KR101032172B1 - 자기 입자를 이용한 내부 교정 시스템을 사용하는 유동분석 장치 - Google Patents

자기 입자를 이용한 내부 교정 시스템을 사용하는 유동분석 장치 Download PDF

Info

Publication number
KR101032172B1
KR101032172B1 KR1020057002264A KR20057002264A KR101032172B1 KR 101032172 B1 KR101032172 B1 KR 101032172B1 KR 1020057002264 A KR1020057002264 A KR 1020057002264A KR 20057002264 A KR20057002264 A KR 20057002264A KR 101032172 B1 KR101032172 B1 KR 101032172B1
Authority
KR
South Korea
Prior art keywords
detection
calibration
probe
analyte
fluorescent
Prior art date
Application number
KR1020057002264A
Other languages
English (en)
Other versions
KR20050062529A (ko
Inventor
쉐동 송
로잔 케일러
Original Assignee
킴벌리-클라크 월드와이드, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 킴벌리-클라크 월드와이드, 인크. filed Critical 킴벌리-클라크 월드와이드, 인크.
Publication of KR20050062529A publication Critical patent/KR20050062529A/ko
Application granted granted Critical
Publication of KR101032172B1 publication Critical patent/KR101032172B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • G01N33/525Multi-layer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/558Immunoassay; Biospecific binding assay; Materials therefor using diffusion or migration of antigen or antibody
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/803Physical recovery methods, e.g. chromatography, grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/805Test papers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/97Test strip or test slide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/80Fluorescent dyes, e.g. rhodamine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/806Electrical property or magnetic property
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/824Immunological separation techniques
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/13Tracers or tags

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

시험 샘플 내의 분석물의 존재 또는 양을 검출하기 위한 막 기반 분석 장치가 제공된다. 상기 장치는 검출 시그날을 생성시킬 수 있는 검출 프로브 (예를 들어 형광 비자기 입자) 및 교정 시그날을 생성시킬 수 있는 교정 프로브 (예를 들어 형광 자기 입자)를 포함하는 자가-교정된 자기 결합 분석 포맷 (샌드위치, 경쟁 등)을 이용한다. 시험 샘플 내의 분석물의 양은 교정 시그날의 강도에 의해 교정된 검출 시그날의 강도에 비례 (예를 들어 정비례 또는 반비례)한다. 본 발명의 유체공학 기반 장치는 시험 샘플 내의 분석물의 존재를 결정하는, 정확하고 저비용의 쉽게 제어가능한 방법을 제공하는 것으로 밝혀졌다.
Figure R1020057002264
유체공학 기반 분석 장치, 교정 시그날, 검출 시그날, 형광 자기 입자, 분석물, 검출 프로브, 교정 프로브

