로부터 냉각용 공기 도입측 개구(63a)로 유입되어, 직경 방향 중심측으로부터 직경 방향 외측으로 유동한다.
제1 직경 방향 통로(63)의 내부를 유동하는 냉각용 공기는, 냉각용 공기 배출측 개구(63b)를 통해 캐비티(64)로 도입된다. 다음에, 캐비티(64)의 내부를 유동하는 냉각용 공기는, 캐비티측 개구(65a)를 통해 캐비티(64)에 개방되는 제2 직경 방향 통로(65)로 도입된다.
제2 직경 방향 통로(65)에 도입된 냉각용 공기는, 제2 직경 방향 통로(65)가 중심축(RL)을 중심으로 회전함으로써, 원심 압축기와 마찬가지의 펌핑 효과에 의해 승압된다. 도면 중 화살표로 도시하는 냉각용 공기류(AF03)는, 디스크(14)의 직경 방향 중심측으로부터 직경 방향 외측으로 유동한다.
다음에, 제2 직경 방향 통로(65)의 내부를 유동하는 냉각용 공기는, 동익측개구(65b)를 통해 냉각 통로(133)로 도입된다. 다음에, 냉각 통로(133)의 내부를 유동하는 냉각용 공기는, 냉각 통로(133)가 중심축(RL)을 중심으로 회전함으로써, 원심 압축기와 마찬가지의 펌핑 효과에 의해 승압된다. 도면 중 화살표로 도시하는 냉각용 공기류(AF04)는, 기부(131)측으로부터 도 3에 도시하는 팁부(132)측으로 향하여 유동한다. 팁부(132)에 이른 냉각용 공기는, 냉각용 공기 배출구(136)로부터 연소 가스 중에 배출된다.
상술한 바와 같이, 제1 직경 방향 통로(63), 제2 직경 방향 통로(65), 냉각 통로(133)를 냉각용 공기가 흐를 때, 냉각용 공기에는 원심력에 의한 펌핑 작용이 작용한다. 본 실시 형태에서는, 직경 방향으로 배치된 제1 직경 방향 통로(63)의 시점이 로터(50) 중심 근방에 배치되고, 제2 직경 방향 통로(65), 터빈측 동익(13) 내의 도 3에 도시하는 냉각 통로(133)가 순서대로 배치되어 있으므로, 펌핑 작용이 유효하게 작용한다.
가스 터빈(3)은, 상기 구성에 의해, 냉각용 공기에 작용하는 펌핑력이, 외부 통로(68)로부터 축 방향 통로(60) 및 제1 직경 방향 통로(63), 제2 직경 방향 통로(65)를 유동할 때에 발생하는 압력 손실을 극복하여, 터빈측 동익(13) 선단에 냉각용 공기를 유도하기 위한 추진력의 일부를 담당한다.
또한, 냉각 통로(133)를 흐르는 냉각용 공기에 대하여, 펌핑 작용이 유효하게 작용하여, 공기 공급원에 필요로 하는 냉각용 공기의 압력을 보다 저감할 수 있다. 가스 터빈(3)의 부하가 작고, 필요로 하는 냉각용 공기량이 작은 경우에는, 대기 공기와 비슷한 공기 공급원의 압력이라도, 펌핑 작용이 유효하게 작용하여, 냉각 대상인 터빈측 동익(13)의 선단까지 냉각용 공기를 공급할 수 있다.
이상의 가스 터빈 시스템(1)은, 회전축인 로터(50)의 중심축(RL)을 따라 설치되는 동시에 외부 통로(68)에 연통하는 축 방향 통로(60)와, 로터(50)에 로터(50)의 중심으로부터 외측을 향해 설치됨으로써 냉각용 공기를 압축하는 동시에, 축 방향 통로(60)에 연통하는 제1 직경 방향 통로(63)와, 한쪽 단부가 캐비티(64)를 통해 제1 직경 방향 통로(63)와 연통되고, 다른 쪽 단부가 냉각 통로(133)를 통해 회전 부재의 외부에 연통하는 제2 직경 방향 통로(65)와, 공기 공급원으로서의 압축기 추기구로부터 냉각용 공기를 축 방향 통로로 유도하는 동시에, 공기량 조정 수단을 갖는 외부 통로(68)를 구비한다.
상기 구성에 의해, 가스 터빈 시스템(1)은, 종래예에 도시하는 가스 터빈과는 달리, 가스 터빈(3)과는 별개로, 외부 통로(68)에 공기 유량 조절 밸브(70) 및 냉각기를 구비하는 구성으로 하고 있으므로, 항상, 운전중이라 할지라도 공기량 및 공기 온도의 조정이 가능하다.
(제2 실시 형태)
도 7은, 제2 실시 형태에 관한 가스 터빈 시스템의 전체도이다. 제2 실시 형태에서는, 터빈(10)에 공급되는 후방 단의 터빈측 동익(13)을 냉각하기 위해, 냉각용 공기의 공기 공급원이 복수 개소 제공되는 경우를 도시한다.
