KR100830245B1 - 열 소성 변형을 사용하는 고속 분말 입자의 고체 증착 및경화를 위한 장치 및 방법 - Google Patents

열 소성 변형을 사용하는 고속 분말 입자의 고체 증착 및경화를 위한 장치 및 방법 Download PDF

Info

Publication number
KR100830245B1
KR100830245B1 KR1020037013970A KR20037013970A KR100830245B1 KR 100830245 B1 KR100830245 B1 KR 100830245B1 KR 1020037013970 A KR1020037013970 A KR 1020037013970A KR 20037013970 A KR20037013970 A KR 20037013970A KR 100830245 B1 KR100830245 B1 KR 100830245B1
Authority
KR
South Korea
Prior art keywords
powder particles
powder
gas
nozzle
particles
Prior art date
Application number
KR1020037013970A
Other languages
English (en)
Other versions
KR20040031700A (ko
Inventor
가벨하워드
태폰랄프
Original Assignee
이노베이티브 테크놀로지 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이노베이티브 테크놀로지 인코포레이티드 filed Critical 이노베이티브 테크놀로지 인코포레이티드
Publication of KR20040031700A publication Critical patent/KR20040031700A/ko
Application granted granted Critical
Publication of KR100830245B1 publication Critical patent/KR100830245B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/144Arrangements for supplying particulate material the means for supplying particulate material comprising moving mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/16Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling the spray area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/222Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
    • B05B7/226Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc the material being originally a particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/001Starting from powder comprising reducible metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/30Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy

Abstract

본 발명은 아음속 또는 음속 기체 제트 내에 혼입된 분말 입자를 대상물의 표면 상에 고체 증착 및 경화하기 위한 장치 및 방법에 관한 것이다. 고속 충돌 및 열 소성 변형 하에서, 분말 입자는 기판에 접착 결합하고 서로 접착 결합하여 야금 결합에 의한 경화된 재료를 형성한다.
분말 입자, 입자, 증착, 경화, 가속