Description

자기 입자를 이용한 내부 교정 시스템을 사용하는 유동 분석 장치{FLOW-THROUGH ASSAY WITH AN INTERNAL CALIBRATION SYSTEM USING MAGNETIC PARTICLES}
시험 샘플에 분석물의 존재 및(또는) 부재를 결정하기 위한 분석에 상이한 분석 방법 및 장치가 통상 사용된다. 예를 들어, 면역분석은 유기체에 병원성이거나 외래 물질인 항원의 존재에 반응하여 항체가 생성되는 면역 시스템의 메카니즘을 이용한다. 상기 항체 및 항원, 즉 면역반응물은 서로 결합할 수 있고, 이에 의해 생물학적 샘플 내의 특정 항원의 존재 또는 농도를 결정하기 위해 사용할 수 있는 고특이성의 반응 메카니즘을 생성시킨다.
분석물을 분석 방법에 의해 검출할 수 있도록 검출가능한 성분으로 표지된 면역반응물을 이용하는 다수의 공지된 면역분석 방법이 존재한다. 예를 들어, "샌드위치-타입 (sandwich-type)" 분석은 대체로 시험 샘플을 분석물에 대한 항체와 혼합하는 것을 수반한다. 상기 항체는 이동성이고, 표지 또는 프로브, 예를 들어 염료 처리된 라텍스, 콜로이드성 금속 졸 또는 방사성 동위원소에 연결된다. 상기 혼합물은 이어서 분석물에 대한 고정 항체의 밴드 또는 대역을 포함하는 크로마토그래피 매질과 접촉된다. 크로마토그래피 매질은 종종 계량봉 (dipstick)과 유사한 스트립의 형태이다. 분석물과 표지된 항체의 복합체가 크로마토그래피 매질 상의 고정 항체의 대역에 도달하면, 결합이 발생하고 결합된 표지된 항체는 대역에 편재된다. 이것은 분석물의 존재를 나타낸다. 상기 기술은 정량적 또는 반정량적 결과를 얻기 위해 사용할 수 있다. 상기 샌드위치-타입 분석의 일부 예는 미국 특허 제4,168,146호 (그루브 (Grubb) 등) 및 제4,366,241호 (톰 (Tom) 등)에 기재되어 있다.
다른 기술은 "경쟁 (competitive)-타입" 분석이다. "경쟁-타입" 분석에서, 표지는 대체로 항체가 샘플에 존재하는 임의의 비표지된 분석물과 결합하기 위해 경쟁하는 표지된 분석물 또는 분석물-유사체이다. 경쟁 분석은 대체로 분석물, 예를 들어 각각 1가이고 하나의 항체 분자와만 결합할 수 있는 합텐의 검출에 사용된다. 경쟁 면역분석 장치의 예는 미국 특허 제4,235,601호 (도이치 (Deutsch) 등), 제4,442,204호 (리오타 (Liotta)) 및 제5,208,535호 (뷔흘러 (Buechler) 등)에 기재되어 있다.
자기 결합 분석은 자기장에 의해 쉽게 조작될 수 있고 특수한 고가의 장비를 필요로 하지 않기 때문에 복합 샘플로부터 생물학적 물질종 (예를 들어, 단백질, 세포 및 미세유기체)의 분리를 위해 널리 사용되어 왔다. 이 방식으로, 자기 면역분석은 물질 종의 존재 여부를 결정하기 위한 신속하고 간단한 기술을 제공할 수 있다. 상기 분석에서, 색상 (흡수 및 반사율), 형광, 화학발광, 방사성 및 효소를 포함하여 상이한 시그날 생성 메카니즘이 사용되어 왔다.
그러나, 종래의 자기 면역분석은 일반적으로 분석물에 대한 정량적 정보를 얻기 위해 사용될 때마다 교정 (calibration)곡선을 생성시키기 위한 대조 샘플을 필요로 한다. 구체적으로, 시험 샘플 내에 생물학적 물질종의 존재 여부를 분석할 때, 거의 동일한 조건에서 시험 분석을 교정하기 위해 다수의 대조 샘플을 물질종의 기지량에 대해 동시에 시험한다. 불운하게도, 상기 교정 기술은 종종 불편하고, 비용이 많이 소요되고, 번거롭다.
따라서, 조절이 용이하고 비용이 비교적 적게 소요되는, 정확한 분석 교정 시스템에 대한 필요성이 현재 존재한다.
<발명의 요지>
본 발명의 한 실시태양에 따르면, 시험 샘플에 존재하는 분석물의 존재 또는 양을 검출하기 위한 막 기반 장치 (예를 들어 측방 유동 막 기반 분석 장치)가 개시된다. 장치는 검출 시그날을 생성시킬 수 있는 검출 프로브 및 교정 시그날을 생성시킬 수 있는 자기 교정 프로브와 유체 소통하는 다공성 막을 포함한다. 일반적으로 말하면, 검출 프로브 및 교정 프로브는 검출가능한 시그날을 생성시킬 수 있는 임의의 물질로 형성될 수 있다. 예를 들어, 일부 실시태양에서, 상기 프로브는 색원체, 촉매, 형광 화합물, 화학발광 화합물, 인광 화합물, 방사성 화합물, 직시 (direct visual) 표지, 리포좀 및 이들의 조합물로 이루어진 군 중에서 선택된다. 예를 들어, 검출 프로브 및 교정 프로브는 형광 화합물, 예를 들어 형광 입자일 수 있다. 한 특정 실시태양에서, 검출 프로브는 형광 비자기 화합물이고, 교정 프로브는 형광 자기 입자이다. 필요한 경우, 형광 자기 입자는 특이적 결합 성분과 컨쥬게이션되거나 차단될 수 있다.
일부 실시태양에서, 장치는 다공성 막과 유체 소통하는 하나 이상의 컨쥬게이트 패드를 추가로 포함한다. 필요한 경우, 검출 프로브 및 교정 프로브는 상기 하나 이상의 컨쥬게이트 패드에 적용된다. 상기 장치는 다공성 막과 유체 소통하는 샘플링 패드를 추가로 포함할 수 있다. 필요한 경우, 시험 샘플은 샘플링 패드에 적용된다. 또한, 상기 장치는 그를 통한 시험 샘플의 유동을 용이하게 하기 위해 다공성 막과 유체 소통하는 위킹 패드를 포함할 수 있다.
자기 장치는 다공성 막에 의해 규정되는 검출 대역에 인접하여 위치한다. 자기 장치는 다공성 막에 적용되는 시험 샘플로부터 검출 프로브 및 교정 프로브를 분리할 수 있다. 예를 들어, 샌드위치 분석 포맷의 한 실시태양에서, 검출 프로브 및 교정 프로브는 반응 챔버에서 분석물과 복합체를 형성한다. 검출 대역에서 자기 장치와 소통하도록 배치될 때, 상기 분석물 복합체 및 임의의 비복합체화 (uncomplexed) 교정 프로브가 나머지 시험 샘플로부터 분리된다.
따라서, 분리된 검출 및 교정 프로브 (복합체화 및(또는) 비복합체화)는 시험 샘플 내의 분석물의 존재 또는 양을 나타낼 수 있다. 구체적으로, 시험 샘플 내의 분석물의 양은 검출 대역에서 분리된 교정 프로브 (복합체화 및(또는) 비복합체화)에 의해 생성된 교정 시그날의 강도에 의해 교정된 검출 대역에서 분리된 검출 프로브 (복합체화 및(또는) 비복합체화)에 의해 생성된 검출 시그날의 강도에 비례한다. 예를 들어, 한 실시태양에서, 시험 샘플 내의 분석물의 양은 검출 시그날의 강도를 교정 시그날의 강도로 나눈 값에 비례한다.
본 발명의 다른 실시태양에 따르면, 시험 샘플 내의 분석물의 존재 또는 양을 검출하는 방법이 개시된다. 상기 방법은
i) a) 검출 시그날을 생성시킬 수 있는 검출 프로브 및 교정 시그날을 생성 시킬 수 있는 자기 교정 프로브와 유체 소통하는, 검출 대역을 규정하는 다공성 막 및 b) 상기 검출 대역에 인접하여 위치하는 자기 장치를 포함하는 막 기반 장치를 제공하는 단계,
ii) 상기 검출 프로브 및 상기 교정 프로브를 시험 샘플과 접촉시켜 용액을 형성시키는 단계,
iii) 상기 자기 장치를 사용하여 상기 검출 대역에서 상기 검출 프로브 및 상기 교정 프로브를 상기 용액으로부터 분리하는 단계,
iv) 상기 분리된 검출 프로브 (복합체화 및(또는) 비복합체화) 및 상기 분리된 교정 프로브 (복합체화 및(또는) 비복합체화)를 여기(excitation)시켜, 상기 분리된 검출 프로브가 상기 검출 시그날을 방출하고 상기 분리된 교정 프로브가 상기 교정 시그날을 방출하는 단계,
v) 제1 방출 파장에서 검출 시그날의 강도 및 제1 방출 파장과 동일하거나 상이할 수 있는 제2 방출 파장에서 교정 시그날의 강도를 측정하는 단계 및
vi) 검출 시그날의 강도를 교정 시그날의 강도와 비교하는 단계 (여기서 시험 샘플 내의 분석물의 양은 교정 시그날의 강도에 의해 교정된 검출 시그날의 강도에 비례함)
를 포함한다.
분리된 검출 프로브 및 교정 프로브는 동시에 또는 별개로 여기시킬 수 있다. 유사하게, 검출 시그날 및 교정 시그날의 강도는 동시에 또는 별개로 측정할 수 있다. 또한, 한 실시태양에서 상기 방법은 복수의 소정의 분석물 농도에 대해 교정 시그날의 강도에 의해 교정된 검출 시그날의 강도를 플로팅함으로써 교정 곡선을 생성시키는 단계를 추가로 포함한다.
본 발명의 다른 특징 및 측면은 이하에서 보다 상세하게 설명된다.
그의 최량의 실시형태를 포함하여 본 발명의 전체적이고 실시가능한 개시내용은 첨부 도면을 참고로 하여 본원 명세서의 나머지 부분에 보다 상세하게 제시된다.
도 1은 본 발명의 막 기반 장치의 일실시태양의 투시도이다.
도 2는 본 발명의 샌드위치 분석 포맷의 일실시태양에 사용되는 메카니즘을 보여주는 모식도이다.
도 3은 본 발명의 샌드위치 분석 포맷의 다른 실시태양에 사용되는 메카니즘을 보여주는 모식도이다.
도 4는 본 발명의 경쟁 분석 포맷의 일실시태양에 사용되는 메카니즘을 보여주는 모식도이다.
도 5는 본 발명의 경쟁 분석 포맷의 다른 실시태양에 사용되는 메카니즘을 보여주는 모식도이다.
도 6은 항체를 카르복실레이트 나노입자에 공유결합에 의해 컨쥬게이션시키는 일실시태양을 보여주는 모식도이다.
도 7은 본 발명의 일실시태양에 따른 교정 프로브 (C) 및 검출 프로브 (FP)의 여기 (EX) 및 방출 (EM) 스펙트럼을 보여준다.
도 8은 실시예 1에서 설명되는, 표준화된 형광 강도 대 혈청황색소화 호르몬 (LH)의 양을 보여준다.
도 9는 실시예 2에서 설명되는, 표준화된 형광 강도 대 혈청황색소화 호르몬 (LH)의 양을 보여준다.
도 10은 실시예 4에서 설명되는, 표준화된 형광 강도 대 C-반응성 단백질 (CRP)의 양을 보여준다.
본원 명세서와 도면에서 참조 부호의 반복 사용은 본 발명의 동일하거나 유사한 특징부 또는 성분을 나타내기 위한 것이다.
정의
본원에서 사용되는 용어 "분석물"은 일반적으로 검출되는 물질을 의미한다. 예를 들어, 분석물은 항원성 물질, 합텐, 항체 및 이들의 조합물을 포함할 수 있다. 분석물은 톡신, 유기 화합물, 단백질, 펩티드, 미세유기체, 아미노산, 핵산, 호르몬, 스테로이드, 비타민, 약물 (치료 목적으로 투여되는 약물 및 금지된 목적으로 투여되는 약물을 포함), 세균, 바이러스 입자 및 상기 임의의 물질의 대사산물 또는 상기 물질에 대한 항체를 포함하고, 이로 제한되지 않는다. 몇몇 분석물의 구체적인 예는 페리틴, 크레아티닌 키나제 MIB (CK-MB), 디곡신, 페니토인, 페노바르비톨, 카르바마제핀, 반코마이신, 겐타마이신, 테오필린, 발프로산, 퀴니딘, 혈청황색소화 호르몬 (LH), 난포 자극 호르몬 (FSH), 에스트라디올, 프로게스테론, IgE 항체, 비타민 B2 마이크로글로불린, 당화 헤모글로빈 (Gly. Hb), 코르티졸, 디기톡신, N-아세틸프로카인아미드 (NAPA), 프로카인아미드, 풍진에 대한 항체, 예를 들어 풍진-IgG 및 풍진 IgM, 주혈원충증에 대한 항체, 예를 들어 주혈원충증 IgG (Toxo-IgG) 및 주혈원충증 IgM (Toxo-IgM), 테스토스테론, 살리실레이트, 아세트아미노펜, B형 간염 바이러스 표면 항원 (HBsAg), B형 간염 코어 항원에 대한 항체, 예를 들어 B형 간염 코어 항원 IgG 및 IgM (항-HBC), 인간 면역 결핍 바이러스 1 및 2 (HIV 1 및 2), 인간 T-세포 백혈병 바이러스 1 및 2 (HTLV), Be형 간염 항원 (HBeAg), Be형 간염 항원에 대한 항체 (항-HBe), 갑상선 자극 호르몬 (TSH), 티록신 (T4), 총 트리요오도티로닌 (총 T3), 유리 트리요오도티로닌 (유리 T3), 태아성암 항원 (CEA) 및 알파 태아 단백질 (AFP)을 포함한다. 남용 약물 및 통제 물질은 암페타민, 메탐페타민, 바르비투레이트, 예를 들어 아모바르비탈, 세코바르비탈, 펜토바르비탈, 페노바르비탈 및 바르비탈, 벤조디아제핀, 예를 들어 리브륨 및 발륨, 칸나비노이드, 예를 들어 해시시 및 마리화나, 코카인, 펜타닐, LSD, 메타쿠알론, 진정제, 예를 들어 헤로인, 몰핀, 코데인, 히드로모르폰, 히드로코돈, 메타돈, 옥시코돈, 옥시모르폰 및 아편, 펜시클리딘 및 프로폭시헨을 포함하고, 이로 제한되지 않는다. 다른 잠재적인 분석물은 미국 특허 제4,366,241호 (톰 등)에 기재되어 있다.
본원에서 사용되는 용어 "시험 샘플"은 일반적으로 분석물을 포함하는 것으로 의심되는 물질을 의미한다. 시험 샘플은 공급원으로부터 입수한 상태로 직접 사용하거나 샘플의 특성을 변경시키기 위해 전처리한 후에 사용할 수 있다. 시험 샘플은 임의의 생물학적 공급원, 예를 들어 혈액, 타액, 안 렌즈액, 뇌척수액, 땀, 뇨, 유즙, 복수 유체, 점액, 활액, 복막액, 양막액 등을 포함하는 생리학적 유체로부터 유래할 수 있다. 시험 샘플은 사용 전에 예를 들어 혈액으로부터 혈장의 제조, 점액의 희석 등과 같이 전처리될 수 있다. 처리 방법은 저해 성분의 여과, 증류, 농축, 불활성화 및 시약의 첨가를 수반할 수 있다. 생리학적 유체 이외에, 다른 액체 샘플, 예를 들어 환경 또는 식품 제조 분석을 수행하기 위한 물, 식품 등을 사용할 수 있다. 또한, 분석물을 포함하는 것으로 의심되는 고체 물질을 시험 샘플로서 사용할 수 있다. 일부 경우에, 액체 매질을 형성하거나 분석물을 방출시키기 위해서 고체 시험 샘플을 변형시키는 것이 유리할 수 있다.
그의 하나 이상의 예가 아래에 제시되는 본 발명의 상이한 실시태양을 참고로 하여 보다 상세하게 설명한다. 각각의 실시예는 본 발명을 설명하기 위해 제시된 것으로서 본 발명을 제한하는 것이 아니다. 실제로, 당업계의 숙련인은 본 발명의 범위 및 취지를 벗어나지 않는 상이한 변형 및 변경을 가할 수 있음을 알 것이다. 예를 들어, 한 실시태양의 일부로서 예시되거나 설명된 특징은 다른 실시태양을 설명하기 위해서 다른 실시태양에 사용될 수 있다. 따라서, 본 발명은 첨부된 특허청구 범위 및 그의 균등물에 포함되는 상기 변형 및 변경을 포함하는 것으로 의도된다.
일반적으로, 본 발명은 시험 샘플 내의 분석물의 존재 또는 양을 검출하기 위한 막 기반 분석 장치에 관한 것이다. 상기 장치는 검출 시그날을 생성시킬 수 있는 검출 프로브 (예를 들어, 형광 비자기 입자) 및 교정 시그날을 생성시킬 수 있는 교정 프로브 (예를 들어 형광 자기 입자)를 포함하는 자가-교정 자기 결합 분 석 시스템 (예를 들어, 샌드위치, 경쟁 등)을 이용한다. 시험 샘플 내의 분석물의 양은 교정 시그날의 강도에 의해 교정된 검출 시그날의 강도에 비례 (예를 들어 정비례 또는 반비례)한다. 본 발명의 자가-교정 시스템은 시험 샘플 내의 분석물의 존재를 결정하는, 정확하고 저비용의 쉽게 제어가능한 방법을 제공하는 것으로 밝혀졌다.
도 1 및 2를 참고로 하여, 예를 들어 본 발명에 따라 형성될 수 있는 측방 유동 막 기반 장치 (20)의 한 실시태양을 아래에서 보다 상세하게 설명한다. 도시된 바와 같이, 장치 (20)은 경질 물질 (21)에 의해 임의로 지지된 다공성 막 (23)을 포함한다. 일반적으로, 다공성 막 (23)은 시험 샘플이 그를 통과할 수 있는 다양한 물질로 형성될 수 있다. 예를 들어, 다공성 막 (23)을 형성하기 위해 사용되는 물질은 천연, 합성 또는 합성에 의해 개질된 천연 물질, 예를 들어 폴리사카라이드 (예를 들어 셀룰로스 물질, 예를 들어 종이 및 셀룰로스 유도체, 예를 들어 셀룰로스 아세테이트 및 니트로셀룰로스), 실리카, 중합체, 예를 들어 비닐 클로라이드, 비닐 클로라이드-프로필렌 공중합체 및 비닐 클로라이드-비닐 아세테이트 공중합체와 함께 다공성 중합체 매트릭스에 균일하게 분산된 무기 물질, 예를 들어 실활 알루미나, 규조토, MgS04, 또는 다른 무기 미분 물질, 천연 직물 (예를 들어 면) 및 합성 직물 (예를 들어 나일론 또는 레이온), 다공성 겔, 예를 들어 실리카겔, 아가로스, 덱스트란 및 젤라틴, 중합체 필름, 예를 들어 폴리아크릴아미드 등을 포함하고, 이로 제한되지 않는다. 한 특정 실시태양에서, 다공성 막 (23)은 니 트로셀룰로스 및(또는) 폴리에스테르 술폰 물질로 형성된다. 용어 "니트로셀룰로스"는 셀룰로스의 질산 에스테르를 의미하고, 니트로셀룰로스 단독 또는 질산 및 다른 산, 예를 들어 탄소수 1 내지 7의 지방족 카르복실산의 혼합 에스테르일 수 있음을 이해하여야 한다.
장치 (20)은 또한 위킹 패드 (28)을 포함할 수 있다. 위킹 패드 (28)은 일반적으로 전체 다공성 막 (23)을 통해 이동하는 유체를 수용한다. 당업자에게 공지되어 있는 바와 같이, 위킹 패드 (28)은 막 (23)을 통한 모세관 작용 및 유체 유동 촉진을 도울 수 있다.
시험 샘플 내의 분석물의 검출을 개시하기 위해서, 사용자는 시험 샘플을 그를 통해 하나 이상의 검출 및 교정 대역 (아래에서 설명함)에 도달할 수 있는 다공성 막 (23)의 일부에 직접 적용할 수 있다. 별법으로, 시험 샘플을 다공성 막 (23)과 유체 소통하는 샘플링 패드 (도시하지 않음)에 먼저 적용할 수 있다. 샘플링 패드 형성에 사용될 수 있는 몇몇 적합한 물질은 니트로셀룰로스, 셀룰로스, 다공성 폴리에틸렌 패드 및 유리 섬유 여과지를 포함하고, 이로 제한되지 않는다. 필요한 경우, 샘플링 패드는 또한 확산 또는 비확산에 의해 부착된 하나 이상의 분석 전처리 시약을 포함할 수도 있다.
예시된 실시태양에서, 시험 샘플은 샘플링 패드 (도시하지 않음)로부터 샘플링 패드의 한 말단에 유체 소통하게 배치된 컨쥬게이트 패드 (22)로 이동한다. 컨쥬게이트 패드 (22)는 시험 샘플이 그를 통과할 수 있는 물질로 형성된다. 예를 들어, 한 실시태양에서 컨쥬게이트 패드 (22)는 유리 섬유로 형성된다. 단지 하나 의 컨쥬게이트 패드 (22)가 도시되었지만, 다른 컨쥬게이트 패드도 본 발명에 사용할 수 있음을 이해하여야 한다.
시험 샘플 내의 분석물의 존재 검출을 용이하게 하기 위해서, 상이한 검출 프로브 (41)이 컨쥬게이트 패드 (22)에 적용될 수 있다. 상기 프로브 (41)은 컨쥬게이트 패드 (22) 상에 포함되지만, 샘플링 패드로부터 컨쥬게이트 패드 (22)를 통과할 때 분석물과 결합할 수 있는 상태로 존재한다. 분석물과 결합시에, 프로브 (41)은 추후에 분석물의 존재 또는 부재를 확인하기 위해 사용될 수 있다. 검출 프로브 (41)은 장치 (20)의 검출과 교정 모두를 위해 사용될 수 있다. 그러나, 다른 실시태양에서 교정과 검출의 동시 수행을 촉진시킴으로써 종래의 분석 교정 시스템에 의해 종종 발생하는 부정확성을 제거하기 위해 검출 프로브 (41)과 함께 사용하기 위해 별개의 교정 프로브 (43)이 컨쥬게이트 패드 (22)에 첨가될 수 있다. 그러나, 검출 프로브 (41) 및(또는) 교정 프로브 (43)은 장치 (20)의 임의의 위치에서 함께 또는 별개로 첨가될 수 있고, 컨쥬게이트 패드 (22)에 적용될 필요가 없음을 이해하여야 한다. 또한, 검출 프로브 (41) 및(또는) 교정 프로브 (43)을 동일한 또는 상이한 컨쥬게이트 패드에 적용할 수 있음을 이해하여야 한다.
가시적으로 또는 다른 도구 장치에 의해 검출가능한 시그날을 일반적으로 생성시킬 수 있는 임의의 물질이 검출 프로브 (41) 및(또는) 교정 프로브 (43)으로서 사용될 수 있다. 상이한 적합한 물질은 콜로이드성 금속 (예를 들어 금) 및 비금속 입자, 염료 입자, 효소 또는 기질, 또는 유기 중합체 라텍스 입자, 리포좀 또는 시그날 생성 물질을 포함하는 다른 베지클을 포함하여 색원체, 촉매, 형광 화합물, 화학발광 화합물, 인광 화합물, 방사성 화합물, 직시 표지 등을 포함할 수 있다. 예를 들어, 프로브로서 적합한 일부 효소는 그 전부가 본원에 참고로 포함된 미국 특허 제4,275,149호 (리트만 (Litman) 등)에 기재되어 있다. 효소/기질 시스템의 일례는 효소 알칼린 포스파타제 및 기질 니트로 블루 테트라졸륨-5-브로모-4-클로로-3-인돌릴 포스페이트, 또는 그의 유도체 또는 유사체, 또는 기질 4-메틸움벨리페릴-포스페이트이다. 다른 적합한 프로브는 그 전부가 본원에 참고로 포함된 미국 특허 제5,670,381호 (조우 (Jou) 등) 및 제5,252,459호 (타르차 (Tarcha) 등)에 기재되어 있다.
일부 실시태양에서, 검출 프로브 (41) 및(또는) 교정 프로브 (43)은 검출가능한 시그날을 생성하는 형광 화합물을 포함할 수 있다. 형광 화합물은 형광 분자, 중합체, 덴드리머, 입자 등일 수 있다. 적합한 형광 분자의 몇몇 예는 예를 들어 플루오레세인, 유로퓸 킬레이트, 피코빌린 단백질, 로다민 및 이들의 유도체 및 유사체를 포함하고, 이로 제한되지 않는다. 또한, 몇몇 시판되는 적합한 형광 입자의 예는 몰레큘라 프로브스, 인크. (Molecular Probes, Inc.)에서 상표명 "FluoSphere" (Red 580/605) 및 "TransfluoSphere" (543/620)으로 시판하는 형광 카르복실레이트화 미세구 및 "Texas Red" 및 5- 및 6-카르복시테트라메틸로다민을 포함한다.
프로브에 시그날 생성 능력을 부여하기 위해 사용되는 기술에 상관없이, 검출 프로브 (41) 및(또는) 교정 프로브 (43)은 자기 반응성 프로브인 것이 일반적으로 바람직하다. 일반적으로, 물질은 자기장의 인가에 의해 영향받을 경우, 예를 들어 유인되거나 배척되거나 또는 검출가능한 자기 민감성 또는 유도성을 갖는 경우에 "자기 반응성" 또는 "자성"인 것으로 간주된다. 예를 들어, 프로브에 자기 특성을 부여하기 위해 사용될 수 있는 적합한 자기 반응성 물질의 몇몇 예는 상자성 물질, 초상자성 물질, 강자성 물질, 준강자성 물질 및 준자성 물질을 포함하고, 이로 제한되지 않는다. 구체적인 예는 금속, 예를 들어 철, 니켈, 코발트, 크롬, 망간 등, 란타나이드, 예를 들어 네오디뮴, 에르븀 등, 합금, 예를 들어 알루미늄, 니켈, 코발트, 구리 등의 자기 합금, 산화물, 예를 들어 산화제2철 (Fe304), 산화제1철 (Fe203), 산화크롬 (Cr02), 산화코발트 (CoO), 산화니켈 (Ni02 ), 산화망간 (Mn203) 등, 복합 물질, 예를 들어 페라이트 등, 및 고체 용액, 예를 들어 산화제2철을 갖는 마그네타이트 등이다.