도 7에 도시한 바와 같이, 가스 터빈 시스템(2)은, 공기 공급원으로서 압축기 고압 추기구(27)와, 압축기 저압 추기구(28)와, 대기 도입구(29)를 구비한다. 가스 터빈 시스템(2)은, 각각의 공기 공급원으로부터 터빈(10)의 로터(50)의 축 단부에 설치한 축 단부 시일(67)까지의 외부 통로(68)를 구비한다.
압축기 고압 추기구(27) 및 압축기 저압 추기구(28)는, 압축기의 중간 단으로부터 압축 공기를 추출할 수 있다. 압축기 고압 추기구(27) 및 압축기 저압 추기구(28)는, 필요하면, 2 개소에 한하지 않고 3 개소 이상의 추기구를 설치해도 좋다.
도 7에 도시하는 예에서는, 가스 터빈 시스템(2)은, 압축기(20)의 공기 흐름의 출구측에 가까운 압축 공기류의 하류측에 위치하는 압축기 고압 추기구(27)로부터 고압 공기가 추기되고, 압축 공기류의 상류측에 위치하는 압축기 저압 추기구(28)로부터 고압 공기보다 저압의 저압 공기가 추기된다.
또한, 압축기 고압 추기구(27) 및 압축기 저압 추기구(28) 이외의 공기 공급원으로서, 가스 터빈(3)을 저부하로 운전하는 경우에는, 도 7에 도시한 바와 같이, 대기 도입구(29)부터 공기 필터(71)를 통해 직접 대기 공기를 도입할 수 있다. 대기 도입구(29)로부터 도입되는 공기는, 공기량 조정 수단인 공기 유량 조절 밸브(70)에 의해 유량이 조정된다. 또한, 대기 도입구(29)로부터 도입되는 공기는, 비교적 저온인 대기 온도이므로, 냉각기(69)에 의해 냉각될 필요가 없다. 또한, 압축기 추기구는, 압축기 고압 추기구(27), 압축기 저압 추기구(28)의 2개를 설치하지 않고, 어느 1개의 압축기 추기구를 설치하는 것만으로도 좋다.
또한, 공기 공급원은, 기본적으로 어느 1 개소의 공기 공급원을 사용하여, 터빈(10)에 냉각용 공기를 공급하는 것이다. 즉, 가스 터빈(3)은, 동시에 복수의 공기 공급원으로부터 냉각용 공기를 터빈(10)에 도입하는 일은 없다. 공기 공급원의 전환은, 각 외부 통로(68)에 구비한 전환 밸브(72)에 의해 행한다.
냉각용 공기 공급원인 공기 공급원의 전환에 있어서는, 가스 터빈(3)을 1차적으로 휴지하여 전환해도 좋고, 가스 터빈(3)의 운전중에 서서히 전환해도 좋다.
또한, 적정한 공기 공급원의 선택은, 가스 터빈(3)의 부하 조건과의 관계에 의해 결정된다. 가스 터빈(3)이 100% 부하 운전인 경우에는, 터빈측 동익(13)에 걸리는 열부하가 가장 가혹하여, 터빈측 동익(13)이 냉각용 공기량을 가장 필요로 하는 경우이다.
따라서, 가스 터빈(3)이 고부하 운전인 경우에는, 공기 공급원에서의 추출 압력이 가장 높은 압축기 고압 추기구(27)를 선정한다. 압축기 고압 추기구(27)를 선정하여, 냉각기(69)에서 적정한 온도까지 냉각된 공기를 터빈(10)에 공급하면, 가스 터빈(3)은, 최대량의 냉각용 공기를 터빈측 동익(13)으로 공급할 수 있다. 이에 의해, 가스 터빈(3)은, 최대의 냉각 효과가 얻어진다.
가스 터빈(3)의 부하가 작은 경우에는, 가스 터빈(3)은, 대기 도입구(29)로부터 냉각용 공기를 도입한다. 가스 터빈(3)은, 압축기 고압 추기구(27) 및 압축기 저압 추기구(28)를 공기 공급원으로 하는 경우, 냉각기(69)를 필요로 하지만, 대기 도입구(29)를 공기 공급원으로 하는 경우는, 냉각기(69)를 필요로 하지 않는다. 따라서, 가스 터빈(3)은, 그만큼의 열손실이 없어져, 가스 터빈(3) 전체의 열효율이 향상한다.
단, 대기 도입구(29)를 공기 공급원으로 하는 경우, 저압의 공기 공급원이므로, 냉각용 공기가 흐르는 통로에서 압력이 손실됨으로써 터빈(10)에 도입할 수 있는 공기 유량이 제한된다. 또한, 가스 터빈(3)이 중간의 부하인 경우에는, 압축기 저압 추기구(28)로부터 냉각용 공기가 추출되는 경우도 있다. 가스 터빈(3)이 100% 부하인 경우에 비교하여 필요 공기량이 작고, 또 부하가 작은 대기 도입구(29)를 공기 공급원으로 하는 경우보다는 필요 공기량이 많은 경우에는, 가스 터빈(3)은, 압축기 저압 추기구(28)로부터 냉각용 공기를 터빈(10)으로 도입한다.
이러한 경우, 가스 터빈(3)의 100% 부하 운전시에 사용하는 압축기 고압 추기구(27)에 비교하여, 터빈(10)으로 도입하는 냉각용 공기의 압력이 낮아도 좋으므로, 가스 터빈(3)은, 압축기(20)에서의 에너지의 손실을 저감할 수 있다.