Description

열 소성 변형을 사용하는 고속 분말 입자의 고체 증착 및 경화를 위한 장치 및 방법{AN APPARATUS AND PROCESS FOR SOLID-STATE DEPOSITION AND CONSOLIDATION OF HIGH VELOCITY POWDER PARTICLES USING THERMAL PLASTIC DEFORMATION}
본 발명은 아음속 또는 음속 기체 제트 내에 혼입된 고속 분말 입자를 기판 재료상에 고체 증착 및 경화하기 위한 장치 및 방법에 관한 것이다. 충돌시 분말 입자는 기판에 접착 결합하고 입자간 야금 결합할 수 있는 소성 변형을 한다. 이러한 접착 및 점착 결합은 기판의 코팅과 정밀 정형(near net shape) 구성 요소 및 부품의 분무 형성을 허용한다. 본 발명의 기본적인 실시예는 충돌중에 항복 강도를 감소시키고 저유동 응력 수준에서 소성 변형을 허용하기에 충분히 높은 온도로 분말 입자 및 기판을 가열(열 소성 조정)하기 위한 몇몇 방법에 의해 분말 입자를 고속으로 가속하도록 마찰 보상 음속 노즐을 사용한다. 분말 입자 및 기판을 가열하는 한 가지 방법은 노즐 출구와 기판 사이에 주위 압력 열전달 플라즈마를 사용하는 것이다. 본 발명의 상보적인 실시예는 가속을 위해 마찰 보상 음속 노즐 내로 분사하기 전에 분말 입자의 물리적, 화학적 또는 핵 특성을 변경하도록 분말 반응기를 사용한다.
본 발명의 고체 증착 및 경화 방법은 항복 강도를 감소시키고 고속 충돌 중에 저유동 응력 수준에서 소성 변형을 허용하도록 분말 입자 및 기판 재료를 열 소성 조정하거나 또는 가열하기 위한 방법에 관한 것이다. 이는 분말 입자 및 기판 재료의 용융점 아래의 온도에서 달성된다.
가벨(Gabel)과 태폰(Tapphorn)에게 허여된 미국 특허 제5,795,626호에 개시된 코팅 어플리케이터 및 방법은 낮은 증착 효율을 갖는데, 이는 소성 변형을 야기하도록 열 소성 조정되지 않은, 주변 온도에서의 마찰전기 대전 분말 입자의 높은 탄성 응답성에 기인한다. 이러한 탄성 응답은 충돌하는 입자의 대부분을 기계적으로 반사시키는 경향이 있는데, 이는 상당한 접착 또는 점착을 방해한다. 이는 큰 직경의 입자, 경질의 기판, 또는 가공 경화된 증착물 및 기판에 대해 특히 그러하다. 따라서, 미국 특허 제5,795,626호에 개시된 코팅 어플리케이터 및 방법은 소성 변형을 야기하도록 분말 입자를 열 소성 조정하지 않고는 상업적인 적용예에 대해 경제적으로 실행 가능하지 않다. 종래 기술에 대한 제한은 태폰과 가벨에게 허여된 미국 특허 제6,074,135호에서 극복되었는데, 이는 초음속 어플리케이터 내로 분사하기 전에 높은 담체 기체 압력으로 분말 입자를 유체화 및 처리하기 위한 다양한 방법을 개시한다. 미국 특허 제5,795,626호 및 제6,074,135호 모두는 마찰전기 대전 분말 입자를 초음속 담체 기체 내에서 가속하도록 초음속 노즐을 사용하는 코팅 또는 융제 어플리케이터를 개시한다. 그러나 초음속 노즐은 빠른 초음속 기체 속도를 달성하기 위한 유동 팽창 방법이 분말 입자상의 항력을 고유하게 감소시키기 때문에 분말 입자를 고속으로 가속하는데는 극히 비효율적이다. 항력의 감소는 팽창 중에 기체의 초음속 가속에 수반된 기체 밀도의 급격한 감소로 인한 것이다. 따라서, 본 발명의 신규한 분야에서는, 인-시츄(in-situ) 산화와 증착 중의 불필요한 화학적 반응성을 최소화하면서 상업적인 적용예를 위해 더욱 경제적으로 만족스럽도록 고체 경화 방법을 향상시키는 것이 요구된다.
열 분무, 플라즈마 분무 및 폭발 코팅 방법[푸어맨(Poorman) 등에게 허여된 미국 특허 제2,714,563호, 뮐버거(Muehlberger)에게 허여된 미국 특허 제3,914,573호, 소칼(Sokal) 등에게 허여된 미국 특허 제4,256,779호, 브라우닝(Browning)에게 허여된 미국 특허 제4,732,311호 및 제4,841,114호, 스젠테(Szente) 등에게 허여된 미국 특허 제5,298,714호, 및 뮐버거에게 허여된 미국 특허 제5,637,242호] 모두는 실용적인 증착 효율을 달성하는 주요 경화 기구로서 분말 입자를 열적으로 연화 또는 용융시키도록 극고온의 기체를 사용한다. 더욱 중요하게는, 열 및 플라즈마 분무 방법 모두는 열적으로 연화되거나 또는 용융된 분말 입자를 넓은 입체각 원추에 걸쳐 큰 격리 거리로 분산시키는데, 이는 공기 및 불필요한 기체가 방출된 분무 내에 혼입되게 하여 특히 알루미늄, 마그네슘 또는 티타늄과 같은 반응성 금속 분말을 위한 높은 수준의 산화 및 화학적 연소를 허용한다.
라오(Rao)에게 허여된 미국 특허 제2,714,563호, 제3,914,573호, 제4,256,779호, 제4,732,311호, 제5,637,242호 및 제5,766,693호와 알키모프 (Alkhimov) 등에게 허여된 RU 특허 제1773072호에 개시된 고속 방법은 향상된 증착 효율과 개선된 코팅 특성을 위한 열적으로 연화되거나 용융된 입자 상태 외에도 고속 입자를 사용하는 장점을 개시한다.
대조적으로, 알키모프 등에게 허여된 재심사된 코팅 특허(미국 특허 B1 제5,302,414호)는 기체 동적 분무 방법을, 입자의 열적 연화 또는 용융을 방지하기에 충분히 낮은 입자 온도에서 기체 및 입자를 초음속 제트로 가속하는 것으로 제한한다. 열적 연화 온도가 알키모프 등의 특허에 적절히 정의되지 않더라도, 방법은 재료의 용융점보다 훨씬 아래에서 구현된다. 이 명세서의 특정 예는 증착된 재료가 100 ℃를 초과하지 않는다는 것을 지시한다. 따라서, 알키모프 등의 특허는 도포된 코팅의 경화 물리적 상태와 낮은 증착 효율 및 높은 잔류 응력을 갖는 코팅을 야기하는 방법을 제어하는 것과 관련하여 그 청구 범위로 제한된다. 반 스텐키스테(Van Steenkiste) 등에게 허여된 더 최근의 미국 특허 제6,139,913호는 50 미크론을 초과하는 입자 크기를 포함함으로써 미국 특허 B1 제5,302,414호에 대해 개선되었다. 또한, 이 특허는 입자의 열적 연화를 방지하기에 충분히 낮게 기체 및 입자의 온도를 유지하면서 기체 및 입자를 초음속 제트 내로 가속시킨다. 이들 특허 모두는 종래 기술을 초음속 제트를 사용하는 적용예로 제한한다.
뮐버거에게 허여된 미국 특허 제3,914,573호, 제4,256,779호 및 제4,689,468호, 미국 특허 제4,841,114호, 및 미국 특허 제5,637,242호에 개시된 플라즈마 분무 건 모두는 전형적으로 초음속 플라즈마 제트를 유동시키도록 설계된 노즐의 목 섹션에서 분말 입자를 플라즈마 스트림 내로 분사한다. 스젠테 등에게 허여된 미국 특허 제5,298,714호는 입자가 입구에서 노즐로 분사되는 기판 상에 입자의 증착을 위한 플라즈마 토치 또는 건을 개시한다. 미국 특허 제3,914,573호, 제4,841,114호, 및 제5,766,693호는 플라즈마 건 내에서 분말 입자를 열적으로 연화시키거나 또는 초과 가열을 제거하는 방법을 특히 개시하는데, 여기서 수렴-발산 노즐을 통한 초음속 플라즈마 스트림 기체의 팽창후에 입자가 가열된다. 종래 기술의 플라즈마 건 모두는 기판 상에 증착되기 전에 출구 또는 초음속 노즐을 통해 이온화된 고온 플라즈마가 지나가도록 구성된다. 이러한 접근은 기판 충돌 지점에 매우 근접하여 분말 경화 상태의 인-시츄 저온 제어를 방해한다. 실제로, 미국 특허 제4,256,779호는 과열을 회피하도록 기판의 추가 냉각을 필요로 한다. 더욱이, 종래 기술에서 구현된 초음속 유동은 분말 입자를 가속하는 것과 관련하여 매우 비효율적이다. 이는 초음속 노즐의 발산부 내에서 주위 압력까지 유동이 급속히 팽창하기만 하면 특히 그러하다. 따라서, 종래 기술은 상당한 입자 가속을 짧고 비교적 저속인 수렴 섹션과 매우 짧은 노즐의 목 섹션으로 제한한다. 종래 기술의 플라즈마 건의 고유한 복잡성은 상업적인 적용예를 위한 이들 장치의 비용을 증가시킨다. 더욱 중요하게는, 이들 종래의 플라즈마 건은 전극 및 노즐이 용융 또는 부식되지 않게 하는데 사용되는 냉각수에 의해 운반되어야 하는 열 형태의 다량의 에너지를 소모한다.
플라즈마 절단 토치(예를 들어, 호펠너 등에게 허여된 미국 특허 제6,002,096호 참조)는 기판을 용융 또는 태우기(산화시키기) 위해 DC 트랜스퍼-아크(transfer-arc)를 주로 사용하지만, 이러한 종래 기술은 절단 용도로 제한되고 담체 기체에 혼입된 분말 입자를 사용하여 재료를 코팅, 분무 형성, 접합 또는 용융시키기 위한 방법은 청구하고 있지 않다. 플라즈마 기체에 혼입된 충전제 금속 분말과 함께 플라즈마 트랜스퍼-아크 토치를 사용하는 적용은 솔로몬 등에게 허여된 미국 특허 제5,705,786호와 플라우워 등에게 허여된 미국 특허 제6,084,196호에 개시되어 있다. 로메로 등에게 허여된 미국 특허 제4,471,034호는 트랜스퍼-아크 플라즈마 토치를 사용하여 철 부품을 주조하기 위해 용접-결합된 코팅을 적용하는 방법을 교시하고 있다. 대부분의 플라즈마 트랜스퍼-아크 토치는 전극들 사이의 주연 통로에서 아크를 발생시키기 위해 중앙 전극이 중심 전극에 의해 둘러싸이는, 종래 기술을 사용하고 있다. 시머 등에게 허여된 미국 특허 제5,070,228호는 플라즈마 공동을 둘러싸는 RF 동축 유도 코일을 통해 플라즈마 연기기둥을 발생시킨다. 플라즈마 기체 또는 별개의 담체 기체(대체로 아르곤)에 혼입된 분말은 입자를 용융시키기 위해 아크 또는 플라즈마 내로 도입된다. 따라서, 플라즈마 기체의 이온화는, 분말 입자가 토치 또는 건(gun) 하우징 내의 플라즈마 흐름 내로 또는 출구 오리피스 바로 옆의 플라즈마 흐름에 인접하여 저속으로 도입되는 플라즈마 토치 또는 건의 내부에서 발생한다.
플라즈마 히터 및 버너는 이온화된 기체(예를 들어, 게벨 등에게 허여된 미국 특허 제3,601,578호 참조)를 가열시키고 연소 효율(예를 들어, 도시하루 등에게 허여된 일본 특허 제60078205 A호 참조)을 향상시키기 위해 사용되지만, 이러한 장치는 코팅의 증착 전에 입자를 열처리하도록 사용되지는 않는다. 미국 특허 제5,766,693호는 입자가 상기 입자를 가소화하는 온도에서 초음속 분출물 내로 주입되는 종래의 플라즈마 스프레이 건을 사용하여 금속 기초 코팅을 도포하는 방법을 개시하고 있다. 이러한 장치는 코팅 및 작업편의 과열을 방지하기 위해 기판의 외부 냉각을 필요로 한다.
시멀 등에게 허여된 미국 특허 제4,328,257호, 제4,689,468호, 제4,877,640 호, 제5,070,228호는 플라즈마 건과 목표 작업편 사이에 연결된 소정 극성의 DC 전원 장치를 사용하여 기판 또는 작업편으로 고온의 플라즈마 흐름을 전기적으로 결합시키기 위한 다양한 기술을 개시하고 있다. 이러한 특허는 기판 표면을 예열시키고, 플라즈마 코팅의 산화물 오염을 감소시키고 또는 플라즈마 흐름에서 이동하는 금속 입자로부터 산화물 코팅을 제거하도록 높은 전류의 DC 트랜스퍼-아크 공정의 사용을 교시하고 있다. 이러한 특허는 재료 용융점 이하의 온도에서 코팅의 증착과 경화 상태를 조절하는 방법은 교시하지 않는다. 또한, 저압 플라즈마 건 또는 토치는 플라즈마 흐름을 생성하기 위해 고비용의 진공 챔버와 장치를 필요로 하는 상업적 단점을 갖고 있다.
열 연화라는 용어는 용융점 근처이고 용융점 아래의 온도로 가열된 분말 입자의 물리적 상태를 기술하기 위해 뮬버거 등에게 허여된 미국 특허 제3,914,573호에서 사용되었다. 상기 특허는 각각의 특정 재료에서 최적 입자 온도가 존재한다고 주장한다. 이러한 온도가 초과될 경우, 입자는 작업편과의 충돌 중에 흩어질 수 있다. 입자의 온도가 너무 낮으면, 입자의 불충분한 변형이 충돌 중에 발생하여 불량한 결합을 갖는 저품질의 코팅이 되게 한다. 뮬버거의 특허는 또한 입자의 운동 에너지에 열 에너지를 추가하는 것은 충돌 중에 입자의 더 큰 변형이 생기게 한다고 주장한다. 따라서, 운동 에너지와 연계한 입자의 온도는 높은 증착 효율, 높은 결합 강도 및 저공극율로 이어지는 충분한 입자 변형을 얻기 위해 중요하다.
라오에게 허여된 미국 특허 제5,766,693호와 소콜 등에게 허여된 미국 특허 제4,256,779호의 두 개의 다른 특허는 용어 "가소화된"을 입자의 용융점 근처의 분 말 입자 온도 상태를 기술하기 위해 사용하고 있다. 미국 특허 제5,766,693호는 용융되거나 가소화된 상태를 사실상 각각의 입자의 표면 영역으로 제한하고 있다. 소콜 등에게 허여된 미국 특허 제4,256,779호는 분말 입자를 열 연화시키거나 또는 가소화하는 방법을 교시하고 있다. 분말은 열 연화 또는 가소화시키도록 온도 제어된 플라즈마 흐름 내로 주입되지만, 액화 또는 증기화하기에 충분한 시간 동안 주입되는 것은 아니다. 추론하면, 두 특허 모두는 분말 입자가 용융점 근처의 온도로 가열되는 뮬버거에게 허여된 미국 특허 제3,914,573호와 일치하는 방법을 교시하고 있다.
다른 특허들은 재료의 열 연화를 위한 광범위한 정의를 교시하고 있다. 예를 들어, 퍼넬 등에게 허여된 미국 특허 제5,312,475호는 소결 금속 재료의 열 연화에 대한 저항성을 주도록 극미소 탄화물을 첨가하는 방법을 교시하고 있다. 상기 특허는 소결 철 재료가 상온에서 773℉(500℃)까지 온도 증가함에 따라 경도 데이터가 단순히 감소하는 것으로 보고하고 있다. 따라서, 열 연화는 철 합금의 용융점(즉, 일반적으로 1500℃를 초과하는 용융점)의 상당히 이하의 온도에서 기계적 경도에 중요한 효과를 갖는 것으로 증명되었다.
본 발명의 목적은 고상 분말 입자의 증착 및 경화 전에 물리적, 화학적 또는 원자 성질을 변경시키기 위해 분말 입자를 처리하는 방법을 교시함으로써 종래 기술의 한계를 극복하는 것이다. 증착 및 경화 공정은 대상물의 코팅 처리를 적용하거나 또는 대상물을 분무 형성하기 위해 아음속 또는 음속 불활성 담체-기체 흐름에서 고속으로 상기 처리된 분말 입자를 가속시키기 위해 마찰-보상 음속 노즐을 사용한다. 또한, 본 발명의 목적은 표면 변형 및 경화를 위해 기판 상으로 다양한 다중층 코팅, 기능적으로 분급된 재료, 기능적으로 형성된 인-시츄 합성물 및 엑스-시츄(ex-situ) 합성물을 적용하는 새로운 방법 및 공정에 관한 것이다. 또한, 본 발명은 기판과 경화된 재료의 야금학적, 화학적 또는 기계적 성질을 조절하면서 기판 표면상으로 (금속, 비금속 또는 그 혼합물의) 분말을 경화시키기 위한 분무 형성 방법을 교시하고 있다. 종래의 열적 기술 및 플라즈마 분무 기술의 제한은 증착 및 경화 공정 동안 (분말 입자 재료의 용융점 근처의) 거의 용융된 또는 용융된 분말 입자의 산화와 화학적 연소를 상당히 감소시키는 유도된 아음속 또는 음속 분출물로 형성된 불활성 담체 기체를 사용하는 본 발명에 의해 극복된다. 상기 공정이 비교적 짧은 이격 거리에서 대상물 상의 증착 및 경화 전에 불활성 기체의 유도된 분출물 내로 공기 및 원하지 않는 기체의 혼합 및 혼입을 감소시키므로, 분말 입자의 산화 및 화학적 연소의 감소가 달성된다. 또한, 본 발명은 불활성 담체 기체의 유도된 분출물 내로 공기 또는 원하지 않는 기체의 혼입을 더욱 감소 또는 제거시키기 위해 포위식 불활성 기체 차폐부를 사용하는 수단을 제공한다. 마지막으로, 본 발명은 종래의 열적 방법 및 플라즈마 분사 방법에서 사용된 (분말 입자 재료의 용융점 근처의) 거의 용융되거나 또는 용융된 분말 입자 온도와 비교하여 비교적 낮은 온도에서 불활성 담체-기체 분위기 내에서 분말 입자를 열 가소적으로 조절함으로써 더욱 분말 입자의 산화 및 화학적 연소를 감소시킨다.
알루미늄 합금은 부식 방지, 내마모, 광학적 반사성, 납땜, 브레이징(brazing), 접합성, 가공성 및 연마성을 위한 코팅을 주로 필요로 한다. 이러한 코팅은 기판 및 증착 재료의 야금학적, 화학적 또는 기계적 성질을 조절하면서 도포되어야 한다.
종래에는, 알루미늄 열교환기와 같은 제품은 알루미늄 황동 시트를 사용하여 제작된다. 황동 시트는 공융 외부층으로 씌워진다. 알루미늄 브레이징 기술은 알루미늄 브레이징 핸드북[뉴욕주 워싱턴 디씨. 19번가 900번지 소재의 알루미늄 학회에서 1998년 발간된 제4판 참조]을 적절히 참고하면 된다. 브레이징 공정은 접합부의 야금학적 결합을 가능하게 하는 충전제(예를 들어, 일반적으로 4000 시리즈 알루미늄-실리콘 합금)와 연결되도록 알루미늄 합금을 젖게 하는 단계를 포함한다.
클래딩 기술은 많은 적용에서 알루미늄 합금의 표면을 변경하기 위해 사용되었지만, 이러한 공정은 비용이 많이 들고 시트 저장품에 대해 주로 검사를 받을 수 있다. 크놉 등에게 허여된 미국 특허 제3,899,306호는 함께 압연가공되고 537 내지 650℃의 온도로, 그러나 부품들의 용윰점 이하로 가열되는 한 쌍의 부품의 인접 표면 사이에 (경화되지 않은) 니켈 분말의 얇은 층을 도포함으로써 알루미늄 부품을 납땜하기 위한 방법을 개시하고 있다. 도쿠스 등에게 허여된 미국 특허 제3,970,237호는 알루미늄 부품을 브레이징하는 방법을 개시하고 있고, 여기서 클래드 충전제(예를 들어, 알루미늄 실리콘 합금)는 브레이징 공정을 가능하게 하도록 알루미늄 부품들 사이에서 결합-증진 합금(예를 들어, 니켈-납 또는 코발트-납)으로 도금된다. 상기 특허는 또한 강, 알루미늄 강, 스텐레스강 또는 티타늄을 포함하는 다른 재료들을 납땜하기 위해 알루미늄을 브레이징하는 동일한 방법을 교시하고 있다.
하세가와 등에 허여된 미국 특허 제4,732,311호에 개시된, 알루미늄 합금상에 열 연화 또는 용융된 납땜 합금을 증착하기 위해 열 및 플라즈마 분무 방법을 사용하는 시도는 (후속 형성 단계 중 코팅 물질의 플랭킹을 발생시키는) 저 접착으로 인해 대부분 비성공적이었다. 다른 인자는 1) 산화, 2) 원하지 않는 열처리에 의해 야기되는 기판의 야금학적 변화, 3) 오염물의 원하지 않는 확산에 의해 야기되는 기판의 야금학적 변화, 4) 기판의 열적 기계적 비틀림, 및 5) 다른 화학적 반응성을 포함한다.
칼륨 플루오로-알루민산염과 같은 유동 물질(킬머에게 허여된 국제 특허공보 제00/52228호, 월리스 등에게 허여된 미국 특허 제3,951,328호, 및 벨트 등에게 허여된 미국 특허 제5,980,650호)이, 알루미늄의 표면으로부터 산화물을 치환하고 충전제 금속의 표면 장력을 저하시키고 비금속 습윤 및 충전제 금속 유동을 촉진시키는 납땜 결합 촉진 물질로서 덮혀진 공융 혼합물의 표면에 도포된다. 통상적으로 이러한 코팅은 칼륨 플루오로-알루민산염 수용액의 액체 혼합물을 분무함으로써 또는 공융 알루미늄-실리콘 합금 분말의 표면상에 코팅된 칼륨 플루오로-알루민산염을 포함하는 합성 분말로서 도포된다[필드, 디.제이., 크라프트, 알.지., 및 호크스워쓰, 디.케이., "합성 증착(CD) 기술 - 자동 열교환기용 신규 결합 공정," 문서 35-기술 혁신 심포지움을 통해 인도되는 T&N의 진행, 우르쯔부르크-인디애나폴리스, 인디애나, 1995]. 다른 경우, 얇은 니켈 또는 코발트 코팅이 크노프 등에게 허여된 미국 특허 제3,899,306호 및 도쿠스 등에게 허여된 미국 특허 제3,970,237호에 개시된 결합 촉진 유동 물질로서 사용되었다.
패트릭 등에게 허여된 미국 특허 제5,884,388호는 브레이크 로터와 같은 기판에 마찰-마모 코팅을 인가하는 종래 기술을 개시한다. 이 특허는 기판을 가열하여 와이어-아크 분무 형성층의 결합을 향상시키도록 홈을 가공하는 기술을 특허 요구한다. 미국 특허 제5,884,388호에 고유한 모든 표면 제작 및 기판 가열 공정은 접착/점착을 감소시키는 기판 및 코팅 증착물의 산화에 대치하도록 요구된다. 넓은 표면 제작은 야금학적 결합이라기 보다는 기계적 결합을 의미한다.
본 발명은 기판 물질 상에 아음속 또는 음속 기체 제트에 혼입된 분말 입자를 고체 증착 및 경화하는 장치 및 방법에 관한 것이다. 고속 충격 및 열 가소성 변형 하에, 분말 입자는 경계면에 원자간 또는 야금학적 결합 구조에 의해 경화 코팅 또는 분무 형성 부분을 형성하도록 기판에 접착 결합되고 서로 점착 결합된다. 충격 시 분말 입자는 기판에 대한 접착성 결합 및 입자간 야금학적 결합을 가능케 하는 가소성 변형을 겪는다. 이 접착 결합 및 점착 결합은 기판의 코팅 및 순수 형상 요소 및 부분의 분무 형성을 가능케 한다. 본 발명의 기본 실시예는 충격 중 항복 응력을 감소하여 저유동 응력 수준에서 가소성 변형을 가능케 하기에 충분히 높은 온도로 분말 입자 및 기판을 열가소성 조정 또는 가열하는 수 개의 방법에 의해 분말 입자를 고속으로 가속하도록 마찰 보상 음속 노즐을 사용한다. 분말 입자 및 기판을 열가소성 조정 또는 가열하는 일 방법은 상대적 짧은 이격 거리에 있는 노즐 출구와 기판 사이에 대기 압력 열전달 플라즈마를 사용한다. 본 발명의 보완적 예는 가속용 마찰 보상 음속 노즐내로 주입되기 전에 분말 입자의 물리적, 화학적 또는 원자핵 성질을 변경시키도록 분말 반응기를 사용한다. 분말 반응기는 초음속 제트 및 노즐에 의한 사용을 위해 본 발명자에게 허여된 미국 특허 제6,074,135호에 처음 개시되었고, 마찰 보상 음속 노즐에 의한 사용을 위해 본 발명으로 확대된다.
충격 공정으로 전달된 입자의 운동 에너지를 가열(열가소성 조정)에 의해 유도된, 상기 분말 입자 및 기판의 항복 응력의 감소와 동시 연결시키면 코팅의 고체 증착 및 경화, 부분의 분무 형성 또는 열에 의한 가소성 변형을 통한 여러 물질의 결합을 가능케 한다. 열가소성 조정과 관련하여 충격 공정의 속도를 제어함으로써 물질 성질이 특정 요구 조건에 맞추어질 수 있다. 예를 들면, 충격 공정에 의해 유도되는 강한 가소성 변형은 경화된 분말 입자의 마이크로 구조내의 관찰된 나노 구조의 생성에 관련이 있다. 분말 입자의 열 가소성 조정은 이러한 나노 구조가 전위 밀도의 향상된 동적 회복을 통해 변화될 수 있게 한다. 또한, 경화된 물질의 화학적 전위는 강한 가소성 변형과 관련된 잔류 응력에 의해 유도된 고압 제한에 의해 변화된다. 이와 같이 변화된 화학적 전위는 금속 매트릭스 내에서 상을 경화시키는 인-시츄 제조 동안 기능적으로 형성되는 금속 매트릭스 합성물의 성질을 제어하는 화학적 반응 속도에 영향을 준다. 이러한 공정은 저공극율, 저산화 및 최소 열비틀림에 의해 고품질 경화를 발생시킨다. 또한, 이 공정은 고유한 나노 구조 및 마이크로 구조를 갖는 증착물을 발생시키고 분무 형성, 결합 및 여러 물질의 융합을 가능케 한다. 증착물은 상대적으로 짧은 이격 거리에서 원하는 두께로 증착 및 경화를 가능케 하는 속도로 기판상에 래스터 방식으로 마찰 보상 음속 노즐을 이동시킴으로써 기판위에 분무된다. 로봇식 제어 하에 보다 종합 조정식으로 복수의 마찰 보상 음속 노즐을 이동시킴으로써 순수 형상 부분 및 요소의 신속한 입체적 형성을 가능케 된다.
본 발명의 장치 및 방법을 사용하여 아음속 또는 음속 기체 제트에 혼입될 수 있는 분말 입자의 유형은 금속, 합금, 저온 합금, 고온 합금, 초합금, 납땜 충전제, 금속 매트릭스 합성물, 비금속, 세라믹, 중합체, 및 이들의 혼합물로 이루어진 군으로부터 선택되나 이에 한정되지 않는다. 인듐 또는 주석계 납땜 및 실리콘계 알루미늄 합금(예를 들면, 4043, 4045, 또는 4047)이 본 발명의 장치 및 방법을 사용하여 여러 물질의 코팅, 분말 형성, 및 결합을 위해 고상에서 증착 및 경화될 수 있는 저온 합금의 예이다. 고온 합금은 NF616(9Cr-2W-Mo-V-Nb-N), SAVE25(23Cr-18Ni-Nb-Cu-N), 테르미(25Cr-20Co-2Ti-2Nb-V-Al), 및 NF12(11Cr-2.6W-2.5Co-V-Nb-N)을 포함하나, 이에 한정되지 않는다. 초합금은 니켈, 철-니켈 및 44073 오하이오, 금속 파크, 미국 금속 소사이어티, 데스크 편집 1985, 금속 핸드북의 16-5쪽에 개시된 코발트계 합금을 포함한다. 니켈 및 코발트 코팅된 텅스텐과 같이 다른 금속으로 코팅된 분말 입자도 본 발명의 장치 및 방법에 사용될 수 있는 합성 분말의 틀별 유형으로서 포함된다.