일부 실시태양에서, 검출 프로브 (41) 및(또는) 교정 프로브 (43)은 형광 및 자성을 갖는다. 형광 자기 프로브는 일반적으로 당업계에 공지되어 있으며, 종종 자기 반응성 성분 및 형광 성분을 포함한다. 일부 실시태양에서, 예를 들어, 하나 이상의 형광 염료가 프로브를 형성하기 위해 자기 입자에 인가되지만, 다른 실시태양에서 형광 염료(들)은 자기 입자와 커플링된 비자기 입자에 인가될 수 있다. 적합한 형광 염료의 일부 예는 모노메틴 염료, 트리메틴 염료, 펜타메틴 염료, 퀴놀린 염료, 스쿠아르산계 염료 등을 포함하고, 이로 제한되지 않는다. 피리딘인 모노메틴 염료는 대체로 청색 또는 청녹색 형광 방출성이지만, 퀴놀린은 대체로 녹색 또는 황록색 형광 방출성이다. 트리메틴 염료는 적색 파장을 향하여 실질적으로 전환되지만, 펜타메틴 염료도 전환되어 종종 적외선 형광 방출을 보인다. 상기 형광 염료의 구체적인 예는 프탈로시아닌, 2,3-나프탈로시아닌, 스쿠아라인 및 크로콘산 유도체를 포함하고, 이로 제한되지 않는다. 적합한 형광 자기 입자의 다른 예는 그 전부가 본원에 참고로 포함된 미국 특허 제4,731,337호 (루오톨라 (Luotola) 등) 및 제6,268,222호 (챈들러 (Chandler) 등)에 기재되어 있다.
검출 프로브 (41) 및(또는) 교정 프로브 (43)이 예를 들어 상기한 바와 같이 입자일 경우, 입자 프로브의 평균 직경은 일반적으로 여러 요인, 예를 들어 선택된 입자 종류, 막의 공극 크기 및 막 조성에 따라 요구되는 바와 같이 변할 수 있다. 예를 들어, 일부 실시태양에서, 입자 프로브의 평균 직경은 약 0.01 미크론 내지 약 1,000 미크론, 일부 실시태양에서 약 0.01 미크론 내지 약 100 미크론, 일부 실시태양에서 약 0.01 미크론 내지 약 10 미크론일 수 있다. 한 특정 실시태양에서, 입자 프로브의 평균 직경은 약 1 내지 약 2 미크론이다. 일반적으로, 입자는 실질적으로 구형이지만, 판형, 막대형, 바형, 불규칙 형태 등을 포함하여 다른 형태도 본 발명에 사용하기 적합하다. 당업자가 이해할 수 있는 바와 같이, 입자의 조성, 형태, 크기 및(또는) 밀도는 크게 상이할 수 있다.
검출 프로브 (41) 및(또는) 교정 프로브 (43)은 분석물에 결합 (공유 또는 비공유)하거나 또는 분석물을 물리적으로 흡착할 수 있다. 그러나, 프로브는 분석물에 보다 용이하게 결합할 수 있도록 특정 방식으로 개질시키는 것이 종종 바람직하다. 이 경우에, 검출 프로브 (41) 및(또는) 교정 프로브 (43)은 자체에 부착되어 프로브 컨쥬게이트를 형성하는 특정한 특이적 결합 성분 (90a) 및(또는) (90b) (도 2 참조)로 개질될 수 있다.
특이적 결합 성분은 일반적으로 특이적 결합쌍, 한 분자가 다른 분자에 화학적으로 및(또는) 물리적으로 결합하는 2개의 상이한 분자의 구성원을 의미한다. 예를 들어, 면역반응성 특이적 결합 성분은 재조합 DNA 방법 또는 펩티드 합성법에 의해 형성되는 것을 포함하여 항원, 합텐, 앱타머 (aptamer), 항체 및 이들의 복합체를 포함할 수 있다. 항체는 모노클로날 또는 폴리클로날 항체, 재조합 단백질 또는 이들의 혼합물(들) 또는 이들의 단편(들), 및 항체와 다른 특이적 결합 성분의 혼합물을 포함할 수 있다. 상기 항체의 제조 및 특이적 결합 성분으로서 사용하기 위한 적합성의 상세한 내용은 당업계의 숙련인에게 공지되어 있다.
다른 통상적인 특이적 결합쌍은 비오틴 및 아비딘, 탄수화물 및 렉틴, 상보성 뉴클레오티드 서열 (표적 핵산 서열을 검출하기 위한 DNA 혼성화 분석에 사용되는 프로브 및 포획 핵산 서열 포함) 및 재조합 방법에 의해 형성되는 것을 포함하는 상보성 펩티드 서열, 이펙터 및 수용체 분자, 호르몬 및 호르몬 결합 단백질, 효소 코팩터 및 효소, 효소 저해제 및 효소 등을 포함하고, 이로 제한되지 않는다. 또한, 특이적 결합쌍은 본래의 특이적 결합 성분의 유사체인 성분을 포함할 수 있다. 예를 들어, 분석물의 유도체 또는 단편, 분석물-유사체는 분석물과 공통적인 적어도 하나의 에피토프를 갖는 한 사용될 수 있다.
특이적 결합 성분 (90a) 및(또는) (90b)는 임의의 상이한 공지의 기술을 사용하여 프로브 (41) 및(또는) (43)에 부착될 수 있다. 예를 들어, 특이적 결합 성분 (90a) 및(또는) (90b)의 프로브 (41) 및(또는) (43) (예를 들어 미립자)에 대한 공유 결합에 의한 부착은 카르복실기, 아미노기, 알데히드기, 브로모아세틸기, 요오도아세틸기, 티올기, 에폭시기 및 다른 반응성 또는 연결 관능기, 및 그를 통해 단백질 커플링 반응을 수행할 수 있는 잔류 유리 라디칼 및 라디칼 양이온을 사용하여 달성할 수 있다. 또한, 미립자의 표면은 비교적 높은 표면 농도의 극성기를 포함할 수 있기 때문에 표면 관능기가 관능화된 공단량체로서 도입될 수도 있다. 또한, 특정 경우, 예를 들어 폴리(티오페놀)의 경우에 미립자 프로브가 합성 후에 종종 관능화되기 때문에 미립자는 추가로 개질할 필요없이 단백질과 직접 공유 결합할 수 있다. 예를 들어, 도 6에서 프로브를 공유결합에 의해 컨쥬게이션시키는 본 발명의 한 실시태양이 예시되어 있다. 도시된 바와 같이, 컨쥬게이션의 제1 단계는 카르보디이미드를 사용하여 프로브 표면 상의 카르복실기의 활성화이다. 제2 단계에서, 활성화된 카르복실산기는 항체의 아미노기와 반응하여 아미드 결합을 형성한다. 활성화 및(또는) 항체 커플링은 완충액, 예를 들어 포스페이트-완충 염수 (PBS) (예를 들어, pH 7.2) 또는 2-(N-모르폴리노)에탄 술폰산 (MES) (예를 들어, pH 5.3)에서 발생할 수 있다. 도시된 바와 같이, 생성되는 프로브는 이어서 예를 들어 에탄올아민으로 차단하여 프로브 컨쥬게이트를 형성할 수 있다. 공유결합 이외에, 다른 부착 기술, 예를 들어 흡착도 본 발명에서 사용할 수 있다.
다시 도 1-2에서, 분석물을 포함하는 시험 샘플은 초기에 샘플링 패드에 적용될 수 있다. 샘플링 패드로부터, 시험 샘플은 이어서 컨쥬게이트 패드 (22)로 이동할 수 있고, 여기서 분석물은 검출 프로브 (41) 및(또는) 교정 프로브 (43)과 혼합된다. 선택되는 프로브의 종류에 따라, 분석물은 검출 프로브 (41) 및(또는) 교정 프로브 (43)에 결합하여 복합체 (49)를 형성할 수 있다 (도 2 참조). 예를 들어, 한 실시태양에서, 분석물을 포함하는 시험 샘플은 (1) 제 1 결합 성분 (90a)와 컨쥬게이션된 형광 비자기 입자 (41) 및 (2) 제2 결합 성분 (90b)와 컨쥬게이션된 형광 자기 입자 (43)과 혼합된다. 이 경우에, 분석물은 형광 비자기 입자 (41) 및 형광 자기 입자 (43)과 샌드위치 복합체 (49)를 형성한다. 또한, 컨쥬게이트 패드 (22)는 다공성 막 (23)과 유체 소통하기 때문에, 복합체 (49)는 컨쥬게이트 패드 (22)로부터 다공성 막 (23) 상에 존재하는 검출 대역 (31)로 이동할 수 있다.
검출 대역 (31)에서, 복합체 (49) 및 임의의 비결합된 컨쥬게이션된 형광 자기 입자 (43)은 이어서 자기 장치 (60)에 의해 포획되고, 통상적인 기술을 사용하여 샘플의 나머지로부터 분리된다. 예를 들어, 자기장 발생기를 사용하여 자기 반응성 프로브로부터 반응을 유도하는 자기장을 생성시킬 수 있다. 적합한 자기장 발생기는 영구자석 및 전자석을 포함하고, 이로 제한되지 않는다. 자기 분리 공정은 대체로 친화도 반응에 의해 분석물을 결합시키기 위해 액체 매질 내에서 자기입자와 샘플을 혼합한 후, 자기장을 인가하여 샘플 매질로부터 비결합된 자기 입자 및 분석물 복합체를 분리하는 것을 수반한다. 콜로이드성 입자를 제외하고, 전부는 아니지만 대부분의 자기 입자가 시간 경과에 따라 침강한다. 따라서, 액체 매질은 생체친화도 결합 반응이 발생하도록 충분한 시간 동안 입자를 현탁된 상태로 유지하기 위해 교반할 수 있다. 공지된 교반 방법의 예는 부분적으로 충전된 용기의 진탕, 와류 처리 (swirling), 진동, 회전, 이와 유사한 처리를 포함한다. 적합한 자기 분리 장치의 일부 시판되는 예는 미국 뉴욕주 레이크 석세스 소재의 다이 날, 인크. (Dynal, Inc.)에서 제조한, 시험 매질을 유지하는 용기의 외부에 위치하는 영구자석을 이용하고 분리만을 제공하는 Dynal MPC 시리즈를 포함한다. 친화도 결합 반응을 위한 시험 매질에서 자기 입자의 혼합은 별개로 수행된다. 또한, 자기 입자를 포획하는 다른 방법은 그 전부가 본원에 참고로 포함된 미국 특허 제5,200,084호 (리버티 (Liberti) 등), 제5,647,994호 (투나넨 (Tuunanen) 등), 제5,795,470호 (왕 (Wang) 등) 및 제6,033,574호 (시디아이 (Siddiai)에 기재되어 있다.
일단 포획된 후에, 복합체화 및 비복합체화 형광 자기 입자 (43) 및 복합체 (49)의 형광 시그날은 통상적인 기술을 사용하여 측정할 수 있다. 예를 들어, 한 실시태양에서 입자 (43) 및 복합체 (49)는 동일한 외부 공급원을 사용하여 여기시킬 수 있다. 이 실시태양에서, 공급원은 여기 파장의 방사선을 공급하여 입자 (43)이 복합체 (49)에 의해 방출되는 파장과 상이한 파장의 광을 방출하도록 만든다. 이에 의해 복합체 (49) 및 입자 (41)의 존재를 별개로 측정할 수 있다. 별법으로, 입자 (43) 및 복합체 (49)는 별개의 외부 공급원을 사용하여 별개로 측정할 수도 있다.
일반적으로, 형광은 특정 형광 화합물에서 발생하는 3단계 과정의 결과이다. 제1 단계에서, 에너지는 외부 공급원, 예를 들어 백열 램프 또는 레이저에 의해 공급되고, 형광 화합물에 의해 흡수되어 여기된 전자 단일항 (singlet) 상태를 생성시킨다. 제2 단계에서, 여기 상태는 형광 화합물이 형태적 변화를 거치는 한정된 시간 동안 존재하고, 그의 분자 환경과 가능한 다수의 상호작용을 거친다. 이 동 안에, 여기 상태의 에너지는 부분적으로 소실되고, 형광 방출이 그로부터 시작된 이완 상태를 생성시킨다. 제3 단계는 에너지가 방출되어 형광 화합물이 그의 바닥 상태로 복귀하는 형광 방출 단계이다. 방출된 에너지는 그의 여기 에너지 (광 또는 레이저)보다 작고, 따라서 파장이 더 길다. 이러한 에너지 또는 파장의 전환 또는 차이에 의해 방출 에너지를 검출하고 여기 에너지로부터 분리할 수 있다.
형광 검출은 일반적으로 여기 광자로부터 방출 광자를 분리하기 위해 여파기 및 방출 광자를 기록하고 대체로 전기 시그날 또는 사진 화상으로서 기록가능한 출력을 생성시키는 검출기를 이용한다. 일반적으로, 4 종류의 승인된 검출기, 즉 형광분광광도기 및 마이크로플레이트 판독기, 형광 현미경, 형광 스캐너 및 유동 세포 측정기가 존재한다. 본 발명에 사용하기 적합한 한 형광 검출기는 미국 뉴저지주 에디슨 소재의 스펙스 인더스트리즈, 인크. (SPEX Industries, Inc.)에서 시판하는 FluoroLog III Spectrofluorometer이다.
요구되지는 않지만, 특히 요구되는 검출 및 교정 프로브쌍의 선택 기준은 (1) 방출 강도를 별개로 측정할 수 있도록 흡수 스펙트럼 또는 형광 스펙트럼이 거의 또는 전혀 중첩되지 않을 것, (2) 독립적으로 방출하도록 근접하게 존재할 때 검출 프로브와 교정 프로브 사이에 유의한 형광 에너지 전달이 발생하지 않을 것 및 (3) 생물학적 유체의 자가형광이 형광 측정에 대한 최소 효과를 갖도록 비교적 긴 방출 파장 (예를 들어, 약 600 nm 초과)을 가질 것을 포함한다. 예를 들어, 도 7은 독립적으로 여기될 수 있도록 거의 중첩되지 않는 여기 스펙트럼을 갖는 교정 프로브 및 검출 프로브의 예를 도시한 것이다.
또한, 필요한 경우 "시분해 형광 검출"로 알려진 기술을 본 발명에 이용할 수도 있다. 시분해 형광 검출은 특정 형광 물질, 예를 들어 유로퓸 (Eu(III)) 및 테르븀 (Tb(III))의 란타나이드 킬레이트의 형광 특성을 이용함으로써 방출원으로부터 또는 산란 과정 (여기 방사선의 산란에 의해)으로부터 배경 시그날을 저하시키도록 디자인된 것이다. 상기 킬레이트는 실질적으로 보다 짧은 파장에서 킬레이트의 여기 후에 강력하게 적색 이동된, 좁은 밴드의 오래 지속되는 방출을 보일 수 있다. 대체로, 킬레이트는 분자 내의 란타나이드에 근접하여 위치한 발색단에 의해 강력한 자외선 흡수 밴드를 보유한다. 발색단에 의한 광 흡수 후에, 여기 에너지는 여기된 발색단으로부터 란타나이드로 전달될 수 있다. 이것은 란타나이드의 형광 방출 특성에 따른다. 좁은 밴드의 방출 필터와 펄스형 (pulsed) 여기 및 시간 게이팅된 (time-gated) 검출을 조합하여 사용하면 란타나이드 킬레이트로부터의 형광만을 특이적으로 검출할 수 있고, 대체로 짧게 지속되거나 보다 짧은 파장 방출을 보이는 샘플에 존재하는 다른 물질종으로부터의 방출을 차단할 수 있다. 형광을 측정하기 위한 다른 시분해 기술은 그 전부가 본원에 참고로 포함된 미국 특허 제5,585,279호 (데이비드슨 (Davidson)) 및 제5,637,509호 (헤밀라 (Hemmila) 등)에 기재되어 있다.
형광을 측정하기 위해 사용되는 기술에 상관없이, 분석물의 절대량은 포획된 형광 비자기 입자 (41)의 형광 시그날을 폭획된 형광 자기 입자 (43)과 비교함으로써 확인할 수 있다. 포획된 형광 비자기 입자 (41)의 형광 강도 (Is)는 포획된 형 광 자기 입자 (43)의 형광 강도 (Ic)와 비교할 수 있다. 포획된 형광 자기 입자 (43)의 총량은 미리 결정되고, 공지되어 있기 때문에 교정 목적을 위해 사용될 수 있다. 예를 들어, 한 실시태양에서 분석물의 양은 Is 대 Ic의 비율에 정비례한다. 검출 대역 (31)이 해당하는 강도 범위를 기초로 하여 분석물의 일반적인 농도 범위를 결정할 수 있다. 그 결과, 교정 및 샘플 시험을 거의 동일한 조건 하에서 동시에 수행할 수 있기 때문에 감도를 증가시키면서 신뢰할 수 있는 정량적 또는 반정량적 결과를 제공할 수 있다.
필요한 경우, Is 대 Ic의 비율은 교정 곡선을 만들기 위해 공지의 분석물 농도 범위에 있어서 분석물 농도에 대해 플로팅할 수 있다. 미지의 시험 샘플 내의 분석물의 양을 결정하기 위해서, 이어서 시그날 비율을 교정 곡선에 따라 분석물 농도로 전환시킬 수 있다. 복합체화 및 비복합체화 형광 자기 입자의 포획 효율은 일반적으로 임의의 제시된 샘플과 동일함을 알아야 한다. 따라서, 포획 효율의 변화는 형광 강도의 비율 (즉 Is/Ic)이 절대 형광 대신에 사용되기 때문에 샘플 대 샘플로부터의 결과를 크게 방해하는 것으로 생각되지 않는다. 또한, Is과 Ic 사이의 다른 수학적 관계도 교정 곡선을 만들기 위해 분석물 농도에 대해 플로팅할 수 있음을 알아야 한다. 예를 들어, 한 실시태양에서, Is/(Is + Ic)의 값을 분석물 농도에 대해 플로팅하여 교정 곡선을 만들 수 있다.
상이한 다른 실시태양도 본 발명에서 생각될 수 있다. 예를 들어, 도 3에서 샌드위치 분석의 다른 포맷을 형성하기 위해 상기하고 도 1에 도시된 장치 (20)을 변형할 수 있다. 한 실시태양에서, 예를 들어 분석물을 포함하는 시험 샘플을 초기에 (1) 제1 결합 성분 (190a)에 컨쥬게이션된 형광 비자기 입자 (141a), (2) 형광 자기 입자 (143) 및 (3) 제2 결합 성분 (190b)에 컨쥬게이션된 비형광 자기 입자 (141b)와 혼합할 수 있다. 상기 특정 실시태양에서, 형광 자기 입자 (143)은 분석물에 대한 비특이적 결합을 방지하여 상기 입자 (143)이 단지 교정 프로브로서만 작용하도록 차단제, 예를 들어 β-카제인으로 차단될 수 있다. 또한, 제1 특이적 결합 성분 (190a) 및 제2 특이적 결합 성분 (190b)는 분석물의 유사체일 수 있다.
용어 "차단제"는 비분석물질이 표면에 결합하는 것을 "차단" 또는 방지하기 위해서 프로브 표면에 부착하는 시약을 의미한다. 차단제는 β-카제인, 알부민, 예를 들어 소 혈청 알부민, 플루로닉 (pluronic) 또는 다른 계면활성제, 폴리에틸렌 글리콜, 폴리비닐 알콜, 또는 상기 화합물의 황 유도체, 및 당업계의 숙련인에게 공지된 임의의 다른 차단 물질을 포함할 수 있고, 이로 제한되지 않는다.
다시 도 3에서, 분석물은 컨쥬게이션된 형광 비자기 입자 (141a) 및 컨쥬게이션된 비형광 자기 입자 (141b)와 샌드위치 복합체 (149)를 형성한다. 컨쥬게이트 패드 (22)는 다공성 막 (23)과 유체 소통하기 때문에, 복합체 (149)는 컨쥬게이트 패드 (22)로부터 다공성 막 (23) 상에 존재하는 검출 대역 (31)로 이동할 수 있다. 검출 대역 (31)에서, 복합체 (149) 및 임의의 비결합된 입자 (143) 및(또는) (141b)는 이어서 자기 장치 (60)에 의해 포획되어 샘플의 나머지로부터 분리된다. 상기한 바와 같이, 분석물의 절대량은 포획된 형광 비자기 입자 (141a)의 형광 강도 (Is)를 포획된 형광 자기 입자 (143)의 형광 강도 (Ic)와 비교함으로써 확인할 수 있다. 특히, 포획된 형광 자기 입자 (143)의 총량은 미리 결정되고, 공지되어 있기 때문에 교정 목적을 위해 사용될 수 있다. 예를 들어, 상기 실시태양에서 분석물의 양은 Is 대 Ic의 비율에 정비례한다.
또한, 도 4에서, 상기 설명하고 도 1에 도시된 장치 (20)을 경쟁 분석을 형성하기 위해 변형할 수 있다. 한 실시태양에서, 예를 들어 분석물을 포함하는 시험 샘플을 초기에 (1) 제1 결합 성분 (290a)에 컨쥬게이션된 형광 비자기 입자 (241) 및 (2) 제2 결합 성분 (290b)에 컨쥬게이션된 형광 자기 입자 (243)과 혼합할 수 있다. 상기 특정 실시태양에서, 제1 결합 성분 (290a)는 분석물과 동일할 수 있지만, 제2 결합 성분 (290b)는 분석물의 유사체일 수 있다.
혼합시에, 분석물은 분석물과 형광 자기 입자 (243)의 복합체 (249a) 및 형광 자기 입자 (243)과 형광 비자기 입자 (241)의 복합체 (249b)가 형성되도록 컨쥬게이션된 형광 자기 입자 (243)에 대해 컨쥬게이션된 형광 비자기 입자 (241)과 경쟁한다. 컨쥬게이트 패드 (22)는 다공성 막 (23)과 유체 소통하기 때문에, 복합체 (249a) 및 (249b)는 컨쥬게이트 패드 (22)로부터 다공성 막 (23) 상에 존재하는 검출 대역 (31)로 이동할 수 있다. 검출 대역 (31)에서, 복합체 (249a) 및 (249b) 및 임의의 비결합된 입자 (243)은 이어서 자기 장치 (60)에 의해 포획되고 샘플의 나머지로부터 분리된다. 상기한 바와 같이, 분석물의 절대량은 포획된 형광 비자 기 입자 (241)의 형광 강도 (Is)를 포획된 복합체화 또는 비복합체화 형광 자기 입자 (243)의 형광 강도 (Ic)와 비교함으로써 확인할 수 있다. 특히, 포획된 형광 자기 입자 (243)의 총량은 미리 결정되고, 공지되어 있기 때문에 교정 목적을 위해 사용될 수 있다. 따라서, 상기 실시태양에서 분석물의 양은 Is 대 Ic의 비율에 반비례한다.
도 5에서, 상기 설명하고 도 1에 도시된 장치 (20)을 다른 경쟁 분석을 형성하기 위해 변형할 수 있다. 한 실시태양에서, 예를 들어 분석물을 포함하는 시험 샘플을 초기에 (1) 제1 결합 성분 (390a)에 컨쥬게이션된 형광 비자기 입자 (341a), (2) 형광 자기 입자 (343) 및 (3) 제2 결합 성분 (390b)에 컨쥬게이션된 비형광 자기 입자 (341b)와 혼합할 수 있다. 상기 특정 실시태양에서, 제1 결합 성분 (390a)는 분석물과 동일할 수 있지만, 제2 결합 성분 (390b)는 분석물의 유사체일 수 있다. 또한, 형광 자기 입자 (343)은 분석물에 대한 비특이적 결합을 방지하여 상기 입자가 단지 교정 프로브로서만 작용하도록 차단제, 예를 들어 β-카제인으로 차단될 수 있다.
혼합시에, 분석물은 분석물과 비형광 자기 입자 (341b)의 복합체 (349a) 및 비형광 자기 입자 (341b)와 형광 비자기 입자 (341a)의 복합체 (349b)가 형성되도록 컨쥬게이션된 비형광 자기 입자 (341b)에 대해 컨쥬게이션된 형광 비자기 입자 (341)과 경쟁한다. 컨쥬게이트 패드 (22)는 다공성 막 (23)과 유체 소통하기 때문에, 복합체 (349a) 및 (349b)는 컨쥬게이트 패드 (22)로부터 다공성 막 (23) 상에 존재하는 검출 대역 (31)로 이동할 수 있다. 검출 대역 (31)에서, 복합체 (349a) 및 (349b) 및 임의의 비결합된 입자 (343) 및(또는) (341b)는 이어서 자기 장치 (60)에 의해 포획되고, 샘플의 나머지로부터 분리된다. 상기한 바와 같이, 분석물의 절대량은 포획된 형광 비자기 입자 (341a)의 형광 강도 (Is)를 포획된 형광 자기 입자 (343)의 형광 강도 (Ic)와 비교함으로써 확인할 수 있다. 특히, 포획된 형광 자기 입자 (343)의 총량은 미리 결정되고 공지되어 있기 때문에, 교정 목적을 위해 사용될 수 있다. 따라서, 상기 실시태양에서 분석물의 양은 Is 대 Ic의 비율에 반비례한다.
장치 형태의 상이한 실시태양을 상기 설명하였지만, 본 발명의 장치는 일반적으로 임의의 요구되는 형태를 가질 수 있고, 상기 설명한 모든 성분을 포함할 필요가 없음을 이해하여야 한다. 또한, 상이한 부석 포맷도 장치 (20)에 사용할 수 있다. 예를 들어, 장치 (20)은 다수의 유체 채널 (14) 및(또는) 반응 챔버 (12)를 포함할 수 있다. 이러한 방식으로, 단일 장치 (20)을 사용하여 매우 많은 분석물의 동시 검출을 달성할 수 있다. 또한, 상이한 분석 포맷을 장치 (20)에 사용할 수 있다. 예를 들어, 경쟁 분석은 입자 (241)이 형광 자기 입자이고 입자 (243)이 형광 비자기 입자인 것을 제외하고 도 4에 도시되고 상기 설명한 바와 같이 형성할 수 있다. 유사하게, 경쟁 분석은 입자 (341a)가 비형광 자기 입자이고, 입자 (341b)가 형광 비자기 입자인 것을 제외하고, 도 5에 도시되고 상기 설명한 바와 같이 형성할 수 있다. 상이한 다른 장치 형태 및(또는) 분석 포맷은 또한 그 전부 가 본원에 참고로 포함된 미국 특허 제4,596,695호 (코팅험 (Cottingham)), 제5,145,784호 (콕스 (Cox) 등), 제5,395,754호 (람보트 (Lambotte) 등), 제5,670,381호 (조우 (Jou) 등) 및 제6,194,220호 (말릭 (Malick) 등)에 기재되어 있다.