또한, 가스 터빈(3)은, 공기량 조정 수단으로서, 공기 유량 조절 밸브(70) 이외에, 수동 밸브, 오리피스 등도 포함된다. 또한, 공기 공급원의 전환 수단으로서는, 원격 조작으로 전환할 수 있는 전환 밸브(72) 대신에, 수동으로 전환할 수 있는 것이라도 좋다.
또한, 본 실시 형태에 관한 가스 터빈(3)은, 스월러(62)를 구비하는 것으로서 설명했지만, 본 실시 형태는 이것에 한정되지 않는다. 가스 터빈(3)은, 스월러(62)를 구비하지 않아도 좋다. 단, 스월러(62)를 설치함으로써, 냉각용 공기가 축 방향 통로(60)로부터 제1 직경 방향 통로(63)로 도입될 때의 압력 손실을 저감할 수 있다. 따라서, 가스 터빈(3)은, 보다 적합하게 냉각 성능의 저하를 억제할 수 있다.
상술한 실시 형태에 관한 가스 터빈에 따르면, 종래의 가스 터빈보다도 직경 방향으로 길게 확보된 통로에서 펌핑 작용에 의해 승압되는 압력분만큼, 저압인 공기 공급원으로부터 냉각용 공기를 냉각 대상으로 공급할 수 있다. 따라서, 압축기 출구 공기보다 저압의 압축기 추기구로부터 공기를 취출하는 것이 가능해지고, 또한 그 공기량을 조정할 수 있으므로, 가스 터빈의 운전 상황에 따른 냉각 공기를 효율적으로 공급할 수 있다.
또한, 상술한 실시 형태에 관한 가스 터빈에 따르면, 상기 압축기 추기구로부터 추기된 공기는, 상기 압축기에 의해 압축되어 있으므로 온도가 상승되어 있다. 따라서, 상기 냉각용 공기 냉각 수단에 의해 상기 압축기 추기구로부터 추기 된 공기를 냉각할 수 있다. 이에 의해, 상기 가스 터빈은, 냉각 대상을 보다 냉각할 수 있다.
또한, 본 발명에 관한 가스 터빈에 따르면, 상기 공기 공급원이 대기에 개방하는 대기 도입구로 함으로써, 대기로부터 냉각용 공기를 냉각 대상으로 공급할 수 있다. 이에 의해, 본 발명에 관한 가스 터빈은, 종래의 가스 터빈과 같이 , 압축기측으로부터 냉각용 공기를 추출하지 않고, 대기 도입구로부터 공기를 도입할 수 있다. 따라서, 본 발명에 관한 가스 터빈은, 냉각용 공기의 공기 공급원으로서 고압 공기를 필요로 하지 않으므로, 열효율의 향상을 기대할 수 있다.
또한, 상술한 실시 형태에 관한 가스 터빈에 따르면, 냉각용 공기가 직경 방향 통로에 이르기 전에, 스월 부여 수단이 회전하는 직경 방향 통로와 같은 회전 방향의 선회를 냉각용 공기에 부여한다. 이에 의해, 냉각용 공기는, 축 방향 통로로부터 직경 방향 통로로 효율적으로 도입된다. 따라서, 본 발명에 관한 가스 터빈은, 열효율의 저하를 억제할 수 있다.
또한, 상술한 실시 형태에 관한 가스 터빈에 따르면, 상기 외부 통로가, 복수의 외부 통로로 구성되어, 상기 공기 공급원을 전환하는 전환 수단을 구비함으로써, 상기 가스 터빈의 운전 상황에 따라, 필요한 압력의 냉각용 공기를 복수의 상기 공기 공급원으로부터 선택하여 냉각 대상으로 공급할 수 있다. 이에 의해, 상기 가스 터빈은, 냉각용 공기의 압력이 필요한 압력에 대하여 과잉으로 높아지는 것을 억제하고, 가스 터빈의 부하에 따른 적정한 공기 공급원의 선택이 가능해지므로, 가스 터빈 전체의 열효율의 저하를 억제할 수 있다.
상술한 실시 형태에 관한 가스 터빈의 운전 방법에 따르면, 가스 터빈의 부하에 따른 냉각 공기의 공기 공급원의 선택이 가능하므로, 운전 상황에 따라서 적정한 공기를 채용할 수 있고, 가스 터빈 전체의 열효율의 저하를 억제할 수 있다.
이상과 같이, 본 실시 형태에 관한 가스 터빈 및 가스 터빈의 운전 방법은, 터빈측의 동익을 냉각하는데 유용하고, 특히, 열효율의 저하를 억제할 수 있는 가스 터빈에 적합하다.