일반적으로, 본 발명의 장치 및 방법을 위해 양호한 분말 입자 크기는 -325 메시(45 마이크로미터 미만)의 상한을 갖는 넓은 분포를 갖는다. 325 메시(45 마이크로미터)를 초과하는 분말 입자 크기는 종종 금속 매트릭스 합성물을 형성하거나 또는 큰 공극율을 갖는 다공성 경화를 형성하기 위해 매트릭스 물질에 의한 공 증착(co-deposition)용 경화제로서 선택된다. 나노 크기 영역의 분말 입자 크기도 본 발명의 장치 및 방법에 의해 증착 및 경화될 수 있다.
본 발명의 장치 및 방법에 의해 증착 및 경화 표면에 대해 코팅 또는 사용될 수 있는 기판 물질의 유형은 금속, 합금, 저온 합금, 고온 합금, 초합금, 금속 매트릭스 합성물, 비금속, 세라믹, 중합체, 및 이들의 혼합물로 이루어진 군으로부터 선택되나 이에 한정되지 않는다.
어플리케이터는 종래의 먼지 수집기를 이용하여 과잉 분말 입자 및 파편을 회수하기 위해 외부 진공 챔버, 및 선택적으로 마찰 보상 음속 노즐을 둘러싸는 외부 동축 진공 노즐을 사용한다. 외부 진공 챔버 및 선택적인 외부 동축 진공 노즐은 공기 및 원하지 않는 기체가 불활성 담체 기체의 규제된 아음속 또는 음속 제트내로 혼입되는 것은 감소시키고, 노즐 기체가 포착되어 환경적 경제적 목적으로 재사용될 수 있게 한다. 마지막으로, 담체 기체내에서 분말 입자를 유체화, 혼입 및 혼합하는 (초음속 제트 및 노즐과 사용되기 위해 본 발명자에게 허여된 미국 특허 제6,074,135호에 처음 개시된)분말 유체화 유닛이 본 발명에 포함되고 마찰 보상 음속 노즐에 사용될 수 있다.
본 발명의 고상 증착 및 경화 공정은 항복 응력을 감소시키고 고속 충돌 중에 저유동 응력 수준에서의 탄성 변형을 허용하기 위해 분말 입자 및 기판을 열적으로 개질시키는 방법에 관한 것이다. 이는 상기 분말 입자 및 기판 물질의 용융점보다 충분히 낮은 온도에서 성취된다.
강성 계수(G)는 공지의 관계식 G=E/(2(1+ν))를 통해 탄성 계수(E)와 관련되고, 여기서 ν는 포와송 비이다. 가열에 의해 유도되는 강성 계수의 임의의 감소는 충돌 공정 중에 분말 입자의 향상된 탄성 변형을 촉진한다. 그러나, 이 인자 단독으로는 충돌 중에 분말 입자의 야금 접합을 성취하기에 불충분하다. 소성 변형을 통해서만 산화물 표면을 파괴하고 야금 접합 표면을 노출시키는데 필요한 정도로 고상 분말 입자 변형시킬 수 있다. 충돌 중의 분말 입자 및 기판의 소성 변형도는 온도, 변형률 및 스트레인의 함수이다. 따라서, 분말 입자 및 기판을 가열함으로써, 충돌 중의 소성 변형량은 증착 효율을 향상시키고 경화의 물리적 상태를 제어하도록 바람직하게 증가될 수 있다. 이 공정은 열 소성 조정이라 칭한다. 다수의 물질의 항복 응력의 온도 의존성 및 소성 변형 특성에 대한 영향은 디터 지.이.(Dieter, G. E.)의 기계 야금학(1961) 도9 내지 도12 및 도9 내지 도13 등의 참조 문헌으로부터 얻어질 수 있다. 가열에 의해 유도되는 물질(특히 금속)의 기계적 특성의 다른 변화는 경도의 감소와, 연성의 증가에 의한 강도의 감소를 포함한다. 대부분의 면심 입방 물질에서, 이러한 변화는 특정 임계값을 갖지 않도록 물질의 온도에 따라 완만하게 변화된다. 텅스텐과 같은 몇몇 체심 물질들은 온도에 의한 취성-연성 전이 굴곡(brittle-to-ductile transition knee)을 나타낸다[디터 지. 이. 기계 야금학(1961), 도9 내지 도12, 도9 내지 도13 참조).
혼입된 분말 입자의 가열은 강성 계수를 감소시키고 입자의 항복 응력을 감소시키며, 따라서 저유동 응력 수준에서의 충돌 중에 소성 변형을 향상시킨다. 이는 열 소성 조정된 분말 입자를 사용하여 고속 입자 충돌에 대한 증착 효율을 증가시킨다. 예를 들면, 20 마이크로미터 알루미늄 분말을 400K의 온도로 가열하면, 본 발명에 개시된 도포기 및 공정을 사용하여 60% 초과의 증착 효율을 가능하게 한다. 이는 300K 알루미늄 분말 입자에 대한 15% 미만의 증착 효율과 대비된다. 따라서, 단지 100K의 온도차는 알루미늄의 항복 응력의 감소 및 소성 변형의 증가의 관점에서 매우 중요하다.
본 발명의 마찰 보상 음속 노즐은, 담체 기체 및 혼입된 분말 입자의 유동 마찰 특성의 보상에 의해 마하 1 이하의 일정한 속도로 담체 기체를 유동시키도록 설계되고 구성된다. 이는 담체 기체에 대해 마하 1 이하의 일정한 속도가 유지되도록 마찰 손실을 보상하는 길이의 함수로서 제한된 직경 편차를 갖는 테이퍼진 노즐을 필요로 한다. 테이퍼진 노즐 디자인은 마하 1 이하의 일정한 유속에 대해서만 테이퍼 유출 길이의 함수로서 최대 담체 기체 밀도(유입 기체 밀도에 대한)를 유지하도록 담체 기체의 팽창을 특정하게 구속한다. 따라서, 테이퍼진 마찰 보상 음속 노즐의 특정 디자인은 노즐의 전체 길이에 걸쳐 분말 입자의 최대 항력 및 가속도를 보장한다.
기본 실시예의 열 전달 플라즈마는 대기압(주위 압력)에서 발생되고 따라서 전자 온도와 평형을 이루는 열적 플라즈마를 형성한다[엘렌바스 이.(Elenbass, E.) 고압 수은 증기 배출(1951), 네덜란드 암스테르담: 노스 홀랜드]. 충돌 공정으로 전달되는 입자의 운동 에너지와, 열 소성 조정 또는 가열에 의해 유도된 항복 응력의 감소를 동시에 결합함으로써, 기판에 대한 고착성 및 고유 특성을 갖는 분말 입자의 점착성 경화를 제공하는 소성 변형을 가능하게 한다.
이는 고유의 미세 구조 특성을 갖는 증착물을 제공하고, 다양한 물질의 코팅 분무 형성, 결합 또는 융합을 허용한다. 게다가, 본 발명의 열 전달 플라즈마는 플라즈마 기체에 화학 반응종을 첨가함으로서 증착 영역에서 혼입 분말 입자와 기판을 화학적으로 반응시키는 수단을 제공한다. 셀윈(Selwyn)에 허여된 미국 특허 제5,691,772호에는 기판 상에 막 및 코팅을 에칭하기 위해 대기 플라즈마 기체 제트에 혼입된 라디칼 및 준안정성 반응물의 사용 효과가 개시되어 있다.
본 발명의 장치 및 공정은 분말 입자를 가열하고, 기판 물질을 가열하고, 분말 입자와 기판 물질을 화학 반응시키기 위해, 마찰 보상 음속 노즐의 출구와 기판 가공편 사이에 제공된 열 전달 플라즈마를 사용한다. 일 형태에서, RF 전력을 발생시킬 수 있는 무선 주파수(RF) 발생기가 노즐의 출구와 기판 사이에 열 전달 플라즈마(용량 결합된)를 생성하도록 정합 네트워크를 통해 결합된다. 다른 형태에서, RF 전력은 원통형 노즐을 둘러싸는 동축 유도 코일에 정합 네트워크를 통해 결합된다. 노즐의 출구에서의 유도 결합 열적 플라즈마는 노즐 금속 팁과 기판 사이에 인가된 바이어스 전압을 경유하여 기판으로 전달된다. 양 형태 모두에서, 노즐은 일반적으로 캐소드 전극이고, 기판은 기판 가공편을 향한 전자 흐름을 보장하는 애노드 전극이지만, 본 발명은 또한 기판을 향한 이온 흐름을 필요로 하는 적용을 위한 반대의 극성의 사용을 포함한다. 반대 극성 접속은 담체 기체에 혼입된 분말 입자와 공동 증착되는 불활성 기체 차폐물 내의 노즐의 팁으로부터 미립화된 물질로 희생 노즐 내로의 전자의 흐름을 사용하는 본 발명의 변형예를 허용한다. 이 반대 극성 접속은 저 다공성, 미세 입자 코팅을 생성하거나 코팅, 분무 형성 물질 또는 접합부의 특정 물질 특성을 형성하는데 사용된다.
다양한 기체가 본 발명에 사용될 수 있고, 공기, 아르곤, 카본 테트라플루오라이드, 카르보닐 플루오라이드, 헬륨, 수소, 메탄, 질소, 산소, 증기, 실란, 설퍼 헥사플루오라이드, 또는 다양한 농도의 이들의 혼합물을 포함하는 그룹으로부터 선택된다. 헬륨 기체는 아크를 유도하는 이온화를 제한하도록 대기 플라즈마[예를 들면, 미국 특허 제5,961,772호 및 라루시 엠.(Laroussi, M.), 1196년 6월 "대기압 플라즈마에 의한 오염 물질의 살균" IEEE Trans. 플라즈마 사이언스 Vol 24, No.3 1188 내지 1191 페이지]를 생성하기 위해 종종 사용되고, 마찰 보상 음속 노즐에서의 분말 입자를 가속시키기 위해 바람직한 기체이다. 혼입된 분말 입자는 노즐의 출구로부터 유출되어, 기판에 충돌되기 전에 분말 입자를 가열하는 열 전달 플라즈마를 통과한다. 입자의 온도는 입자 크기, 물질, 열적 플라즈마에서의 체류 시간 및 플라즈마에 분산된 총 분말에 의존한다. 통상적으로, 1 내지 20 마이크로미터 직경 범위의 알루미늄 합금 분말에 있어서, 입자는 60% 초과의 증착 효율을 제공하는 400K의 온도에 도달한다. 알루미늄 합금 분말에 있어서, 이는 10 내지 30 SCFM의 유속의 헬륨에 대해 1 내지 3kW의 RF 플라즈마 전력을 필요로 한다. 열적 플라즈마에 반응성 라디칼 및 준안정성 종을 형성하는 기체 혼합물은 통과 중에 분말 입자를 화학적으로 반응시키기 위해 본 발명에 포함된다.
열 전달 플라즈마는 또한 다양한 물질의 분무 형성, 결합 또는 융합을 위해 기판을 가열하는데 효율적이다. 이 경우, 기판의 국부 온도는 기판 상의 증착 프로파일에 플라즈마 빔의 열 전달의 고유적인 집중에 의해 증가되고, 기판 표면 또는 접합부 상에 이미 증착된 점착성 분말 입자를 포함하는 기판을 열적으로 개질시키거나 용융시키는데 사용된다. 게다가, 열 전달 플라즈마는 산화물 막의 기계적 융삭(ablation) 또는 마모에 이어지는 에칭 중의 화학 반응을 포함하는 기판의 처리를 위한 수단을 제공한다.
본 발명의 보충 실시예는 가속을 위한 마찰 보상 음속 노즐 내로의 주입 전에 분말 입자의 물리적, 화학적, 또는 핵 특성을 개질시키기 위한 분말 반응기를 사용한다. 종래의 저항 가열기 또는 유도 가열기에 의해 기체 및 분말 입자를 가열함으로써 담체 기체에 혼입된 분말 입자의 특성을 물리적으로 개질시키기 위한 다양한 형태의 분말 반응기가 개시되어 있다. 다른 형태의 분말 반응기는 담체 기체에 혼입된 분말 입자를 화학적으로 개질시키거나 분말 입자의 분무 방사성 또는 다른 동위 원소종의 핵 특성을 변경시키기 위해 사용된다. 담체 기체 및 분말 입자의 혼합물을 가열 또는 이온화하기 위한 고압 플라즈마 반응 챔버를 사용하는 분말 반응기 구성이 본 발명에 포함된다. 화학 제품의 혼합물이 또한 플라즈마 내에 생성된 다양한 라디칼족을 이용하여 분말 입자 또는 기질을 화학적으로 반응시킬 목적으로 담체 기체에 부가된다. 분말 입자는 마찰 보상 음속 노즐 내에서 가속되기에 앞서 상기 입자들을 가열하기 위하여 플라즈마 가열 기체 내로 하류로 분사된다. 본 발명은 또한 본 발명자에게 허여된 미국 특허 제5,795,626호 및 제6,074,135호에 개시된 것과 같은 분말 입자의 가속을 위한 초음속 노즐 내로의 분사 이전에, 그리고 알키모브(Alkhimov) 등에게 허여된 미국 특허 B1 5,302,414, 러시아 특허 제1773072호 및 반 스틴키스테(Van Steenkiste) 등에게 허여된 미국 특허 제6,139,913호에 개시된 것과 같은 초음속 제트 내로의 분사 이전에 분말 입 자의 물리적, 화학적, 그리고 핵의 특성을 변경하기 위해 고압 플라즈마 반응 챔버를 포함하는 분말 반응기의 사용을 포함한다.
인가기는 외측 배출기 챔버와 마찰 보상 음속 노즐을 둘러싸는 (본 발명자에게 허여되고 초음속 제트와 노즐에 적용하기 위해 미국 특허 제5,795,626호 및 제6,074,135호에 개시된 것과 같은) 외측 동축 배출기 노즐을 사용한다. 이들 배출기는 통상적인 집진기 필터 내의 과도한 분말 입자 및 부스러기의 포획을 허용하는 동시에 공기 및 원하지 않는 기체의 불활성 담체 기체의 유도된 아음속 또는 음속 제트 내로의 혼입을 감소시키기 위해 사용된다. 외측 배출기 챔버 및 추가적인 외측 동축 배출기 노즐은 또한 노즐 기체들이 환경 및 경제적인 목적을 위해 포획되어 재활용되는 것을 허용한다.
담체 기체 내부의 분말 입자들을 유체화하여 혼입시키기 위한 분말 유체화 유닛이 본 발명에 포함된다. 분말 유체화 유닛은 태폰 및 가벨에게 허여된, 초음속 제트 및 노즐을 위한 미국 특허 제6,074,135호에 상술되어 있고, 본 발명에 참조로 포함된다. 또한, 본 발명은 분말 유체화 기술에 대한 개선점을 포함한다. 하나의 개선점은 호퍼 내에 담긴 벌크 분말의 레벨 이상인 분말 입자를 유체화하기 위한 분말의 상부 표면으로 점진적으로 그리고 연속적으로 분사될 수 있는 확장 가능한 튜브의 단부 상에 장착된 유동화 포트를 포함한다. 2번째 개선점은 전자 또는 소프트웨어 처리 제어(예를 들면, 비례 적분 미분(PID) 제어기)를 이용하여 현재 값에서 분말 유체화 비율을 제어하기 위해서 분말 유동 비율의 전자적 또는 광학 로드셀 또는 실시간 측정을 이용한 분말 손실의 측정을 포함한다.
본 발명은 기판 상에 다중층 코팅, 기능적으로 분급된 재료 및 기능적으로 형성된 인-시츄 및 엑스-시츄 합성물을 증착하기 위한 공정을 포함한다. 예를 들면, 알루미늄 납땜에 이용된 다중층 코팅의 제1 층은 공융층과 기판 합금 사이의 부식 방지 장벽으로 이용되는 언더코트층(undercoat layer)의 통상적으로 구비한다. 제1 층은 또한 기판 구조 및 후속층 사이에서 확산 장벽 또는 접착 경계면으로 이용될 수도 있다. 다층 땝납 코팅의 제2 층은 구조적인 기부 재료의 녹는점보다 5 내지 50 켈빈 아래인 녹는점을 갖는 공융 솔더 또는 땝납 충전제로서 역할을 한다. 알루미늄-실리콘 합금은 종종 알루미늄 합금을 납땜하기 위한 공융 충전제로서 이용되고, 본 발명은 증착 동안 기판 재료의 야금학적, 화학적 또는 기계적인 변경을 배제하는 조건 하에서 금속 분말로서 이들 충전제의 증착을 허용한다. 다층 납땜 코팅의 제3 층은 기판의 표면으로부터 산화물을 변위시키고, 충전제 금속의 표면 장력을 저하시키고 그리고 기부 금속 웨팅 및 충전제 금속 유동을 촉진하는 플럭스로서 증착된다. 플럭스 코팅은 증착동안 기판 재료의 야금학적, 화학적 또는 기계적인 변경을 배제하는 조건 하에서 또한 인가되는 니켈, 코발트 또는 니켈/납계 합금과 같은 금속 플럭스 분말 또는 플루오르화 칼륨-알루민산염과 같은 비금속 플럭스 분말을 포함할 수 있다. 결과적으로, 매립된 플럭스를 포함하는 합성물 납땜을 인가하기 위해 금속 및 비금속 분말을 동시에 공동 증착하는(co-depositing) 방법이 또한 본 발명에서 구현된다.
본 발명은 전술된 인가기를 이용하여 분말로서 언더코트, 납땜-충전제 및 플럭스층을 포함하는 다중층 코팅의 제어된 온도 증착을 가능하게 하는 방법을 개시한다. 언더코트 분말은 알루미늄, 구리, 티탄 또는 아연 금속 분말의 그룹으로부터 선택된 분말을 포함하고, 납땜-충전제 분말은 알루미늄-실리콘 합금(예를 들면, 4043, 4045, 4047 합금)의 그룹으로부터 선택된다. 납땜될 수 있는 알루미늄 합금은 통상적으로 1100, 3003, 5050, 6061의 단련된 합금 및 443.0, 356.0, 711.0의 캐스트 합금이다.
본 발명의 장치 및 공정을 이용하여 폴리머, 세라믹 또는 유리를 포함하는 그룹으로부터 선택된 비금속 분말을 증착하기 위한 방법이 또한 개시된다. 실질적으로 고밀도 폴리에틸렌 또는 폴리테트라플루오로에틸렌[테플론(등록상표)]의 분말은 특정 폴리머의 유리 천이 온도에 분말 입자의 온도를 상승시키도록 선택된 플라즈마 분말로서 인가될 수 있다. 세라믹 또는 유리 분말을 용융시키기 위해 요구되는 고온 증착을 수용하는 것을 의도하지는 않았더라도, 이들 재료는 금속 또는 비금속 메트릭스 재료 내에서 엑스-시츄 경화제(분말 형태)로서 함께 증착될 수 있다.
종래의 분무 코팅 기술(예를 들면, 기체 열 분무, 플라즈마 아크-분무, 와이어 아크-분무 및 고속 산소-연료 분무)에 비해 본 발명에서 설명된 공정을 이용하는 기술적인 장점은 표면 전처리를 필요로 하지 않고, 우수한 접착성, 심각하지 않은 인-시츄 산화 및 코팅 공정에 기인한 기판의 열 변형이 없는 저 공극율 금속 증착물을 제조한다는 것이다. 열전달 플라즈마 또는 분말 반응기 가열원과 조합식으로 입자에 높은 속도를 부여하도록 최적화된 마찰 보상 음속 노즐을 통해 분말 입자를 가속함에 의해 증착 조건들 및 재료 특성(소성 변형)은 특정 용도에 대해 특정적으로 조정될 수 있다. 예를 들면, 알루미늄 코팅의 증착은 마찰 보상 음속 노즐에 의해 제공된 높은 속도에서 10 내지 20 마이크로미터 범위에서 입자에 대한 60 % 증착 효율을 달성하기 위해 400 K의 온도로 분말 입자를 가열(열-소성 조절) 만을 필요로 한다. 이 온도는 또한 증착된 또는 분무 형성 재료의 동시적인 저온 어닐링을 허용하는 데 적합하여, 따라서 증착된 재료의 특성이 제어되거나 또는 특정 요구 사항에 적합하게 되는 것을 가능하게 한다. 입자 및 기판 표면 세척 및 에칭은 연속적으로 그리고 금속 증착과 인-시츄 상태로 발생하고, 다른 표면 전처리는 요구되지 않는다.
최종적으로, 본 발명의 장치 및 공정은 인-시츄 및 엑스-시츄 합성물을 기능적으로 형성하는 분말의 공동 증착을 허용한다. 일예로, 금속 분말(예를 들면, 알루미늄)은 경화제의 균질한 분포를 갖는 입자 경화 금속 메트릭스 합성물을 형성하기 위해서 실리콘, 카바이드, 붕소 카바이드, 알루미나, 텅스텐 카바이드 및 이들의 혼합물을 포함하는 그룹으로부터 선택된 엑스-시츄 경화제와 공동 증착된다. 다른 예로, 본 발명은 마무리 기계 가공 후에 인-시츄 입자 경화 금속 메트릭스 합성물로 연속적으로 변형된(최종 열처리)인 경화 합성물로 금속 분말의 공동 증착을 허용한다. 이 예의 변형은 유일한 특성을 갖는 코팅 또는 분무 형성된 재료를 만들기 위해서 금속 분말과 다른 금속 또는 비금속 분말 혼합물의 공동 증착을 허용한다. 예를 들면, 알루미늄 및 크롬 분말의 혼합물(중량으로 동일한 부분)을 공동 증착함에 의해서, 전기적으로 도전성인 스트립이 조절된 전기 저항(즉, 통상 72 μΩ-cm), 우수한 내식성(70 ℉에서 소금물에 침지되어 20년) 및 우수한 강재에 대한 접착 강도를 갖는 강재로 적용될 수 있다.
본 발명은 또한 증착의 특성(예를 들면, 열 팽창, 열 전달성, 강도, 연성, 내식성, 색상 등)이 연속적으로 분급될 뿐만 아니라 분리된 또는 단차식 층으로 기능적으로 분급된 기능적으로 분급된 경화를 포함한다. 기능적으로 분급된 재료의 연속적인 분급은 각각의 분말의 농도가 코팅 두께의 기능으로 변경되는 분말 혼합물을 공동 증착함에 의해서 달성된다.
본 발명에서는 기능적으로 형성되고 기능적으로 분급된 재료의 조합체가 포함된다. 이 실시예의 일예는 완성된 부분 또는 구성요소의 특징에 맞추기 위해 모놀리식 층, 재료를 기능적으로 분급된 층, 제 위치에 기능적으로 형성된 합성 물질 또는 외부에 기능적으로 형성된 합성 물질을 갖는 재료(예를 들어, 금속 합금, 금속 포움, 세라믹 또는 합성 물질)의 내부 코어의 캡슐화(encapsultaion)를 포함한다.
본 발명은 또한 증착 공정 동안 분말의 입자-크기 분포를 제어함으로써 재료가 형성된 다공성 코팅 또는 분무의 경화(consolidation)를 포함한다. 미세 또는 초미세 입자(<325 메쉬)의 혼합 없이 경화된 큰 분말 입자(>325 메쉬)는 고 다공성을 갖는 재료를 제조한다. 이러한 종류의 경화는 다른 금속 및 비금속 재료의 혼합물을 갭슐화하고 밀봉하기 위한 촉매 반응기, 필터 및 매트릭스(matrices)에 대해 다공성 구조를 생성하는 수단을 제공한다. 예를 들어, 기판 표면상에 코팅으로 증착된 티타늄 분말의 다공성 매트릭스는 반응 금속 표면상에 우수한 부식 저항 코팅을 제공하기 위해 에폭시로 밀봉될 수 있다. 다른 예에서, 발화(phyrophoric) 재료는 발화 반응성, 온도 및 발화 플레어(flare)의 스펙트럼 방출을 제어하기 위해 금속 매트릭스 내로 분사될 수 있다. 또 다른 예에서, 반응성 금속 또는 비금속성 재료(예를 들어, 산소 또는 물)는 발화 테르밋 재료에 의해 한계(threshold) 온도까지 가열될 때 폭발적인 혼합물을 생성하도록 금속 매트릭스 경화물(예를 들어, 알루미늄, 보론, 티타늄 또는 그 혼합물)의 기공으로 주입될 수 있다.
단지 상술된 장점뿐만 아니라, 본 발명의 다른 이점은 첨부되는 도면과 결합하여 이하의 상세한 설명으로부터 더욱 명백해질 것이다.
본 발명의 특별한 특징, 태양 및 이점은 다음 설명, 첨부된 청구범위 및 도면을 참조하여 더욱 이해될 것이다.
도1은 기판 상의 충격을 주기 전에 분말 입자를 열적으로 변경하여 노즐 출구와 기판 사이에 형성된 확산 열 전달 플라즈마를 도시한 마찰 보상 음속 노즐 라이너의 조합 블록도 및 단면도이다.
도2는 실린더형 대칭을 도시하도록 마찰 보상 음속 노즐 출구의 확장 평면 외부도이다.
도3은 노즐의 출구를 타원형 단면으로 도시하는 마찰 보상 음속 노즐의 확장 평면 외부도인 도2의 다른 구성이다.
도4는 기판 상에 충격을 주기 전에 분말 입자를 열적으로 변경하고 필릿을 포함하는 기판 재료를 열적으로 변경 또는 용융하여 기판 상의 상승된 필릿 및 노즐 출구 사이에 형성된 포커스된 열 전달 플라즈마를 도시하는 마찰 보상 음속 노즐 라이너의 조합 블록도 및 단면도이다.
도5는 기판 상에 충격을 주기 전에 분말 입자를 열적으로 변경하고 필릿을 포함하는 기판 재료를 열적으로 변경 또는 용융하여 노즐 하우징 둘레에 중심 RF 유도 코일에 의해 발생된 포커스된 열 전달 플라즈마를 도시하는 마찰 보상 음속노즐 라이너의 조합된 블록 다이아그램 및 단면도이다.
도6은 마찰 보상 음속 노즐 내에서 가속시키기 이전에 분말 입자를 열적으로 변경하고 화학적으로 반응하기 위한 분말 입자 분사 포트를 갖는 플라즈마 반응 챔버의 조합 블록 다이아그램 및 단면도이다.
도7은 마찰 보상 음속 노즐의 둘레에 외부 동축 진공 노즐 및 외부 동축 챔버의 겹쳐진 실시예 내에 장착된 마찰 보상 음속 노즐의 조합 블록 다이아그램 및 단면도이다.
도8은 모터 구동 교반 기구 및 유동화 포트를 사용한 고압 처리 라인으로 분말 입자를 혼입하기 위한 분말 유동화 유닛의 측단면도이다.
도9는 벌크 분말 레벨에 대해 이동가능한 유동화 포트를 위치설정하기 위한 구동 모터 또는 기구와 연결된 튜브의 단부에 장착된 이동가능한 유동화 포트를 사용하여 고압 처리 라인으로 분말 입자를 혼입하기 위한 분말 유동화 유닛의 측단면도이다.
도10은 담체 기체 내에 혼입된 분말 입자를 혼합하고 처리하기 위해 배플로 구성된 내부 요소를 포함하는 분말 반응기의 측단면도이다.
도11은 담체 기체 내에 혼입된 분말 입자를 혼합하고 처리하기 위해 관형 구조로 구성된 내부 요소를 포함하는 분말 반응기의 측단면도이다.
도12는 본 발명에 개시된 어플리케이터(applicator) 및 공정을 이용한 기판 상에 증착된 다중층 코팅의 단면도이다.
도13은 알루미늄 기판상의 니켈 플럭스 코팅의 현미경 사진 화상이다.
도14는 스틸 상에 코팅된 알루미늄-크롬 금속 매트릭스 합성 물질의 현미경 사진 화상이다.
도15는 입자 경화 금속 매트릭스 합성 물질로 형성된 6061Al-SiC 외부 분무의 현미경 사진 화상이다.
도16은 기판 표면상에 코팅으로 증착된 다공성 티타늄 경화의 현미경 사진 화상이다.
본 발명의 양호한 실시예의 다음 기재에서, 참고는 그 부품을 형성하고, 본 발명이 실시될 수 있는 특정 실시예의 일예로서 도시되어진, 첨부된 도면으로 구성된다. 다른 실시예가 이용될 수 있으며, 구조적 변경도 본 발명의 영역으로부터 벗어나지 않고 제조될 수 있음이 이해된다.