또한, 교정 및 검출을 위한 메카니즘으로서 구체적으로 형광을 이용하는 것에 관련된 상이한 실시태양을 위에서 설명하였지만, 다른 공지된 검출 메카니즘을 본 발명에 동등하게 적용할 수 있다. 예를 들어, 일부 실시태양에서, 검출 및(또는) 교정 프로브는 화학발광 또는 인광 화합물일 수 있다. 예를 들어, 화학발광 프로브는 당업계에 공지된 적합한 반응물을 사용하여 여기시킬 수 있다. 또다른 실시태양 및 형태도 본 발명에서 고려된다.
본 발명자들은 본 발명의 막 기반 분석 장치가 자기 프로브를 처리하고 분석물의 분리 및 검출을 확립하기 위해 사용될 수 있음을 밝혀내었다. 구체적으로, 자기 분리 및 검출 기술 (예를 들어, 형광)이 통합 시스템에 설치된다. 또한, 시스템은 통상적인 외부 교정 기술을 사용할 때 대조 교정 샘플의 필요성을 배제하기 위해 자가교정된다. 한 실시태양에서, 자가교정은 형광 자기 프로브를 사용하여 달성된다. 형광 자기 프로브 및 형광 비자기 프로브로부터 방출된 형광은 동일한 샘플 상에서 별개로 측정할 수 있다. 자기 입자의 수가 미리 결정되기 때문에, 시스템은 포획된 형광 비자기 프로브의 양 및 이어서 분석물의 양을 측정할 때 자가교정된다. 또한, 교정 및 검출 프로브의 형광이 동일한 조건 하에서 동시에 측정되기 때문에, 많은 변수, 예를 들어 온도 및 도구 불안정성에 의한 잠재적인 방해 를 방지하여 검출 신뢰도 및 일관성을 개선시킬 수 있다.
본 발명은 이하의 실시예를 참고로 하여 보다 잘 이해할 수 있다.
실시예 1
예를 들어, 도 3에 도시된 샌드위치 분석을 사용하여 분석물의 존재를 검출하는 능력을 증명하였다. 초기에, 다음 성분들을 6개의 에펜도르프 (Eppendorf) 바이알에 첨가하였다:
(1) 25 마이크로리터의 공유결합에 의해 컨쥬게이션된 비형광 자기 입자 (PBS 완충액 중의 3 mg/ml),
(2) 15 마이크로리터의 공유결합에 의해 컨쥬게이션된 형광 비자기 입자 (PBS 완충액 중의 2 mg/ml),
(3) 10 마이크로리터의 카제인에 의해 차단된 형광 자기 입자 (PBS 완충액 중의 3 mg/ml), 및
(4) 0, 10 마이크로리터 (1 마이크로그램/ml), 20 마이크로리터 (1 마이크로그램/ml), 40 마이크로리터 (1 마이크로그램/ml), 40 마이크로리터 (2 마이크로그램/ml) 및 80 마이크로리터 (2 마이크로그램/ml) 범위의 혈청황색소화 호르몬 (LH) 분석물.
각각의 에펜도르프 바이알에, 150 마이크로리터의 최종 부피가 되도록 적절한 양의 PBS 완충액을 첨가하였다. 샘플을 부드럽게 진탕하면서 실온에서 10분 동안 인큐베이팅하였다. 이어서 자기 입자를 자기 분리기 (다이날, 인크.)로 분리하였다. 각 바이알로부터의 상등액을 폐기하고 자기 입자를 1.5 ml의 PBS에 재현탁 시켰다. 300 마이크로리터의 형광 자기 입자 현탁액을 각 형광 측정에 사용하였다. 미국 뉴저지주 에디슨 소재의 스펙스 인더스트리즈로부터 입수한 "Flourolog III Spectrofluorometer"를 사용하여 직각 방식 (right angle mode)을 이용하여 샘플의 형광을 측정하였다. 470 나노미터의 여기 파장 및 560 나노미터의 방출 파장을 형광 자기 입자에 대해 사용하고, 570 나노미터의 여기 파장 및 605 나노미터의 방출 파장을 형광 비자기 입자에 대해 사용하였다. 통합 (integration) 시간은 0.2초였다.
표준화 및 교정 형광 강도를 각 샘플 내의 LH 용량의 함수로서 도 8에 도시한다. 표준화 강도는 샘플의 측정된 형광 강도를 대조 샘플의 형광 강도로 나누어 얻었다. 대조 샘플은 분석물이 없는 샘플이었다.
실시예 1에 사용된 입자는 다음과 같이 형성하였다:
비형광 자기 입자
125 마이크로리터의 10% 카르복실레이트-개질 상자성 입자 (0.35 미크론, Estapor(등록상표) 초상자성 미세구, 방스 래보래토리스, 인크. (Bang's Laboratories, Inc.) 제품)를 자기 분리기를 사용하여 1.5 ml의 탄산염 완충액으로 1회, PBS로 2회 세척하였다. 세척한 입자를 0.6 ml PBS 및 15 mg 카르보디이미드 (폴리사이언시스, 인크. (Polysciences, Inc.) 제품) 중에 재현탁시켰다. 혼합물을 진탕기 상에서 실온 (RT)에서 30분 동안 반응시켰다. 이어서, 활성화된 입자를 보레이트 완충액으로 2회 세척하였다. 활성화된 입자를 1.2 ml의 보레이트 완충액에 다시 재현탁시켰다. 이어서, 30 마이크로리터의 LH β-모노클로날 항체 (9.8 mg/ml, 피쯔제랄드 인더스터리즈 인터내셔날, 인크. (Fitzgerald Industries International, Inc.) 제품)를 활성화된 입자에 첨가하였다. 반응 혼합물을 진탕기 상에서 실온에서 밤새 반응시켰다. 이어서 활성화된 입자를 수집하고 15분 동안 부드럽게 진탕하면서 1 ml의 0.1M 에탄올아민 중에서 인큐베이팅하였다. 이어서, 입자를 PBS로 2회 세척하고 4℃에서 0.1M PBS, 0.15M NaCl, 1% β-카제인, 5% 글리세롤 및 0.1% NaN3을 함유한 완충액 중에 보관하였다.
형광 비자기 입자
결합 성분이 LH β-모노클로날 항체 대신 LH α-모노클로날 항체 (9.8 mg/ml, 피쯔제랄드 인더스터리즈 인터내셔날, 인크. 제품)인 것을 제외하고는, "형광 비자기" 입자를 상기한 절차에 따라 공유결합에 의해 컨쥬게이션시켰다. 사용된 입자는 FluoSpheres(등록상표) 카르복실레이트-개질 미세구 (몰레큘라 프로브스, 인크. 제품)이었다. 입자의 크기는 0.5 미크론이고, 580 나노미터의 여기 파장 및 605 나노미터의 방출 파장에서 적색 형광이었다.
형광 자기 입자
100 마이크로리터의 형광 초상자성 입자 (미국 펜실배니아주 워링턴 소재의 폴리사이언시스, 인크.로부터 입수함)의 2.76% 고형물 현탁액을 에펜도르프관 중에서 1 ml의 보레이트 완충액 (0.1M, pH = 8.5)과 합하였다. 상기 입자는 평균 직경이 1 내지 2 미크론이고, 단백질과의 수동 흡착 및 관능기 반응을 위한 폴리스티렌 표면을 갖는 철-함유 미세구인 것으로 생각된다. 입자를 다이날 인크.로부터 입수 한 자기 분리기로 분리하고 0.1M 보레이트 완충액 중의 200 마이크로리터의 10 mg/ml β-카제인 용액에 재현탁시켰다. 현탁액을 부드럽게 혼합하면서 30분 동안 인큐베이팅하였다. 상기 단계를 2회 반복하였다. 분리된 입자를 200 마이크로리터의 PBS에 재현탁시키고 4℃에 보관하였다.
혈청황색소화 호르몬 (LH)
"혈청황색소화 호르몬 (LH)"을 피쯔제랄드 인더스터리즈 인터내셔날, 인크.로부터 입수하였다.
실시예 2
예를 들어, 도 2에 도시된 샌드위치 분석을 사용하여 분석물의 존재를 검출하는 능력을 증명하였다. 초기에, 다음 성분들을 6개의 에펜도르프 바이알에 첨가하였다:
(1) 5 마이크로리터의 공유결합에 의해 컨쥬게이션된 형광 비자기 입자 (PBS 완충액 중의 2 mg/ml),
(2) 15 마이크로리터의 물리적 흡수 컨쥬게이션된 형광 자기 입자 (PBS 완충액 중의 3 mg/ml), 및
(3) 0, 5, 10 마이크로리터, 20, 40, 및 100 마이크로리터 (2 마이크로그램/ml) 범위의 혈청황색소화 호르몬 (LH) 분석물.
각각의 에펜도르프 바이알에, 150 마이크로리터의 최종 부피가 되도록 적절한 양의 PBS 완충액을 첨가하였다. 샘플을 부드럽게 진탕하면서 실온에서 25분 동안 인큐베이팅하였다. 이어서 자기 입자를 자기 분리기 (다이날, 인크.)로 분리하 였다. 각 바이알로부터의 상등액을 폐기하고 자기 입자를 1.5 ml의 PBS에 재현탁시켰다. 300 마이크로리터의 형광 자기 입자 현탁액을 각 형광 측정에 사용하였다. 스펙스 인더스트리즈, 인크로부터 입수한 "Flourolog III Spectrofluorometer"를 사용하여 직각 방식을 이용하여 샘플의 형광을 측정하였다. 470 나노미터의 여기 파장 및 560 나노미터의 방출 파장을 형광 자기 입자에 대해 사용하고, 570 나노미터의 여기 파장 및 605 나노미터의 방출 파장을 형광 비자기 입자에 대해 사용하였다. 통합 시간은 0.2 내지 1초였다.
표준화 및 교정 형광 강도를 각 샘플 내의 LH 용량의 함수로서 도 9에 도시한다.
실시예 2에 사용된 입자는 다음과 같이 형성하였다:
형광 비자기 입자
"형광 비자기" 입자는 실시예 1에서 설명한 바와 같이 형성하였다.
형광 자기 입자
2.76 mg의 형광 초상자성 입자 (수성 현탁액 중 2.5% 고형물)를 폴리사이언시스, 인크.로부터 입수하였다. 입자를 보레이트 완충액으로 3회 세척하고 다이날 인크.로부터 입수한 자기 분리기로 분리시켰다. 세척한 입자를 200-마이크로리터 보레이트 완충액에 재현탁하고, 82 마이크로그램의 β-혈청황색소화 호르몬 (β-LH) 모노클로날 항체 (1 mg/ml, 피쯔제랄드 인더스터리즈 인터내셔날, 인크. 제품)를 첨가하였다. 혼합물을 실온에서 밤새 부드럽게 혼합하였다. 이어서, 입자를 자기 분리기로 수집하고 비특이적 결합 부위를 차단시키기 위해 부드럽게 혼합하면 서 30분 동안 200 마이크로리터의 β-카제인 (보레이트 완충액 중의 10 mg/ml)과 함께 인큐베이팅하였다. 차단된 입자를 PBS로 2회 세척하고 0.1M PBS 중에 보관하였다.
혈청황색소화 호르몬 (LH)
"혈청황색소화 호르몬 (LH)"을 피쯔제랄드 인더스터리즈 인터내셔날, 인크.로부터 입수하였다.
실시예 3
자가-교정된 자기 결합 분석을 비교정된 자기 결합 분석과 비교하였다.
자가-교정 없음
초기에, 다음 성분들을 5 에펜도르프 바이알 (표 1에서 바이알 번호 2-6)에 첨가하였다:
(1) 15 마이크로리터의 공유결합에 의해 컨쥬게이션된 비형광 자기 입자 (0.1M PBS 완충액 중의 3 mg/ml),
(2) 15 마이크로리터의 공유결합에 의해 컨쥬게이션된 형광 비자기 입자 (PBS 완충액 중의 2 mg/ml),
(3) 20 마이크로리터의 혈청황색소화 호르몬 (LH) 분석물 (1 마이크로그램/ml), 및
(4) 20 마이크로리터의 PBS.
또한, 비교 에펜도르프 바이알은 20 마이크로리터의 PBS만을 사용하여 형성하였다 (표 1에서 바이알 번호 1).
샘플을 부드럽게 진탕하면서 실온에서 20분 동안 인큐베이팅하였다. 이어서 자기 입자를 다이날, 인크.로부터 입수한 자기 분리기로 분리시켰다. 각 바이알로부터의 상등액을 폐기하고 자기 입자를 1.5 ml의 PBS에 재현탁시켰다. 300 마이크로리터의 형광 자기 입자 현탁액을 각 형광 측정에 사용하였다. 스펙스 인더스트리즈, 인크.으로부터 입수한 "Flourolog III Spectrofluorometer"를 사용하여 직각 방식을 이용하여 샘플의 형광을 측정하였다. 570 나노미터의 여기 파장 및 605 나노미터의 방출 파장을 상이한 일자의 형광 측정을 위해 사용하였다.
표 1은 각 일자에 대한 상대적 형광 데이타를 나타낸 것이다.
형광 측정
바이알 번호 1 번호 2 번호 3 번호 4 번호 5 번호 6 표준편차%
제1일 13 254 215 263 285 291 11
제2일 12 235 207 300 263 299 15
제3일 12 183 176 213 270 266 20
제4일 18 265 226 275 282 293 10
제5일 9 207 193 246 236 244 10
제6일 14 227 202 252 262 274 12
표준편차% 23 13 8 11 6 7
자가-교정 있음
초기에, 다음 성분들을 5개의 에펜도르프 바이알에 첨가하였다 (표 2에서 바이알 번호 9-13):
(1) 15 마이크로리터의 공유결합에 의해 컨쥬게이션된 비형광 자기 입자 (0.1M PBS 완충액 중의 3 mg/ml),
(2) 15 마이크로리터의 공유결합에 의해 컨쥬게이션된 형광 비자기 입자 (PBS 완충액 중의 2 mg/ml),
(3) β-카제인으로 차단된 20 마이크로리터의 형광 자기 입자 (PBS 완충액 중의 3 mg/ml),
(4) 20 마이크로리터의 혈청황색소화 호르몬 (LH) 분석물 (1 마이크로그램/ml), 및
(5) 20 마이크로리터의 PBS.
또한, 비교 에펜도르프 바이알은 20 마이크로리터의 PBS만을 사용하여 형성하였다 (표 2에서 바이알 번호 8).
샘플을 부드럽게 진탕하면서 실온에서 20분 동안 인큐베이팅하였다. 이어서 자기 입자를 다이날, 인크.로부터 입수한 자기 분리기로 분리시켰다. 각 바이알로부터의 상등액을 폐기하고 자기 입자를 1.5 ml의 PBS에 재현탁시켰다. 300 마이크로리터의 형광 자기 입자 현탁액을 각 형광 측정에 사용하였다. "Flourolog III Spectrofluorometer"를 사용하여 직각 방식을 이용하여 샘플의 형광을 측정하였다. 470 나노미터의 여기 파장 및 560 나노미터의 방출 파장을 형광 자기 입자에 대해 사용하고, 570 나노미터의 여기 파장 및 605 나노미터의 방출 파장을 형광 비자기 입자에 대해 사용하였다. 표 2는 각 일자에 대한 상대적 형광 데이타를 나타낸 것이다.
형광 측정
바이알 번호 8 번호 9 번호 10 번호 11 번호 12 번호 13 표준편차%
제1일 31/32 352/47 344/43 300/41 318/44 369/39 12
제2일 31/42 324/42 329/41 323/46 338/47 418/43 14
제3일 28/39 307/40 333/42 282/42 288/40 425/46 12
제4일 30/41 267/36 292/36 271/41 281/38 356/43 8.8
제5일 21/29 252/33 292/34 258/38 275/36 328/37 10
제6일 21/25 237/33 307/38 265/40 288/35 358/39 12
표준편차% 13 3 3 4 5 6
2개의 시스템에 대한 각 세트의 샘플의 비교로부터 알 수 있는 바와 같이, 자가-교정된 시스템에 대한 표준 편차 (표준 편차 %)는 주의깊게 제어된 조건 하에서조차 자가-교정이 없는 표준 편차보다 유의하게 더 작았다. 자가-교정된 시스템은 측정 조건에 보다 덜 의존적이므로, 자가-교정된 시스템에 대한 표준 편차는 조건이 주의깊게 제어되지 않을 때 자가-교정이 없는 표준 편차보다 훨씬 더 작을 것으로 예상된다.
실시예 3에 사용된 입자는 다음과 같이 형성하였다:
비형광 자기 입자
"비형광 자기" 입자는 실시예 1에서 설명한 바와 같이 형성하였다.
형광 비자기 입자
"형광 비자기" 입자는 실시예 1에서 설명한 바와 같이 형성하였다.
형광 자기 입자
"형광 자기 입자"는 실시예 2에서 설명한 바와 같이 형성하였다.
혈청황색소화 호르몬 (LH)
"혈청황색소화 호르몬 (LH)"을 피쯔제랄드 인더스터리즈 인터내셔날, 인크.로부터 입수하였다.
실시예 4
예를 들어, 도 3에 도시된 샌드위치 분석을 사용하여 분석물의 존재를 검출하는 능력을 증명하였다. 초기에, 다음 성분들을 6개의 에펜도르프 바이알에 첨가하였다:
(1) 30 마이크로리터의 공유결합에 의해 컨쥬게이션된 비형광 자기 입자 (PBS 완충액 중의 2 mg/ml),
(2) 20 마이크로리터의 공유결합에 의해 컨쥬게이션된 형광 비자기 입자 (PBS 완충액 중의 2 mg/ml),
(3) β-카제인에 의해 차단된 15 마이크로리터의 형광 자기 입자 (PBS 완충액 중의 1 mg/ml), 및
(4) 0, 5, 10, 20, 50 및 100 마이크로리터 범위의 C-반응성 단백질 (CRP) 분석물 (PBS 중 0.2 마이크로그램/ml).
샘플을 부드럽게 진탕하면서 실온에서 20분 동안 인큐베이팅하였다. 이어서 자기 입자를 다이날, 인크.로부터 입수한 자기 분리기로 분리시켰다. 각 바이알로부터의 상등액을 폐기하고 자기 입자를 1.5 ml의 PBS에 재현탁시켰다. 300 마이크로리터의 형광 자기 입자 현탁액을 각 형광 측정에 사용하였다. 스펙스 인더스트리즈, 인크.로부터 입수한 "Flourolog III Spectrofluorometer"를 사용하여 직각 방식을 이용하여 샘플의 형광을 측정하였다. 470 나노미터의 여기 파장 및 560 나노미터의 방출 파장을 형광 자기 입자에 대해 사용하고, 570 나노미터의 여기 파장 및 605 나노미터의 방출 파장을 형광 비자기 입자에 대해 사용하였다. 통합 시간 은 0.2 내지 1초였다. 표준화 형광 강도를 각 샘플 내의 CRP 용량의 함수로서 도 10에 도시하였다.
실시예 4에 사용된 입자는 다음과 같이 형성하였다:
비형광 자기 입자
125 마이크로리터의 10% 카르복실레이트-개질 상자성 입자 (0.35 미크론, Estapor(등록상표) 초상자성 미세구, 방스 래보래토리스, 인크. 제품)를 자기 분리기를 사용하여 1.5 ml의 탄산염 완충액으로 1회, 포스페이트 완충액 염수 (PBS)로 2회 세척하였다. 세척한 입자를 0.6 ml PBS 및 15 mg 카르보디이미드 (폴리사이언시스, 인크. 제품) 중에 재현탁시켰다. 혼합물을 진탕기 상에서 실온 (RT)에서 30분 동안 반응시켰다. 이어서, 활성화된 입자를 보레이트 완충액으로 2회 세척하였다. 활성화된 입자를 다시 1.2 ml의 보레이트 완충액에 재현탁시켰다. 이어서, 30 마이크로리터의 항-C-반응성 단백질 (항-CRP1) 모노클로날 항체 (Mab A5804, 2mg/ml, 바이오퍼시픽, 인크. (BiosPacific, Inc.) 제품)를 활성화된 입자에 첨가하였다. 반응 혼합물을 진탕기 상에서 실온에서 밤새 반응시켰다. 이어서 활성화된 입자를 수집하고 15분 동안 부드럽게 진탕하면서 1 ml의 0.1M 에탄올아민 중에서 인큐베이팅하였다. 이어서, 입자를 PBS로 2회 세척하고 4℃에서 0.1M PBS, 0.15M NaCl, 1% β-카제인, 5% 글리세롤 및 0.1% NaN3을 함유한 완충액 중에 보관하였다.
형광 비자기 입자
결합 성분이 항-CRP1 대신 항-C-반응성 단백질 (항-CRP2) 모노클로날 항체 (2 mg/ml, 바이오퍼시픽, 인크. 제품)인 것을 제외하고는, "형광 비자기" 입자를 상기한 절차에 따라 공유결합에 의해 컨쥬게이션시켰다. 사용된 입자는 FluoSpheres(등록상표) 카르복실레이트-개질 미세구 (몰레큘라 프로브스, 인크. 제품)이었다. 입자의 크기는 0.5 ㎛이고, 580 나노미터의 여기 파장 및 605 나노미터의 방출 파장에서 적색 형광이었다.
형광 자기 입자
100 마이크로리터의 형광 초상자성 입자 (미국 펜실배니아주 워링턴 소재의 폴리사이언시스, 인크.로부터 입수함)의 2.76% 고형물 현탁액을 에펜도르프관 중에서 1 ml의 보레이트 완충액 (0.1M, pH = 8.5)과 합하였다. 상기 입자는 평균 직경이 1 내지 2 미크론이고, 단백질과의 수동 흡착 및 관능기 반응을 위한 폴리스티렌 표면을 갖는 철-함유 미세구인 것으로 생각된다. 이어서, 1 ml의 보레이트 완충액 (0.1M, pH = 8.5)을 에펜도르프관 내의 입자에 첨가하였다. 입자를 다이날, 인크.로부터 입수한 자기 분리기로 분리하고, 입자를 0.1M 보레이트 완충액 중의 β-카제인의 10 mg/ml 용액 200 마이크로리터에 재현탁시켰다. 현탁액을 부드럽게 혼합하면서 30분 동안 인큐베이팅하였다. 상기 단계를 2회 반복하였다. 분리된 입자를 200 마이크로리터의 PBS에 재현탁시키고 4℃에 보관하였다.
C-반응성 단백질(CRP)
"C-반응성 단백질 (CRP)"은 바이오퍼시픽, 인크.로부터 입수하였다.
실시예 5
막 기반 분석을 형성하는 능력을 입증하였다. 초기에, 니트로셀룰로스로 제조된 Millipore SX 다공성 막 샘플을 길이가 약 30 센티미터인 대응하는 지지 카드 상에 라미네이션시켰다. 셀룰로스 섬유 위킹 패드 (밀리포어 컴퍼니 (Millipore Co.))를 막의 한 말단에 부착시켰다. 막의 다른 말단에는 2개의 유리 섬유 패드 (샘플 및 컨쥬게이트 패드)로 라미네이션시켰다. 컨쥬게이트 패드 및 위킹 패드를 막과 직접 접촉시키고, 샘플 패드를 컨쥬게이트 패드에 직접 접촉시켰다.
이어서, 각 샘플의 샘플 패드를 2% 폴리옥시에틸렌 소르비탄 모노라우레이트 ("Tween 20"의 상품명으로 시그마-알드리치 (Sigma-Aldrich)에서 시판하는 비이온계 계면활성제)로 처리하고, 37 ℃에서 1 시간 동안 건조시켰다. 컨쥬게이트 패드에 비형광 자기 입자, 형광 비자기 입자, 형광 자기 입자, Tween 20 및 수크로스를 흡수시킨 후, 37 ℃에서 1 시간 동안 건조시켰다. "비형광 자기 입자", "형광 비자기 입자" 및 "형광 자기 입자"를 실시예 1에서 설명한 바와 같이 형성시켰다.
자석 스트립을 각 샘플의 중간 부분 아래에 위치시켜 검출 대역을 형성하였다. 이어서, 40 마이크로리터의 PBS 완충액을 제1 샘플의 샘플링 패드에 적용하고, 40 마이크로리터의 혈청황색소화 호르몬 (LH) (0.5 마이크로그램/밀리리터)을 제2 샘플의 샘플링 패드에 적용하고, 40 마이크로리터의 LH (5 마이크로그램/밀리리터)를 제3 샘플의 샘플링 패드에 적용하였다. 30분 후에, 검출 대역에서 포획된 형광 자기 입자 및 형광 비자기 입자를 전면 방식 (front face mode) 및 샘플에 대한 30도 각도를 사용하여 "Flourolog III Spectrofluorometer"로 측정하였다. 470 나노미터의 여기 파장 및 560 나노미터의 방출 파장을 형광 자기 입자에 대해 사용 하고, 560 나노미터의 여기 파장 및 605 나노미터의 방출 파장을 형광 비자기 입자에 대해 사용하였다.
상기 3개의 샘플에 대한 형광 검출 시그날은 각각 187000, 217000 및 271000 카운트이었다. 상기 3개의 샘플에 대한 형광 교정 시그날은 각각 99000, 103000 및 81000 카운트이었다.
본 발명의 그의 구체적인 실시태양에 관련하여 상세히 설명하였지만, 당업계의 숙련인은 상기한 내용을 이해하면 상시 실시태양의 변경, 변동 및 동등물을 쉽게 생각할 수 있음이 이해될 것이다. 따라서, 본 발명의 범위는 첨부된 청구의 범위와 그에 대한 임의의 동등물의 범위로서 평가되어야 한다.