1, 2 : 가스 터빈 시스템
3 : 가스 터빈
10 : 터빈
11 : 터빈 차실
12 : 터빈측 정익
13 : 터빈측 동익
14 : 디스크
20 : 압축기
21 : 공기 도입구
22 : 압축기 하우징
23 : 압축기측 정익
24 : 압축기측 동익
25 : 추기 매니폴드
26 : 압축기 추기구
27 : 압축기 고압 추기구
28 : 압축기 저압 추기구
29 : 대기 도입구
30 : 연소기
31 : 하우징
32 : 연소기 라이너
33 : 미통
34 : 연료 노즐
35 : 연소기 라이너 공기 도입구
36 : 차실
37 : 연소 영역
40 : 배기실
41 : 배기 디퓨저
42 : 배열 회수부
43 : 굴뚝
50 : 로터
51 : 베어링
52 : 베어링
60 : 축 방향 통로
61 : 냉각용 공기 도입구
62 : 스월러
62a : 가이드판
63 : 제1 직경 방향 통로
63a : 냉각용 공기 도입측 개구
63b : 냉각용 공기 배출측 개구
64 : 캐비티
65 : 제2 직경 방향 통로
65a : 캐비티측 개구
65b : 동익측 개구
67 : 축 단부 시일
67a : 래버린스 시일
67b : 브러시 시일
68 : 외부 통로
69 : 냉각기
70 : 공기 유량 조절 밸브
71 : 공기 필터
72 : 전환 밸브
80 : 발전기
131 : 기부
132 : 팁부
133 : 냉각 통로
136 : 냉각용 공기 배출구
AF02 : 냉각용 공기류
AF03 : 냉각용 공기류
AF04 : 냉각용 공기류
RL : 중심축
3 : 가스 터빈
10 : 터빈
11 : 터빈 차실
12 : 터빈측 정익
13 : 터빈측 동익
14 : 디스크
20 : 압축기
21 : 공기 도입구
22 : 압축기 하우징
23 : 압축기측 정익
24 : 압축기측 동익
25 : 추기 매니폴드
26 : 압축기 추기구
27 : 압축기 고압 추기구
28 : 압축기 저압 추기구
29 : 대기 도입구
30 : 연소기
31 : 하우징
32 : 연소기 라이너
33 : 미통
34 : 연료 노즐
35 : 연소기 라이너 공기 도입구
36 : 차실
37 : 연소 영역
40 : 배기실
41 : 배기 디퓨저
42 : 배열 회수부
43 : 굴뚝
50 : 로터
51 : 베어링
52 : 베어링
60 : 축 방향 통로
61 : 냉각용 공기 도입구
62 : 스월러
62a : 가이드판
63 : 제1 직경 방향 통로
63a : 냉각용 공기 도입측 개구
63b : 냉각용 공기 배출측 개구
64 : 캐비티
65 : 제2 직경 방향 통로
65a : 캐비티측 개구
65b : 동익측 개구
67 : 축 단부 시일
67a : 래버린스 시일
67b : 브러시 시일
68 : 외부 통로
69 : 냉각기
70 : 공기 유량 조절 밸브
71 : 공기 필터
72 : 전환 밸브
80 : 발전기
131 : 기부
132 : 팁부
133 : 냉각 통로
136 : 냉각용 공기 배출구
AF02 : 냉각용 공기류
AF03 : 냉각용 공기류
AF04 : 냉각용 공기류
RL : 중심축
Claims (7)
- 회전축인 로터의 통 내에 상기 로터의 중심축을 따라 형성되어 있고, 상기 중심축을 회전축으로 하여 회전하는 회전 부재와 함께 상기 로터에 설치되고, 냉각용 공기가 상기 로터의 중심축을 따르는 방향으로 유동하는 축 방향 통로와,
상기 축방향 통로에 직결하고, 그 시점이, 상기 축방향 통로의 상기 냉각용 공기가 유동하는 하류측 말단의 상기 로터 중심축 근방에 배치되고, 상기 회전 부재에 상기 로터의 중심으로부터 외측을 향하여 설치됨으로써 상기 냉각용 공기를 압축하는 동시에, 한쪽 단부가 상기 축 방향 통로에 연통되고, 다른 쪽 단부가 상기 회전 부재의 외부의 후방단의 터빈 동익에 연통되고, 상기 회전 부재의 주위 직경방향의 외측을 향하여 방사선 형상으로 복수개 설치된 구멍 형상의 통로인 직경 방향 통로와, 공기량 조정 수단을 구비하고,
한쪽 단부가 공기를 도입하는 공기 공급원에 연통되고, 다른 쪽 단부가 배기실측의 상기 로터의 축 단부측으로부터 상기 축 방향 통로에 연통되어 상기 냉각용 공기가 도입되는 외부 통로를 구비하고,
상기 직경 방향 통로는 상기 축 방향 통로에 연통하는 제1 직경 방향 통로와,
터빈 동익의 냉각 통로에 연통하는 제2 직경 방향 통로와,
상기 제1 직경 방향 통로와 상기 제2 직경 방향 통로의 사이에 배치되고, 일단이 상기 제1 직경 방향 통로에 연통되고, 타단이 상기 제2 직경 방향 통로에 연통되는 캐비티로 이루어져 형성되고,
상기 제1 직경 방향 통로와 상기 제2 직경 방향 통로는 상기 제1 및 제2 직경방향 통로의 중심축이 상기 로터의 축방향에 대해서 서로 어긋나 있는 것을 특징으로 하는 가스 터빈. - 제1항에 있어서,
상기 공기 공급원은, 공기를 압축하는 압축기에 설치되는 압축기 추기구인 것을 특징으로 하는, 가스 터빈. - 제2항에 있어서,
상기 외부 통로에 설치되는 동시에, 상기 냉각용 공기를 냉각하는 냉각용 공기 냉각 수단을 구비하는 것을 특징으로 하는, 가스 터빈. - 제1항에 있어서, 상기 공기 공급원이 대기에 개방하는 대기 도입구인, 가스 터빈.