일반적으로, 본 발명은 아음속 또는 음속 기체 제트로 혼입된 분말 입자를 대상물의 표면에서 고체 형태로 증착 또는 경화하기 위한 장치 및 공정에 관한 것이다. 고속 충돌 및 열가소성 변형하에서, 분말 입자는 야금 접착으로 기판에 끈끈하게 접착되고 서로 점착되게 결합하여 경화된 물질을 형성한다. 가루 입자 및 선택적으로 대상물의 표면은 항복 응력을 감소시키고 소성 변형을 허용하는, 그러나 분말 입자를 용융시킬 만큼 높지 않은 온도까지의 고속 충돌 동안 저유동 응력 수준으로 가열된다. 이런 공정을 열 가소성 조화라고 한다. 가열(열 가소성 조화)에 의해 유도된, 상기 가루 입자 및 기판의 항복 응력이 감소된 채 충돌 공정으로 전달된 입자의 운동 에너지를 동시에 결합시키는 것은 코팅의 고체 상의 증착 및 경화와, 부품들의 분무 형성과, 열 독립적인 소성 변형에 의해 다양한 재료의 결합을 허용한다. 충돌 공정의 속도를 열 가소성 조화와 함께 제어함으로서 재료의 특성은 특정 요건으로 맞춰질 수 있다. 예를 들어, 충돌 공정에 의해 유도된 심한 소성 변형은 경화된 분말 입자의 미세 구조 내의 초미세 구조의 생성을 야기한다. 분말 입자의 열 가소성 조정은 이들 미세 구조가 전위 밀도의 개량된 동적 회복을 통해 전환되는 것을 허용한다. 본 발명의 기본 실시예는 분말 입자 및 기판을 가열하기 위한 몇몇 방법으로 분말 입자를 고속으로 가속시키기 위해 마찰 보상 음속 노즐을 사용한다. 본 발명은 증착 및 경화된 재료로의 공기 또는 원하지 않는 기체의 혼입을 최소화하기 위해 기판까지 비교적 짧은 스탠드오프(standoff) 거리에서 불활성 담체 기체의 지향된 아음속 또는 음속 제트를 사용함으로써 분말 입자의 화학적 연소 및 산화도를 감소시킨다. 분말 입자 및 기판을 열 가소성 조정 또는 가열하는 일 방법은 비교적 짧은 스탠드오프 거리로서 노즐 출구와 기판 사이에 대기압 열전달 플라즈마를 사용한다. 본 발명의 대체 실시예는 가속을 위한 마찰 보상 음속 노즐 내부로 주입하기 전에 분말 입자의 물리적, 화학적 또는 원자핵 특성을 개선시키기 위해 분말 반응기(reactor)를 사용한다. 분말 반응기의 양호한 실시예는 담체 기체 및 분말 입자 혼합물을 가열 또는 이온화하기 위한 고압의 플라즈마 반응기 챔버를 사용한다. 플라즈마 및 가열된 기체 모두에서 생성되는 다양한 반응의 화학 종을 사용하여 분말 입자 또는 기판을 화학적으로 반응시킬 목적으로 화학 물질 또는 화학 기체 혼합물이 담체 기체에 첨가될 수도 있다. 분말 입자는 마찰 보상 음속 노즐 내에서의 가속 이전에 상기 입자를 가열시키도록 플라즈마-가열된 기체 내부의 하류측으로 주입된다. 또한, 어플리게이터(applicator)는 환경 및 경제적인 목적으로 재생되도록 여분의 분말 입자 및 노즐 기체를 회수하기 위해서 마찰 보상 음속 노즐을 둘러싸는 외부 진공 챔버 및 선택 외부 동축식 진공 노즐을 사용한다. 마지막으로, 분말 입자를 담체 기체 내부에 유동, 혼입 및 혼합하기 위한 분말 유동화 유닛이 어플리게이터의 일부분으로서 포함된다. 다공성 재료, 다중 층 코팅, 기능적으로 분급된 재료, 기능적으로 형성된 인-시츄(in-situ) 또는 엑스-시츄(ex-situ) 합성 재료를 제조하기 위해 다른 금속 또는 비금속 분말 혼합물과 함께 분말 입자를 공동 증착 및 경화함으로써 본 발명의 플랙티스를 감소시키는 방법이 개시된다. 본 시스템 및 프로세스의 앞선 태양은 이어지는 단락에서 더 상세히 설명될 것이다.
도1은 본 발명에 사용되는 장치 및 프로세스의 기본 실시예를 도시한다. 마찰 보상 음속 노즐(2)의 라이너(1)는 담체 기체(4)의 지향된 제트 내에 혼입된 분말 입자(3)를 가속시키는 데 사용된다. 담체 기체(4) 내의 분말 입자(3)를 생성, 혼입 및 처리하는 방법은 본 발명자에게 허여된 미국 특허 제6,074,135호에 개시된다. 담체 기체(4) 내에 혼입될 수 있는 분말 입자(3)의 형태는 여기에 제한되지는 않지만, 금속, 합금, 저온 합금, 고온 합금, 초합금, 동 충전제, 금속 매트릭스 성분, 비금속, 세라믹, 폴리머 및 그 혼합으로 구성된 분말을 포함한다. 인듐 및 주 석계 결합물 및 실리콘계 알루미늄 합금(예를 들면, 4043, 4045, 4047)은 본 발명의 장치 및 프로세스를 사용하여 코팅, 분무 형성 및 다양한 금속의 접합을 위해 고체상에서 증착 및 경화될수 있는 저온 합금의 일예이다. 고온 합금은 여기에 제한되지는 않지만, NF616(9Cr-2W-Mo-V-Nb-N), SAVE25(23Cr-18Ni-Nb-Cu-N), Thermie (25Cr-20Co-2Ti-2Nb-V-Al) 및 NF12(11Cr-2.6W-2.5Co-V-Nb-N)을 포함한다. 초합금은 니켈, 강-니켈 및 1985년 데스크 판, 금속 핸드북(OH 44073, 메탈 파크, 미국 금속 학회) 16-5 페이지에 개시된 코발트계 합금을 포함한다. 또한 니켈 및 코발트 코팅된 텅스텐 분말과 같은 다른 금속으로 코팅된 분말 입자(3)는 본 발명의 장치 및 프로세스에서 사용될 수 있는 특정 형태의 합성 분말로서 포함된다.
본 발명의 장치 및 프로세스를 위한 양호한 분말 입자의 크기는 일반적으로 325 mesh의 상한을 가지는(< 45 마이크로미터) 광범위한 분포이다. 그러나, 45 마이크로미터를 초과하는 분말 입자 크기도 금속 매트릭스 합성물을 형성하기 위한 매트릭스 금속 재료와의 공동-증착용 경화제로서 사용될 수 있다. 나노 스케일의 범위 내의 분말 입자의 크기도 본 발명의 장치 및 프로세스에서 증착 및 경화될 수 있다.
담체 기체(4)는 여기에 제한되지는 않지만, 공기, 아르곤, 카본 4플루오르화물, 카르보닐기 플루오르화물, 헬륨, 수소, 메탄, 질소, 산소, 시레인, 증기, 황 6플루오르화물 또는 다양한 농도의 그 혼합물을 포함하는 그룹으로부터 선택된다. 헬륨 기체는 그 밀도, 고 음속 및 플라즈마를 발생시키는 데 사용되는 유전체 파괴 특성 때문에 노즐 라이너(1) 내부에서 고속으로 분말 입자(3)를 가속시키기 위해 양호한 불활성 담체 기체(4)이다. 또한, 헬륨은 담체 기체(4) 및 분말 입자(3)가 분말 입자를 산화 또는 화학적 반응시키지 않고 상승된 온도에서 열 조정되는 것을 허용한다. 헬륨 담체 기체(4) 내의 아르곤 혼합물은 불활성 기체 환경을 유지시키면서 마찰 보상 음속 노즐(2) 내에서 분말 입자의 개량된 가속을 제공한다. 헬륨, 수소, 아르곤 및 질소를 사용하는 특정 담체 기체(4) 혼합물은 마찰 보상 음속 노즐(2) 내에서 분말 입자의 최대 가속을 위해 담체 기체(4)의 밀도를 최적화시키면서도 순수 헬륨 기체의 음속과 동일한 고 음속을 가지는 담체 기체(4) 혼합물을 제공하도록 추가적으로 제작될 수 있다. 헬륨 담체 기체(4) 내에 수소와 같은 다른 반응 기체 혼합물이 분말 입자(3) 상에 산화 층을 제거하도록 분말 입자(3) 내부에서 화학적으로 반응하도록 사용될 수 있다. 담체 기체(4) 내에 혼입된 분말 입자(3)의 화학적 및 물리적 처리는 여기에 제한되지는 않지만 공기, 수소, 카본 4플루오르화물, 카르보닐기 플루오르화물, 메탄, 질소, 산소, 증기, 시레인, 황 6플루오르화물 또는 그 혼합물을 포함하는 그룹으로부터 선택된 다양한 농도의 다양한 반응 기체 혼합물에 의해 더욱 충족될 수 있다.
마찰 보상 음속 노즐(2)의 라이너(1)는 10:1의 길이 대 목 섹션(6) 직경 비를 가지는 선대칭 수렴 입구(5)를 사용함으로써 담체 기체(4) 내에 혼입된 분말 입자(3)를 가속시키도록 설계된다. 양호하게는, 선대칭 수렴 입구(5)는 대략 40:1의 길이 대 목 섹션(6) 직경 비를 가진다. 목 섹션(6)에 이어지는 선대칭으로 테이퍼진 출구(7)는 담체 기체(4) 및 혼입된 분말 입자(3)와 연계된 유동 마찰 때문에 담체 기체(4) 유동을 일정 속도(≤1 마하)로 제한한다. 테이퍼진 출구(7)의 외형은 마찰과 일정 속도에 대한 길이 함수로서의 직경 변화의 공지된 관계(존, 제이. 이. 에이., 1984년 판, 기체 동역학, 매사츄세츠주 보스턴 소재의 알린 앤드 바콘사, 196페이지 식9.36)에 따라 규정된다.
식(1)은 마찰과 단열 유동에 대한 일반적인 관계를 제공하고, 여기서 f는 유동 마찰 계수, γ는 담체 기체(4) 및 분말 입자(3)에 대한 특정 열 용량 비, M은 유동의 마하 수, 그리고 A는 길이 x의 함수로서의 선대칭으로 테이퍼진 출구(7) 섹션의 면적이다. 일정 속도 유동의 경우에 있어서, 제2항의 도함수는 0이고, 이는 원형 단면에 대한 길이 함수(식 2 참조)로서의 선대칭으로 테이퍼진 출구(7)의 직경 변화(D)를 산출시켜준다. 동시에, 식(2)에 의해 규정되는 선대칭으로 테이퍼진 출구(7)의 외형은 식(3, 등엔트로피 및 단열 유동)에 제시된 바와 같이 선대칭으로 테이퍼진 출구(7) 섹션 내의 기체 밀도를 최대화시키지만, ρt가 선대칭 수렴 입구(5)에서의 기체 밀도인 아음속 또는 음속 유동에 대해서만 그러하다. 따라서, 기체 음속에 대해 회선된 최대 기체 밀도는 담체 기체(4)의 음속 속도까지 분말 입자(3)의 최대 가속을 달성하기 위해 분말 입자(3) 상에 최대 항력을 야기시킨다. 식(1) 내지 식(3)에 대한 수정이 존, 제이. 이. 에이., 1984년 판, 기체 동역학, 매사츄세츠주 보스턴 소재의 알린 앤드 바콘사, 페이지 222, 식10.32에 주어진 바와 같이, 마찰에 대한 비 단열 유동 이론을 명백히 설명하기 위해 필요함을 주목하여야 한다.
Figure 112003039787135-pct00001
Figure 112003039787135-pct00002
Figure 112005058311052-pct00020
길이 대 목 섹션(6) 직경 비(헬륨에 대해 식(2) 계산)는 마하 1 정도의 일정 유동 속도에서 헬륨 기체를 사용하여 0.05의 중간 유동 마찰로서 선대칭으로 테이퍼진 출구(7) 섹션에 대해 48:1로 특정된다. 0.15로 높은 중간 유동 마찰에 대해서, 선대칭을 테이퍼진 출구(7) 섹션의 길이 대 목 섹션(6) 직경 비는 마하 1 정도의 일정 유동 속도에서 헬륨 기체에 대해 15:1로 감소된다. 유동 마찰을 구비한 비단열 조건에 대한 수정 이후의 등엔트로피 유동에 대하여 M≤1.0인 식3에 의해 기술된 바와 같이, 상기 특정된 직경 변동성은 입구 기체 밀도에 대한 담체 기체(4) 밀도를 축대칭형 테이퍼진 출구(7) 섹션의 전체 길이를 따라서 최대값으로 고유하게 유지한다. 즉, 상기 주어진 관계식(식2)에 의해 특정된 것을 초과한, 축대칭형 테이퍼진 출구(7) 섹션의 직경 변동성에 관하여, 담체 기체(4) 밀도(즉, 입구 기체 밀도에 대한)는 팽창 조건이 기체가 음속을 초과하여 진행할 수 있게 할 때 식3에 의해 설명된 바와 같이 감소할 것이다. 한편, 상기 주어진 관계식(식2)에 의해 특정된 것보다 작은 축대칭형 테이퍼진 출구(7) 섹션의 직경 변동성에 의하여, 매체 유동 마찰은 담체 기체(4) 속도를 입자 속도의 상응하는 감소를 가지는 아음속 영역으로 계속하여 감소시킬 것이다. 따라서, 축대칭형 테이퍼진 출구(7) 섹션에 대해여 상기 특정된 직경 변동 조건(식2)에 대하여 및 상기 특정된 길이 대 목 섹션(6) 직경비 한계에 따라서, 담체 기체(4) 밀도(입구 기체 밀도에 대한)는 선대칭 수렴 입구(5) 및 축대칭형 테이퍼진 출구(7) 섹션 모두 내에서 최대화된다. 선대칭 수렴 입구(5) 섹션 내에서 담체 기체(4) 밀도(입구 기체 밀도에 대한)는 등엔트로피 유동 이론(식3)을 적용하고 유동 마찰 및 비단열 유동 이론을 보상함으로써 예견된다. 축대칭형 테이퍼진 출구(7) 섹션에서, 담체 기체(4) 밀도(입구 기체 밀도에 대한)는 (유동 마찰 효과 및 비단열 유동에 대한 수정 이후에)노즐의 길이를 따라서 최대값으로 유지된다. 축대칭형 테이퍼진 출구(7) 섹션 내에서 유지되는 마하1의 일정 음속으로 회선된 상기 조건은 마찰 보상 음속 노즐(2)의 전체 길이를 통하여 분말 입자를 가속하는 최대 항력을 고유하게 제공한다.
마찰 보상 음속 노즐(2)은 담체 기체(4) 기류 및 증착 영역 내로 불필요한 기체의 유입을 감소시키기 위해 테이퍼진 출구(7) 섹션으로부터 유동하는 분말 입자(3) 및 담체 기체(4) 혼합물을 좁은 단면 영역 제트로 한정한다. 또한, 담체 기체(4)는 마찰 보상 음속 노즐(2)의 출구와 마찰 보상 음속 노즐(2)로부터 기판(12) 이격 거리에의 넓은 범위에 대한 기판 사이에서 아음속 비팽창 제트를 유지하기 위해 음속 보다 약간 작은 속도로 마찰 보상 음속 노즐(2)을 나온다.
높은 기체 압력에서 표면을 연마하고 세척하기 위해 그릿 및 샌드 블라스팅 산업 분야에서 사용되는 통상적인 긴 벤튜리 노즐은 본 발명의 장치 및 공정에서 사용된 담체 기체(4) 내에 동반된 분말 입자(3)에 대하여 마찰 보상되지 않는다. 이러한 노즐은 통상적으로 압축 공기의 초음속 유동을 유발하며 5 mm를 초과하는 목 섹션 직경을 가진다. 또한, 이러한 노즐은 수렴 섹션에서는 10:1, 원형 단면 노즐의 발산 출구에서는 12:1 이하의 길이 대 목 섹션 직경비를 가진다. 상기와 같이, 이러한 초음속 노즐의 설계는 본 발명의 장치 및 공정에서 특정된 담체 기체(4) 내부의 고 충격 속도로의 분말 입자(3)의 최대 가속이 일어나지 않게 한다.
마찰 보상 음속 노즐(2)의 단면 및 보다 중요하게는 도1에 도시된 라이너(1)는 노즐 축에 대하여 원통형 대칭성을 가지며, 마찰과 함께 마하1 이하의 일정 속도로의 유동을 억제하는 다른 라이너(1) 윤곽이 포함된다. 예컨대, 타원 형상(단면) 테이퍼진 출구(7)가 또한 본 발명의 장치에 포함된다. 전체적으로 식1 내지 식3으로 기술된 효과적인 구속 조건이 마찰 보상 유동을 위해 여전히 요구되지만, 비원형 단면의 복합적인 기하학적 형상은 3차원 해법을 요구한다. 타원 형상(단면) 테이퍼진 출구(7)에 대한 정확한 해법을 구하기 위해 비단열 3D 유동 이론에 대한 재수정이 요구된다. 도2는 원통형 대칭을 명확히 하기 위해 마찰 보상 음속 노즐(2)의 평면 출구도를 도시한다. 반면에, 도3은 마찰 보상 음속 노즐(2)에 대한 타원 형상 단면을 구비한 테이퍼진 출구(7)를 도시한다.
라이너(1)는 금속, 합금, 세라믹, 비금속 또는 이들의 혼합물을 포함하는 그룹에서 선택된 구조의 재료로 제조되고 복합 담체 기체(4) 및 혼입된 분말 입자(3) 혼합물에 대한 특정된 유동 마찰값을 가진 표면 마무리로 기계가공된다. 노즐 하우징(8)은 고압 호스를 경유하여 태포른 및 거벨(Tapphorn and Gabel)에게 허여된 미국 특허 제6,074,135호에 개시된 분말 액화 유닛과 같은 고압 분말 공급기로 정합하기 위한 적절한 나사부(10) 또는 끼움부를 가진다.
담체 기체(4) 및 분말 입자(3)를 포함하는 마찰 보상 음속 노즐(2)로부터의 유출물(effluent output)은 마찰 보상 음속 노즐(2)과 기판(12) 사이의 상대적으로 짧은 이격 거리에서 설정된 열 전달 플라즈마(11)내로 주입된다. 헬륨 기체가 아크를 일으키는 이온화를 제한하기 위해 대기 플라즈마(즉, 미국 특허 제5,961,772호, 라루시 엠(Laroussi, M.), 1196년 6월, "대기압 플라즈마를 이용한 오염 물질의 살균(Sterilization of Contaminated Matter with an Atmospheric Pressure Plasma)", IEEE 역, 플라즈마 사이언스 제24권, 제3호, 제1188면 내지 제1191면)를 발생시키기 위해 빈번하게 사용되며, 이러한 헬륨 기체는 본 발명에 대한 양호한 담체 기체(4)이다. 헬륨 내 산소 또는 다른 기체 혼합물이 표면의 반응성 이온 에칭을 위해 대기 플라즈마(즉, 미국 특허 제5,961,772호) 내부에 화학 기 및 준안정 종을 발생시키기 위하여 빈번하게 사용된다. 본 발명은 증착 동안에 분말 입자(3)와 기판(12) 재료를 화학적으로 반응시키기 위해 담체 기체(4)에 화학 물질의 혼합물의 추가를 포함한다.
본 발명의 장치 및 공정으로써 증착 및 경화 표면을 위해 코팅되거나 사용될 수 있는 기판(12) 재료의 유형은 금속, 합금, 저온 합금, 고온 합금, 초합금, 금속 매트릭스 혼합물, 비금속, 세라믹, 폴리머, 및 그들의 혼합물로 구성된 재료의 그 룹으로부터 선택되지만 이것으로 한정되지는 않는다.
기판(12)은 RF 애노드 전위(15)에 있고, 노즐은 RF 캐소드 전위(16)에 있도록 임피던스 정합 네트워크(14)를 통해 결합된 종래의 RF 발생기(13)를 사용하여 열 전달 플라즈마(11)가 발생된다. 이러한 배열은 추가적으로 사용된 기판(12)을 향한 전류가 기판(12)의 가열, 에칭 및 세척을 위해 기판(12)으로 열전달 플라즈마(11)를 유인할 수 있게 한다. 반대 극성 연결(도1에 명백히 도시 안됨)에는 또한 RF 애노드 전위(15)에 연결된 마찰 보상 음속 노즐(2)과 RF 캐소드 전위(16)에 연결된 기판(12)이 제공된다. RF 발생기(13)의 전력 수준은 열 전달 플라즈마(11)를 통한 전이 시간 동안 분말 입자(3)를 가열하기 위해 조정된다.
동시에 가열에 의해 유발된 분말 입자(3) 및 기판(12)의 항복 강도의 감소와 함께 충격 공정으로 이송되는 분말 입자(3)의 운동 에너지를 결합하는 것은 열 의존 소성 변형을 통하여 다양한 재료의 코팅의 고상 증착 및 경화를 허용한다. 이러한 공정은 낮은 공극율, 낮은 산화, 및 최소 열 왜곡을 구비한 고품질 코팅(17)을 산출한다. 공정이 상대적으로 짧은 이격 거리에서 기판(12) 상에 증착 또는 경화 이전에 불활성 기체의 유도된 제트 내로의 공기 및 불필요한 기체의 혼합 및 동반을 감소시키기 때문에 분말 입자(3)의 산화 및 화학적 연소의 감소가 달성된다. 또한, 공정은 고유의 나노 구조 및 마이크로 구조로써 증착 및 경화를 산출하고 다양한 재료의 분무 형성, 결합 및 융합을 허용한다. 특정된 두께로 증착을 허용하는 속도에서 기판(12) 상으로 레스터형으로 마찰 보상 음속 노즐(2)을 변형시킴으로써 기판(12)의 넓은 면적에 걸쳐서 코팅(17)이 분무된다.
라이너(1)의 냉각은 마찰 보상 음속 노즐(2)을 통과하는 담체 기체(4)의 높은 유속을 발생시킨다. 만일 필요하다면, 냉각 코일(18)을 통해 물 또는 다른 냉매를 유동시킴으로써 노즐 하우징(8)의 추가적인 냉각이 제공된다. 최종적으로, 노즐 하우징(8)의 벽 내에 원주형으로 분포된 복수개의 도관(20)을 통해 불활성 기체를 주입함으로써 불활성 기체 차폐물(19)이 제공된다. 플라즈마 내로 공기 또는 불필요한 오염 기체의 유입을 감소시키기 위해 코팅(17)을 산화시킬 수 있는 또는 그렇지 않으면 화학적으로 상호작용할 수 있는, 또는 플라즈마를 붕괴시킬 수 있는 불활성 기체 차폐물(19)이 사용된다. 복수개의 도관(20)은 노즐 하우징(8)을 둘러싸는 원주형 분기관(21)을 사용하여 불활성 기체의 단일 공급원으로부터 동시에 공급될 수 있다.
도4는 RF 발생기(13)와 임피던스 정합 네트워크(14)를 이용하는 마찰 보상 음속 노즐(2)과 기판(12) 사이에 설치된 열-전달 플라즈마(11)를 통해 지시되는 분말 입자(3)를 이용하는 재료의 분무 형성, 결합 또는 융합의 응용 제품에 이용된 마찰 보상 음속 노즐(2)을 도시한다. 분무 형성, 결합 또는 융합 공정에서, 도4에 도시된 바와 같이 증착이 융기된 필렛(22)을 만든다. 융기된 필렛(22)은 미리 증착된 재료의 가열 및 용해를 더 개선시키기 위해 기판(12)에 열-전달 플라즈마(11)를 포커싱하기 위한 수단을 제공한다. 이러한 특정 예에서, 기판(12)은 융기된 필렛(22)을 형성하는 분무에 의해 버트 조인트로써 결합되는 두 개의 개별 단편(23, 24)을 나타낸다. 따라서, 분말 입자(3), 기판(12) 재료 및 인가된 RF 발생기(13) 전력의 선택에 따라, 본 발명의 장치 및 공정이 분무 형성 재료뿐만 아니라 융합 재료에 의해 유사하거나 유사하지 않은 재료를 결합할 수 있다.
도5는 라이너(1)의 선대칭 테이퍼진 출구(7) 내에서 열-전달 플라즈마(11)를 발생시키기 위한 노즐 하우징(8)으로 둘러싸인 RF 유도 코일(25)을 포함하는 본 발명의 기본 실시예의 변형을 도시한다. 이러한 구성에서, 노즐 하우징(8)과 라이너(1)를 구성하는 재료는 RF 유도 코일(25)을 절연하고 선대칭 테이퍼진 출구(7)의 공극 내로 RF 장의 통과를 허용하기 위해 높은 전기 저항성을 갖는다. RF 유도 코일(25)은 라디오 주파수 전력용으로 높은 전도성을 제공하기 위해 황동 또는 구리 재료로 구성된다. RF 유도 코일(25)을 통해 유동하는 물 또는 다른 유체가 코일과 노즐 하우징(8)을 냉각시키기 위해 이용된다. RF 발생기(13)는 임피던스 정합 네트워크(14)를 통해, 임피던스 정합 네트워크(14)의 캐소드 전위(16) 단자로 복귀되는 접지를 갖는 RF 유도 코일(25)로 연결된다. 기판(12)과 노즐 하우징(8) 출구의 금속 팁(27) 사이에 연결된 DC 바이어스 공급원(26)을 채용함으로써 이러한 구성에 대해 열-전달 플라즈마(11)가 기판(12)에 부착된다. 도5에 도시된 구성은 마찰 보상 음속 노즐(2)과 기판(12) 사이에 설치된 열-전달 플라즈마(11) 내에서 열가소성 상태인 분말 입자(3)를 이용하는 재료의 분무 형성, 결합 또는 융합용으로 이용된다. 융기된 필렛(22)은 미리 증착된 재료의 가열 및 용해를 더 개선시키기 위해 기판(12)에 열-전달 플라즈마(11)를 포커싱하기 위한 수단을 제공한다. 코팅(17) 응용 제품용으로 도1에 도시된 확산 열-전달 플라즈마(11)의 구성은 도5에 도시된 장치의 대체 구성으로써 또한 포함되고, DC 바이어스 공급원(26)은 확산 열-전달 플라즈마(11)를 기판(12)으로 끌어당기는데 이용된다.
마찰 보상 음속 노즐(2)의 희생 노즐 대체예가 도5에 도시된다. 이러한 경우, 금속 팁(27)은 제거 가능하고, DC 바이어스 공급원(26)을 이용하는 금속 팁(27)쪽으로 지시된 열-전달 플라즈마(11)의 전자 유동으로 미립화될 수 있는 희생 재료로서 이용된다. RF 발생기(13)의 RF 전력은 담체 기체(4)에 의해 제공된 불활성 기체와 불활성 기체 차폐물(19) 내에서 희생 금속 팁(27)을 더 가열하기 위해 증가된다. 희생 금속 팁(27)으로부터 미립화된 금속은 분말 입자(3)와 담체 기체(4)를 포함하는 폐기물 내로 결합되고, 열-전달 플라즈마(11)에 의해 두 개의 개별 단편(23, 24)[도1의 기판(12)]으로서 나타내어지는 기판으로 전달한다. 희생 금속 팁(27)으로부터 미립화된 금속은 (도1의) 코팅(17) 또는 분무 형성된 융기된 필렛(22) 재료의 물리적 및 화학적 특성을 변경하는 데 이용된다.
도5에 도시된 대체 희생 노즐은 또한 희생 금속 팁(27)과의 조합한 도4의 마찰 보상 음속 노즐(2)의 구성을 이용함으로써 채용될 수 있다. 이러한 경우, 두 개의 개별 단편(23, 24)으로 나타낸 기판이 캐소드 전위(16)에 연결될 때 임피던스 정합 네트워크(14)의 역극성이 애노드 전위(15)를 노즐 하우징(8)에 연결하는데 이용된다.
선택적으로, 본 발명의 장치 및 공정의 상보적인 실시예가 담체 기체(4)와 분말 입자(3)의 혼합물을 가열 또는 이온화하기 위해 고압 플라즈마 반응 챔버(28)를 이용하는 도6에서 도시한 바와 같이, 태폰과 가벨에게 허여된 미국 특허 제6,074,135호에 개시된 저항 또는 유도 가열기로 구성된 분말 반응기를 통해 분말 입자(3) 혼합물을 갖는 담체 기체(4)가 유동함에 따라 분말 입자(3)는 일반적으로 열가소성 상태이다. 분말 입자(3) 또는 (도1의) 기판(12)을 화학적으로 반응시키기 위해, 화학 물질의 혼합물이 담체 기체(4)에 또한 추가될 수 있다. 플라즈마 반응 챔버(28)의 일 구성에서, 포트(29)를 통해 주입된 담체 기체(4)는 플라즈마 반응 챔버(28) 내에서 제1 가열 또는 이온화된다. 담체 기체(4)에 혼입된 분말 입자(3)는 마찰 보상 음속 노즐(2)을 통해 가속하기 전에 분말 입자(3)를 화학 반응 또는 가열시키기 위해 포트(30)를 통해 사실상 하류에 주입된다. 플라즈마 반응 챔버(28)와 하류 주입 포트(30) 사이의 거리는 상이한 길이의 튜브(31)를 이용함으로써 조절 가능하게 제조된다. 적절한 거리는 담체 기체(4)에 혼입된 분말 입자(3)를 가열하는데 요구되는 기체 온도와 분말 입자(3) 또는 기판(12)의 화학 처리를 달성하기 위해 요구되는 노출 기간에 의해 결정된다. 본 발명은 거의 용해된(용융점에 근접한) 또는 용해된 분말 입자(3)와 비교해서 비교적 낮은 온도에서 불활성 담체 기체(4) 환경 내에서 분말 입자(3)의 열가소성 상태에 의해 분말 입자(3)의 산화 및 화학적 연소를 감소시킨다.