Claims (47)

  1. 검출 시그날을 생성시킬 수 있는 검출 프로브 및 교정 시그날을 생성시킬 수 있는 자기 교정 프로브와 유체 소통하는, 검출 대역을 규정하는 다공성 막 및
    상기 다공성 막에 적용된 시험 샘플로부터 상기 검출 프로브 및 상기 교정 프로브를 분리할 수 있는, 상기 검출 대역에 인접하여 위치하는 자기 장치를 포함하며,
    상기 검출 프로브는 비자기 입자를 포함하고 특이적 결합 성분과 컨쥬게이트되고, 상기 교정 프로브는 자기 입자를 포함하며,
    시험 샘플 내의 분석물의 양이 상기 분리된 교정 프로브에 의해 검출 대역에서 생성된 교정 시그날의 강도에 의해 교정된, 상기 분리된 검출 프로브에 의해 검출 대역에서 생성된 검출 시그날의 강도에 비례하는 것인,
    시험 샘플 내의 분석물의 존재 또는 양을 검출하기 위한 막 기반 분석 장치.
  2. 제1항에 있어서, 상기 다공성 막과 유체 소통하는 하나 이상의 컨쥬게이트 패드를 추가로 포함하고, 상기 검출 프로브 및 상기 교정 프로브가 상기 하나 이상의 컨쥬게이트 패드에 적용되는 것인 장치.
  3. 제1항에 있어서, 상기 다공성 막이, 시험 샘플이 적용되는 샘플링 패드와 유체 소통하는 것인 장치.
  4. 제1항에 있어서, 시험 샘플의 유동을 촉진시키기 위해서 상기 다공성 막과 유체 소통하는 위킹 (wicking) 패드를 추가로 포함하는 장치.
  5. 제1항에 있어서, 상기 검출 프로브 및 상기 교정 프로브가 형광 화합물, 화학발광 화합물, 인광 화합물 또는 이들의 조합물을 포함하는 것인 장치.
  6. 제1항에 있어서, 상기 검출 프로브의 상기 비자기 입자가 형광인 장치.
  7. 제1항 또는 제6항에 있어서, 상기 교정 프로브의 상기 자기 입자가 형광인 장치.
  8. 제1항에 있어서, 상기 검출 프로브가 분석물에 결합할 수 있는 것인 장치.
  9. 제1항에 있어서, 비형광 자기 입자를 추가로 포함하는 장치.
  10. 제9항에 있어서, 상기 비형광 자기 입자가 분석물에 결합할 수 있는 것인 장치.
  11. 제1항에 있어서, 상기 분리된 검출 프로브가 상기 검출 프로브에 의해 형성된 복합체를 포함하는 것인 장치.
  12. 제1항에 있어서, 상기 분리된 교정 프로브가 상기 교정 프로브에 의해 형성된 복합체를 포함하는 것인 장치.
  13. 제1항에 있어서, 시험 샘플 내의 분석물의 양이 상기 분리된 검출 프로브에 의해 상기 검출 대역에서 생성된 검출 시그날의 강도를 상기 분리된 교정 프로브에 의해 상기 검출 대역에서 생성된 교정 시그날의 강도로 나눈 값에 비례하는 것인 장치.
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. i) a) 검출 시그날을 생성시킬 수 있는 검출 프로브 및 교정 시그날을 생성시킬 수 있는 자기 교정 프로브와 유체 소통하는, 검출 대역을 규정하는 다공성 막 및 b) 상기 검출 대역에 인접하여 위치하는 자기 장치를 포함하는 막 기반 장치를 제공하는 단계,
    ii) 상기 검출 프로브 및 상기 교정 프로브를 시험 샘플과 접촉시켜 용액을 형성시키는 단계,
    iii) 상기 자기 장치를 사용하여 상기 검출 대역에서 상기 검출 프로브 및 상기 교정 프로브를 상기 용액으로부터 분리하는 단계,
    iv) 상기 분리된 검출 프로브 및 상기 분리된 교정 프로브를 여기시켜, 상기 분리된 검출 프로브가 상기 검출 시그날을 방출하고 상기 분리된 교정 프로브가 상기 교정 시그날을 방출하는 단계,
    v) 제1 방출 파장에서 검출 시그날의 강도 및 제2 방출 파장에서 교정 시그날의 강도를 측정하는 단계 및
    vi) 검출 시그날의 강도를 교정 시그날의 강도와 비교하는 단계를 포함하며,
    상기 검출 프로브는 비자기 입자를 포함하고 특이적 결합 성분과 컨쥬게이트되고, 상기 교정 프로브는 자기 입자를 포함하며,
    시험 샘플 내의 분석물의 양이 교정 시그날의 강도에 의해 교정된 검출 시그날의 강도에 비례하는 것인,
    시험 샘플 내의 분석물의 존재 또는 양을 검출하는 방법.
  23. 제22항에 있어서, 상기 막 기반 장치가 상기 다공성 막과 유체 소통하는 하나 이상의 컨쥬게이트 패드를 추가로 포함하고, 상기 검출 프로브 및 상기 교정 프로브가 상기 하나 이상의 컨쥬게이트 패드에 적용되는 것인 방법.
  24. 제22항에 있어서, 상기 다공성 막이, 시험 샘플이 적용되는 샘플링 패드와 유체 소통하는 것인 방법.
  25. 제22항에 있어서, 시험 샘플의 유동을 촉진시키기 위해서 상기 다공성 막과 유체 소통하는 위킹 패드를 추가로 포함하는 방법.
  26. 제22항에 있어서, 상기 검출 프로브의 상기 비자기 입자 및 상기 교정 프로브의 상기 자기 입자가 형광인 방법.
  27. 제22항에 있어서, 상기 분리된 검출 프로브가 상기 검출 프로브에 의해 형성된 복합체를 포함하는 것인 방법.
  28. 제27항에 있어서, 상기 복합체가 분석물과 함께 형성되는 것인 방법.
  29. 제22항에 있어서, 상기 분리된 교정 프로브가 상기 교정 프로브에 의해 형성된 복합체를 포함하는 것인 방법.
  30. 제29항에 있어서, 상기 복합체가 분석물과 함께 형성되는 것인 방법.
  31. 제22항에 있어서, 상기 제1 방출 파장이 상기 제2 방출 파장과 상이한 것인 방법.
  32. 제22항에 있어서, 교정 시그날의 강도에 의해 교정된 검출 시그날의 강도를 복수의 소정의 분석물 농도에 대해 플로팅함으로써 교정 곡선을 생성시키는 단계를 추가로 포함하는 방법.
  33. 제22항에 있어서, 상기 분리된 검출 프로브 및 상기 분리된 교정 프로브가 동시에 여기되는 것인 방법.
  34. 제22항에 있어서, 상기 분리된 검출 프로브 및 상기 분리된 교정 프로브가 별개로 여기되는 것인 방법.
  35. 제22항에 있어서, 검출 시그날 및 교정 시그날의 강도가 동시에 측정되는 것인 방법.
  36. 제22항에 있어서, 검출 시그날 및 교정 시그날의 강도가 별개로 측정되는 것인 방법.
  37. 삭제
  38. 삭제
  39. 삭제
  40. 제26항에 있어서, 상기 검출 시그날 및 상기 교정 시그날의 강도를 측정하기 위해 형광 판독기가 사용되는 것인 방법.
  41. 제40항에 있어서, 상기 형광 판독기가 상기 검출 및 상기 교정 시그날을 측정하기 위해 시분해 형광 분광법을 이용하는 것인 방법.
  42. 제1항에 있어서, 검출 프로브의 특이적 결합 성분이 항원, 합텐, 앱타머(aptamer), 항체 및 이들의 복합체로 이루어진 군으로부터 선택된 것인 장치.
  43. 제1항에 있어서, 검출 프로브의 특이적 결합 성분이 컨쥬케이트되어 분석물과 결합하는 것인 장치.
  44. 제1항에 있어서, 검출 프로브의 특이적 결합 성분이 컨쥬게이트되어 결합 부위를 위해 분석물과 경쟁하는 것인 장치.
  45. 제1항에 있어서, 교정 프로브의 자기 입자가 특이적 결합 성분과 컨쥬케이트되는 것인 장치.
  46. 제45항에 있어서, 자기 장치가 검출 대역 내에서 검출 프로브와 교정 프로브 사이에 형성된 복합체를 고정시키도록 배치된 것인 장치.
  47. 제1항에 있어서, 교정 프로브의 자기 입자가 차단된 것인 장치.
KR1020057002264A 2002-08-27 2003-07-10 자기 입자를 이용한 내부 교정 시스템을 사용하는 유동분석 장치 KR101032172B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/228,836 US7285424B2 (en) 2002-08-27 2002-08-27 Membrane-based assay devices
US10/228,836 2002-08-27

Publications (2)

Publication Number Publication Date
KR20050062529A KR20050062529A (ko) 2005-06-23
KR101032172B1 true KR101032172B1 (ko) 2011-05-02

Family

ID=31976120

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020057002264A KR101032172B1 (ko) 2002-08-27 2003-07-10 자기 입자를 이용한 내부 교정 시스템을 사용하는 유동분석 장치
KR1020117014422A KR20110089194A (ko) 2002-08-27 2003-07-10 시분해 형광을 이용한 막 기반 분석법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020117014422A KR20110089194A (ko) 2002-08-27 2003-07-10 시분해 형광을 이용한 막 기반 분석법

Country Status (11)

Country Link
US (3) US7285424B2 (ko)
EP (1) EP1532450B1 (ko)
KR (2) KR101032172B1 (ko)
CN (1) CN100365417C (ko)
AT (1) ATE467835T1 (ko)
AU (1) AU2003247957A1 (ko)
CA (1) CA2495209C (ko)
DE (1) DE60332539D1 (ko)
MX (1) MXPA05001681A (ko)
TW (1) TW200424521A (ko)
WO (1) WO2004021005A1 (ko)

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7640083B2 (en) * 2002-11-22 2009-12-29 Monroe David A Record and playback system for aircraft
US7285424B2 (en) 2002-08-27 2007-10-23 Kimberly-Clark Worldwide, Inc. Membrane-based assay devices
IL151745A (en) * 2002-09-12 2007-10-31 Uzi Sharon Explosive detection and detection system
US7247500B2 (en) * 2002-12-19 2007-07-24 Kimberly-Clark Worldwide, Inc. Reduction of the hook effect in membrane-based assay devices
JP2006525527A (ja) * 2003-05-02 2006-11-09 アクセス バイオ,インク. クロマトグラフィーアッセイシステム
US7713748B2 (en) 2003-11-21 2010-05-11 Kimberly-Clark Worldwide, Inc. Method of reducing the sensitivity of assay devices
US20050112703A1 (en) * 2003-11-21 2005-05-26 Kimberly-Clark Worldwide, Inc. Membrane-based lateral flow assay devices that utilize phosphorescent detection
US7943395B2 (en) 2003-11-21 2011-05-17 Kimberly-Clark Worldwide, Inc. Extension of the dynamic detection range of assay devices
US7943089B2 (en) * 2003-12-19 2011-05-17 Kimberly-Clark Worldwide, Inc. Laminated assay devices
US8128871B2 (en) 2005-04-22 2012-03-06 Alverix, Inc. Lateral flow assay systems and methods
US20070143035A1 (en) * 2005-12-19 2007-06-21 Petruno Patrick T Diagnostic test reader with disabling unit
US7521259B2 (en) * 2004-04-01 2009-04-21 Alverix, Inc. Assay test strips with multiple labels and reading same
US20050221504A1 (en) * 2004-04-01 2005-10-06 Petruno Patrick T Optoelectronic rapid diagnostic test system
US20070185679A1 (en) * 2004-04-01 2007-08-09 Petruno Patrick T Indicating status of a diagnostic test system
US7815854B2 (en) * 2004-04-30 2010-10-19 Kimberly-Clark Worldwide, Inc. Electroluminescent illumination source for optical detection systems
US7796266B2 (en) * 2004-04-30 2010-09-14 Kimberly-Clark Worldwide, Inc. Optical detection system using electromagnetic radiation to detect presence or quantity of analyte
US20050244953A1 (en) * 2004-04-30 2005-11-03 Kimberly-Clark Worldwide, Inc. Techniques for controlling the optical properties of assay devices
US20060019265A1 (en) * 2004-04-30 2006-01-26 Kimberly-Clark Worldwide, Inc. Transmission-based luminescent detection systems
US7906276B2 (en) 2004-06-30 2011-03-15 Kimberly-Clark Worldwide, Inc. Enzymatic detection techniques
US7094528B2 (en) * 2004-06-30 2006-08-22 Kimberly-Clark Worldwide, Inc. Magnetic enzyme detection techniques
US7521226B2 (en) 2004-06-30 2009-04-21 Kimberly-Clark Worldwide, Inc. One-step enzymatic and amine detection technique
EP1817573A4 (en) * 2004-10-18 2010-02-10 Univ Macquarie FLUORESCENCE DETECTION
US20070121113A1 (en) * 2004-12-22 2007-05-31 Cohen David S Transmission-based optical detection systems
US7682817B2 (en) * 2004-12-23 2010-03-23 Kimberly-Clark Worldwide, Inc. Microfluidic assay devices
US7315376B2 (en) * 2005-01-07 2008-01-01 Advanced Molecular Systems, Llc Fluorescence detection system
US7939342B2 (en) 2005-03-30 2011-05-10 Kimberly-Clark Worldwide, Inc. Diagnostic test kits employing an internal calibration system
US9891217B2 (en) * 2005-04-22 2018-02-13 Alverix, Inc. Assay test strips with multiple labels and reading same
US7803319B2 (en) * 2005-04-29 2010-09-28 Kimberly-Clark Worldwide, Inc. Metering technique for lateral flow assay devices
US7858384B2 (en) * 2005-04-29 2010-12-28 Kimberly-Clark Worldwide, Inc. Flow control technique for assay devices
US20070020699A1 (en) * 2005-07-19 2007-01-25 Idexx Laboratories, Inc. Lateral flow assay and device using magnetic particles
EP1910830B1 (en) * 2005-07-21 2009-10-28 Koninklijke Philips Electronics N.V. Substrate material for analyzing fluids
US7829347B2 (en) 2005-08-31 2010-11-09 Kimberly-Clark Worldwide, Inc. Diagnostic test kits with improved detection accuracy
US7504235B2 (en) 2005-08-31 2009-03-17 Kimberly-Clark Worldwide, Inc. Enzyme detection technique
US8632730B2 (en) * 2005-11-22 2014-01-21 Alverix, Inc. Assaying test strips having different capture reagents
US20070122914A1 (en) * 2005-11-30 2007-05-31 Curry Bo U Obtaining measurements of light transmitted through an assay test strip
US7279136B2 (en) 2005-12-13 2007-10-09 Takeuchi James M Metering technique for lateral flow assay devices
US7645583B2 (en) * 2005-12-14 2010-01-12 Kimberly-Clark Worldwide, Inc. Identification of compounds for inhibiting complexation of C-reactive protein with fibronectin
US7745158B2 (en) 2005-12-14 2010-06-29 Kimberly-Clark Worldwide, Inc. Detection of secreted aspartyl proteases from Candida species
US7618810B2 (en) * 2005-12-14 2009-11-17 Kimberly-Clark Worldwide, Inc. Metering strip and method for lateral flow assay devices
US8084270B2 (en) * 2006-01-25 2011-12-27 Koninklijke Philips Electronics N.V. Device for analyzing fluids
US20070188736A1 (en) * 2006-02-16 2007-08-16 Fouquet Julie E Obtaining measurement and baseline signals for evaluating assay test strips
US11237171B2 (en) 2006-02-21 2022-02-01 Trustees Of Tufts College Methods and arrays for target analyte detection and determination of target analyte concentration in solution
US8460879B2 (en) 2006-02-21 2013-06-11 The Trustees Of Tufts College Methods and arrays for target analyte detection and determination of target analyte concentration in solution
US8789756B2 (en) * 2006-02-25 2014-07-29 Roche Diagnostics Operations, Inc. Test element coding apparatuses, systems and methods
US7919328B2 (en) * 2006-03-10 2011-04-05 Corning Incorporated Fluorescent ion doped glass and method for using the fluorescent ion doped glass to enhance fluorescence imaging techniques
US8758989B2 (en) 2006-04-06 2014-06-24 Kimberly-Clark Worldwide, Inc. Enzymatic detection techniques
WO2008019448A1 (en) * 2006-08-18 2008-02-21 Macquarie University Time gated fluorescent flow cytometer
US7875260B2 (en) * 2006-08-24 2011-01-25 Baylor College Of Medicine Imaging agents for functional imaging of lymphatic structures
US7749773B2 (en) * 2006-10-11 2010-07-06 Day Alan R Device for detection of molecules in biological fluids
BRPI0719892B8 (pt) 2006-10-12 2021-07-27 Koninklijke Philips Electronics Nv sistema de detecção preparado para detectar pelo menos uma molécula alvo, método para detectar pelo menos uma molécula alvo, e, componente de sensor preparado para uso com um sistema de detecção para detectar pelo menos uma molécula alvo
US7935538B2 (en) * 2006-12-15 2011-05-03 Kimberly-Clark Worldwide, Inc. Indicator immobilization on assay devices
US7897360B2 (en) 2006-12-15 2011-03-01 Kimberly-Clark Worldwide, Inc. Enzyme detection techniques
US7998414B2 (en) * 2007-02-28 2011-08-16 Corning Incorporated System for high throughput GPCR functional assay
JP5503540B2 (ja) 2007-08-30 2014-05-28 トラスティーズ・オブ・タフツ・カレッジ 溶液中の分析物濃度を決定する方法
US8535617B2 (en) * 2007-11-30 2013-09-17 Kimberly-Clark Worldwide, Inc. Blood cell barrier for a lateral flow device
CN101603962B (zh) * 2008-06-10 2013-09-11 熊慧 一种免疫纳米磁珠诊断试剂盒
DE102008058132A1 (de) * 2008-11-14 2010-05-20 opTricon GmbH Entwicklungsesellschaft für optische Technologien Gerät und Verfahren zur Auswertung und Bewertung eines Teststreifens
US20100290948A1 (en) * 2009-05-15 2010-11-18 Xuedong Song Absorbent articles capable of indicating the presence of urinary tract infections
ES2544635T3 (es) 2010-03-01 2015-09-02 Quanterix Corporation Métodos para extender el rango dinámico en ensayos para la detección de moléculas o partículas
US8236574B2 (en) 2010-03-01 2012-08-07 Quanterix Corporation Ultra-sensitive detection of molecules or particles using beads or other capture objects
US9678068B2 (en) 2010-03-01 2017-06-13 Quanterix Corporation Ultra-sensitive detection of molecules using dual detection methods
US8415171B2 (en) 2010-03-01 2013-04-09 Quanterix Corporation Methods and systems for extending dynamic range in assays for the detection of molecules or particles
EP2550523A4 (en) * 2010-03-25 2018-01-24 Mocon, Inc. Luminescence lifetime based analyte sensing instruments and calibration technique
US10010272B2 (en) 2010-05-27 2018-07-03 Profusa, Inc. Tissue-integrating electronic apparatus
US9816131B2 (en) 2010-08-02 2017-11-14 Dxna Llc Pressurizable cartridge for polymerase chain reactions
EP2439514A1 (en) 2010-10-01 2012-04-11 Aqsens Oy Method, apparatus, and system for examining optically a sample carried in a plurality of wells
EP2439512A1 (en) 2010-10-01 2012-04-11 Aqsens Oy A device for holding a sample
CN105147300B (zh) 2010-10-06 2019-09-03 普罗弗萨股份有限公司 组织整合性传感器
US9952237B2 (en) 2011-01-28 2018-04-24 Quanterix Corporation Systems, devices, and methods for ultra-sensitive detection of molecules or particles
WO2012142301A2 (en) 2011-04-12 2012-10-18 Quanterix Corporation Methods of determining a treatment protocol for and/or a prognosis of a patients recovery from a brain injury
US20140154184A1 (en) * 2011-04-28 2014-06-05 The Regents Of The University Of California Time-gated fluorescence imaging with si-containing particles
WO2014113502A1 (en) 2013-01-15 2014-07-24 Quanterix Corporation Detection of dna or rna using single molecule arrays and other techniques
JP6148033B2 (ja) * 2013-02-22 2017-06-14 旭化成株式会社 蛍光色素化合物を含むセルロース微粒子
CN108013881B (zh) 2013-03-14 2021-06-15 普罗菲尤萨股份有限公司 用于校正光学信号的方法和装置
WO2014168734A1 (en) 2013-03-15 2014-10-16 Cedars-Sinai Medical Center Time-resolved laser-induced fluorescence spectroscopy systems and uses thereof
AU2014232782B2 (en) * 2013-03-15 2018-05-24 Hycor Biomedical, Inc. Device and associated methods for performing luminescence and fluorescence measurements of a sample
CN104169710A (zh) * 2013-03-19 2014-11-26 香港锦程发展有限公司 用于时间分辨荧光免疫测定检验的方法和装置
KR20160036578A (ko) * 2013-07-31 2016-04-04 더 보드 오브 리젠츠 오브 더 유니버시티 오브 텍사스 시스템 진단용 평면형 컨포멀 회로
US10101342B2 (en) * 2014-02-12 2018-10-16 Church & Dwight Co., Inc. Devices and methods for electronic analyte assaying
MX2017006287A (es) * 2014-11-27 2017-08-14 Kimberly Clark Co Dispositivos y metodos para detectar norovirus en superficies.
US20160216283A1 (en) * 2015-01-26 2016-07-28 Polymer Technology Systems, Inc. Systems, compositions, and methods of lipid panel test controls utilizing particles that mimic hematocrit
US11971354B2 (en) 2015-04-08 2024-04-30 Molecular Devices, Llc Methods and systems for fluorescence detection using infrared dyes
US10379046B2 (en) * 2015-04-08 2019-08-13 Molecular Devices, Llc Method and system for multiplexed time-resolved fluorescence detection
US20170038299A1 (en) * 2015-08-07 2017-02-09 Sentinel Monitoring Systems, Inc. Online process monitoring
JP2017181051A (ja) * 2016-03-28 2017-10-05 古河電気工業株式会社 生体分子検出装置、及びこれを用いた生体分子の検出方法
JP2017181050A (ja) * 2016-03-28 2017-10-05 古河電気工業株式会社 生体分子検出用試験キット、及びこれを用いた生体分子の検出方法、並びにこれらに用いられる生体分子検出用標識試薬粒子
CN115561211A (zh) 2016-04-01 2023-01-03 黑光外科公司 用于时间分辨荧光光谱法的系统、装置和方法
WO2018013697A2 (en) * 2016-07-12 2018-01-18 Purdue Research Foundation Devices systems, and methods for the detection of a target analyte using magnetic focus lateral flow immunoassay techniques
WO2018119400A1 (en) 2016-12-22 2018-06-28 Profusa, Inc. System and single-channel luminescent sensor for and method of determining analyte value
WO2018119401A2 (en) * 2016-12-22 2018-06-28 Daktari Diagnostics, Inc. Devices and methods for determining one or more analytes in fluids
CN107677806B (zh) * 2017-10-24 2019-08-20 天津大学 基于磁富集的荧光定量高灵敏可视化联检免疫层析试纸条的制备和检测方法
CN108982872B (zh) * 2018-07-25 2022-04-05 苏州丰泰医疗用品贸易有限公司 一种基于微球和荧光标记的快速检测抗原或抗体方法
US20200278349A1 (en) * 2019-02-28 2020-09-03 University Of Utah Research Foundation Biohazard analyzer
KR102554261B1 (ko) * 2021-07-26 2023-07-11 한국과학기술연구원 샌드위치 면역분석용 근적외선 기반 lret 시스템 및 이의 제조방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060136549A1 (en) * 2003-04-18 2006-06-22 Carro Fernando I System and method for accessing through wireless internet access points information or services related to broadcast programs