- 제1항에 있어서, 상기 축 방향 통로에 설치되고, 상기 축 방향 통로를 유동하는 상기 냉각용 공기에 대하여 상기 로터의 회전 방향의 선회를 부여하는 스월 부여 수단을 구비하는, 가스 터빈.
- 제1항에 있어서, 상기 외부 통로가 복수의 외부 통로로 구성되고, 상기 공기 공급원을 전환하는 전환 수단을 구비하는, 가스 터빈.
- 회전축인 로터의 통내에 상기 로터의 중심축을 따라 형성되어 있고, 상기 중심축을 회전축으로 하여 회전하는 회전 부재와 함께 상기 로터에 설치되고, 냉각용 공기가 상기 로터의 중심축을 따르는 방향으로 유동하는 축 방향 통로와,
그 시점이, 상기 축방향 통로의 상기 냉각용 공기가 유동하는 하류측 말단의 상기 로터 중심 근방에 배치되고, 상기 회전 부재에 상기 로터의 중심으로부터 외측을 향하여 설치됨으로써 상기 냉각용 공기를 압축하는 동시에, 한쪽 단부가 상기 축 방향 통로에 연통되고, 다른 쪽 단부가 상기 회전 부재의 외부의 후방 단의 터빈 동익에 연통되고, 상기 회전 부재의 주위 직경 방향의 외측을 향하여 방사선 형상으로 복수개 설치되는 구멍 형상의 통로인 직경 방향 통로와,
한쪽 단부가 공기를 도입하는 공기 공급원에 연통되어 상기 냉각용 공기가 도입되고, 다른 쪽 단부가 배기실측의 상기 로터의 축 단부측으로부터 상기 축 방향 통로에 축 단부 시일을 통해 연통하는 복수의 통로로 구성되어, 상기 공기 공급원을 전환하는 전환 수단을 구비하는 외부 통로를 구비하고,
상기 직경방향 통로는 상기 축방향 통로에 연통하는 제1 직경방향 통로와,
상기 터빈 동익의 냉각통로에 연통하는 제2 직경 방향 통로와,
상기 제1 직경방향 통로와 상기 제2 직경방향 통로의 사이에 배치되고, 일단이 상기 제1 직경 방향 통로와 연통되고, 타단이 상기 제2 직경 방향 통로와 연통되는 캐비티로 이루어져 형성되고,
상기 제1 직경 방향 통로와 상기 제2 직경 방향 통로는 상기 제1 및 제2 직경방향 통로의 중심축이 상기 로터의 축방향에 대해서 서로 어긋나 있는 가스터빈의 운전방법에 있어서,
상기 가스 터빈의 부하에 따라 상기 공기 공급원을 전환하는 것을 특징으로 하는 가스 터빈의 운전방법.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/164,786 US8079802B2 (en) | 2008-06-30 | 2008-06-30 | Gas turbine |
US12/164,786 | 2008-06-30 | ||
PCT/JP2009/057983 WO2010001655A1 (ja) | 2008-06-30 | 2009-04-22 | ガスタービン及びガスタービンの運転方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020137031824A Division KR20140013061A (ko) | 2008-06-30 | 2009-04-22 | 가스 터빈 및 가스 터빈의 운전 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110022641A KR20110022641A (ko) | 2011-03-07 |
KR101370731B1 true KR101370731B1 (ko) | 2014-03-06 |
Family
ID=41447684
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020107029528A KR101370731B1 (ko) | 2008-06-30 | 2009-04-22 | 가스 터빈 및 가스 터빈의 운전 방법 |
KR1020137031824A KR20140013061A (ko) | 2008-06-30 | 2009-04-22 | 가스 터빈 및 가스 터빈의 운전 방법 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020137031824A KR20140013061A (ko) | 2008-06-30 | 2009-04-22 | 가스 터빈 및 가스 터빈의 운전 방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8079802B2 (ko) |
EP (1) | EP2309109B1 (ko) |
JP (4) | JP4981970B2 (ko) |
KR (2) | KR101370731B1 (ko) |
CN (2) | CN102076940B (ko) |
WO (1) | WO2010001655A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190059332A (ko) * | 2017-11-21 | 2019-05-31 | 두산중공업 주식회사 | 외부 냉각시스템을 포함하는 가스터빈 및 이의 냉각방법 |
KR20200132817A (ko) * | 2017-11-21 | 2020-11-25 | 두산중공업 주식회사 | 외부 냉각시스템을 포함하는 가스터빈 및 이의 냉각방법 |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0816637D0 (en) * | 2008-09-12 | 2008-10-22 | Rolls Royce Plc | Blade Pitch Control |
GB0816636D0 (en) * | 2008-09-12 | 2008-10-22 | Rolls Royce Plc | Controlling rotor overspeed |
US9091172B2 (en) | 2010-12-28 | 2015-07-28 | Rolls-Royce Corporation | Rotor with cooling passage |
JP5571015B2 (ja) | 2011-02-25 | 2014-08-13 | 三菱重工業株式会社 | ガスタービン |
JP2012184734A (ja) * | 2011-03-07 | 2012-09-27 | Mitsubishi Heavy Ind Ltd | ガスタービン及びガスタービン冷却方法 |
US10041407B2 (en) | 2011-03-29 | 2018-08-07 | General Electric Company | System and method for air extraction from gas turbine engines |
CH705512A1 (de) * | 2011-09-12 | 2013-03-15 | Alstom Technology Ltd | Gasturbine. |
US9371737B2 (en) * | 2012-02-23 | 2016-06-21 | Mitsubishi Hitachi Power Systems, Ltd. | Gas turbine |
US9121413B2 (en) | 2012-03-22 | 2015-09-01 | General Electric Company | Variable length compressor rotor pumping vanes |