플라즈마 반응 챔버(28)의 변경된 작동에서, 담체 기체(4)에 혼입된 분말 입자(3)는 플라즈마 반응 챔버(28)에서 발생된 플라즈마 내에서 분말 입자를 인-시츄 가열, 이온화 및 화학 반응시키기 위해 포트(29)를 통해 주입된다. 다시, 화학 물질 혼합물은 분말 입자(3) 및/또는 (도1의) 기판(12)을 화학 반응시키기 위해 담체 기체(4)에 첨가된다. 담체 기체(4)에 혼입된 유사하거나 상이한 분말 입자(3)의 혼합물은 마찰 보상 음속 노즐(2)을 통해 가속시키기 전에 변경된 상태(예를 들어, 저온 또는 최소 이온화)에서 분말 입자(3)를 가열 또는 화학 반응시키기 위해 포트(30)를 통해 또한 선택적으로 주입될 수 있다. 이러한 변경된 작동은 상이한 정도의 인가된 열 또는 화학 반응성을 갖는 다양한 타입의 분말 입자(3)를 혼합하는 수단을 제공한다.
열 플라즈마(32)는 중심 전극(34)의 팁과 동심 전극 하우징(35) 사이의 주연 통로(33)에서 발생된다. 중심 전극(34)은 RF 발생기(13)에 연결된 임피던스 정합 네트워크(14)의 RF 애노드 전위(15)에 연결된다. 유사하게, 동심 전극 하우징(35)은 RF 발생기(13)에 연결된 임피던스 정합 네트워크(14)의 RF 캐소드 전위(16)에 연결된다. 중심 전극(34)이 RF 캐소드 전위(16)에 연결되고 동심 전극 하우징(35)이 RF 애노드 전위(15)에 연결되는 역극성도 또한 플라즈마 반응 챔버(28)의 작동 배열에 포함된다. 이러한 경우, 동심 전극 하우징(35)은 RF 전압과 주파수용으로 전기적으로 절연되어야 한다. RF 전력은 중심 전극(34)과 동심 전극 하우징(35) 사이에 설치된 유전성 플러그(36)에 의해 RF 전압과 주파수용으로 전기적으로 절연된다. RF 발생기(13)의 전력 출력은 담체 기체(4)에 혼입된 분말 입자(3)의 적절한 가열을 달성하기 위해 조절된다. 선택적으로, 중심 전극(34)은 중심 전극(34)의 팁과 동심 전극 하우징(35) 사이의 주연 통로(33)에서 열 플라즈마(32) 또는 아크를 발생시키기 위한 고주파 아크 스타터/안정기 유닛을 갖춘 종래의 AC/DC 전원 공급기에 연결될 수 있다. 통상적으로, 100 psig 압력이고 15 SCFM의 유동률을 갖는 헬륨 기체 내의 20 마이크로미터의 알루미늄 입자용으로, 500 내지 1000 와트의 RF 전력이 알루미늄 입자를 400 캘빈(Kelvin)의 온도로 가열하기 위해 요구된다.
중심 전극(34)의 냉각은 튜브(37)를 통해 담체 기체(4)의 일부를 유동시킴으로써 달성된다. 동심 전극 하우징(35)의 선택적인 냉각은 입구 포트(39)와 출구 포트(40)를 통해 동심 전극 하우징(35) 내에 제조되는 주연 환형 공극(38)을 통해 냉각 유체(예를 들어, 물)를 유동시킴으로써 달성된다.
도7은 담체 기체(4) 및 과다 분말 입자(3)의 2상 복귀(recovery)를 수용하도록 마찰 보정 음속 노즐(2)을 둘러싸는 선택적 외부 동축 진공 노즐(42, evacuator nozzle)을 구비한 진공 챔버(41)의 겹친 실시예를 도시한다. 외부 동축 진공 노즐은 초음속 노즐과 함께 사용하기 위해 본 발명자들에게 허여된 미국 특허 제5,795,626호 및 제6,074,135호에 먼저 개시되었다. 담체 기체(4), 과다 분말 입자(3) 및 다른 제거된 기판(12) 재료를 포함하는 2상 유해 방출물은 종래의 먼지 수집기를 사용하여 각각 포트(43, 44)를 통해 외부 진공 챔버(41) 및 외부 동축 진공 노즐(42)을 통해 진공된다. (종래의 입자 증착 및 필터 유닛; 틸만 등의 미국 특허 제5,035,089호 또는 반쿠이켄 쥬니어 등의 미국 특허 제4,723,378호와 유사한) 먼지 수집기는 과다 분말 입자(3) 및 담체 기체(4), 공기 또는 다른 기체에 혼입된 제거된 기판 물질을 진공시키고 필터링하기 위해 배기 흡입 송풍기를 사용한다.
담체 기체(4), 공기 및 다른 기체는 정화되고, 재압축되고, 종래의 확산 또는 극저온 추출 방법을 사용하여 경제적 목적으로 재생될 수 있다. 과다 분말 입자(3)는 또한 환경적, 경제적 목적으로 재생될 수 있다.
외부 동축 진공 노즐(42) 외형은 담체 기체(4), 과다 분말 입자(3) 및 제거된 기판(12) 재료의 2상 유동 동적 복구를 수용하도록 형성된다. 이러한 외부 동축 진공 노즐(42)의 특정 실시예는 외부 동축 진공 노즐(42)과 기판(12) 사이에 기체 담지 채널(45)용으로 제공된다. 기체 담지 채널(45)을 통한 기체의 유입은 유동 동적 기체 담지체를 제공하고 해로운 물질이 대기로 방출되는 것을 방지한다. 대체 실시예에서 외부 동축 진공 노즐(42)의 립부(46)는 시일을 형성하기 위해 기판(12)과 직접 접촉되어 장착된다. 외부 동축 진공 노즐(42)을 구비한 외부 진공 챔버(41)를 사용한 조합에 추가하여, 복수의 겹친 외부 진공 챔버(41)는 또한 차등 기체 확산 차단부를 제공하도록 사용될 수 있다. 이러한 접근은 조성물의 경제적 복귀를 가능한 충분하게 높은 수준에서 담체 기체(4)(예를 들어, 헬륨)의 특정 조성물의 농도를 유지한다.
도8은 본 발명의 마찰 보상 음속 노즐(2)과 함께 사용하기에 적절한 분말 유동화 유닛(47)을 도시한다. 분말 유동화 유닛(47)은 호퍼(48), 혼합 장치(49), 입구 포트(50) 및 출구 포트(51)를 포함한다. 분말 유동화 유닛(47)은 유동화하여 담체 기체(4) 내의 분말 입자(3)로 벌크 분말(52)을 혼입한다. 분말 유동화 유닛(47)은 분말 입자(3)와 담체 기체(4)의 사실상 균일한 혼합을 생성할 수 있고 담체 기체(4) 내에 혼입되고 유동화되는 분말 입자(3)의 고 농도를 허용할 수 있다.
호퍼(48)는 도관(vessel), 용기 또는 벌크 분말(52)을 유지하도록 형성된 종래의 호퍼이다. 호퍼(48)는 리드(53), O-링(54), 볼트(55) 및 플러그(56)를 포함한다. 리드(53)는 호퍼(48) 위로 설치되고 볼트(55)를 구비한 리드(53)를 체결함으로써 하나 이상의 O-링(54)과의 고압 작용으로 밀봉된다. 플러그(56)는 호퍼(48)의 드레인 포트를 밀봉하고 벌크 분말(52)이 호퍼(48)로부터 배수되도록 사용될 수 있다.
입구 포트(50)는 호퍼(48) 안으로 담체 기체(4)를 주입시킨다. 혼합 장치(49)는 담체 기체(4) 내의 분말 입자(3)를 유동화하고 혼입시키기 위해 벌크 분말(52)과 담체 기체(4)를 혼합하는 기계적 또는 기체 유동화 장치일 수 있다. 다음에, 담체 기체(4)에 혼입된 분말 입자(3)의 형태로의 이러한 혼합은 출구 포트(51)를 통해 나가고, 상술된 마찰 보상 음속 노즐(2)로 또는 처리를 위해 분말 반응기로 보내질 수 있다. 하나 이상의 분말 유동화 유닛(47)은 복수의 마찰 보상 음속 노즐(2)을 병렬로 공급하는데 사용될 수 있다. 다중 분말 유동화 유닛(47)은 또한 단일 마찰 보상 음속 노즐(2) 또는 다중 마찰 보상 음속 노즐(2)에 연결된 매니폴드에 연결될 수 있다. 단일 마찰 보상 음속 노즐(2) 또는 다중 마찰 보상 음속 노즐(2)로 매니폴드를 통해 연결된 몇몇 분말 유동화 유닛(47)의 사용은 상이한 형태의 벌크 분말(52) 또는 상이한 형태의 담체 기체(4)를 혼합시키는 것을 허용한다.
혼합 장치(49)는 다양하게 제거된 속도로 구동될 수 있는 교반기(57)를 포함할 수 있다. 교반기(57)는 벌크 분말(52)을 담체 기체(4) 안으로 상승시켜 보내기 위해 충분히 고속으로 작동될 수 있는 오거(auger) 또는 유사한 스크루형 장치일 수 있다. 교반기(57)는 브라켓(59)에 의해 리드(53)에 장착되고 모터(58)에 연결되고 상기 모터는 샤프트(60)를 통해 교반기(57)에 연결된다. 샤프트(60)는 마모 환경에서의 고압 작동을 위해 설계된 하나 이상의 회전 시일(61)을 사용하여 리드(53)에서 회전할 수 있다. 교반기(57)는 또한 벌크 분말(52)을 담체 기체(4) 안으로 상승시켜 담체 기체(4) 안으로 내보낼 수 있는 버킷을 갖춘 이송기 체인일 수 있다. 교반기(57)에 연결도니 모터(58)의 속도는 또한 출구 포트(51) 안으로의 배출 이전에 담체 기체(4)에 혼입된 분말 입자(3)의 특정 질량 부하 농도를 달성하도록 조절되고 제어될 수 있다. 이러한 유동화 공정은 중력 정착력에 대해 분말 입자(3) 위에 담체 기체(4)에 의해 가해진 난류력과 부력을 균형을 맞춤으로써 벌크 분말(52)로부터의 분말 입자 크기의 분배를 혼입하고 선택하는데 효과적이다. (도8에 분명하게 도시되지 않은) 종래의 기계 또는 전기 진동기는 전형적으로 만약 교반기(57)의 진공이 충분하지 않으면 호퍼(48)의 바닥부로 벌크 분말(52)을 진동시키기 위해 호퍼(48)의 외부에 부착된다.
혼합 장치(49)는 또한 호퍼(48)의 분말 레벨 아래와 호퍼(48)의 벽에 위치된 하나 이상의 유동화 포트(62)를 포함할 수 있다. 각각의 유동화 포트(62)는 벌크 분말(52)의 유동화를 깊이의 함수로 제공하도록 호퍼(48)의 측벽을 따라 배열된다. 각각의 유동화 포트(62)는 유동화 포트(62) 안으로의 벌크 분말(52)의 역유동을 방지하고 담체 기체(4)를 균일하게 분사하기 위해 소결된 금속 필터(63)를 포함할 수 있다. 유동화 포트(62) 안으로 분사된 담체 기체(4)의 압력은 입구 포트(50) 안으로 분사된 담체 기체(4)의 압력보다 높게 설정될 수 있고 담체 기체(4)의 유속은 벌크 분말(52)의 적절한 유동화를 달성하도록 조절되고 제어될 수 있다.
도9에 도시된 바와 같이, 혼합 장치(49)는 또한 소결된 금속 필터(63)를 구비한 튜브(65)의 단부에 연결된 이동성 유동화 포트(64)를 구비할 수 있다. 튜브(65)는 O-링 시일(66)을 구비한 리드(53)를 통해 연장되고 벌크 분말(52)의 분말 레벨에 대해 상기 튜브(65)의 단부에 연결된 이동성 유동화 포트(64)의 높이를 변화시키기 위해 구동 기구(67)(예를 들어, 1차 모터)에 연결된다. 호퍼(48)로부터 후퇴된 벌크 분말(52)의 질량 손실률을 측정하거나 또는 출구 포트(51)를 관통한 분말 유속을 측정함으로써 이동성 유동화 포트(64)의 높이는 특정 분말 유속을 달성하도록 변화될 수 있다. 전형적으로, 분말 유속을 측정하고 샘플링하는 종래의 전자 또는 소프트웨어 PID(비례 적분 유도) 제어기는 특정 설정 포인트 값으로 구동 기구(67)를 유지시키고 조절하도록 사용된다. 또한, (도9에 명확하게 도시되지 않은) 종래의 기계 또는 전기 진동기는 호퍼(48)의 바닥부로 벌크 분말(52)을 진동시키기 위해 호퍼(48)에 외측으로 부착된다.
[제1 실시예]
도8 및 도9에서, 벌크 분말(52)은 분말 유동화 유닛(47)의 호퍼(48)에 위치되고 입구 포트(50) 안으로 분사된 담체 기체(4)의 압력은 50 내지 250 psig의 범위의 수치로 조절된다. 담체 기체(4)는 공기, 아르곤, 카본 테트라플루오라이드(carbon tetrafluoride), 카르보닐 플루오라이드, 헬륨, 수소, 메탄, 질소, 산소, 세레인, 증기, 술파 헥사플루오라이드(sulfur hexafluoride) 또는 다양한 농도로 이들의 혼합물을 포함할 수 있다. 담체 기체(4)는 유동화 포트(62) 및 도9의 이동성 유동화 포트(64) 안으로 분사되고 500 psig까지 고압으로 조절된다. 유동화 포트(62) 안으로 분사된 담체 기체(4)와 입구 포트(50) 안으로 분사된 담체 기체(4) 사이의 차등 압력은 벌크 분말(52)에 대해 각각의 유동화 포트(62)의 위치와 깊이에 의존해서 특정 수치로 조절된다. 벌크 분말(52)의 최고 깊이에서 유동화 포트(62) 안으로 분사된 담체 기체(4)는 최고 차등 압력을 갖고 전형적으로는 입구 포트(50) 압력의 25 내지 100 psig 이상이다. 유사하게, 유동화 포트(62) 또는 벌크 분말(52)의 상부 근처에서 도9의 이동성 유동화 포트(64) 안으로 분사된 담체 기체(4)는 입구 포트(50) 압력의 대략 0 내지 50 psig 위의 차등 압력으로 조절된다. 도9의 이동성 유동화 포트(64) 도는 유동화 포트(62) 안으로 분사된 담체 기체(4)는 처리 라인 입구 포트(50) 안으로 분사된 동일한 형태의 담체 기체(4)일 수 있거나 또는 그 혼합물을 이루기 위해 상이한 형태의 기체일 수 있다. 도8에 도시된 분말 유동화 유닛(47)은 유동화 포트(62)에 사용된 차등 압력과 벌크 분말(52)의 입자 크기 및 밀도에 의존하여 중량에서 5%까지의 농도로 담체 기체(4)에 분말 입자(3)를 혼입할 수 있다. 이러한 농도에서, 1.0 lbm/h 에 이르는 코팅 증착률은 분말 크기의 분포로서 지름이 45 미크론에 이르고 밀도가 19 gm/cm3에 이르는 다양한 분말 입자(3)를 갖는 0.0625 inch의 목 지름을 갖는 마찰 보정 음속 노즐(2)을 사용하여 측정된다. 0 rpm 내지 200 rpm의 회전 속도를 갖는 나사 송곳 형태의 교반기(57)를 추가함으로써, 벌크 분말(52)는 분말 입자(3)의 농도가 담체 기체(4) 내에 25 중량% 까지 증가되도록 담체 기체(4) 내에서 상승되어 혼입된다. 이것은 0.0625 inch의 목 지름을 갖는 마찰-보정 음속 노즐(2)의 증착율을 5 lbm/h 까지 증가시킨다. 증착율과 필요한 분말의 공급율은 마찰-보정 음속 노즐(2)의 목 지름에 비례하며, 그에 따른 담체 기체(4) 유량의 증가가 요구된다. 회전 속도, 지름 및 송곳의 피치와 관계된 담체 기체(4)의 유량 및 압력은 특정 농도의 분말 입자(3)를 고압 담체 기체(4)로 유입시키고, 이후 고압 출구 포트(51)로 분사시키는 방법을 제공한다. 5 lbm/h를 초과하는 증착율은 이동식 유동화 포트(64)가 호퍼(48) 내의 구동 기구(67)에 의해 벌크 분말(52)의 수준에서 3cm 아래로 유지되는 곳인, 도9에 도시된, 분말 유동화 유닛(47)을 사용하여 얻을 수 있다. 따라서, 도8 및 도9에 도시된 분말 유동화 유닛(47)은 나노 스케일, 초미세 또는 저 유속(50 m/s 이하)에서 고압 공정에 쓰이는 미세 분말의 분사에 대해 중력을 이용한 공급 또는 치차-계량식 분말 공급기가 갖는 공급의 균일성에 대한 한계를 극복하였다.
도10은 분말 입자(3)를 기판(12) 상에 증착 및 고체화하는 본 발명에 기술된 장치 및 공정에 적합한 분말 반응기(68)를 도시한다. 분말 반응기(68)는 공동(69), 트리트먼트 장치(70), 입구 포트(71) 및 출구 포트(72)를 구비한다. 분말 반응기(68)는 고압 작동에 맞게 개조된 통상의 분말 공급기 또는 도8 및 도9에 도시된 분말 유동화 유닛(47) 중 어느 하나에 의해 공동(69)으로 분사되는 분말 입자(3)를 혼합 및 트리트먼트 하도록 한다. 하나 이상의 통상의 분말 공급기 또는 분말 유동화 유닛(47)이 다양한 타입의 분말 입자(3)를 입구 포트(71)로 분사시키는데 사용될 수 있다. 분말 입자(3)는 분말 공동(69) 내에서 혼합되고 트리트먼트 된다. 이러한 혼합 및 트리트먼트는 트리트먼트 장치(70)에 의해 용이해진다. 하나 이상의 출구 포트(72)가 본 발명의 복수의 마찰-보상 음속 노즐(2)에 연결되거나 벌크 분말(52)의 혼합과 트리트먼트가 요구되는 다른 적용예에 연결될 수 있다.
리드(53), O-링(54), 볼트(55) 및 플러그(56)가 공동(69)을 폐쇄한다. 플러그(56)는 공동(69) 내 드레인(drain) 포트의 시일과 임의의 벌크 분말(52)가 공동(69)으로부터 드레인 되는데 사용될 수 있다.
입구 포트(71)는 담체 기체(4) 내에 혼입된 분말 입자(3)를 공동으로 도입한다. 트리트먼트 장치(70)는 벌크 분말(52)를 담체 기체(4) 내의 분말 입자(3)로 트리트먼트하는 것에 영향을 주거나 용이하게 한다. 이렇게 담체 기체(4) 내의 트리트먼트된 분말 입자(3)의 혼합물은 출구 포트(72)를 통해 나가고 마찰 보상 음속 노즐(2)로 전달된다. 하나 이상의 분말 반응기(68)가 복수의 마찰-보상 음속 노즐(2)을 병렬로 공급하는데 사용될 수 있다.
분말 반응기(68)에 의한 혼합 및 분말의 트리트먼트는 담체 기체(4) 내로 혼입된 분말 입자(3)의 트리트먼트를 위한 특정 조건에 따르도록 한다. 일 실시예는 공동(69)을 단순히 부유물과 공동(69)의 바닥으로 회수된 과도한 분말 입자(3)를 갖는 난류 담체 기체(4) 내의 분말 입자(3)를 크기와 무게에 의해 분류하는데 사용한다. 입구 포트(71) 및 출구 포트의 배치는 분말의 질량 흐름 농도 또는 및 분말 반응기(68)로 분사된 투사 입자(3)의 유동 및 혼합 조건을 변경하기 위해 상이한 공간의 위치에서 난류 혼합물의 견본을 채취하도록 설계된다.
트리트먼트 장치(70)는 공동(69)의 벽을 따라 다양한 위치에 놓여진 하나 이상의 유동화 포트(62)를 구비할 수 있다. 각각의 유동화 포트(62)는 담체 기체(4)를 균일하게 분사하고 분말 입자(3)의 유동화 포트(62)로의 역류를 방지하기 위한 소결식 금속 필터(63)를 구비할 수 있다. 이러한 유동화 포트(62)는 기체가 공동(69)으로 분사되게 한다. 이러한 기체는 입구 포트(71)로 분사되는 담체 기체(4) 보다 고압으로 유동화 포트에 분사될 수 있다. 분말 입자(3)의 트리트먼트는 담체 기체(4) 내로 혼입된 분말 입자(3)의 특성에 영향을 주기 위해 유동화 포트(62)를 통해 상이한 타입의 기체를 첨가하고 혼합하는 것을 구비할 수 있다. 이러한 기체는 다양한 농도의 공기, 아르곤, 카본 테트라플루오라이드, 카보닐 플루오라이드 또는 이들의 혼합물을 구비하지만 이것들로 제한되지 않는다. 또한, 불활성 또는 반응성 기체가 담체 기체(4)로 혼입된 분말 입자(3)의 특성에 영향을 주기 위해 사용될 수 있다. 예로써, 투사된 입자(3)들의 표면으로부터 옥사이드 필름을 제거하기 위해, 기체 트리트먼트는 옥사이드 층을 재료와 화학 반응 시키기 위해 상승된 온도에서 수소를 분사하는 것으로 구성될 수 있다. 이러한 반응은 분말 입자(3)로부터 오염물인 산소를 제거한다.
트리트먼트 장치(70)는 담체 기체(4) 내로 혼입된 분말 입자(3)를 혼합하고 트리트먼트하기 위한 공동(69)내에 위치된 배플(73)의 세트일 수 있다. 배플(73)은 분말 반응기(68)의 혼합 및 트리트먼트 특성을 향상시키기 위해 설계된 상이한 기하학적 형상을 가질 수 있다. 예로써, 도10은 반원통형 쉘(shell)로서 배치된 배플(73)을 도시한다. 배플(73)은 담체 기체(4) 내로 혼입된 분말 입자(3)의 혼합 및 질량 유동 농도를 변경하기 위한 목적에만 사용되는 불활성 요소일 수 있다. 또한, 배플(73)은 출구 포트(72)내에서 입자가 대전되어 방출되기 전에 분말 입자(3)의 마찰 전기적인 대전을 향상시키기 위해 전기적으로 활성일 수 있다. 이 경우, 배플(73)은 관통 전극(74)에 연결된다. 혼입된 분말 입자(3)를 갖는 담체 기체(4)의 유전 파괴 전압에 이르기까지 전압을 공급할 수 있는 전원은 대전 유도를 통해 분말 입자(3)의 마찰 전기적인 대전을 향상하도록 사용될 수 있다. 이러한 전압은 50 볼트 내지 50,000 볼트의 범위에 있다.
또한, 트리트먼트 장치(70)는 담체 기체(4) 내로 혼입되는 분말 입자(3)를 거르기 위해 공동(69) 내에 위치된 체 또는 필터일 수 있다. 이러한 설계는 분말 입자(3)를 출구 포트(72)로 방출되기 전에 특정한 입자 크기의 분포로 분류할 수 있게 한다. 예로써, 325 메쉬의 체는 출구 포트(72)로 방출되기 전에 45 미크론 이하로 분말 입자(3)를 거르기 위해 공동(69) 내에 단일 요소의 형태로 설치될 수 있다.
또한, 트리트먼트 장치(70)는 분말 반응기(68)의 공동(69) 내에 위치된 유도 코일 일 수 있다. 유도 코일은 출구 포트(72)를 통해 방출되기 전에 담체 기체(4) 내에 혼입된 분말 입자(3)를 유도 가열하기 위해 전극(74)을 관통하여 RF 파 전원에 연결된다. 이러한 전원은 0.5 kW 내지 1,000 kW의 전력을 전달할 수 있다.
트리트먼트 장치(70)는 라디에이터 패널에 부착된 저항 코일에 의해 가열되고 전극을 통해 전원이 충전되는 라디에이터 패널의 세트로 구성될 수 있다. 예로써, 저항 코일의 형태인 트리트먼트 장치(70)는 담체 기체(4)와 분말 입자(3)의 혼합물을 원통 형상을 갖는 공동(69)을 통해 유동할 때 상승된 온도로 가열하기 위해 사용될 수 있다. 이러한 특정 구성은 5 중량% 농도로 혼입된 알루미늄 분말을 갖는 10 lbm/h 내지 25 lbm/h 유량의 질소 또는 헬륨 담체 기체를 가열하기 위해 5 kW에 이르는 전원을 필요로 한다. 헬륨 담체 기체는 200 psig의 압력으로 조절된다.
상기한 저항 코일은 라디에이터로서 구성된 트리트먼트 장치(70)에 부착된 통상의 코일을 통해 프레온과 같은 냉매액이 유동하도록 사용되는 전극을 대신하여 공동(69)을 관통한 계면에 위치된 냉각수의 선으로 교체될 수 있다.
또한, 분말 반응기(68)는 출구 포트(72)로 방출되기 전에 제2 재료를 갖는 담체 기체(4) 내에 혼입된 분말 입자(3)를 코팅하도록 구성될 수 있다. 코팅 방법은 기화, 물리 증착, 화학 증착, 저항형 히터를 통한 제2 재료의 스퍼터링, 아크, 플라즈마 또는 담체 기체(4)로 유입되어 분말 입자(3)로 구성된 난류 혼합물이 있는 제2 재료의 레이저 절제 등을 구비한다. 분말 입자(3)는 증기를 생성하거나 분말 반응기(68)를 통하는 경로를 통과할 때 담체 기체(4) 내에 유입되는 투사 입자(3)의 표면에 증착되어질 제2 재료의 분자 상태를 생성하는 적절한 물리적 또는 화학적 장치를 갖는 트리트먼트 장치(70)를 사용하여 코팅될 수 있다.
도11은 분말 반응기(68)의 혼합 및 처리 특성을 수행하기 위해 관형 공동(69) 설계를 사용하는 분말 반응기의 실시예를 도시한다. 분말 반응기(68)는 관형 공동(69), 트리트먼트 장치(70), 입구 포트(71) 및 출구 포트(72)를 포함한다. 이 구성은 물리 상호 작용, 화학 반응 또는 핵반응을 통해 분말 입자(3)의 특성을 변경시키면서 관형 공동(69)을 통해 담체 기체(4)에 혼입된 분말 입자(3)를 이송하도록 설계된다. 관형 공동(69)의 길이는 관형 공동(69)을 통해 담체 기체(4)에 혼입된 분말 입자(3)가 통과하는 동안에 반응이 원하는 정도로 진행될 수 있도록 선택될 수 있다.
트리트먼트 장치(70)는 관형 공동(69)에 결합된 가열 또는 냉각 장치를 포함할 수 있다. 이러한 가열 또는 냉각 장치는 관형 공동(69)을 중심으로 동심인 방식으로 위치 설정되는 외부 자켓(75)의 형태를 취할 수 있다. 외부 자켓(75)은 외부 자켓(75)과 관형 공동(69) 사이의 공간에 위치되는 열 또는 전기 전도성 매체를 가열하거나 냉각시킬 수 있는 전극(74) 또는 냉각제 라인 관통공급부(coolant line feedthrough)를 포함한다.
이 특성은 출구 포트(71)를 통해 토출하기 전에 관형 공동(69)의 측벽으로부터의 열의 전도, 대류 및 복사에 의해 담체 기체(4)에 혼입된 분말 입자(3)를 가열하거나 냉각하는 수단을 제공한다. 저항 가열기 코일은 전극(74)에 연결될 수 있으며, 외부 자켓(75)과 관형 공동(69) 사이의 열 전도성이지만 전기 절연성인 매체에 설치될 수 있다. 또한, 전극(74) 대신에 종래의 냉각제 라인 관통공급부를 통해, 액체 또는 기체(예를 들어, 스팀, 오일 또는 프레인 냉매)는 외부 자켓(75)과 관형 공동(69) 사이에서 순환될 수 있다. 다시, 담체 기체(4)에 혼입된 분말 입자(3)의 가열 또는 냉각은, 출구 포트(72)를 통해 토출하기 전에 담체 기체(4)에 혼입된 분말 입자(3)와 관형 공동(69)의 측벽 사이에서의 열 교환(전도, 대류 및 복사)에 의해 발생한다.