Family Cites Families (401)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US164659A (en) 1875-06-22 Improvement in processes of preparing pickles
US5622871A (en) 1987-04-27 1997-04-22 Unilever Patent Holdings B.V. Capillary immunoassay and device therefor comprising mobilizable particulate labelled reagents
US1366241A (en) 1919-10-03 1921-01-18 Frederick W Burch Ratchet mechanism for camp-beds
US3604927A (en) 1966-11-16 1971-09-14 Block Engineering Total reflection fluorescence spectroscopy
US3772076A (en) 1970-01-26 1973-11-13 Hercules Inc Reaction products of epihalohydrin and polymers of diallylamine and their use in paper
US3700623A (en) 1970-04-22 1972-10-24 Hercules Inc Reaction products of epihalohydrin and polymers of diallylamine and their use in paper
FR2139434A5 (ko) 1971-05-11 1973-01-05 Image Analysing Computers Ltd
US4006360A (en) * 1974-08-21 1977-02-01 Block Engineering, Inc. Method of discriminating between dyed particles and background fluorescence of the dye
CS179075B1 (en) 1974-11-26 1977-10-31 Stoy Vladimir Mode of manufacture of spherical particles from polymer
SE388694B (sv) 1975-01-27 1976-10-11 Kabi Ab Sett att pavisa ett antigen exv i prov av kroppvetskor, med utnyttjande av till porost berarmaterial bundna eller adsorberande antikroppar
USRE30267E (en) 1975-06-20 1980-05-06 Eastman Kodak Company Multilayer analytical element
US4341957A (en) 1975-11-26 1982-07-27 Analytical Radiation Corporation Fluorescent antibody composition for immunofluorometric assay
US4094647A (en) 1976-07-02 1978-06-13 Thyroid Diagnostics, Inc. Test device
US4210723A (en) 1976-07-23 1980-07-01 The Dow Chemical Company Method of coupling a protein to an epoxylated latex
US4275149A (en) 1978-11-24 1981-06-23 Syva Company Macromolecular environment control in specific receptor assays
US4374925A (en) 1978-11-24 1983-02-22 Syva Company Macromolecular environment control in specific receptor assays
US4235601A (en) 1979-01-12 1980-11-25 Thyroid Diagnostics, Inc. Test device and method for its use
US4361537A (en) 1979-01-12 1982-11-30 Thyroid Diagnostics, Inc. Test device and method for its use
US4441373A (en) 1979-02-21 1984-04-10 American Hospital Supply Corporation Collection tube for drawing samples of biological fluids
US4312228A (en) 1979-07-30 1982-01-26 Henry Wohltjen Methods of detection with surface acoustic wave and apparati therefor
US4259574A (en) * 1979-11-06 1981-03-31 International Business Machines Corporation Microanalysis by pulse laser emission spectroscopy
US4533629A (en) 1981-04-17 1985-08-06 Syva Company Simultaneous calibration heterogeneous immunoassay
US5432057A (en) 1979-12-26 1995-07-11 Syva Company Simultaneous calibration heterogeneous immunoassay
US4849338A (en) 1982-07-16 1989-07-18 Syntex (U.S.A.) Inc. Simultaneous calibration heterogeneous immunoassay
US4540659A (en) 1981-04-17 1985-09-10 Syva Company Simultaneous calibration heterogeneous immunoassay
US4299916A (en) 1979-12-26 1981-11-10 Syva Company Preferential signal production on a surface in immunoassays
US5156953A (en) 1979-12-26 1992-10-20 Syntex (U.S.A.) Inc. Simultaneous calibration heterogeneous immunoassay
US4843000A (en) 1979-12-26 1989-06-27 Syntex (U.S.A.) Inc. Simultaneous calibration heterogeneous immunoassay
CH648052A5 (de) 1980-02-14 1985-02-28 Ciba Geigy Ag Verfahren zur herstellung von triarylmethanverbindungen.
US4336459A (en) * 1980-06-11 1982-06-22 Union Carbide Corporation Method and apparatus for detecting fluorescence under ambient light conditions
US4427836A (en) 1980-06-12 1984-01-24 Rohm And Haas Company Sequential heteropolymer dispersion and a particulate material obtainable therefrom, useful in coating compositions as a thickening and/or opacifying agent
EP0146654A3 (en) * 1980-06-20 1986-08-20 Unilever Plc Processes and apparatus for carrying out specific binding assays
US4366241A (en) 1980-08-07 1982-12-28 Syva Company Concentrating zone method in heterogeneous immunoassays
US4385126A (en) 1980-11-19 1983-05-24 International Diagnostic Technology, Inc. Double tagged immunoassay
US4426451A (en) 1981-01-28 1984-01-17 Eastman Kodak Company Multi-zoned reaction vessel having pressure-actuatable control means between zones
US4442204A (en) 1981-04-10 1984-04-10 Miles Laboratories, Inc. Homogeneous specific binding assay device and preformed complex method
US4444592A (en) 1981-06-02 1984-04-24 The Sherwin-Williams Company Pigment compositions and processes therefor
US4363874A (en) 1981-08-07 1982-12-14 Miles Laboratories, Inc. Multilayer analytical element having an impermeable radiation nondiffusing reflecting layer
EP0073593A1 (en) 1981-09-01 1983-03-09 E.I. Du Pont De Nemours And Company Size-exclusion heterogeneous immunoassay
US4480042A (en) 1981-10-28 1984-10-30 E. I. Du Pont De Nemours And Company Covalently bonded high refractive index particle reagents and their use in light scattering immunoassays
US4477635A (en) 1982-01-04 1984-10-16 Minnesota Mining And Manufacturing Company Polymeric triarylmethane dyes
US4435504A (en) 1982-07-15 1984-03-06 Syva Company Immunochromatographic assay with support having bound "MIP" and second enzyme
US4534356A (en) 1982-07-30 1985-08-13 Diamond Shamrock Chemicals Company Solid state transcutaneous blood gas sensors
SE454115B (sv) * 1982-09-13 1988-03-28 Wallac Oy Homogenfasanalys med lantanidkelat som merksubstans
US4632559A (en) 1982-11-29 1986-12-30 Miles Laboratories, Inc. Optical readhead
US4537861A (en) 1983-02-03 1985-08-27 Elings Virgil B Apparatus and method for homogeneous immunoassay
GB8314523D0 (en) 1983-05-25 1983-06-29 Lowe C R Diagnostic device
EP0127797B1 (de) 1983-06-03 1987-06-16 F. HOFFMANN-LA ROCHE & CO. Aktiengesellschaft Markermoleküle für Fluoreszenz-Immuno-Assays sowie Verfahren und Zwischenprodukte zu deren Herstellung
CH662421A5 (de) 1983-07-13 1987-09-30 Suisse Horlogerie Rech Lab Piezoelektrischer kontaminationsdetektor.
US4537657A (en) 1983-08-26 1985-08-27 Hercules Incorporated Wet strength resins
US4552458A (en) 1983-10-11 1985-11-12 Eastman Kodak Company Compact reflectometer
US4595661A (en) 1983-11-18 1986-06-17 Beckman Instruments, Inc. Immunoassays and kits for use therein which include low affinity antibodies for reducing the hook effect
US4703017C1 (en) 1984-02-14 2001-12-04 Becton Dickinson Co Solid phase assay with visual readout
GB8406752D0 (en) 1984-03-15 1984-04-18 Unilever Plc Chemical and clinical tests
US4743560A (en) 1984-03-26 1988-05-10 Becton Dickinson And Company Solid phase assay
US4698262A (en) 1984-04-27 1987-10-06 Becton, Dickinson And Company Fluorescently labeled microbeads
US4632901A (en) 1984-05-11 1986-12-30 Hybritech Incorporated Method and apparatus for immunoassays
US4586695A (en) 1984-06-22 1986-05-06 Miller Charlie D Continuous tube extractor
FI842992A0 (fi) 1984-07-26 1984-07-26 Labsystems Oy Immunologiskt definitionsfoerfarande.
US4661235A (en) 1984-08-03 1987-04-28 Krull Ulrich J Chemo-receptive lipid based membrane transducers
US4596697A (en) 1984-09-04 1986-06-24 The United States Of America As Represented By The Secretary Of The Army Chemical sensor matrix
US5310687A (en) 1984-10-31 1994-05-10 Igen, Inc. Luminescent metal chelate labels and means for detection
EP0184600B1 (en) 1984-12-10 1990-03-14 Prutec Limited Method for optically ascertaining parameters of species in a liquid analyte
US4722889A (en) 1985-04-02 1988-02-02 Leeco Diagnostics, Inc. Immunoassays using multiple monoclonal antibodies and scavenger antibodies
US5026653A (en) 1985-04-02 1991-06-25 Leeco Diagnostic, Inc. Scavenger antibody mixture and its use for immunometric assay
CA1272127A (en) 1985-04-04 1990-07-31 Hybritech Incorporated Solid phase system for use in ligand-receptor assays
US4743542A (en) 1985-04-11 1988-05-10 Ortho Diagnostic Method for forestalling the hook effect in a multi-ligand immunoassay system
GB8509492D0 (en) 1985-04-12 1985-05-15 Plessey Co Plc Optical assay
DE3575203D1 (de) 1985-06-28 1990-02-08 Eastman Kodak Co Kompaktes reflektometer.
US4877965A (en) 1985-07-01 1989-10-31 Diatron Corporation Fluorometer
US4963498A (en) 1985-08-05 1990-10-16 Biotrack Capillary flow device
US5238815A (en) 1985-08-30 1993-08-24 Toyo Soda Manufacturing Co., Ltd. Enzymatic immunoassay involving detecting fluorescence while oscillating magnetic beads
TW203120B (ko) 1985-10-04 1993-04-01 Abbott Lab
US5500350A (en) * 1985-10-30 1996-03-19 Celltech Limited Binding assay device
US4917503A (en) 1985-12-02 1990-04-17 Lifelines Technology, Inc. Photoactivatable leuco base time-temperature indicator
CA1291031C (en) 1985-12-23 1991-10-22 Nikolaas C.J. De Jaeger Method for the detection of specific binding agents and their correspondingbindable substances
US5585279A (en) 1986-01-23 1996-12-17 Davidson; Robert S. Time-resolved luminescence binding assays using a fluorescent transition metal label other than ruthenium
US4916056A (en) 1986-02-18 1990-04-10 Abbott Laboratories Solid-phase analytical device and method for using same
US5482830A (en) * 1986-02-25 1996-01-09 Biostar, Inc. Devices and methods for detection of an analyte based upon light interference
US5468606A (en) 1989-09-18 1995-11-21 Biostar, Inc. Devices for detection of an analyte based upon light interference
US4776944A (en) 1986-03-20 1988-10-11 Jiri Janata Chemical selective sensors utilizing admittance modulated membranes
US5591581A (en) 1986-04-30 1997-01-07 Igen, Inc. Electrochemiluminescent rhenium moieties and methods for their use
WO1987007955A1 (en) 1986-06-17 1987-12-30 Baxter Travenol Laboratories, Inc. Homogeneous fluoroassay methods employing fluorescent background rejection and water-soluble rare earth metal chelate fluorophores
GB8618133D0 (en) 1986-07-24 1986-09-03 Pa Consulting Services Biosensors
JPH0692969B2 (ja) 1986-07-30 1994-11-16 株式会社シノテスト 免疫的測定方法
US5182135A (en) 1986-08-12 1993-01-26 Bayer Aktiengesellschaft Process for improving the adherency of metallic coatings deposited without current on plastic surfaces
US4935346A (en) 1986-08-13 1990-06-19 Lifescan, Inc. Minimum procedure system for the determination of analytes
US4791310A (en) 1986-10-02 1988-12-13 Syracuse University Fluorescence microscopy
GB2197065A (en) 1986-11-03 1988-05-11 Stc Plc Optical sensor device
US4835099A (en) 1986-11-20 1989-05-30 Becton, Dickinson And Company Signal enhancement in immunoassay by modulation of enzymatic catalysis
ATE98020T1 (de) 1986-12-15 1993-12-15 British Tech Group Usa Monomere phthalocyanin-reagenzien.
US4954435A (en) 1987-01-12 1990-09-04 Becton, Dickinson And Company Indirect colorimetric detection of an analyte in a sample using ratio of light signals
US4920046A (en) 1987-02-20 1990-04-24 Becton, Dickinson And Company Process, test device, and test kit for a rapid assay having a visible readout
US4923819A (en) * 1987-03-27 1990-05-08 Chimerix Corporation Time-resolved fluorescence immunoassay
CA1303983C (en) * 1987-03-27 1992-06-23 Robert W. Rosenstein Solid phase assay
USRE38430E1 (en) * 1987-03-27 2004-02-17 Becton, Dickinson And Company Solid phase chromatographic immunoassay
JPH0684970B2 (ja) 1987-03-31 1994-10-26 株式会社京都医科学研究所 糞便中の潜血検出方法
US4857453A (en) 1987-04-07 1989-08-15 Syntex (U.S.A.) Inc. Immunoassay device
DE3887771C5 (de) * 1987-04-27 2009-06-04 Inverness Medical Switzerland Gmbh Immunoassays und Vorrichtungen dafür.
US4855240A (en) 1987-05-13 1989-08-08 Becton Dickinson And Company Solid phase assay employing capillary flow
US4904583A (en) 1987-05-26 1990-02-27 Becton, Dickinson And Company Cascade immunoassay by multiple binding reactions
US5120643A (en) 1987-07-13 1992-06-09 Abbott Laboratories Process for immunochromatography with colloidal particles
US4842783A (en) 1987-09-03 1989-06-27 Cordis Corporation Method of producing fiber optic chemical sensors incorporating photocrosslinked polymer gels
US4956302A (en) 1987-09-11 1990-09-11 Abbott Laboratories Lateral flow chromatographic binding assay device
SE8703682L (sv) 1987-09-24 1989-03-25 Wallac Oy Homogen bestaemningsmetod som utnyttjar affinitetsreaktioner
US5073340A (en) 1987-10-08 1991-12-17 Becton, Dickinson And Company Depositing a binder on a solid support
US4978625A (en) 1987-10-19 1990-12-18 Becton, Dickinson And Company Fluorescence immunoassay using water insoluble dyes
US6013531A (en) * 1987-10-26 2000-01-11 Dade International Inc. Method to use fluorescent magnetic polymer particles as markers in an immunoassay
US5275785A (en) * 1987-10-30 1994-01-04 Unilever Patent Holdings B.V. Test device for detecting an analyte in a liquid sample
US5670381A (en) 1988-01-29 1997-09-23 Abbott Laboratories Devices for performing ion-capture binding assays
JP2763635B2 (ja) 1988-02-08 1998-06-11 ユニバーシティ カレッジ カーディフ コンサルタンツ リミティド 生体液中のジアミンの検出
US5268306A (en) 1988-02-29 1993-12-07 Boehringer Mannheim Gmbh Preparation of a solid phase matrix containing a bound specific binding pair
US5145784A (en) 1988-05-04 1992-09-08 Cambridge Biotech Corporation Double capture assay method employing a capillary flow device
EP0341927B1 (en) 1988-05-10 1993-07-14 AMERSHAM INTERNATIONAL plc Biological sensors
EP0341928A1 (en) 1988-05-10 1989-11-15 AMERSHAM INTERNATIONAL plc Improvements relating to surface plasmon resonance sensors
GB8811919D0 (en) 1988-05-20 1988-06-22 Amersham Int Plc Biological sensors
US5573919A (en) 1988-06-02 1996-11-12 Carter-Wallace Assay using an absorbent material
GB8813307D0 (en) 1988-06-06 1988-07-13 Amersham Int Plc Biological sensors
AU2684488A (en) * 1988-06-27 1990-01-04 Carter-Wallace, Inc. Test device and method for colored particle immunoassay
US4877586A (en) 1988-07-27 1989-10-31 Eastman Kodak Company Sliding test device for assays
US5075077A (en) 1988-08-02 1991-12-24 Abbott Laboratories Test card for performing assays
AT390517B (de) 1988-08-04 1990-05-25 Avl Verbrennungskraft Messtech Optischer sensor und verfahren zu dessen herstellung
US4973670A (en) 1988-08-12 1990-11-27 The Dow Chemical Company Method for preparing hollow latexes
US5252459A (en) 1988-09-23 1993-10-12 Abbott Laboratories Indicator reagents, diagnostic assays and test kits employing organic polymer latex particles
EP0363504A1 (en) 1988-10-10 1990-04-18 Dräger Nederland B.V. Method of providing a substrate with a layer comprising a polyvinylbased hydrogel and a biochemically active material
US6448091B1 (en) 1988-11-03 2002-09-10 Igen International, Inc. Method and apparatus for improved luminescence assays using particle concentration chemiluminescence detection
SE8804074D0 (sv) * 1988-11-10 1988-11-10 Pharmacia Ab Sensorenhet och dess anvaendning i biosensorsystem
SE462454B (sv) 1988-11-10 1990-06-25 Pharmacia Ab Maetyta foer anvaendning i biosensorer
SE8902043L (sv) 1988-11-10 1990-05-11 Pharmacia Ab Foerfarande foer karakterisering av makromolekyler
US5003178A (en) 1988-11-14 1991-03-26 Electron Vision Corporation Large-area uniform electron source
US5063081A (en) 1988-11-14 1991-11-05 I-Stat Corporation Method of manufacturing a plurality of uniform microfabricated sensing devices having an immobilized ligand receptor
US5208143A (en) * 1988-11-17 1993-05-04 Becton, Dickinson And Company Immunoassay on a preblocked solid surface
ATE115982T1 (de) * 1988-11-23 1995-01-15 Cytec Tech Corp Poröse polymerperlen und verfahren.
US4940734A (en) 1988-11-23 1990-07-10 American Cyanamid Process for the preparation of porous polymer beads
US4895017A (en) 1989-01-23 1990-01-23 The Boeing Company Apparatus and method for early detection and identification of dilute chemical vapors
US6352862B1 (en) * 1989-02-17 2002-03-05 Unilever Patent Holdings B.V. Analytical test device for imuno assays and methods of using same
US5096671A (en) 1989-03-15 1992-03-17 Cordis Corporation Fiber optic chemical sensors incorporating electrostatic coupling
JP2853745B2 (ja) 1989-04-12 1999-02-03 株式会社日立製作所 光検出電気泳動装置
US5120662A (en) 1989-05-09 1992-06-09 Abbott Laboratories Multilayer solid phase immunoassay support and method of use
US5234813A (en) 1989-05-17 1993-08-10 Actimed Laboratories, Inc. Method and device for metering of fluid samples and detection of analytes therein
US5770416A (en) 1989-05-26 1998-06-23 Upfront Chromatography A/S Permeable hollow particles having an outer shell of mechanically rigid porous material
US5744101A (en) * 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
GB9008261D0 (en) 1990-04-11 1990-06-13 Ares Serono Res & Dev Ltd Method of improving assay sensitivity
US5166079A (en) 1989-07-19 1992-11-24 Pb Diagnostic Systems, Inc. Analytical assay method
JPH0366384A (ja) 1989-08-04 1991-03-22 Senjiyu Seiyaku Kk 生理活性物質放出制御システム
US5235238A (en) 1989-08-10 1993-08-10 Dainabot Company, Limited Electrode-separated piezoelectric crystal oscillator and method for measurement using the electrode-separated piezoelectric crystal oscillator
AU635314B2 (en) * 1989-09-08 1993-03-18 Terumo Kabushiki Kaisha Measuring apparatus
US5185127A (en) 1989-09-21 1993-02-09 Becton, Dickinson And Company Test device including flow control means
CA2003942A1 (en) 1989-09-26 1991-03-26 Julie Lia Rudolph Solid assay support systems
JP2979414B2 (ja) 1989-09-29 1999-11-15 富士レビオ株式会社 磁性粒子およびそれを用いた免疫測定法
US5075078A (en) 1989-10-05 1991-12-24 Abbott Laboratories Self-performing immunochromatographic device
GB8923699D0 (en) 1989-10-20 1989-12-06 Univ Strathclyde Apparatus for assessing a particular property in a medium
US5225935A (en) 1989-10-30 1993-07-06 Sharp Kabushiki Kaisha Optical device having a microlens and a process for making microlenses
US5252743A (en) * 1989-11-13 1993-10-12 Affymax Technologies N.V. Spatially-addressable immobilization of anti-ligands on surfaces
US6274324B1 (en) 1989-12-01 2001-08-14 Unilever Patent Holdings B.V. Specific binding reagent comprising a variable domain protein linked to a support or tracer
GB8927503D0 (en) 1989-12-04 1990-02-07 Kronem Systems Inc Enzyme-amplified lanthanide chelate luminescence
US5508171A (en) * 1989-12-15 1996-04-16 Boehringer Mannheim Corporation Assay method with enzyme electrode system
US5326692B1 (en) 1992-05-13 1996-04-30 Molecular Probes Inc Fluorescent microparticles with controllable enhanced stokes shift
EP0462376B1 (en) 1990-05-09 1996-07-24 Abbott Laboratories Conjugate recovery binding assays
DE69032425T2 (de) * 1990-05-11 1998-11-26 Microprobe Corp Teststreifen zum Eintauchen für Nukleinsäure-Hybridisierungsassays und Verfahren zur kovalenten Immobilisierung von Oligonucleotiden
DK138090D0 (da) * 1990-06-06 1990-06-06 Novo Nordisk As Diagnostisk analysemetode
GB9019123D0 (en) 1990-09-01 1990-10-17 Fisons Plc Analytical device
US5200084A (en) * 1990-09-26 1993-04-06 Immunicon Corporation Apparatus and methods for magnetic separation
US5076094A (en) 1990-10-03 1991-12-31 The United States Of America As Represented By The United States Department Of Energy Dual output acoustic wave sensor for molecular identification
US5700636A (en) 1990-10-19 1997-12-23 Becton Dickinson And Company Methods for selectively detecting microorganisms associated with vaginal infections in complex biological samples
US6027944A (en) * 1990-11-22 2000-02-22 Applied Research Systems Ars Holding Nv Capillary-fill biosensor device comprising a calibration zone
US5726064A (en) * 1990-11-22 1998-03-10 Applied Research Systems Ars Holding Nv Method of assay having calibration within the assay
US5510481A (en) * 1990-11-26 1996-04-23 The Regents, University Of California Self-assembled molecular films incorporating a ligand
US5208535A (en) * 1990-12-28 1993-05-04 Research Development Corporation Of Japan Mr position detecting device
US5834226A (en) 1991-01-31 1998-11-10 Xytronyx, Inc. One-step test for aspartate aminotransferase
GB9102646D0 (en) * 1991-02-07 1991-03-27 Fisons Plc Analytical device
IL97318A0 (en) 1991-02-20 1992-05-25 Diagnostic Markers Inc Method for the very rapid detection of polyamines
US5466574A (en) 1991-03-25 1995-11-14 Immunivest Corporation Apparatus and methods for magnetic separation featuring external magnetic means
US5795470A (en) 1991-03-25 1998-08-18 Immunivest Corporation Magnetic separation apparatus
US5196350A (en) * 1991-05-29 1993-03-23 Omnigene, Inc. Ligand assay using interference modulation
JPH06508211A (ja) 1991-05-30 1994-09-14 アボツト・ラボラトリーズ 2ステップイオン捕獲結合アッセイを実施するための試薬及び方法
DE69229551T2 (de) 1991-05-30 2000-01-27 Abbott Lab Reagenzien, die einen nichtspezifischen bindungshemmer in einem ioneneinfang-assay enthalten
EP0586574B1 (en) 1991-05-30 1997-12-10 Abbott Laboratories Methods and reagents for performing ion-capture digoxin assays
ATE184320T1 (de) 1991-07-10 1999-09-15 Igen Int Inc Verfahren für verbesserte lumineszenz-assays unter verwendung von teilchenkonzentration und chemilumineszenznachweis
US5428690A (en) 1991-09-23 1995-06-27 Becton Dickinson And Company Method and apparatus for automated assay of biological specimens
US5179288A (en) 1991-09-30 1993-01-12 Ortho Pharmaceutical Corporation Apparatus and method for measuring a bodily constituent
US5418136A (en) * 1991-10-01 1995-05-23 Biostar, Inc. Devices for detection of an analyte based upon light interference
ATE161964T1 (de) * 1991-10-15 1998-01-15 Multilyte Ltd Bindungstest unter benutzung eines markierten reagens
US5424219A (en) 1991-10-25 1995-06-13 Cytech Biomedical, Inc. Method of performing assays for biomolecules and solid supports for use in such methods
AU3439693A (en) 1992-01-22 1993-09-01 Abbott Laboratories Calibration reagents for semi-quantitative binding assays and devices
US5137609A (en) 1992-01-31 1992-08-11 Biometric Imaging Inc. Differential separation assay
US5221454A (en) 1992-01-31 1993-06-22 Biometric Imaging Inc. Differential separation assay
US5445971A (en) 1992-03-20 1995-08-29 Abbott Laboratories Magnetically assisted binding assays using magnetically labeled binding members
AU3919393A (en) 1992-03-20 1993-10-21 Abbott Laboratories Magnetically assisted binding assays using magnetically-labeled binding members
US6156270A (en) 1992-05-21 2000-12-05 Biosite Diagnostics, Inc. Diagnostic devices and apparatus for the controlled movement of reagents without membranes
US5885527A (en) * 1992-05-21 1999-03-23 Biosite Diagnostics, Inc. Diagnostic devices and apparatus for the controlled movement of reagents without membrances
EP0606422B1 (en) 1992-07-02 1997-09-03 SOINI, Erkki Biospecific multiparameter assay method
US5395754A (en) * 1992-07-31 1995-03-07 Hybritech Incorporated Membrane-based immunoassay method
US5321492A (en) 1992-08-07 1994-06-14 Miles Inc. Dual function readhead for a reflectance instrument
GB9217864D0 (en) 1992-08-21 1992-10-07 Unilever Plc Monitoring method
US5356782A (en) 1992-09-03 1994-10-18 Boehringer Mannheim Corporation Analytical test apparatus with on board negative and positive control
DE59304876D1 (de) 1992-09-14 1997-02-06 Siemens Ag Gassensor
US6399397B1 (en) 1992-09-14 2002-06-04 Sri International Up-converting reporters for biological and other assays using laser excitation techniques
GB9221329D0 (en) * 1992-10-10 1992-11-25 Delta Biotechnology Ltd Preparation of further diagnostic agents
GB2273772A (en) 1992-12-16 1994-06-29 Granta Lab Ltd Detection of macromolecules utilising light diffraction
US5358852A (en) 1992-12-21 1994-10-25 Eastman Kodak Company Use of calcium in immunoassay for measurement of C-reactive protein
TW239881B (ko) 1992-12-22 1995-02-01 Sienna Biotech Inc
US6200820B1 (en) * 1992-12-22 2001-03-13 Sienna Biotech, Inc. Light scatter-based immunoassay