JP5787857B2 (ja) | 2012-09-27 | 2015-09-30 | 三菱日立パワーシステムズ株式会社 | ガスタービン冷却系統の制御方法、この方法を実行する制御装置、これを備えているガスタービン設備 |
CN104769256B (zh) | 2012-10-26 | 2019-01-18 | 鲍尔法斯有限责任公司 | 燃气轮机能量补充系统和加热系统 |
US8820091B2 (en) * | 2012-11-07 | 2014-09-02 | Siemens Aktiengesellschaft | External cooling fluid injection system in a gas turbine engine |
WO2014126994A1 (en) * | 2013-02-14 | 2014-08-21 | Siemens Energy, Inc. | Gas turbine engine with an ambient air cooling arrangement having a pre-swirler |
US9822662B2 (en) * | 2013-11-08 | 2017-11-21 | Siemens Energy, Inc. | Cooling system with compressor bleed and ambient air for gas turbine engine |
US9797259B2 (en) | 2014-03-07 | 2017-10-24 | Siemens Energy, Inc. | Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids |
CN104196572B (zh) * | 2014-07-15 | 2016-07-13 | 西北工业大学 | 一种具有盘腔导流肋板的双辐板涡轮盘 |
JP6432110B2 (ja) * | 2014-08-29 | 2018-12-05 | 三菱日立パワーシステムズ株式会社 | ガスタービン |
US10443501B2 (en) | 2015-02-05 | 2019-10-15 | Powerphase Llc | Turbocooled vane of a gas turbine engine |
US10358979B2 (en) | 2015-02-05 | 2019-07-23 | Powerphase Llc | Turbocooled vane of a gas turbine engine |
JP5894317B2 (ja) * | 2015-06-03 | 2016-03-23 | 三菱重工業株式会社 | ガスタービン及びガスタービン冷却方法 |
WO2017052794A2 (en) * | 2015-08-04 | 2017-03-30 | Powerphase Llc | Turbocooled vane of a gas turbine engine |
JP6647952B2 (ja) * | 2016-04-25 | 2020-02-14 | 三菱重工業株式会社 | ガスタービン |
KR101882107B1 (ko) | 2016-12-22 | 2018-07-25 | 두산중공업 주식회사 | 가스터빈 |
EP3342979B1 (en) * | 2016-12-30 | 2020-06-17 | Ansaldo Energia Switzerland AG | Gas turbine comprising cooled rotor disks |
KR101937586B1 (ko) * | 2017-09-12 | 2019-01-10 | 두산중공업 주식회사 | 베인 조립체, 터빈 및 이를 포함하는 가스터빈 |
JP2021124052A (ja) * | 2020-02-04 | 2021-08-30 | 東芝エネルギーシステムズ株式会社 | 軸流タービン |
KR102202368B1 (ko) * | 2020-09-16 | 2021-01-13 | 서울대학교산학협력단 | 밀폐성과 작동성을 향상시킨 가스 터빈 엔진 |
KR102206447B1 (ko) * | 2020-10-08 | 2021-01-22 | 서울대학교산학협력단 | 유동 안정성과 냉각 효율을 향상시킨 가스 터빈 엔진 |
US11858615B2 (en) | 2022-01-10 | 2024-01-02 | General Electric Company | Rotating airfoil assembly with opening formed therein to eject or to draw air |
US11898458B1 (en) * | 2022-08-10 | 2024-02-13 | Hamilton Sundstrand Corporation | Radial fan with leading edge air injection |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62182444A (ja) * | 1986-02-07 | 1987-08-10 | Hitachi Ltd | ガスタ−ビン冷却空気制御方法及び装置 |
JPH11182263A (ja) * | 1997-10-17 | 1999-07-06 | Hitachi Ltd | ガスタービン発電プラント |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2618756A (en) * | 1949-06-06 | 1952-11-18 | Carl J Fechheimer | Liquid cooled electrical machine |
US3325993A (en) * | 1965-08-11 | 1967-06-20 | James F Gulyas | Jet engine |
BE755508A (fr) * | 1966-05-16 | 1971-02-01 | Gen Electric | Rotor pour moteurs a turbine a gaz |
US3982852A (en) | 1974-11-29 | 1976-09-28 | General Electric Company | Bore vane assembly for use with turbine discs having bore entry cooling |
US4102603A (en) | 1975-12-15 | 1978-07-25 | General Electric Company | Multiple section rotor disc |
JPS5941001A (ja) | 1982-09-01 | 1984-03-07 | Toshiba Corp | シ−ケンス制御装置 |
JPS59173527A (ja) * | 1983-03-22 | 1984-10-01 | Hitachi Ltd | ガスタ−ビン排気フレ−ム冷却空気系統 |
US4807433A (en) * | 1983-05-05 | 1989-02-28 | General Electric Company | Turbine cooling air modulation |
JPH0629521B2 (ja) | 1985-03-31 | 1994-04-20 | 株式会社東芝 | ガスタ−ビンロ−タの冷却装置 |
JPS61241405A (ja) * | 1985-04-17 | 1986-10-27 | Hitachi Ltd | ノズル翼冷却孔異物侵入防止方法 |
JPS63159626A (ja) | 1986-12-24 | 1988-07-02 | Hitachi Ltd | ガスタ−ビンケ−シングの温度制御方法および温度制御装置 |