담체 기체(4)에 혼입된 분말 입자(3)의 가열 또는 냉각 처리는 분말 입자(3)의 물리적 특성을 변경시키는데 이용된다. 가열 또는 냉각 처리는 담체 기체(4)와 분말 입자(3) 사이의 화학 반응을 촉진시키는데도 이용될 수 있어서, 발사체 입자(3)의 화학 특성을 변경시킨다. 또한, 담체 기체(4)에 혼입된 발사체 입자(3)의 혼합물을 냉각시킴으로써, 처리 공정은 오염물의 제거를 가능하게 한다. 예를 들어, 고온 수소는 산화물층을 분말 입자(3)로부터 제거하고 스팀을 생성하기 위해 환원제로서 이용될 수 있다. 이 스팀은 수증기를 위한 응결 온도 이하에서 기체 및 혼입된 분말 입자(3)를 냉각시킴으로써 담체 기체(4)로부터 제거된다.
또한, 트리트먼트 장치(70)는 관형 공동(69)에 결합된 하나 이상의 유동화 포트(62)를 포함할 수 있다. 추가 또는 다른 담체 기체(4)는 관형 공동(69)의 입구 포트 내로 주입되는 담체 기체(4)보다 더 높은 압력으로 이들 유동화 포트(62) 내로 주입될 수 있다. 또한, 유동화 포트(62)는 관형 공동(69)의 유동로를 따라 다양한 단계에서 한 유형의 기체로부터 다른 유형의 기체로 담체 기체(4)를 반복적으로 교환하는데 이용될 수 있다. 유동화 포트(62)의 각각은 담체 기체(4)를 균일하게 주입하고 유동화 포트(62) 내로의 분말 입자(3)의 역유동을 방지하기 위해 소결 금속 필터(63)를 포함할 수 있다. 유동화 포트(62)의 각각은 요구되는 물리 또는 화학 반응 과정을 수행하도록 요구되는 다양한 단계에서 관형 공동(69)의 벽을 따라 배열된다.
관형 공동(69)을 갖는 분말 반응기(68)는 담체 기체(4)에 혼입된 분말 입자(3)가 핵 반응기와 같은 원격 분말 반응기로 이송되는 것을 가능하게 하도록 구성될 수 있다. 이는 담체 기체(4)에 혼입된 분말 입자(3)가 출구 포트(72) 내로의 토출 전에 중성자 반응에 의해 활성화되는 것을 가능하게 한다. 이 공정은 분말 입자(3)의 방사성 재료 또는 다른 동위 원소를 코팅하거나 분무 형성하는데 이 용될 수 있다.
복수개의 분말 반응기(68)는 원하는 순서의 공정을 달성하도록 연속하여 연결될 수 있다. 예를 들어, 관형 공동(69)을 이용하는 하나의 분말 반응기(68)는 탈수소화물 반응기로서 기능을 하는 관형 공동(69)을 갖는 제2 분말 반응기 내로 공급하는 수소화물 반응기로서 이용될 수 있다. 이러한 구성에서, 제1 분말 반응기(68)는 금속 형태의 분말 입자(3)를 금속 수소화물로 변환하는 반면, 제2 분말 반응기(68)는 금속 수소화물 형태의 분말 입자(3)를 무산소 금속으로 다시 복귀시킨다. 또한, 연속하여 연결된 복수개의 분말 반응기(68)는 담체 기체(4)에 혼입된 분말 입자(3)를 반복적으로 가열하고 냉각시키는데 이용될 수 있다. 이 공정은 티탄늄 및 우라늄 수소화물과 같은 금속 수소화물 형태인 분말로 되기 쉬운 분말 입자(3)를 미크론이하의 나노크기의 치수를 갖는 분말 입자(3)로 부수는데 이용될 수 있다. 상세하게, 분말 반응기(68)의 혼합 및 처리 특성은 출구 포트(71) 내로 토출하기 전에 담체 기체(4)에 혼입된 분말 입자(3)의 화학 특성을 화학적으로 변경시키기 위한 화학 반응기를 포함한다. 상호적으로 가열하거나 냉각하는 이외에, 각 분말 반응기(68)는 분말 입자(3)를 상이한 타입의 담체 기체(4)로 노출시키도록 이용될 수도 있다.
예를 들어, 무산소 티탄늄 분말의 분무는 약 750 K의 온도에서 수소 형태의 담체 기체(4)에 분말 입자(3)를 노출함으로써 티탄늄 형태의 분말 입자(3)를 티탄늄 수소화물로 먼저 변환시킴으로써 달성될 수 있다. 이 온도에서, 또한, 처리는 스팀을 생성하도록 수소 담체 기체(4)를 산화물층과 반응시킴으로써 티탄튬 분말 입자(3)로부터 금속 산화물을 제거한다. 담체 기체(4)로서 수소를 이용하여 300 K 내지 750 K에서 티탄늄-수소화물 분말 입자(3)를 상호적으로 가열하고 냉각함으로써, 이 후반 공정은 티탄늄 수소화물과 같은 분말로 되기 쉬운 분말 입자(3)를 더욱 미세하거나 나노크기의 분말 입자(3)로 부수는데 이용될 수 있다. 최종 단계 분말 반응기(68)는 820 K 이상의 온도에서 헬륨과 같은 불활성 담체 기체(4)를 주입하는데 이용될 수 있다. 이 공정은 출구 포트(72) 내로 토출하기 전에 담체 기체(4)에 혼입된 티탄늄 수소화물 분말 입자(3)를 무산소 티탄늄 금속으로 다시 복귀시킨다.
이 화학 반응 운동은 기체 상태의 반응 생성물의 분압과 특정 온도에서 분말 반응기(68)의 각각을 통해 분말 입자(3)가 통과하는 중에 결정된다. 이는 분말 반응기(68) 내의 처리 공정을 실행하는데 요구되는 관형 공동(69)의 특정 길이를 결정한다. 예를 들면, 분말 반응기(68)는 약 50 내지 100 피트(15.2 m 내지 30.5 m)의 튜브로 설계되고 외부 자켓(75)과 관형 공동(69) 사이의 공간 내에 설치되는 열 전도성 매체 내에 위치 설정된 전기 저항 코일로 가열되는 관형 공동(69)을 가질 수 있다. 이 특정 설계는 혼입된 티탄늄 분말 입자(3)와 함께 25 lbm/h로 유동하는 수소 또는 헬륨 담체 기체를 700 내지 1000 K 온도까지 가열하기 위해 50 kW 이하의 전력을 필요로 한다. 분말 반응기(68)는 전술된 수소화물 및 탈수소화물 공정을 통해 무산소 티탄늄 분말 입자(3)(< 45 마이크로미터 직경)를 생성할 수 있다. 무산소 티탄늄 발사체 입자의 코팅 증착 및 분무 형성은 티탄늄 수소화물의 형태인 발사체 입자 및 담체 기체로서의 헬륨으로 전술된 코팅 또는 융삭 도포기를 사용하여 달성된다.
도12를 이제 참조하면, 본 발명의 공정 및 적용은 부식 보호 또는 확산 제한 언더코트(77), 납땜 합금 충전제 코팅(78) 및 플럭스 코팅(79)인 다중 단일층을 포함하는 코어 알루미늄 합금 기판(12)의 표면에 다중층 코팅(76)을 증착하기 위한 방법을 제공한다. 이 방법은 다중층 코팅(76)의 다양한 층의 경화 물리 상태를 제어하기 위해 본 발명의 유일한 장치 및 공정을 이용한다.
아연은 부식 보호 언더코트(77)(다른 금속 분말은 알루미늄, 구리, 망간, 주석 또는 티탄늄을 포함하지만, 이에 한정되지 않음)으로서 자주 이용되며, 본 발명의 도포기 및 공정을 사용하여 1 내지 10 마이크로미터의 아주 작은 두께로 코어 알루미늄 합금 기판(12)에 도포된다. 단일 노즐 또는 복수개의 마찰 보상 음속 노즐(도1 내지 도3의 2)은 코어 알루미늄 합금 부분의 특정 영역 또는 시트 기판(12)의 인접 코팅을 허용하도록 래스터 방식으로 전환될 수 있다. 다중층 코팅(76)의 제2층은 단일 또는 복수개의 노즐(도1 내지 도3의 2)을 사용하여 부식 보호 언더코트(77)에 10 내지 1000 마이크로미터의 두께로 금속 분말이 도포된다. 최종적으로, 니켈 또는 코발트 플럭스 분말의 플럭스 코팅(79)(1 내지 5 마이크로미터의 두께)은 다중층 코팅(76)의 최종층을 형성하도록 단일 노즐 또는 복수개의 마찰 보상 음속 노즐(도1 내지 도3의 2)을 이용하여 동 충전제 코팅(78)의 표면에 도포된다.
납땜 충전제(예컨대, 4043, 4044, 4045, 4145, 또는 4047 알루미늄-실리콘 합금)는 통상적으로 코어 알루미늄-실리콘 기부 재료의 부품 또는 시트 스톡에 외피되거나 부착될 수 있는데, 이 경우에 플럭스 코팅(79)(예컨대, 니켈 또는 코발트 플럭스 분말)만이 본 발명의 장치 및 공정에서 기술된 복수개의 마찰 보상 음속 노즐(2; 도1 내지 도3) 또는 단일 노즐을 사용하여 외피된 시트 스톡의 표면에 인가된다.
종래의 납땜 방법 사용에 있어서[1998년 제4판, 뉴욕주 워싱톤 디씨 19번가 900, 알루미늄 협회, 알루미늄 납땜 개론], 유사 또는 상이한 알루미늄-합금 코어 재료의 짝편(mating piece)은 납땜 공정을 완성하기 위해 비활성 기체 또는 진공 로 내에서 상승된 온도 및 다중층 코팅(76)과 밀접하게 위치된다. 840K 온도에서 니켈 또는 코발트 플럭스 코팅(78)은 외피된 알루미늄 합금 시트 스톡의 납땜 코팅 또는 납땜 충전제 코팅(77)과 반응하여 2개의 알루미늄 합금 부분이 결합하도록 하는 공융층을 형성한다. 통상적으로 대부분의 알루미늄 납땜은 4343, 4044, 4045, 4145, 또는 4047 합금과 같은 알루미늄-실리콘 납땜 충전제에 있어서 844K 내지 894K 사이의 온도에서 수행된다. 따라서, 니켈 또는 코발트 플럭스 코팅(78)은 종래의 납땜 온도보다 약간 낮은 온도에서 납땜 충전제 코팅(77)의 부착을 향상시킨다. 이것은 구조적 코어 재료 용융의 위험 없이 납땜 제조에서 보다 큰 온도 마진을 허용한다.
금속 플럭스 코팅(79)의 대안으로서, 미세한 입자 형태의 칼륨 형광-알루미늄 염은 본 발명의 장치 및 공정에서 기술된 복수개의 노즐(2; 도1 내지 도3) 또는 단일 노즐을 사용하여 납땜 충전제 코팅(78)에 인가될 수 있다. 이러한 경우에, 플럭스 코팅(79)은 납땜 충전제 코팅(78)의 반-다공성 표면의 구조를 충전하기 위해 요구되는 두께까지만 인가된다. 외피 시트 재료에 있어서, 칼륨 형광-알루미늄 염 입자가 분말로 매립되는 반-다공성 표면 구조를 생성하기 위해 통상적으로 표면을 삭마하는 것이 필요할 수 있다. 칼륨 형광-알루미늄 염이 합성된 납땜 충전제 코팅(78) 및 플럭스 코팅(79)은 본 발명의 장치 및 공정에서 기술된 복수개의 노즐(2; 도1 내지 도3) 또는 단일 마찰 보상 음속 노즐을 사용하여 납땜 합금 분말(예컨대, 4043, 4044, 4045, 4145, 또는 4047 합금)과 함께 칼륨 형광-알루미늄 염 분말의 혼합물이 동반 증착하여 코어 알루미늄 합금 기판(12)에 인가될 수 있다. 이러한 경우에, 플럭스 분말(칼륨 형광-알루미늄 염)은 금속 납땜 합금 분말에 접착되도록 열-전달 플라즈마(11)를 통한 통과 중에 가열되고 분말 입자(3)의 소성 변형과 관련된 충돌 임팩트 공정에 의해 기판(12)의 표면에 매립된다. 도6의 플라즈마 반응 챔버(28)는 납땜-합금 분말과 함께 칼륨 형광-알루미늄 염 분말의 혼합물이 동반 증착하는 최신 수단을 제공한다. 칼륨 형광-알루미늄 염 분말의 혼합물은 반응 챔버(28)로부터 포트(30)를 통해 더운 담체 기체(4; carrier gas)에 혼입된 납땜 분말 입자(3) 안으로 하류로 주사된다. 동반 증착 공정은 납땜 충전제 코팅(78) 및 플럭스 코팅(79)이 금속 분말과의 혼합 코팅으로서 기판(12)의 표면에 동시에 인가되도록 하는데, 상기 금속 분말은 납땜 합금과 양립할 수 있고 후속하는 납땜의 성능에 영향을 미치지 않는다. 칼륨 형광-알루미늄 염 플럭스를 사용하는 제시된 납땜 온도는 납땜 충전제의 용융 온도에 의존하지만 4047 합금에 대해 통상적으로 855 내지 877K 온도이다.
[제2 실시예]
본 발명의 공정 및 어플리케이터로 인가된 다중층 코팅(76)의 열 성능은 납 땜 코어 알루미늄 합금 기판에 의해 시험되고 기판(12)의 접착성을 실험하고 연결부의 공극율을 결정하기 위해 야금학적으로 평가된다. 열 성능은 통상적 납땜 연결부의 열 확산성을 측정하여 평가된다.
A-3000 시리즈 알루미늄 합금은 본 발명에서 기술된 공정 및 어플리케이터를 사용하여 40 ㎛의 두께까지 열 소성 조건의 4047-합금 분말(하부 코팅 없음)로 코팅된다. 칼륨 형광-알루미늄 염 분말의 플럭스 코팅(79)은 본 발명에서 기술된 공정 및 어플리케이터를 사용하여 가열되고 4047-합금 납땜 충전제 코팅(78)의 반-다공성 구조 안쪽으로 매립된다. 다중층 코팅(76)은 납땜 연결부를 제작하여 시험된다. 연결부는 열 교환 제품을 위한 열 교환 특성을 보장하기 위해 뛰어난 야금학적 접착성과 함께 낮은 공극율을 보인다. 정성적인 기계적 박피 시험이 납땜 연결부의 기계적 완전성을 평가하기 위해 수행되고 그 결과는 외피 재료로 형성된 납땜 연결부와 거의 동등하다. 여기서 참조된 공정 및 어플리케이터를 사용하여 증착된 다중층 코팅(76)으로 생성된 납땜부의 열 성능 시험은 고정된 연결부 형상에 있어서의 열 확산성을 측정하여 평가된다. 이 결과는 외피 재료로 형성된 납땜 연결부와 다중층 코팅(76)으로 형성된 납땜 연결부 사이의 비슷한 열 확산성을 나타낸다. 양 결과는 모두 알루미늄에 대해 0.97㎝2s-1 의 열 확산성과 부합(±5%)한다.
다중층 코팅(76)의 추가적인 성능 시험은 열 가소성 조건의 니켈 분말의 플럭스 코팅(79)을 4047 공융 납땜 합금으로 통상적으로 외피된 3000 시리즈 합금의 표면으로 인가하여 평가된다. 니켈 플럭스 코팅(79)은 본 발명의 공정 및 어플리 케이터를 사용하여 통상적으로 다음에서 나타난 바와 같이 8 내지 10 ㎛의 두께까지 증착된다. 납땜 연결부는 헬륨 기체 퍼지를 사용하여 튜브 로에서 840K의 온도에서 형성된다. 정성적인 기계적 박피 시험은 연결부에서 수행되고 뛰어난 것으로 판명되었다. 따라서, 니켈 플럭스 코팅(79)은 도13에서 도시된 바와 같이 칼륨 형광-알루미늄 염을 사용하는 4047 납땜 충전제의 통상적인 납땜 온도보다 13K 낮은 온도에서 3000 시리즈 합금 재료가 납땜되도록 한다.
본 발명의 공정 및 장치는 증착의 성질(예컨대, 열 팽창, 열 전도, 강성, 연성, 내부식성, 색상 등)이 연속적으로 분급된 층뿐만 아니라 개별형 또는 계단형 층으로 기능적으로 분급되어 있는 기능적으로 분급된 재료의 증착을 허용한다. 기능적으로 분급된 코팅의 연속적 분급은 혼합물의 농도가 코팅 두께의 함수로 변하는 동반 증착 분말 혼합물에 의해 달성된다. 예컨대, 몰리브덴 분말의 구리 분말 혼합물과의 동반 증착은 순수한 몰리브덴에 있어서 4.8×10-6K-1으로부터 구리에 있어서 16.6×10-6K-1까지 열 팽창 성질을 조절하는 데 사용될 수 있다. 증착물의 열 팽창 계수는 두께의 함수로서 몰리브덴 분말에서 구리 혼합물 분말의 농도에 비례한다.
[제3 실시예]
다시 도4 및 도5를 참조하면, 본 발명의 공정 및 장치는 용융 재료에 의해 연결된 2개의 개별 편(23, 24) 사이의 융기된 필렛(22)의 분무 형성 방법 또는 재료를 기판(12) 상으로 분무 형성하는 방법을 제공한다. 따라서, 분말 입자(3), 기판(12) 재료 및 인가된 RF 발생기(13) 분말의 선택에 따라, 본 발명의 공정 및 장치는 재료의 분무 형성 뿐만 아니라 용융에 의한 유사 또는 비유사 재료의 연결에도 사용될 수 있다.
(도4 내지 도6을 참조하여) 마찰 보완 음속 노즐(2)은 금속 및 금속-매트릭스 혼합물을 유사 그물 형상으로 분무 형성하는 데 사용될 수 있다. 다양한 기하학적 형상이 각각의 경로와 함께 기판(12) 상으로 분무 형성되도록 유사 그물 형상은 마찰 보완 음속 노즐(2)의 로봇식 제어에 의해 이뤄진다. 부설 시간은 특정 지점에서의 체류 시간에 의해 제어된다. 체류 시간은 제조되는 유사 그물 형상에 따라 수 밀리초로부터 길게는 수분까지의 범위일 수 있다. 밀리초의 체류 시간은 다중 경로를 사용하여 균일한 부설된 얇은 코팅을 생성하는 데 사용될 수 있다. 초단위에서 분단위의 긴 체류 시간은 나선형 또는 기둥형 증착물을 부설하거나 기판(12)에 구멍을 충전하는 데 사용될 수 있다.
이러한 지연 시간의 편차는 본 발명의 코팅 또는 침식 어플리케이터를 사용하는 정밀 정형 제작 공정(the near net shape fabrication process)이 가능하도록 마찰 보상 음속 노즐(2)의 공간 및 각도 자동 조작과 결부될 수도 있다. 침식 어플리케이션에서, 지연 시간에서 편차를 갖는 자동 조작 하에서 어플리케이터는 정밀 정형 패턴을 차단하도록 기판(12)으로부터 물질을 제거 또는 침식하는 데 사용될 수도 있다. 또한 기판(12)에 걸쳐 위치된 마스크는 다른 편차의 정밀 정형 제조를 수행하는 데 사용될 수도 있다. 마찰 보상 음속 노즐(2)은, 마스크를 통해 정밀 정형 특징을 코팅 또는 분무 형성하기 위해 필요한 시간의 소정 주기 동안 지연되도록 자동적으로 위치될 수 있다. 마스크는 마스크 상에 분말 입자(3)의 빌드업을 막는 물질로부터 구성되어야 한다. 이와 같이, 마스크 내의 구멍에서 시간의 소정 주기 동안 지연은 기판(12) 내부에 정밀 정형 오목 섹션를 제작하도록 마스크를 사용할 수도 있다.
복수의 마찰 보상 음속 노즐(2)을 동시에 사용함으로써, 빌드업율을 경화하거나 정밀 정형의 증착을 변경하도록 동일한 기판(12) 위치를 거쳐 동시에 분무 형성한 다수의 마찰 보상 음속 노즐(2)을 갖는 것이 가능하다. 외부 진공 챔버(41) 내부에 수용된 수직의 마찰 보상 음속 노즐(2)은 고정 원추형 부품을 제작하도록 복수의 마찰 보상 음속 노즐(2)을 사용하는 어플리케이션의 한 예이다.
나노 스케일, 나노 상 및 다른 미크론 크기 분말과 혼합된 무정형 분말의 분무는 나노 스케일 및 나노 상 물질이 분무 형성 금속 매트릭스 합성물 또는 코팅에 외부 경화제로서 첨가되게 한다. 또한 나노 스케일, 나노 상 또는 무정형 분말은 독립적으로(즉 미크론 사이즈 분말 혼합 없음) 본 발명의 코팅 및 침식 어플리케이터에 의해 허용된다.
분무 형성 물질의 특성은 물리적으로 경화된 상태를 제어하는 기판(12) 재료 및 열가소성 조정 분말 입자(3)를 갖는 충격 공정으로 이송된 입자의 운동 에너지를 동시에 결부시킴으로써 제어된다. 어닐링, 고온 평형 가압 및 또는 분말 입자(3) 및 기판(12) 재료의 용융은 정밀 정형에 대한 기판(12) 재료를 분무 형성하고 또는 물질을 녹임으로써 결합된 두 분리된 부분(23 및 24) 사이에 융기된 필렛을 분무 형성하기 위해 종종 요구된다
인-시츄 또는 엑스-시츄 입자 경화 금속 매트릭스 합성물의 분무 형성은 유일한 경화상을 기능적으로 형성하는 분말 혼합을 사용하는 본 발명의 장치 또는 공정에 의해 가능해진다. 내부 금속 매트릭스 합성물은 혼합으로서 공동 증착되고 그 후 포스트 증착 가열 처리에 노출시킨 후 입자 보강 경화상 내부에 기능적으로 형성된다. 본 발명의 장치 및 공정의 어플리케이션은 알루미늄 및 열가소성 조정 금속 상태로 분무 형성된 코발트, 구리, 철, 니켈, 티타늄 또는 은에 제한되지 않고 그를 포함하는 전이 요소로부터 선택된 금속의 그룹과 같은 금속의 조합을 가능하게 한다. 금속 상호간 반응 임계점에서 선택적인 포스트 증착 가열 처리는 전이 금속을 알루미늄 매트릭스 물질 내부에 분산된 내부 금속 상호간 경화상으로 변환시킨다. 본 발명의 어플리케이션은 알루미늄 및 전이 금속의 혼합에 적용될 수 있을 뿐만 아니라 금속 물질, 금속 합금 물질, 비금속 물질 및 그 혼합물로부터 선택된 분말의 임의의 조합에 대해 사용될 수도 있다.
본 발명의 장치 및 공정은 야금으로 합금된 것이 아니라, 완전 합성 밀도로 경화된 합성 코팅의 공동 증착을 위한 방법을 포함한다. 다른 금속 또는 비금속 분말을 갖는 그러한 금속 분말의 경화는 코팅 또는 분무 형성 물질 특성의 생성을 가능하게 한다. 예를 들면, 열가소성 조정 알루미늄 및 크롬 분말(중량당 동일한 분분)의 혼합물을 공동 증착함으로써, 전기 전도성 스트립은 생성된 전기 고유 저항(즉, 일반적으로 72 μΩ-㎝), 뛰어난 부식 저항성(70 ℉의 염분 분무 내에서 20년) 및 강철 상에서 순수 알루미늄보다 뛰어난 접착 강도를 갖는 강철 기판에 적용될 수 있다. 도14에서의 현미경 사진은 본 발명의 어플리케이터 및 공정에 사용하 는 중량당 50%의 크롬 분말(< 44-미크론미터 입자)을 갖는 열가소성 조정 알루미늄 분말의 공동 증착에 의해 형성된 금속 매트릭스 합성물로 코팅된 강철 기판의 예를 도시한다.
또한, 이러한 장치 및 공정은 실리콘 카바이드, 붕소 카바이드, 텅스텐 카바이드 또는 알루미나 분말을 포함하는 그룹으로부터 선택된 경화제를 사용함으로써, 외부 입자 보강 금속 매트릭스 합성 물질을 분무 형성하기 위한 공정을 가능하게 한다. 경화제는 알루미늄 또는 티타늄과 같은 열가소성 조정 매트릭스 분말을 갖는 혼합물로 합성 증착되고 분무 형성된다. 알루미늄 합금 매트릭스 내에 실리콘 카바이드 입자를 포함하는 외부 입자 경화 금속 매트릭스 합성 물질의 광학 현미경 단면도는 도15에 도시된다. 이러한 합성 물질을 형성하는 종래의 캐스팅 방법으로 달성될 수 없는 알루미늄 매트릭스 내부에 외부 경화제의 뛰어난 분산성을 주목하라.
그러므로, 본 발명의 장치 및 공정은 기판 물질의 심각한 야금학적, 화학적 또는 기계적 변경없이 기판 표면 상에서 금속 및 비금속 분말을 경화시키기 위한 분무 형성 방법을 시사한다. 본 발명은 정밀 정형 내부에 순수 금속 또는 합금 분말을 경화하는 수단을 제공할 뿐만 아니라, 또한 본 기술은 내부 및 외부 입자 보강 금속 매트릭스 합성물 모두를 분무 형성을 가능하게 한다. 이러한 공정의 어플리케이션은 알루미늄 캐스트 브레이크 로터, 알루미늄 시트 스톡상에 마모 저항층의 증착 및 기계 가공 및 폴리싱을 위해 알루미늄 시트 스톡 상에 금속 및 비금속층의 증착과 같은 마찰 표면상에 마모 저항층의 증착을 포함한다.
[제4 실시예]
결국, 또한 본 발명의 장치 및 공정은 증착의 특성(예를 들면, 열확장성, 열전도성, 강도, 연성, 부식 저항성, 색깔 등)이 불연속 또는 단계적인 층으로 기능적으로 분급될 뿐만 아니라 연속적으로 분급되는 기능적으로 분급된 물질의 경화를 포함한다. 기능적으로 분급된 물질의 연속 분급은 각각 분말의 농축이 코팅 두께의 함수로서 변화하는 공동 증착 분말에 의해 이루어진다.
기능적으로 형성되고 기능적으로 분급된 물질의 조합이 본 발명에 포함된다. 이러한 실시예의 예는 단일층, 기능적으로 분급된 물질층, 기능적으로 형성된 내부 합성물 또는 마무리 부분 또는 부품의 특별한 특성을 만들도록 기능적으로 형성된 외부 합성물을 갖는 물질의 내부 코어를 캡슐로 싸는 것(예를 들면, 금속 합금, 금속 거품, 세라믹 또는 합성물)을 포함한다.
또한 본 발명은 증착 공정 중 분말의 입자 크기 분포를 제어함으로써 다공성 코팅 또는 분무 형성 물질의 경화를 포함한다. 미세 또는 초미세 입자(< 325 메쉬)의 혼합 없이 경화된 큰 분말 입자(> 325 메쉬)는 고 다공성을 갖는 물질을 생산한다. 이러한 형태의 경화는 다른 금속과 비금속 물질의 혼합물을 캡슐화하거나 또는 밀봉하기 위해 촉매 반응기, 필터 및 매트릭스에 대해 다공성 구조를 생성하기 위한 수단을 제공한다. 예를 들면, 도16에 도시된 바와 같이 기판 표면상에 코팅으로서 증착된 티타늄 분말의 다공성 매트릭스는 반응 금속 표면상에 뛰어난 부식 저항성 코팅을 제공하기 위해 에폭시로 밀봉될 수 있다. 다른 실시예에서, 자연 발화 물질은 자연 발화 반응성, 온도 및 자연 발화 화염의 스펙트럼 분출을 제어하기 위해 금속 매트릭스 내부에 주입될 수 있다.
열 이송 플라즈마 또는 운반 기체 내에 혼입된 분말 입자를 가열하고, 기판 입자를 가열하고, 그리고/또는 분말 입자 및 기판 물질을 화학적으로 반응하도록 열이송 플라즈마 또는 고압력 열 플라즈마를 발생시키고 사용하기 위한 본 발명에 따른 위의 장치 및 공정이 특이한 마찰 보상 음속 노즐의 사용과 연결하여 설명되었지만, 이는 경우에 따라 필요하지 않을 수도 있다. 또한 이러한 동일한 장치 및 공정은 기술 분야에서 앞서 설명된 바와 같이, 종래의 초음속 노즐 또는 초음속 제트를 사용하는 시스템과 조합하여 이점을 갖고 사용될 수 있다.
본 발명의 장치 및 공정의 범위가 양호한 실시예를 특정 참조하여 상세하게 설명되었지만, 다른 실시예들은 동일한 결과를 달성할 수 있다, 본 발명의 본 장치 및 공정의 변경 및 수정은 당해 기술 분야의 숙련자에게 명백할 것이며, 첨부된 청구항에 이러한 변경 및 동등물이 포함되도록 의도된다. 그 후, 모든 인용문, 출원, 특허, 간행물의 전체 개시물과 대응 출원의 전체 개시물이 본 명세서에 참조된다.