US5327225A (en) 1993-01-28 1994-07-05 The Center For Innovative Technology Surface plasmon resonance sensor
FI932866A0 (fi) 1993-06-21 1993-06-21 Labsystems Oy Separeringsfoerfarande
US5422726A (en) * 1993-02-16 1995-06-06 Tyler; Jonathan M. Solid state spectrofluorimeter and method of using the same
US5280548A (en) 1993-03-11 1994-01-18 Boc Health Care, Inc. Emission based fiber optic sensors for pH and carbon dioxide analysis
DE4310142A1 (de) * 1993-03-29 1994-10-06 Boehringer Mannheim Gmbh Immunologisch aktive Konjugate und ein Verfahren zu ihrer Herstellung
US5424841A (en) 1993-05-28 1995-06-13 Molecular Dynamics Apparatus for measuring spatial distribution of fluorescence on a substrate
JP3479100B2 (ja) * 1993-06-02 2003-12-15 帝国臓器製薬株式会社 免疫化学的簡易半定量方法および装置
US5658443A (en) 1993-07-23 1997-08-19 Matsushita Electric Industrial Co., Ltd. Biosensor and method for producing the same
FR2708348B1 (fr) 1993-07-28 1995-10-06 Stago Diagnostica Procédé de dosage d'une substance immunologique au moyen de particules de latex magnétiques et de particules non-magnétiques.
US5484867A (en) * 1993-08-12 1996-01-16 The University Of Dayton Process for preparation of polyhedral oligomeric silsesquioxanes and systhesis of polymers containing polyhedral oligomeric silsesqioxane group segments
US5837546A (en) 1993-08-24 1998-11-17 Metrika, Inc. Electronic assay device and method
US5512131A (en) 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles
US5464741A (en) 1993-10-08 1995-11-07 Henwell, Inc. Palladium (II) octaethylporphine alpha-isothiocyanate as a phosphorescent label for immunoassays
KR0177182B1 (ko) * 1993-10-20 1999-05-15 최근선 중공구조를 갖는 유화중합체의 제조방법
US5352582A (en) 1993-10-28 1994-10-04 Hewlett-Packard Company Holographic based bio-assay
US5455475A (en) 1993-11-01 1995-10-03 Marquette University Piezoelectric resonant sensor using the acoustoelectric effect
ATE224053T1 (de) * 1993-11-12 2002-09-15 Inverness Medical Switzerland Vorrichtung zum ablesen von teststreifen
DK0653639T3 (da) * 1993-11-12 2000-07-24 Unilever Nv Analyseindretninger og fremgangsmåder til anvendelse deraf
US5483692A (en) * 1993-11-22 1996-01-09 Chrysler Corporation Automatic variable radio volume control system
US5527711A (en) 1993-12-13 1996-06-18 Hewlett Packard Company Method and reagents for binding chemical analytes to a substrate surface, and related analytical devices and diagnostic techniques
JP3504750B2 (ja) 1993-12-22 2004-03-08 オルソ−クリニカル ダイアグノスティクス,インコーポレイティド 検量関係式の再校正法及び定量試験キット
US5663213A (en) 1994-02-28 1997-09-02 Rohm And Haas Company Method of improving ultraviolet radiation absorption of a composition
GB9416002D0 (en) 1994-08-08 1994-09-28 Univ Cranfield Fluid transport device
US6117090A (en) 1994-08-25 2000-09-12 Caillouette; James C. Method and apparatus for detecting amine producing organisms in the vagina
US5599668A (en) * 1994-09-22 1997-02-04 Abbott Laboratories Light scattering optical waveguide method for detecting specific binding events
GB9419267D0 (en) 1994-09-23 1994-11-09 Unilever Plc Assay devices
EP0703454B1 (en) 1994-09-23 2001-12-05 Unilever N.V. Monitoring methods and devices for use therein
US5620850A (en) * 1994-09-26 1997-04-15 President And Fellows Of Harvard College Molecular recognition at surfaces derivatized with self-assembled monolayers
US5571684A (en) 1994-11-07 1996-11-05 Litmus Concepts, Inc. Assay for proline iminopeptidase and other hydrolytic activities
US5728352A (en) 1994-11-14 1998-03-17 Advanced Care Products Disposable electronic diagnostic instrument
ATE237137T1 (de) 1994-11-24 2003-04-15 Inverness Medical Switzerland Rückgewinnung und verwendungen von spezifischen bindungsreagenzen
KR0151203B1 (ko) 1994-12-08 1998-12-01 이헌조 다중전극형 바이오센서
US5866434A (en) 1994-12-08 1999-02-02 Meso Scale Technology Graphitic nanotubes in luminescence assays
US5489988A (en) * 1995-01-03 1996-02-06 Motorola Environmental sensor and method therefor
AU4213396A (en) * 1995-01-26 1996-08-01 Nippon Paint Co., Ltd. Kit for immunologically assaying biological substance and assay process
US5569608A (en) 1995-01-30 1996-10-29 Bayer Corporation Quantitative detection of analytes on immunochromatographic strips
FR2730810B1 (fr) 1995-02-21 1997-03-14 Thomson Csf Capteur chimique hautement selectif
JP3962789B2 (ja) * 1995-02-21 2007-08-22 ダブリュー. シディキー,イクバール 磁性粒子を利用した混合/分離装置及びその方法
GB9505425D0 (en) * 1995-03-17 1995-05-03 Unilever Plc Assay devices
US5534132A (en) 1995-05-04 1996-07-09 Vreeke; Mark Electrode and method for the detection of an affinity reaction
KR0156176B1 (ko) 1995-06-01 1998-12-01 구자홍 전기화학식 면역 바이오센서
ES2148776T3 (es) 1995-06-05 2000-10-16 Kimberly Clark Co Pre-colorantes y compuestos que los contienen.
US6413410B1 (en) 1996-06-19 2002-07-02 Lifescan, Inc. Electrochemical cell
US5518689A (en) * 1995-09-05 1996-05-21 Bayer Corporation Diffused light reflectance readhead
AUPN527995A0 (en) * 1995-09-07 1995-09-28 Agen Biomedical Limited Method and apparatus for semiquantification of an analyte
US5788863A (en) 1995-12-13 1998-08-04 Becton Dickinson And Company Apparatus and method for conducting an assay using reverse flow through a membrane
US5945281A (en) 1996-02-02 1999-08-31 Becton, Dickinson And Company Method and apparatus for determining an analyte from a sample fluid
US5723294A (en) * 1996-03-05 1998-03-03 Gull Laboratories Methods for detection and discrimination of multiple analytes using fluorescent technology
WO1997035181A1 (en) 1996-03-19 1997-09-25 University Of Utah Research Foundation System for determining analyte concentration
US5753517A (en) * 1996-03-29 1998-05-19 University Of British Columbia Quantitative immunochromatographic assays
EP0890104B1 (en) * 1996-03-29 2001-08-01 University Of British Columbia Platelet count assay using platelet granule proteins
US6387707B1 (en) * 1996-04-25 2002-05-14 Bioarray Solutions Array Cytometry
DE19781098B4 (de) 1996-05-17 2005-05-19 Amira Medical, Scotts Valley Einwegelement, Einweglanzettenelement und Kapillarelement zur Verwendung in einer Probenentnahmevorrichtung für Körperflüssigkeit
US5951492A (en) 1996-05-17 1999-09-14 Mercury Diagnostics, Inc. Methods and apparatus for sampling and analyzing body fluid
EP0901630B1 (en) 1996-05-23 2003-08-20 Inverness Medical Switzerland GmbH Improvements in or relating to specific binding assays
DE19621133A1 (de) * 1996-05-24 1997-11-27 Boehringer Mannheim Gmbh Bestimmungsverfahren mit oligomerisierten Rezeptoren
DE19622458C2 (de) * 1996-05-24 1998-03-26 Senslab Ges Zur Entwicklung Un Enzymatisch-elektrochemischer Einschritt-Affinitätssensor zur quantitativen Bestimmung von Analyten in wäßrigen Medien und Affinitätsassay
US6084683A (en) 1996-05-28 2000-07-04 Bruno; Alfredo Emilio Optical detection apparatus for chemical analyses of small volumes of samples
US5852229A (en) 1996-05-29 1998-12-22 Kimberly-Clark Worldwide, Inc. Piezoelectric resonator chemical sensing device
US6004530A (en) 1996-06-04 1999-12-21 Roche Diagnostics Gmbh Use of metallo-porphyrin conjugates for the detection of biological substances
US6444423B1 (en) 1996-06-07 2002-09-03 Molecular Dynamics, Inc. Nucleosides comprising polydentate ligands
US5876944A (en) * 1996-06-10 1999-03-02 Bayer Corporation Method for amplification of the response signal in a sandwich immunoassay
US6392241B1 (en) 1996-07-10 2002-05-21 Packard Instrument Company, Inc. Fiber optic coupling device for detecting fluorescence samples
US5660790A (en) 1996-08-13 1997-08-26 Litmus Concepts, Inc. PH and amine test elements
US6020047A (en) * 1996-09-04 2000-02-01 Kimberly-Clark Worldwide, Inc. Polymer films having a printed self-assembling monolayer
US6194220B1 (en) * 1996-09-25 2001-02-27 Becton, Dickinson And Company Non-instrumented assay with quantitative and qualitative results
US5998221A (en) 1996-09-25 1999-12-07 Becton, Dickinson And Company Non-instrumented assay with quantitative and qualitative results
US5798273A (en) 1996-09-25 1998-08-25 Becton Dickinson And Company Direct read lateral flow assay for small analytes
ATE209786T1 (de) 1996-09-27 2001-12-15 Unilever Nv Herstellung von teststreifen
DE69626016T2 (de) 1996-09-27 2004-01-08 Inverness Medical Switzerland Gmbh Test-Kit und Vorrichtungen
ATE228247T1 (de) 1996-09-27 2002-12-15 Inverness Medical Switzerland Testreagentien und testvorrichtungen
US5910940A (en) 1996-10-08 1999-06-08 Polaroid Corporation Storage medium having a layer of micro-optical lenses each lens generating an evanescent field
US6165798A (en) 1996-10-10 2000-12-26 University Of British Columbia Optical quantification of analytes in membranes
US5922537A (en) 1996-11-08 1999-07-13 N.o slashed.AB Immunoassay, Inc. Nanoparticles biosensor
US6048623A (en) * 1996-12-18 2000-04-11 Kimberly-Clark Worldwide, Inc. Method of contact printing on gold coated films
US5922550A (en) 1996-12-18 1999-07-13 Kimberly-Clark Worldwide, Inc. Biosensing devices which produce diffraction images
US6407492B1 (en) 1997-01-02 2002-06-18 Advanced Electron Beams, Inc. Electron beam accelerator
US5962995A (en) 1997-01-02 1999-10-05 Applied Advanced Technologies, Inc. Electron beam accelerator
US5827748A (en) 1997-01-24 1998-10-27 The United States Of America As Represented By The Secretary Of The Navy Chemical sensor using two-dimensional lens array
JP2001509891A (ja) * 1997-01-30 2001-07-24 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 分析物の免疫学的測定の方法
US6057165A (en) * 1997-02-07 2000-05-02 Becton, Dickinson And Company Quality control procedure for membrane flow-through diagnostic assay devices
EP0859230A1 (en) 1997-02-10 1998-08-19 Cranfield University Detection of analytes using electrochemistry
GB2322192B (en) 1997-02-14 2001-01-31 Unilever Plc Assay devices
US6391558B1 (en) * 1997-03-18 2002-05-21 Andcare, Inc. Electrochemical detection of nucleic acid sequences
US6180288B1 (en) * 1997-03-21 2001-01-30 Kimberly-Clark Worldwide, Inc. Gel sensors and method of use thereof
US6235471B1 (en) * 1997-04-04 2001-05-22 Caliper Technologies Corp. Closed-loop biochemical analyzers
EP0872736A1 (en) * 1997-04-18 1998-10-21 Byk Gulden Italia S.p.A. Assay utilizing magnetic particles
US6103536A (en) * 1997-05-02 2000-08-15 Silver Lake Research Corporation Internally referenced competitive assays
US6171780B1 (en) * 1997-06-02 2001-01-09 Aurora Biosciences Corporation Low fluorescence assay platforms and related methods for drug discovery
US6613583B1 (en) 1997-06-27 2003-09-02 Igen International, Inc. Electrochemiluminescent label based on multimetallic assemblies
US6136611A (en) 1997-07-31 2000-10-24 Research International, Inc. Assay methods and apparatus
EP0898169B1 (en) 1997-08-11 2002-02-06 F. Hoffmann-La Roche Ag Microparticle enhanced light scattering assay and microparticle reagents therefor
US6080391A (en) 1997-08-14 2000-06-27 Novo Nordisk A/S Reduction of malodour
PL338879A1 (en) 1997-08-29 2000-11-20 Fertility Acoustics Inc Method of and apparatus for rapidly analysing analytes in biological samples
US5906921A (en) * 1997-09-29 1999-05-25 Matsushita Electric Industrial Co., Ltd. Biosensor and method for quantitative measurement of a substrate using the same
US5989924A (en) 1997-09-30 1999-11-23 Becton, Dickinson And Company Device for determining an analyte in a sample
AU9673198A (en) 1997-10-02 1999-04-27 Aclara Biosciences, Inc. Capillary assays involving separation of free and bound species
US6617488B1 (en) 1997-10-14 2003-09-09 Indicator Technologies, Inc. Method and apparatus for indicating the conditions in an absorbent article
US6174646B1 (en) 1997-10-21 2001-01-16 Konica Corporation Image forming method
US6077669A (en) 1997-11-04 2000-06-20 Becton Dickinson And Company Kit and method for fluorescence based detection assay
US6087184A (en) 1997-11-10 2000-07-11 Beckman Coulter, Inc. Opposable-element chromatographic assay device for detection of analytes
US6030792A (en) 1997-11-13 2000-02-29 Pfizer Inc Assays for measurement of protein fragments in biological media
US5997817A (en) 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
US6074725A (en) 1997-12-10 2000-06-13 Caliper Technologies Corp. Fabrication of microfluidic circuits by printing techniques
EP1046027A1 (en) * 1997-12-11 2000-10-25 Quidel Corporation One-step fluorescent immunosensor test
US6060256A (en) 1997-12-16 2000-05-09 Kimberly-Clark Worldwide, Inc. Optical diffraction biosensor
SE9704933D0 (sv) * 1997-12-30 1997-12-30 Pharmacia & Upjohn Diag Ab Metod som utnyttjar en ny kalibrator och test kit som innehåller kalibratorn
DE69907630T2 (de) 1998-01-22 2004-02-26 Luminex Corp., Austin Mikropartikel mit multiplen fluoreszenz-signalen
DE19811622A1 (de) 1998-03-17 1999-09-23 Lre Technology Partner Gmbh Meßgerät zur Bestimmung der Konzentration einer Substanz in einer Flüssigkeit
ATE228883T1 (de) 1998-03-19 2002-12-15 Max Planck Gesellschaft Herstellung von mit mehrlagen gestrichenen partikeln und hohlen schalen durch elektrostatische selbstorganisierung von nanokompositmehrlagen auf zersetzbaren schablonen
GB9807134D0 (en) 1998-04-02 1998-06-03 Unilever Plc Test methods devices and test kits
US6368873B1 (en) * 1998-04-09 2002-04-09 Applied Biotech, Inc. Identification of human urine for drug testing
US6241863B1 (en) 1998-04-27 2001-06-05 Harold G. Monbouquette Amperometric biosensors based on redox enzymes
US6451607B1 (en) 1998-05-07 2002-09-17 Litmus Concepts, Inc. External dried-reagent control for analytical test devices
EP0959176B1 (en) 1998-05-18 2012-09-05 Rohm And Haas Company Hollow sphere organic pigment for paper or paper coatings
JPH11326603A (ja) 1998-05-19 1999-11-26 Seiko Epson Corp マイクロレンズアレイ及びその製造方法並びに表示装置
AU4439099A (en) 1998-06-12 1999-12-30 New Horizons Diagnostics, Inc. Optimizing sensitivity in colloidal colorimetric flow through and lateral flow tests
US6030840A (en) * 1998-06-15 2000-02-29 Nen Life Sciences, Inc. Neutral enhancement of lanthanides for time resolved fluorescence
US6183972B1 (en) * 1998-07-27 2001-02-06 Bayer Corporation Method for the determination of analyte concentration in a lateral flow sandwich immunoassay exhibiting high-dose hook effect
US6171870B1 (en) 1998-08-06 2001-01-09 Spectral Diagnostics, Inc. Analytical test device and method for use in medical diagnoses
US6281006B1 (en) 1998-08-24 2001-08-28 Therasense, Inc. Electrochemical affinity assay
US7640083B2 (en) 2002-11-22 2009-12-29 Monroe David A Record and playback system for aircraft
AU6275699A (en) 1998-09-29 2000-04-17 Fertility Acoustics Inc. A method of and device for determining ovulation in mammals
GB9821526D0 (en) 1998-10-02 1998-11-25 Genosis Inc Capture assay
US6284472B1 (en) 1998-10-05 2001-09-04 Dade Behring Inc. Method for extending the range of an immunoassay
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6195798B1 (en) * 1998-10-16 2001-03-06 Second Chance Body Armor, Inc. Thin and lightweight ballistic resistant garment
BE1012241A3 (fr) 1998-10-21 2000-08-01 D Tek Procede de depistage d'analyte et trousse pour la mise en oeuvre d'un tel procede.
JP2000199855A (ja) * 1998-11-02 2000-07-18 Olympus Optical Co Ltd 走査型光学顕微鏡装置
FI982422A0 (fi) 1998-11-09 1998-11-09 Arctic Diagnostics Oy Porfyriiniyhdisteitä, niiden konjugaatit sekä määritysmenetelmiä pohjautuen näiden konjugaattien käyttöön
US6261779B1 (en) 1998-11-10 2001-07-17 Bio-Pixels Ltd. Nanocrystals having polynucleotide strands and their use to form dendrimers in a signal amplification system
US6455861B1 (en) 1998-11-24 2002-09-24 Cambridge Research & Instrumentation, Inc. Fluorescence polarization assay system and method
US6221579B1 (en) * 1998-12-11 2001-04-24 Kimberly-Clark Worldwide, Inc. Patterned binding of functionalized microspheres for optical diffraction-based biosensors
US6048662A (en) * 1998-12-15 2000-04-11 Bruhnke; John D. Antireflective coatings comprising poly(oxyalkylene) colorants
US6579673B2 (en) 1998-12-17 2003-06-17 Kimberly-Clark Worldwide, Inc. Patterned deposition of antibody binding protein for optical diffraction-based biosensors
US6660379B1 (en) 1999-02-05 2003-12-09 University Of Maryland, Baltimore Luminescence spectral properties of CdS nanoparticles
JP2002536660A (ja) 1999-02-11 2002-10-29 ユニバーシティ・オブ・サザン・カリフォルニア 酵素結合の免疫磁気性電気化学的バイオセンサー
WO2000050891A1 (en) 1999-02-26 2000-08-31 Fertility Acoustics Inc. Analyzing strip having a fluid cell and a method of analyzing a sample
WO2000050871A1 (en) 1999-02-26 2000-08-31 Orchid Biosciences, Inc. Microstructures for use in biological assays and reactions
AU2898500A (en) 1999-03-02 2000-09-21 Helix Biopharma Corporation Biosensor device and method
US6287783B1 (en) 1999-03-18 2001-09-11 Biostar, Inc. Optical assay device and method
US6511814B1 (en) * 1999-03-26 2003-01-28 Idexx Laboratories, Inc. Method and device for detecting analytes in fluids
US6815218B1 (en) 1999-06-09 2004-11-09 Massachusetts Institute Of Technology Methods for manufacturing bioelectronic devices
WO2000078917A1 (en) 1999-06-18 2000-12-28 Umedik, Inc. Device and method for analyzing a biologic sample
US6294392B1 (en) 1999-07-21 2001-09-25 The Regents Of The University Of California Spatially-encoded analyte detection
US6372895B1 (en) 2000-07-07 2002-04-16 3M Innovative Properties Company Fluorogenic compounds
AU7448600A (en) 1999-09-29 2001-04-30 Japan Science And Technology Corporation High sensitive immunoassay
US6306665B1 (en) 1999-10-13 2001-10-23 A-Fem Medical Corporation Covalent bonding of molecules to an activated solid phase material
US6136549A (en) 1999-10-15 2000-10-24 Feistel; Christopher C. systems and methods for performing magnetic chromatography assays
US6867851B2 (en) * 1999-11-04 2005-03-15 Regents Of The University Of Minnesota Scanning of biological samples
USD450854S1 (en) 1999-11-04 2001-11-20 Therasense, Inc. Glucose strip
US6331438B1 (en) 1999-11-24 2001-12-18 Iowa State University Research Foundation, Inc. Optical sensors and multisensor arrays containing thin film electroluminescent devices
WO2001038873A2 (en) 1999-11-24 2001-05-31 Biotronic Technologies, Inc. Devices and methods for detecting analytes using electrosensor having capture reagent
US6399295B1 (en) 1999-12-17 2002-06-04 Kimberly-Clark Worldwide, Inc. Use of wicking agent to eliminate wash steps for optical diffraction-based biosensors
US6509196B1 (en) 2000-01-04 2003-01-21 Response Biomedical Corp. Compensation for non-specific signals in quantitative immunoassays
US6255066B1 (en) 2000-02-08 2001-07-03 Allan L. Louderback Bacterial vaginosis screening technique and a diagnostic kit for use therein
US20010055776A1 (en) 2000-02-11 2001-12-27 Dale Greenwalt High throughput cell-based assay kits
US20020132370A1 (en) 2000-02-23 2002-09-19 Lassen Michael Rud Detection of a blood coagulation activity marker in a body fluid sample
US6607922B2 (en) * 2000-03-17 2003-08-19 Quantum Design, Inc. Immunochromatographic assay method and apparatus
CA2342683A1 (en) * 2000-04-03 2001-10-03 Unilever Plc Test methods and devices
JP2001349892A (ja) * 2000-04-03 2001-12-21 Unilever Nv 検査方法及びデバイス
US6436722B1 (en) 2000-04-18 2002-08-20 Idexx Laboratories, Inc. Device and method for integrated diagnostics with multiple independent flow paths
US6627459B1 (en) 2000-04-19 2003-09-30 Applied Biotech, Inc. Immunoassay controls
WO2001098785A2 (en) 2000-06-19 2001-12-27 Arizona Board Of Regents Rapid flow-based immunoassay microchip
WO2001098765A1 (en) 2000-06-21 2001-12-27 Bioarray Solutions, Ltd. Multianalyte molecular analysis
DE10042023C2 (de) 2000-08-08 2003-04-10 Biognostic Ag Kapseln, die feste Teilchen signalerzeugender Substanzen einkapseln, und deren Verwendung bei Bioassays zum Nachweis von Zielmolekülen in einer Probe
US7052831B2 (en) 2000-09-29 2006-05-30 Becton Dickinson And Company Detection of multiple analytes from a single sample using a multi-well, multi-analyte flow-through diagnostic test device
US6653149B1 (en) 2000-10-16 2003-11-25 Applied Biotech Inc. Specimen collection device and method
US6720007B2 (en) * 2000-10-25 2004-04-13 Tufts University Polymeric microspheres
US20020164659A1 (en) 2000-11-30 2002-11-07 Rao Galla Chandra Analytical methods and compositions
DE10062062C1 (de) 2000-12-13 2002-02-28 Draegerwerk Ag Elektrochemischer Sensor
US6524864B2 (en) * 2000-12-28 2003-02-25 Aurora L. Fernandez Decastro Test strip for simultaneous detection of a plurality of analytes
US20030162236A1 (en) 2001-03-26 2003-08-28 Response Biomedical Corporation Compensation for variability in specific binding in quantitative assays
JP2002303629A (ja) 2001-04-06 2002-10-18 Matsushita Electric Ind Co Ltd 免疫クロマトデバイス及びそれを用いた被検物質測定方法
CN100386627C (zh) 2001-07-03 2008-05-07 包刚 过滤型蛋白芯片
US6818456B2 (en) 2001-07-20 2004-11-16 Varian, Inc. Color contrast system for lateral flow immunoassay tests
US6669908B2 (en) 2001-07-25 2003-12-30 Applied Biotech, Inc. Urine test device
AU2002357754A1 (en) * 2001-12-24 2003-07-24 Kimberly-Clark Worldwide, Inc. Flow-through assay with an internal calibration system using polyelectrolyte
US8367013B2 (en) 2001-12-24 2013-02-05 Kimberly-Clark Worldwide, Inc. Reading device, method, and system for conducting lateral flow assays
CA2471462C (en) * 2001-12-24 2011-01-25 Kimberly-Clark Worldwide, Inc. Internal calibration system for flow-through assays
US20030119203A1 (en) * 2001-12-24 2003-06-26 Kimberly-Clark Worldwide, Inc. Lateral flow assay devices and methods for conducting assays
US7214427B2 (en) 2002-03-21 2007-05-08 Aviva Biosciences Corporation Composite beads comprising magnetizable substance and electro-conductive substance
US7432105B2 (en) 2002-08-27 2008-10-07 Kimberly-Clark Worldwide, Inc. Self-calibration system for a magnetic binding assay
US7314763B2 (en) 2002-08-27 2008-01-01 Kimberly-Clark Worldwide, Inc. Fluidics-based assay devices
US7285424B2 (en) 2002-08-27 2007-10-23 Kimberly-Clark Worldwide, Inc. Membrane-based assay devices
US20040106190A1 (en) 2002-12-03 2004-06-03 Kimberly-Clark Worldwide, Inc. Flow-through assay devices
US7247500B2 (en) 2002-12-19 2007-07-24 Kimberly-Clark Worldwide, Inc. Reduction of the hook effect in membrane-based assay devices
US20040121334A1 (en) 2002-12-19 2004-06-24 Kimberly-Clark Worldwide, Inc. Self-calibrated flow-through assay devices
US20040197819A1 (en) 2003-04-03 2004-10-07 Kimberly-Clark Worldwide, Inc. Assay devices that utilize hollow particles
US7851209B2 (en) 2003-04-03 2010-12-14 Kimberly-Clark Worldwide, Inc. Reduction of the hook effect in assay devices
US7943395B2 (en) 2003-11-21 2011-05-17 Kimberly-Clark Worldwide, Inc. Extension of the dynamic detection range of assay devices
US20050112703A1 (en) 2003-11-21 2005-05-26 Kimberly-Clark Worldwide, Inc. Membrane-based lateral flow assay devices that utilize phosphorescent detection
US20050136550A1 (en) 2003-12-19 2005-06-23 Kimberly-Clark Worldwide, Inc. Flow control of electrochemical-based assay devices
US20050136500A1 (en) 2003-12-19 2005-06-23 Kimberly-Clark Worldwide; Inc. Flow-through assay devices
US7943089B2 (en) 2003-12-19 2011-05-17 Kimberly-Clark Worldwide, Inc. Laminated assay devices
US20050191704A1 (en) 2004-03-01 2005-09-01 Kimberly-Clark Worldwide, Inc. Assay devices utilizing chemichromic dyes
US20050244953A1 (en) 2004-04-30 2005-11-03 Kimberly-Clark Worldwide, Inc. Techniques for controlling the optical properties of assay devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060136549A1 (en) * 2003-04-18 2006-06-22 Carro Fernando I System and method for accessing through wireless internet access points information or services related to broadcast programs