JPH04132403U (ja) * | 1991-05-30 | 1992-12-08 | 三菱重工業株式会社 | ガスタービン |
JPH0586901A (ja) * | 1991-09-20 | 1993-04-06 | Hitachi Ltd | ガスタービン |
US5340274A (en) * | 1991-11-19 | 1994-08-23 | General Electric Company | Integrated steam/air cooling system for gas turbines |
FR2690482B1 (fr) * | 1992-04-23 | 1994-06-03 | Snecma | Circuit de ventilation des disques de compresseurs et de turbines. |
US5755556A (en) * | 1996-05-17 | 1998-05-26 | Westinghouse Electric Corporation | Turbomachine rotor with improved cooling |
JPH10103001A (ja) * | 1996-09-25 | 1998-04-21 | Ishikawajima Harima Heavy Ind Co Ltd | 回転機械のロータ |
US5819524A (en) * | 1996-10-16 | 1998-10-13 | Capstone Turbine Corporation | Gaseous fuel compression and control system and method |
WO1998051917A1 (en) * | 1997-05-13 | 1998-11-19 | Siemens Westinghouse Power Corporation | Method and apparatus for cooling a turbine with compressed cooling air from an auxiliary compressor system |
JPH10325361A (ja) * | 1997-05-27 | 1998-12-08 | Ishikawajima Harima Heavy Ind Co Ltd | ガスタービンのタービン翼冷却装置 |
JP3444161B2 (ja) | 1997-10-17 | 2003-09-08 | 株式会社日立製作所 | ガスタービン |
JP3887469B2 (ja) * | 1997-11-28 | 2007-02-28 | 株式会社東芝 | ガスタービンプラント |
US6224327B1 (en) * | 1998-02-17 | 2001-05-01 | Mitsubishi Heavy Idustries, Ltd. | Steam-cooling type gas turbine |
JPH11315800A (ja) * | 1998-04-30 | 1999-11-16 | Toshiba Corp | 空気圧縮機 |
WO2001038707A1 (fr) * | 1999-11-26 | 2001-05-31 | Hitachi, Ltd. | Equipement de turbine a gaz, dispositif d'etancheite pour turbine a gaz, et procede de suppression des fuites d'air de refroidissement pour turbine a gaz |
DE10009655C1 (de) * | 2000-02-29 | 2001-05-23 | Mtu Aero Engines Gmbh | Kühlluftsystem |
JP4274666B2 (ja) * | 2000-03-07 | 2009-06-10 | 三菱重工業株式会社 | ガスタービン |
US6389793B1 (en) * | 2000-04-19 | 2002-05-21 | General Electric Company | Combustion turbine cooling media supply system and related method |
JP3481596B2 (ja) * | 2001-02-14 | 2003-12-22 | 株式会社日立製作所 | ガスタービン |
EP1283338B1 (de) * | 2001-08-09 | 2005-03-30 | Siemens Aktiengesellschaft | Gasturbine und Verfahren zum Betreiben einer Gasturbine |
JP4691950B2 (ja) * | 2004-10-14 | 2011-06-01 | 株式会社日立製作所 | ガスタービン及びその冷媒供給方法 |
US7244095B2 (en) * | 2004-12-16 | 2007-07-17 | Energent Corporation | Dual pressure Euler steam turbine |
US7493769B2 (en) * | 2005-10-25 | 2009-02-24 | General Electric Company | Assembly and method for cooling rear bearing and exhaust frame of gas turbine |
US7607885B2 (en) * | 2006-07-31 | 2009-10-27 | General Electric Company | Methods and apparatus for operating gas turbine engines |
-
2008
- 2008-06-30 US US12/164,786 patent/US8079802B2/en active Active
-
2009
- 2009-04-22 KR KR1020107029528A patent/KR101370731B1/ko active IP Right Grant
- 2009-04-22 WO PCT/JP2009/057983 patent/WO2010001655A1/ja active Application Filing
- 2009-04-22 JP JP2010518955A patent/JP4981970B2/ja active Active
- 2009-04-22 CN CN200980125435.6A patent/CN102076940B/zh active Active
- 2009-04-22 EP EP09773233.3A patent/EP2309109B1/en active Active
- 2009-04-22 KR KR1020137031824A patent/KR20140013061A/ko not_active Application Discontinuation
- 2009-04-22 CN CN201410007112.XA patent/CN103758578B/zh active Active
-
2012
- 2012-01-11 JP JP2012003623A patent/JP2012067767A/ja active Pending
- 2012-01-11 JP JP2012003622A patent/JP5524248B2/ja active Active