Claims (43)

  1. 대상물의 표면상에 분말 입자를 증착 및 경화하는 속도까지 기체에 혼입된 분말 입자를 가속시키도록 된 입자 증착 장치이며,
    기체 채널을 형성하는 노즐 본체를 포함하는 마찰 보상 노즐을 포함하고,
    상기 기체 채널은,
    분말 입자와 기체 혼합물을 수용하도록 구성된 수렴 섹션과,
    발산 테이퍼진 출구 섹션과,
    상기 수렴 섹션과 연결되는 일정한 단면적의 목 섹션를 포함하고,
    분말 입자와 기체 혼합물은 제1 속도로 기체 채널의 수렴 섹션에 수용되어, 기체가 수렴 섹션을 통과하면서 음속 이하인 제2 속도까지 가속되고,
    상기 기체 채널의 상기 발산 테이퍼진 출구 섹션의 발산은 기체가 출구 섹션을 통해 유동할 때, 기체를 상기 제2 속도와 같은 일정한 속도로 유지시키는 입자 증착 장치.
  2. 제1항에 있어서, 입자의 용융점보다 낮지만 저유동 응력 수준에서 충돌 중 소성 변형할 수 있도록 입자의 항복 강도를 감소시키는 온도로 분말 입자를 가열하는 가열 유닛을 더 포함하는 입자 증착 장치.
  3. 제2항에 있어서, 기체에 혼입된 분말 입자상의 항력을 최대화시키고 대상물의 표면과의 충돌시 가능한 최대 범위까지 입자를 증착 및 경화하는 속도로 입자를 가속시키는 밀도 수준으로 기체를 유지시키면서, 노즐은 기체를 음속 또는 아음속까지 가속시키도록 구성된 입자 증착 장치.
  4. 제3항에 있어서, 입자를 가열함으로써 유도된 감소된 항복 강도와 관련하여 증착된 물질의 물리적 성질 및 화학적 성질뿐만 아니라 구조가 조절되도록 대상물의 표면과의 충돌 지점에서의 분말 입자의 속도가 제어되는 입자 증착 장치.
  5. 제4항에 있어서, 분말 입자의 충돌 속도를 제어하는 작업은 기체의 입구 압력, 기체 유형 및 기체 혼합물을 선택하는 것을 포함하는 입자 증착 장치.
  6. 제1항에 있어서, 기체는 기체에 혼입된 분말 입자의 산화 및 화학적 연소를 감소시키는 불활성 기체인 입자 증착 장치.
  7. 제2항에 있어서, 가열 유닛은 노즐과, 기체에 혼입된 분말 입자가 대상물의 표면 상에 증착되기 전에 선회하는 대상물의 표면 사이에 열전달 플라즈마를 발생시키는 플라즈마 발생기를 포함하는 입자 증착 장치.
  8. 제7항에 있어서, 노즐은 대상물의 표면과 대면하는 노즐의 단부에 인접하여 배치된 희생 노즐 편을 포함하고,
    플라즈마 발생기는 RF 발생기와 임피던스 정합 네트워크를 포함하고, RF 발생기는 임피던스 정합 네트워크를 통해 커플링되며,
    임피던스 정합 네트워크는 RF 캐소드 전위로 대상물의 표면을 배치하고 RF 애노드 전위로 노즐을 배치하도록 대상물 및 노즐에 연결되고,
    희생 노즐 편은 노즐과 대상물의 표면 사이에 존재하는 열전달 플라즈마의 존재시 미립화된 물질로 이루어지고, 미립화 희생 노즐 편 물질은 분말 입자 및 기체 배출물에 합체되는 입자 증착 장치.
  9. 제8항에 있어서, 미립화 희생 노즐 편 물질은 열전달 플라즈마 존재시 분말 입자와 반응하여, 열전달 플라즈마 내에 미립화된 물질을 첨가하지 않고 형성되는 증착과 비교하여 고체 증착의 물리적 성질 또는 화학적 성질 또는 이들 양자 모두를 바꾸는 입자 증착 장치.
  10. 제2항에 있어서, 가열 유닛은 노즐과, 기체에 혼입된 분말 입자가 대상물의 표면 상에 증착되기 전에 선회하는 대상물의 표면 사이에 열전달 플라즈마를 발생시키는 플라즈마 발생기를 포함하는 입자 증착 장치.
  11. 제2항에 있어서, 가열 유닛은 상기 기체가 통과하는 챔버 내에 열 플라즈마를 발생시켜, 상기 기체를 가열하여, 상기 기체는 챔버의 가열된 기체 하류로 주입되는 상기 분말 입자를 가열하는 플라즈마 발생기를 포함하는 입자 증착 장치.
  12. 제1항에 있어서, 기체 채널은 그 길이를 따라 원형의 축대칭 단면을 갖는 입자 증착 장치.
  13. 제1항에 있어서, 상기 테이퍼진 출구 섹션은 그 길이를 따라 원형의 축대칭 단면을 갖는 입자 증착 장치.
  14. 제1항에 있어서, 상기 테이퍼진 출구 섹션은 두 개의 직교 방향에서 상이한 단면 형상을 갖는 입자 증착 장치.
  15. 제1항에 있어서, 노즐의 테이퍼진 출구 섹션에서 유출되는 분말 입자와 기체 혼합물이 음파보다 낮은 속도로 좁은 단면 제트에 제한되어, 대상물의 표면에 대해 이격된 노즐 구역에서 상기 제트의 초음파 팽창이 방지되고, 노즐 기체 스트림과 증착 영역으로의 다른 기체의 유입이 감소되는 입자 증착 장치.
  16. 제1항에 있어서, 노즐 본체는 노즐 기체 스트림과 증착 구역으로의 다른 기체의 유출을 감소시키기 위해 불활성 기체 차폐물을 제공하도록 추가로 구성된 입자 증착 장치.
  17. 제1항에 있어서, 기체 채널의 수렴 섹션은 적어도 10:1의 길이 대 직경 비를 갖는 입자 증착 장치.
  18. 제1항에 있어서, 마찰 보상 노즐을 둘러싸는 외부 진공 챔버를 더 포함하고, 외부 진공 챔버는 외부 진공 챔버를 통해 과도한 분말 입자와 기체를 혼입 및 회수하는 입자 증착 장치.
  19. 제1항에 있어서, 상기 기체에 혼입된 상기 분말 입자들을 반송하는 노즐의 수렴 섹션에 부착된 분말 유동화 유닛을 더 포함하는 입자 증착 장치.
  20. 코팅 또는 분무 형성 구조를 형성하도록 대상물의 표면상에 분말 입자들을 증착시키는 방법이며,
    상기 분말 입자들을 담체 기체로 도입하는 단계와,
    분말 입자들 상의 항력을 최대화하는 밀도 수준으로 담체 기체를 유지하기 위해 담체 기체를 음속 이하의 일정한 속도로 가속하는 단계와,
    상기 담체 기체를 대상물의 상기 표면으로 유도하는 단계를 포함하는 분말 입자 증착 방법.
  21. 제20항에 있어서, 분말 입자들은 증착된 분말 입자들의 매트릭스 사이에 조밀 패키징 구조를 생성하도록 선택된 입자 크기 분포를 가지며, 이로 인해 조밀 코팅 또는 분무 형성 구조를 생성하는 분말 입자 증착 방법.
  22. 제20항에 있어서, 분말 입자들은 증착된 분말 입자들의 매트릭스 사이에 공간 구조를 포함하도록 선택된 입자 크기 분포를 가지며, 이로 인해 다공성 코팅 또는 분무 형성 구조를 생성하는 분말 입자 증착 방법.
  23. 제22항에 있어서, 분말 입자와 다른 금속 또는 비금속 재료로 증착된 분말 입자들의 매트릭스 내의 공극을 재충전하는 작업을 더 포함하는 분말 입자 증착 방법.
  24. 제22항에 있어서, 분말 입자들은 촉매, 자연성 또는 폭발성 재료 중 하나를 포함하는 반응성 재료를 포함하고, 증착된 분말 입자들의 매트릭스의 공극율은 이러한 재료의 고체 증착보다 큰 표면적을 제공하는 분말 입자 증착 방법.
  25. 제20항에 있어서, 입자들의 용융점 보다는 낮지만, 저유동 응력 수준에서 충돌 중 소성 변형할 수 있도록 입자들의 항복 강도를 감소시키는 온도로 분말 입자들을 가열하는 작업을 더 포함하는 분말 입자 증착 방법.
  26. 제25항에 있어서, 입자들을 가열하여 야기된 감소된 항복 강도와 관련하여 증착된 재료의 물리적 그리고 화학적 특성뿐만 아니라 구조가 조절되도록, 대상물의 표면에 충돌하는 지점에서 분말 입자들의 속도가 제어되는 분말 입자 증착 방법.
  27. 제25항에 있어서, 대상물의 표면상에 사전에 증착된 재료 또는 대상물의 표면 또는 양자 모두의 물리적 특성 또는 화학적 특성, 또는 두 특성 모두를 변경하는 작업을 포함하는 분말 입자 증착 방법.
  28. 제20항 또는 제25항에 있어서, 분말 입자들과 반응하는 담체 기체 혼합물과 분말 입자로 제2 기체를 도입하여, 제2 기체의 추가 없이 형성된 증착물에 비해 증착물의 물리적 또는 화학적 특성, 또는 두 특성 모두를 변경하는 작업을 더 포함하분말 입자 증착 방법.
  29. 제20항 또는 25항에 있어서, 대상물의 표면과 반응하는 담체 기체 혼합물과 분말 입자로 제2 기체를 도입하여, 대상물의 표면의 물리적 또는 화학적 특성, 또는 두 특성 모두를 변경하는 작업을 더 포함하는 분말 입자 증착 방법.
  30. 제25항에 있어서, 분말 입자들은 플라즈마를 이용하여 가열되는 분말 입자 증착 방법.
  31. 제30항에 있어서, 플라즈마는 상기 기체를 가열하는데 사용되는 챔버 내에서 발생되고, 그 후 상기 기체는 상기 챔버의 가열된 담체 기체 하류로 주입되는 상기 분말 입자들을 가열하는 분말 입자 증착 방법.
  32. 제30항에 있어서, 플라즈마는 마찰 보상 노즐과 대상물의 상기 표면 사이에 직접 전달 플라즈마로 발생되는 분말 입자 증착 방법.
  33. 제31항 또는 제32항에 있어서, 분말 입자들과 표면이 가열되고, 분말 입자들은 표면상에 분말 입자들이 충돌할 때 표면과 분말 입자들의 소성 변형이 수행되는 속도를 갖는 분말 입자 증착 방법.
  34. 제20항에 있어서, 분말 입자들은 두 개 이상의 다른 유형의 분말 입자들을 포함하는 분말 입자 증착 방법.
  35. 제34항에 있어서, 제1 분말 입자 재료는 제1 금속 재료를 포함하고 제2 분말 입자 재료는 제2 금속 재료를 포함하는 분말 입자 증착 방법.
  36. 제34항에 있어서, 코팅 또는 분무 형성 구조는 다중층 코팅 또는 분무 형성 구조인 분말 입자 증착 방법.
  37. 제36항에 있어서, 각 층은 다른 분말 입자 재료를 포함하는 분말 입자 증착 방법.
  38. 제36항에 있어서, 각 층은 분말 입자 재료들의 다른 조합을 포함하는 분말 입자 증착 방법.
  39. 제36항에 있어서, 각 층은 분말 입자 재료 또는 분말 입자 재료들의 조합을 포함하는 분말 입자 증착 방법.
  40. 제37항, 제38항 또는 제39항 중 어느 한 항에 있어서, 제1 층은 확산 차단 금속 분말의 언더코트를 포함하고, 제2 층은 알루미늄 납땜 합금 충전제 분말을 포함하고, 제3 층은 융제 분말을 포함하는 분말 입자 증착 방법.
  41. 제34항에 있어서, 코팅 또는 분무 형성 구조는 분급된 코팅 또는 분무 형성 구조이며, 분말 입자들의 유형 중 적어도 하나의 농도가 다른 유형에 비례하여 두께의 함수로서 변경되는 분말 입자 증착 방법.
  42. 제41항에 있어서, 분급은 연속적인 분말 입자 증착 방법.
  43. 제41항에 있어서, 분급은 단계적인 방식으로 수행되는 분말 입자 증착 방법.
KR1020037013970A 2001-04-24 2002-04-20 열 소성 변형을 사용하는 고속 분말 입자의 고체 증착 및경화를 위한 장치 및 방법 KR100830245B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US28625601P 2001-04-24 2001-04-24
US60/286,256 2001-04-24
PCT/US2002/012693 WO2002085532A1 (en) 2001-04-24 2002-04-20 A apparatus and process for solid-state deposition and consolidation of high velocity powder particles using thermal plastic deformation