Also Published As

Publication number Publication date
DE60332539D1 (de) 2010-06-24
US20080096288A1 (en) 2008-04-24
US7632653B2 (en) 2009-12-15
US7285424B2 (en) 2007-10-23
MXPA05001681A (es) 2005-04-19
CN1675547A (zh) 2005-09-28
WO2004021005A1 (en) 2004-03-11
CN100365417C (zh) 2008-01-30
US7670786B2 (en) 2010-03-02
KR20050062529A (ko) 2005-06-23
EP1532450B1 (en) 2012-09-05
US20040043511A1 (en) 2004-03-04
EP1532450A1 (en) 2005-05-25
CA2495209A1 (en) 2004-03-11
ATE467835T1 (de) 2010-05-15
CA2495209C (en) 2011-10-25
AU2003247957A1 (en) 2004-03-19
KR20110089194A (ko) 2011-08-04
US20040043502A1 (en) 2004-03-04
TW200424521A (en) 2004-11-16

Similar Documents

Publication Publication Date Title
KR101032172B1 (ko) 자기 입자를 이용한 내부 교정 시스템을 사용하는 유동분석 장치
KR100994316B1 (ko) 자기 결합 분석용 자가-교정 시스템
KR100994345B1 (ko) 유체공학 기반 분석 장치
KR101071430B1 (ko) 시분해 형광을 이용한 막 기반 분석법
EP1890149A2 (en) Self-calibrated flow-through assay devices
KR20070040375A (ko) 큰 병원체의 검출을 위한 측면 흐름 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140408

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160408

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170412

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180405

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190410

Year of fee payment: 9