- 2012-01-11 JP JP2012003621A patent/JP5571106B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62182444A (ja) * | 1986-02-07 | 1987-08-10 | Hitachi Ltd | ガスタ−ビン冷却空気制御方法及び装置 |
JPH11182263A (ja) * | 1997-10-17 | 1999-07-06 | Hitachi Ltd | ガスタービン発電プラント |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190059332A (ko) * | 2017-11-21 | 2019-05-31 | 두산중공업 주식회사 | 외부 냉각시스템을 포함하는 가스터빈 및 이의 냉각방법 |
KR102183194B1 (ko) * | 2017-11-21 | 2020-11-25 | 두산중공업 주식회사 | 외부 냉각시스템을 포함하는 가스터빈 및 이의 냉각방법 |
KR20200132817A (ko) * | 2017-11-21 | 2020-11-25 | 두산중공업 주식회사 | 외부 냉각시스템을 포함하는 가스터빈 및 이의 냉각방법 |
KR102307706B1 (ko) * | 2017-11-21 | 2021-10-01 | 두산중공업 주식회사 | 외부 냉각시스템을 포함하는 가스터빈 및 이의 냉각방법 |
Also Published As
Publication number | Publication date |
---|---|
EP2309109A4 (en) | 2015-05-20 |
KR20110022641A (ko) | 2011-03-07 |
EP2309109B1 (en) | 2017-04-19 |
CN103758578B (zh) | 2015-12-09 |
US20090324386A1 (en) | 2009-12-31 |
JP5524248B2 (ja) | 2014-06-18 |
US8079802B2 (en) | 2011-12-20 |
JP2012067767A (ja) | 2012-04-05 |
JP2012067766A (ja) | 2012-04-05 |
JPWO2010001655A1 (ja) | 2011-12-15 |
EP2309109A1 (en) | 2011-04-13 |
JP5571106B2 (ja) | 2014-08-13 |
KR20140013061A (ko) | 2014-02-04 |
CN102076940A (zh) | 2011-05-25 |
CN103758578A (zh) | 2014-04-30 |
JP2012067765A (ja) | 2012-04-05 |
WO2010001655A1 (ja) | 2010-01-07 |
JP4981970B2 (ja) | 2012-07-25 |
CN102076940B (zh) | 2014-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101370731B1 (ko) | 가스 터빈 및 가스 터빈의 운전 방법 | |
US6966191B2 (en) | Device for supplying secondary air in a gas turbine engine | |
RU2303149C2 (ru) | Газотурбинный двигатель (варианты) и способ охлаждения размещенных внутри него деталей | |
RU2332579C2 (ru) | Теплообменник для контура воздушного охлаждения турбины | |
CA2799333C (en) | Compact high-pressure exhaust muffling devices | |
JP2017040264A (ja) | 圧縮機ブリード補助タービン | |
CA1262638A (en) | Dual entry radial turbine gas generator | |
JP2017040263A (ja) | 混合流ターボコア | |
JP2017040265A (ja) | ガスタービンエンジンのための空気流噴射ノズル | |
JP2001506342A (ja) | スラストベアリング荷重制御装置を有するタービンエンジン | |
CA2870604A1 (en) | High pressure muffling devices | |
JP5890003B2 (ja) | タービン段を冷却する方法、及び、冷却された当該タービン段を有しているガスタービン | |
JP2002543319A (ja) | ガスタービンエンジンの高圧タービンの冷却 | |
CN109072781B (zh) | 燃气轮机 | |
JP2011516780A (ja) | タービン装置 | |
US6305155B1 (en) | System for compensating for a pressure loss in the cooling-air ducting in a gas turbine plant | |
JP2006083856A (ja) | 改善されたコアシステムを有するガスタービンエンジン | |
RU2573094C2 (ru) | Газотурбинный двигатель | |
KR20080021135A (ko) | 터보 컴프레서의 터빈부 및 터보 컴프레서의 터빈부 내에탄소 발생을 방지하는 방법 | |
CN107084006B (zh) | 用于燃气涡轮发动机翼型件的加速器插入件 | |
US20040112064A1 (en) | Gas turbine with device for extracting work from disk cooling air | |
US11585228B2 (en) | Technique for cooling inner shroud of a gas turbine vane | |
JPH1136983A (ja) | ターボファンエンジンのタービンフレーム構造 | |
JPH11101131A (ja) | 軸端冷媒流通型ガスタービン | |
JP2006105071A (ja) | 冷却翼及び冷却構造 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E90F | Notification of reason for final refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
J201 | Request for trial against refusal decision | ||
A107 | Divisional application of patent | ||
AMND | Amendment | ||
B701 | Decision to grant | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170202 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180219 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190218 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20200218 Year of fee payment: 7 |