Publications (2)

Publication Number Publication Date
KR20040031700A KR20040031700A (ko) 2004-04-13
KR100830245B1 true KR100830245B1 (ko) 2008-05-16

Family

ID=23097764

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020037013970A KR100830245B1 (ko) 2001-04-24 2002-04-20 열 소성 변형을 사용하는 고속 분말 입자의 고체 증착 및경화를 위한 장치 및 방법

Country Status (8)

Country Link
US (2) US6915964B2 (ko)
EP (1) EP1383610B1 (ko)
KR (1) KR100830245B1 (ko)
AT (1) ATE321612T1 (ko)
CA (1) CA2482287C (ko)
DE (1) DE60210267T2 (ko)
MX (1) MXPA03009813A (ko)
WO (1) WO2002085532A1 (ko)

Families Citing this family (227)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713297B2 (en) 1998-04-11 2010-05-11 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US20030002043A1 (en) * 2001-04-10 2003-01-02 Kla-Tencor Corporation Periodic patterns and technique to control misalignment
US6755150B2 (en) * 2001-04-20 2004-06-29 Applied Materials Inc. Multi-core transformer plasma source
US6874676B1 (en) * 2001-05-04 2005-04-05 Creare Inc. Method and structure for welding an air-sensitive metal in air
US7244512B2 (en) * 2001-05-30 2007-07-17 Ford Global Technologies, Llc Method of manufacturing electromagnetic devices using kinetic spray
RU2213805C2 (ru) * 2001-10-23 2003-10-10 Крыса Валерий Корнеевич Способ нанесения покрытий из порошковых материалов и устройство для его осуществления
US20060102696A1 (en) 2001-11-21 2006-05-18 Graham Michael E Layered products for fluxless brazing of substrates
US7451906B2 (en) * 2001-11-21 2008-11-18 Dana Canada Corporation Products for use in low temperature fluxless brazing
US6986471B1 (en) 2002-01-08 2006-01-17 Flame Spray Industries, Inc. Rotary plasma spray method and apparatus for applying a coating utilizing particle kinetics
US7371467B2 (en) * 2002-01-08 2008-05-13 Applied Materials, Inc. Process chamber component having electroplated yttrium containing coating
US6861101B1 (en) * 2002-01-08 2005-03-01 Flame Spray Industries, Inc. Plasma spray method for applying a coating utilizing particle kinetics
DE10204895B4 (de) * 2002-02-06 2004-07-29 Diehl Munitionssysteme Gmbh & Co. Kg Verfahren zur Herstellung von Reaktivstoffen
US7480571B2 (en) * 2002-03-08 2009-01-20 Lam Research Corporation Apparatus and methods for improving the stability of RF power delivery to a plasma load
US6682774B2 (en) * 2002-06-07 2004-01-27 Delphi Technologies, Inc. Direct application of catalysts to substrates for treatment of the atmosphere
US7416697B2 (en) 2002-06-14 2008-08-26 General Electric Company Method for preparing a metallic article having an other additive constituent, without any melting
US6821558B2 (en) * 2002-07-24 2004-11-23 Delphi Technologies, Inc. Method for direct application of flux to a brazing surface
CA2444917A1 (en) * 2002-10-18 2004-04-18 United Technologies Corporation Cold sprayed copper for rocket engine applications
TWI244129B (en) * 2002-10-25 2005-11-21 Via Tech Inc Bonding column process
US6968990B2 (en) * 2003-01-23 2005-11-29 General Electric Company Fabrication and utilization of metallic powder prepared without melting
DE10304892B3 (de) * 2003-02-06 2004-08-19 Dürr Systems GmbH Betriebsverfahren für eine Pulverversorgungseinrichtung
US7220699B2 (en) * 2003-03-31 2007-05-22 Intelligent Energy, Inc. Catalyst incorporation in a microreactor
US20050026001A1 (en) * 2003-07-31 2005-02-03 Taylor Thomas A. Shielded ceramic thermal spray coating
JP4064315B2 (ja) * 2003-08-20 2008-03-19 信越化学工業株式会社 誘導結合プラズマトーチ及び元素分析装置
US7128948B2 (en) * 2003-10-20 2006-10-31 The Boeing Company Sprayed preforms for forming structural members
WO2005049224A1 (en) * 2003-11-12 2005-06-02 Intelligent Energy, Inc. Methods for treating surfaces of a hydrogen generation reactor chamber
US7662435B2 (en) * 2003-11-12 2010-02-16 Intelligent Energy, Inc. Method for reducing coking in a hydrogen generation reactor chamber
US7597046B1 (en) * 2003-12-03 2009-10-06 The United States Of America As Represented By The Secretary Of The Navy Integrated thin film explosive micro-detonator
US7398911B2 (en) * 2003-12-16 2008-07-15 The Boeing Company Structural assemblies and preforms therefor formed by friction welding
US7225967B2 (en) * 2003-12-16 2007-06-05 The Boeing Company Structural assemblies and preforms therefor formed by linear friction welding
US20110104381A1 (en) * 2004-01-15 2011-05-05 Stefan Laure Plasma Treatment of Large-Scale Components
JP3965696B2 (ja) * 2004-02-05 2007-08-29 日立金属株式会社 粉末のプラズマ処理装置および粉末のプラズマ処理方法
US20050214474A1 (en) * 2004-03-24 2005-09-29 Taeyoung Han Kinetic spray nozzle system design
US20050233090A1 (en) * 2004-04-16 2005-10-20 Tapphorn Ralph M Technique and process for modification of coatings produced during impact consolidation of solid-state powders
WO2005116650A2 (en) * 2004-04-19 2005-12-08 Sdc Materials, Llc High throughput discovery of materials through vapor phase synthesis
WO2005113854A2 (en) * 2004-05-18 2005-12-01 Board Of Trustees Of The University Of Arkansas Apparatus and methods of making nanostructures by inductive heating
US20060040048A1 (en) * 2004-08-23 2006-02-23 Taeyoung Han Continuous in-line manufacturing process for high speed coating deposition via a kinetic spray process
US20060275554A1 (en) * 2004-08-23 2006-12-07 Zhibo Zhao High performance kinetic spray nozzle
WO2006034054A1 (en) * 2004-09-16 2006-03-30 Belashchenko Vladimir E Deposition system, method and materials for composite coatings
GB2418208B (en) * 2004-09-18 2007-06-06 Rolls Royce Plc Component coating
US20060093736A1 (en) * 2004-10-29 2006-05-04 Derek Raybould Aluminum articles with wear-resistant coatings and methods for applying the coatings onto the articles
US7531021B2 (en) 2004-11-12 2009-05-12 General Electric Company Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix
US7900812B2 (en) * 2004-11-30 2011-03-08 Enerdel, Inc. Secure physical connections formed by a kinetic spray process
US20060129215A1 (en) * 2004-12-09 2006-06-15 Helmus Michael N Medical devices having nanostructured regions for controlled tissue biocompatibility and drug delivery
US7320832B2 (en) 2004-12-17 2008-01-22 Integran Technologies Inc. Fine-grained metallic coatings having the coefficient of thermal expansion matched to the one of the substrate
US7354354B2 (en) * 2004-12-17 2008-04-08 Integran Technologies Inc. Article comprising a fine-grained metallic material and a polymeric material
US7676897B2 (en) * 2005-03-17 2010-03-16 Keate Robert A Process of refurbishing brake components
WO2006100054A1 (de) * 2005-03-22 2006-09-28 Erbslöh Aluminium Gmbh Bauteil aus aluminiummaterial mit einer partiellen oder vollständigen beschichtung der oberflächen für die hartverlötung und verfahren zur herstellung der beschichtung
CN101156504B (zh) * 2005-04-11 2012-07-18 洛尔等离子技术有限公司 等离子喷涂设备及方法
KR100802329B1 (ko) * 2005-04-15 2008-02-13 주식회사 솔믹스 금속기지 복합체 형성방법 및 이를 이용하여 제조된 코팅층및 벌크
US20080277092A1 (en) 2005-04-19 2008-11-13 Layman Frederick P Water cooling system and heat transfer system
MX2007013601A (es) * 2005-05-05 2008-03-18 Starck H C Gmbh Procesos de revestimiento para manufacturar o reprocesar materiales objetivo de bombardeo ionico y anodos de rayos x.
AU2006243447B2 (en) * 2005-05-05 2010-11-18 H.C. Starck Surface Technology and Ceramic Powders GmbH Method for coating a substrate surface and coated product
US20060269685A1 (en) * 2005-05-31 2006-11-30 Honeywell International, Inc. Method for coating turbine engine components with high velocity particles
DE102005035704A1 (de) * 2005-07-27 2007-02-01 Behr Gmbh & Co. Kg Zu verlötende Oberfläche
US20070029370A1 (en) * 2005-08-08 2007-02-08 Zhibo Zhao Kinetic spray deposition of flux and braze alloy composite particles
KR100946196B1 (ko) * 2005-08-17 2010-03-08 아주대학교산학협력단 분무 코팅에 의한 금속표면 개질방법 및 이에 의하여 제조되는 금속
US7722929B2 (en) * 2005-08-18 2010-05-25 Corning Incorporated Sealing technique for decreasing the time it takes to hermetically seal a device and the resulting hermetically sealed device
US9511446B2 (en) 2014-12-17 2016-12-06 Aeroprobe Corporation In-situ interlocking of metals using additive friction stir processing
US9266191B2 (en) 2013-12-18 2016-02-23 Aeroprobe Corporation Fabrication of monolithic stiffening ribs on metallic sheets
US8875976B2 (en) 2005-09-26 2014-11-04 Aeroprobe Corporation System for continuous feeding of filler material for friction stir welding, processing and fabrication
US8632850B2 (en) 2005-09-26 2014-01-21 Schultz-Creehan Holdings, Inc. Friction fabrication tools
US9511445B2 (en) 2014-12-17 2016-12-06 Aeroprobe Corporation Solid state joining using additive friction stir processing
US20080041921A1 (en) * 2005-09-26 2008-02-21 Kevin Creehan Friction stir fabrication
WO2007044514A2 (en) * 2005-10-07 2007-04-19 Lee, Michael, J. Method for improving refractive index control in pecvd deposited a-siny films
US20070098913A1 (en) * 2005-10-27 2007-05-03 Honeywell International, Inc. Method for coating turbine engine components with metal alloys using high velocity mixed elemental metals
US20070098912A1 (en) * 2005-10-27 2007-05-03 Honeywell International, Inc. Method for producing functionally graded coatings using cold gas-dynamic spraying
US20070110919A1 (en) * 2005-11-15 2007-05-17 ATG Advanced Technology Group s.r.o. Method for producing photocatalytically active polymers
DE102005056320A1 (de) * 2005-11-25 2007-06-06 Aixtron Ag CVD-Reaktor mit einem Gaseinlassorgan
US20070156249A1 (en) * 2006-01-05 2007-07-05 Howmedica Osteonics Corp. High velocity spray technique for medical implant components
US8187660B2 (en) * 2006-01-05 2012-05-29 Howmedica Osteonics Corp. Method for fabricating a medical implant component and such component
US20070158446A1 (en) * 2006-01-05 2007-07-12 Howmedica Osteonics Corp. Method for fabricating a medical implant component and such component
DE102006003482A1 (de) * 2006-01-25 2007-07-26 Robert Bosch Gmbh Verfahren zum Aufbringen eines Lotdepots auf ein Substrat sowie pulverförmiger Lotwerkstoff
US20070224235A1 (en) 2006-03-24 2007-09-27 Barron Tenney Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US8187620B2 (en) 2006-03-27 2012-05-29 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
JP5055834B2 (ja) * 2006-05-17 2012-10-24 東洋製罐株式会社 プラズマ処理用ガス供給管
DE102006023567A1 (de) * 2006-05-19 2007-11-22 Schaeffler Kg Wälzlagerbauteil und Verfahren zur Herstellung eines solchen
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
JP2009542359A (ja) 2006-06-29 2009-12-03 ボストン サイエンティフィック リミテッド 選択的被覆部を備えた医療装置
US7674076B2 (en) * 2006-07-14 2010-03-09 F. W. Gartner Thermal Spraying, Ltd. Feeder apparatus for controlled supply of feedstock
JP2010503469A (ja) 2006-09-14 2010-02-04 ボストン サイエンティフィック リミテッド 薬物溶出性皮膜を有する医療デバイス
DE102006044612A1 (de) * 2006-09-19 2008-03-27 Linde Ag Verfahren zum Kaltgasspritzen
US20080078268A1 (en) 2006-10-03 2008-04-03 H.C. Starck Inc. Process for preparing metal powders having low oxygen content, powders so-produced and uses thereof
NZ576664A (en) * 2006-11-07 2012-03-30 Starck H C Gmbh Method for coating a substrate surface and coated product
US7981150B2 (en) 2006-11-09 2011-07-19 Boston Scientific Scimed, Inc. Endoprosthesis with coatings
US20080131612A1 (en) * 2006-11-30 2008-06-05 Honeywell International, Inc. Method for making an environment-resistant and thermal barrier coating system on a component
US20080145688A1 (en) 2006-12-13 2008-06-19 H.C. Starck Inc. Method of joining tantalum clade steel structures
US20080187391A1 (en) * 2007-02-01 2008-08-07 Applied Materials, Inc. Automation adjustment utilizing low melting point alloys
US8431149B2 (en) 2007-03-01 2013-04-30 Boston Scientific Scimed, Inc. Coated medical devices for abluminal drug delivery
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US8067054B2 (en) 2007-04-05 2011-11-29 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
US8197894B2 (en) 2007-05-04 2012-06-12 H.C. Starck Gmbh Methods of forming sputtering targets
US7976915B2 (en) 2007-05-23 2011-07-12 Boston Scientific Scimed, Inc. Endoprosthesis with select ceramic morphology
CA2691334C (en) * 2007-06-12 2018-02-27 Rolls-Royce Corporation System, method, and apparatus for repair of components
US8002823B2 (en) 2007-07-11 2011-08-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7942926B2 (en) 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
JP2010533563A (ja) 2007-07-19 2010-10-28 ボストン サイエンティフィック リミテッド 吸着抑制表面を有する内部人工器官
US8815273B2 (en) 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
WO2009018340A2 (en) 2007-07-31 2009-02-05 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
JP2010535541A (ja) 2007-08-03 2010-11-25 ボストン サイエンティフィック リミテッド 広い表面積を有する医療器具用のコーティング
US8113025B2 (en) * 2007-09-10 2012-02-14 Tapphorn Ralph M Technique and process for controlling material properties during impact consolidation of powders
US20090092823A1 (en) * 2007-10-05 2009-04-09 Diamond Innovations, Inc. Braze-metal coated articles and process for making same
US8343450B2 (en) * 2007-10-09 2013-01-01 Chemnano Materials, Ltd. Functionalized carbon nanotubes, recovery of radionuclides and separation of actinides and lanthanides
US8575059B1 (en) 2007-10-15 2013-11-05 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US8029554B2 (en) 2007-11-02 2011-10-04 Boston Scientific Scimed, Inc. Stent with embedded material
US8216632B2 (en) 2007-11-02 2012-07-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7938855B2 (en) 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
EP2229192A2 (en) * 2007-12-12 2010-09-22 Boston Scientific Scimed, Inc. Medical devices having porous component for controlled diffusion
JP5485539B2 (ja) * 2007-12-18 2014-05-07 昭和電工株式会社 熱交換器用部材の製造方法および熱交換器用部材
EP2229471B1 (en) 2008-01-08 2015-03-11 Treadstone Technologies, Inc. Highly electrically conductive surfaces for electrochemical applications
JP5130991B2 (ja) * 2008-03-27 2013-01-30 株式会社Ihi コールドスプレー方法、コールドスプレー装置
WO2009131911A2 (en) 2008-04-22 2009-10-29 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
WO2009132176A2 (en) 2008-04-24 2009-10-29 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
US8033483B2 (en) 2008-04-25 2011-10-11 Confluent Surgical Inc. Silicone spray tip
US8408480B2 (en) * 2008-04-25 2013-04-02 Confluent Surgical, Inc. Self-cleaning spray tip
EP2303350A2 (en) 2008-06-18 2011-04-06 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8246903B2 (en) 2008-09-09 2012-08-21 H.C. Starck Inc. Dynamic dehydriding of refractory metal powders
US8210453B2 (en) 2008-09-12 2012-07-03 Confluent Surgical, Inc. Spray applicator
US20100075060A1 (en) * 2008-09-24 2010-03-25 Pravin Narwankar process tool including plasma spray for carbon nanotube growth
US8043655B2 (en) * 2008-10-06 2011-10-25 H.C. Starck, Inc. Low-energy method of manufacturing bulk metallic structures with submicron grain sizes
US8192799B2 (en) 2008-12-03 2012-06-05 Asb Industries, Inc. Spray nozzle assembly for gas dynamic cold spray and method of coating a substrate with a high temperature coating
US8231980B2 (en) 2008-12-03 2012-07-31 Boston Scientific Scimed, Inc. Medical implants including iridium oxide
DE102009010497A1 (de) * 2008-12-19 2010-08-05 J-Fiber Gmbh Mehrdüsiger rohrförmiger Plasma-Abscheidebrenner zur Herstellung von Vorformen als Halbzeuge für optische Fasern
FR2940766B1 (fr) * 2009-01-06 2011-05-27 Commissariat Energie Atomique Procede de realisation d'un depot de nanoparticules a adherence augmentee et dispositif pour la mise en oeuvre d'un tel procede
US8020509B2 (en) 2009-01-08 2011-09-20 General Electric Company Apparatus, systems, and methods involving cold spray coating
US7897204B2 (en) * 2009-01-29 2011-03-01 Nanotech Industries, Inc. Method of strengthening tool material by penetration of reinforcing particles
US8604379B2 (en) * 2009-02-08 2013-12-10 Ap Solutions, Inc. Plasma source with integral blade and method for removing materials from substrates
JP2012517525A (ja) * 2009-02-11 2012-08-02 グリーン, ツイード オブ デラウェア, インコーポレイテッド 溶射被覆されたポリマー基材
US8071156B2 (en) 2009-03-04 2011-12-06 Boston Scientific Scimed, Inc. Endoprostheses
GB0906091D0 (en) 2009-04-07 2009-05-20 Snowball Malcolm R None invasive disinfector
US8287937B2 (en) 2009-04-24 2012-10-16 Boston Scientific Scimed, Inc. Endoprosthese
US20110129351A1 (en) * 2009-11-30 2011-06-02 Nripendra Nath Das Near net shape composite airfoil leading edge protective strips made using cold spray deposition
US9039916B1 (en) 2009-12-15 2015-05-26 SDCmaterials, Inc. In situ oxide removal, dispersal and drying for copper copper-oxide
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US8470410B2 (en) * 2009-12-21 2013-06-25 Institut National De La Recherche Scientifique (Inrs) Method and system for producing electrocatalytic coatings and electrodes
US20120326527A1 (en) * 2010-01-31 2012-12-27 Miron Tuval Electromagnetic pulse generator
WO2011119494A1 (en) * 2010-03-22 2011-09-29 The Regents Of The University Of California Method and device to synthesize boron nitride nanotubes and related nanoparticles
SE534696C2 (sv) * 2010-03-26 2011-11-22 Diamorph Ab En funktionell gradientmaterialkomponent och metod för att producera en sådan komponent
US9517523B2 (en) * 2010-04-09 2016-12-13 Illinois Tool Works Inc. System and method of reducing diffusible hydrogen in weld metal
US9023121B2 (en) * 2010-10-20 2015-05-05 Alliant Techsystems Inc. Solid feed systems for elevated pressure processes, gasification systems and related methods
US9174296B2 (en) * 2010-10-20 2015-11-03 Lam Research Corporation Plasma ignition and sustaining methods and apparatuses
US9146055B2 (en) * 2010-11-26 2015-09-29 Owen Potter Gas-particle processor
GB201020539D0 (en) * 2010-12-03 2011-01-19 Pdx Technologies Ag An improved apparatus for generating mist and foams
CN103270637A (zh) * 2010-12-03 2013-08-28 埃纳德尔公司 用于非水和固态电池的耐热层及其制造方法
US11571584B2 (en) 2010-12-30 2023-02-07 Frederick R. Guy Tooth and bone restoration via plasma deposition
WO2012108704A2 (ko) * 2011-02-10 2012-08-16 고려대학교 산학협력단 무기물 박막 태양전지 제조 장치 및 이의 제어 방법
CN103384563B (zh) * 2011-02-21 2015-04-22 佳能株式会社 热处理设备及制造调色剂的方法
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
ITRA20110008A1 (it) * 2011-03-03 2012-09-04 Massimo Foschini Apparato industriale
EP2503026A1 (de) 2011-03-21 2012-09-26 MTU Aero Engines GmbH Verfahren zum Reparieren einer Schicht auf einem Substrat
US9764409B2 (en) 2011-04-04 2017-09-19 Illinois Tool Works Inc. Systems and methods for using fluorine-containing gas for submerged arc welding
WO2013002869A2 (en) 2011-04-07 2013-01-03 Schultz-Creehan Holdings, Inc. System for continuous feeding of filler material for friction stir fabrication and self-reacting friction stir welding tool
US10000026B2 (en) * 2011-04-08 2018-06-19 The Boeing Company Composite induction consolidation apparatus and method
US8703234B2 (en) * 2011-07-27 2014-04-22 GM Global Technology Operations LLC Cold sprayed and heat treated coating for magnesium
MX2014001718A (es) 2011-08-19 2014-03-26 Sdcmaterials Inc Sustratos recubiertos para uso en catalisis y convertidores cataliticos y metodos para recubrir sustratos con composiciones de recubrimiento delgado.
US8703233B2 (en) 2011-09-29 2014-04-22 H.C. Starck Inc. Methods of manufacturing large-area sputtering targets by cold spray
US9034199B2 (en) 2012-02-21 2015-05-19 Applied Materials, Inc. Ceramic article with reduced surface defect density and process for producing a ceramic article
US9212099B2 (en) 2012-02-22 2015-12-15 Applied Materials, Inc. Heat treated ceramic substrate having ceramic coating and heat treatment for coated ceramics
US9821402B2 (en) 2012-03-27 2017-11-21 Illinois Tool Works Inc. System and method for submerged arc welding
DE102012209342A1 (de) * 2012-06-04 2013-12-05 Siemens Aktiengesellschaft Verfahren zum Anpassen der Geometrie einer Dispergierdüse
US9343289B2 (en) 2012-07-27 2016-05-17 Applied Materials, Inc. Chemistry compatible coating material for advanced device on-wafer particle performance
US10309430B2 (en) 2012-08-10 2019-06-04 Confluent Surgical, Inc. Pneumatic actuation assembly
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
WO2014097186A1 (en) * 2012-12-21 2014-06-26 Freni Brembo S.P.A. A method of making a brake disc, brake disc for disc brake and a disc brake
KR101499917B1 (ko) * 2013-01-21 2015-03-10 조선대학교산학협력단 플라즈마 용사 장치
EP2948094B1 (en) * 2013-01-22 2018-06-27 Frederick Guy Tooth and bone restoration via plasma deposition
US9567681B2 (en) 2013-02-12 2017-02-14 Treadstone Technologies, Inc. Corrosion resistant and electrically conductive surface of metallic components for electrolyzers
US9865434B2 (en) 2013-06-05 2018-01-09 Applied Materials, Inc. Rare-earth oxide based erosion resistant coatings for semiconductor application
US9850568B2 (en) 2013-06-20 2017-12-26 Applied Materials, Inc. Plasma erosion resistant rare-earth oxide based thin film coatings
US10384299B2 (en) * 2013-06-26 2019-08-20 Apple Inc. Electron beam conditioning
CN105592921A (zh) 2013-07-25 2016-05-18 Sdc材料公司 用于催化转化器的洗涂层和经涂覆基底及其制造和使用方法
ITTV20130132A1 (it) 2013-08-08 2015-02-09 Paolo Matteazzi Procedimento per la realizzazione di un rivestimento di un substrato solido, e manufatto cosi' ottenuto.
US10468235B2 (en) 2013-09-18 2019-11-05 Applied Materials, Inc. Plasma spray coating enhancement using plasma flame heat treatment
MX2016004991A (es) 2013-10-22 2016-08-01 Sdcmaterials Inc Diseño de catalizador para motores de combustion diesel de servicio pesado.
KR20160074574A (ko) 2013-10-22 2016-06-28 에스디씨머티리얼스, 인코포레이티드 희박 NOx 트랩의 조성물
EP3116636B1 (en) 2014-03-11 2020-07-08 Tekna Plasma Systems Inc. Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member
US10167556B2 (en) 2014-03-14 2019-01-01 The Board Of Trustees Of The University Of Illinois Apparatus and method for depositing a coating on a substrate at atmospheric pressure
WO2015143225A1 (en) 2014-03-21 2015-09-24 SDCmaterials, Inc. Compositions for passive nox adsorption (pna) systems
WO2015153828A1 (en) 2014-04-04 2015-10-08 Hyperbranch Medical Technology, Inc. Extended tip spray applicator for two-component surgical selant, and methods of use thereof
TWI565843B (zh) * 2014-06-19 2017-01-11 財團法人紡織產業綜合研究所 噴織裝置與噴織系統
US20170274416A1 (en) * 2014-09-02 2017-09-28 Sung Wung YEOM Applying a Coating to a Substrate; Composite Structures formed by Application of a Coating
GB201417502D0 (en) * 2014-10-03 2014-11-19 Zephyros Inc Improvements in or relating to powdered adhesives
US9666415B2 (en) * 2015-02-11 2017-05-30 Ford Global Technologies, Llc Heated air plasma treatment
WO2016168649A2 (en) 2015-04-15 2016-10-20 Treadstone Technologies, Inc. Method of metallic component surface moodification for electrochemical applications
JP6817971B2 (ja) 2015-06-29 2021-01-20 テクナ・プラズマ・システムズ・インコーポレーテッド より高いプラズマエネルギー密度を有する誘導プラズマトーチ
CN107709611A (zh) * 2015-06-29 2018-02-16 欧瑞康美科(美国)公司 冷气喷涂方法和组合物
EP3756799A1 (en) 2015-07-17 2020-12-30 AP&C Advanced Powders And Coatings Inc. Plasma atomization metal powder manufacturing processes and systems therefore
RU2636211C2 (ru) * 2016-02-15 2017-11-21 Общество с ограниченной ответственностью "Технологические системы защитных покрытий", ООО "ТСЗП" Способ защиты технологического оборудования нефтехимического производства
RU2621088C1 (ru) * 2016-03-30 2017-05-31 Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) Способ получения покрытия на стальной пластине
CA3020720C (en) 2016-04-11 2020-12-01 Ap&C Advanced Powders & Coatings Inc. Reactive metal powders in-flight heat treatment processes
DE102016107992B4 (de) * 2016-04-29 2018-05-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Trockenbeschichtung von Trägern
US20170342535A1 (en) * 2016-05-26 2017-11-30 United Technologies Corporation Powder processing system and method for powder heat treatment
CN106111383B (zh) * 2016-09-11 2018-09-18 北京林业大学 一种热塑性塑料粉末喷熔装置
CN106111381B (zh) * 2016-09-11 2018-09-18 北京林业大学 一种热塑性塑料粉末喷熔用喷枪喷头
RU2634099C1 (ru) * 2016-11-22 2017-10-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Способ получения износостойкого многослойного композита на металлической поверхности
US20180172576A1 (en) * 2016-12-16 2018-06-21 The Boeing Company Methods and apparatus for conducting particle erosion tests of vehicle surfaces
KR101899678B1 (ko) * 2016-12-21 2018-09-17 주식회사 포스코 필터유닛 및 이를 포함하는 도금장치
US11267101B2 (en) * 2017-05-26 2022-03-08 Arborjet Inc. Abrasive media blasting method and apparatus
JP6752179B2 (ja) * 2017-06-08 2020-09-09 タツタ電線株式会社 皮膜材料、及びコールドスプレー方法
CN110997195B (zh) * 2017-06-20 2021-10-26 联邦科学和工业研究组织 使用冷喷涂形成锻造结构的方法
US20190024242A1 (en) * 2017-07-19 2019-01-24 United Technologies Corporation Hydrogen based cold spray nozzle and method
AU2018359514C1 (en) 2017-10-31 2021-05-27 MELD Manufacturing Corporation Solid-state additive manufacturing system and material compositions and structures
DE102018009153B4 (de) * 2017-11-22 2021-07-08 Mitsubishi Heavy Industries, Ltd. Beschichtungsverfahren
JP2019099841A (ja) * 2017-11-29 2019-06-24 日本特殊陶業株式会社 成膜方法、成膜用ノズル、及び成膜装置
US11047035B2 (en) 2018-02-23 2021-06-29 Applied Materials, Inc. Protective yttria coating for semiconductor equipment parts
US10722910B2 (en) 2018-05-25 2020-07-28 Innovative Technology, Inc. Brush-sieve powder fluidizing apparatus for nano-size and ultra fine powders
US20190366362A1 (en) * 2018-06-05 2019-12-05 United Technologies Corporation Cold spray deposition apparatus, system, and method
CN109093619B (zh) * 2018-07-18 2021-06-25 扬州大学 一种曲面均匀热喷涂的机器人轨迹规划方法
US11136480B2 (en) 2018-08-01 2021-10-05 The Boeing Company Thermal spray plastic coating for edge sealing and fillet sealing
US20200040214A1 (en) * 2018-08-01 2020-02-06 The Boeing Company Thermoplastic Coating Formulations For High-Velocity Sprayer Application and Methods For Applying Same
US11767436B2 (en) 2018-08-01 2023-09-26 The Boeing Company Thermal and cold spray plastic coating covering vehicle fasteners inside fuel tank for lightning strike and other electromagnetic protection
US11584985B2 (en) * 2018-08-13 2023-02-21 Honeywell International Inc. Sputter trap having a thin high purity coating layer and method of making the same
CA3117338C (en) * 2018-10-24 2023-04-04 Atmospheric Plasma Solutions, Inc. Plasma source and method for preparing and coating surfaces using atmospheric plasma pressure waves
JP7171082B2 (ja) * 2018-11-08 2022-11-15 株式会社Helix 分解処理装置
RU2718793C1 (ru) * 2019-03-05 2020-04-14 Евгений Викторович Харанжевский Способ получения сверхтвердых износостойких покрытий с низким коэффициентом трения
US11591103B2 (en) 2019-03-28 2023-02-28 The Boeing Company Multi-layer thermoplastic spray coating system for high performance sealing on airplanes
US11857990B2 (en) 2019-06-26 2024-01-02 The Boeing Company Systems and methods for cold spray additive manufacturing and repair with gas recovery
JP2023527861A (ja) * 2020-05-29 2023-06-30 エリコン メテコ(ユーエス)インコーポレイテッド ろう付け合金粉末の製造のためのhdh(水素化脱水素)プロセス
RU2743944C1 (ru) * 2020-08-03 2021-03-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" Устройство для газодинамического нанесения покрытий
KR102649715B1 (ko) * 2020-10-30 2024-03-21 세메스 주식회사 표면 처리 장치 및 표면 처리 방법
CN112776322B (zh) * 2020-12-15 2024-03-29 重庆交通大学绿色航空技术研究院 真空电扫超音速喷射沉积电子束增材制造装置
DE102021107621A1 (de) 2021-03-26 2022-09-29 Volkswagen Aktiengesellschaft Verfahren zur Beschichtung eines Trägermaterials mit einem Aktivmaterial zur Herstellung einer Elektrodenfolie einer Batteriezelle
DE102021128374B4 (de) 2021-10-29 2023-10-26 IMPACT-Innovations-GmbH Verfahren zur Herstellung einer Bremsscheibe und Bremsscheibe
CN114657548B (zh) * 2022-03-30 2023-11-07 广东省科学院新材料研究所 一种金属固态沉积用喷嘴及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914573A (en) 1971-05-17 1975-10-21 Geotel Inc Coating heat softened particles by projection in a plasma stream of Mach 1 to Mach 3 velocity
US4256779A (en) 1978-11-03 1981-03-17 United Technologies Corporation Plasma spray method and apparatus
US6139913A (en) 1999-06-29 2000-10-31 National Center For Manufacturing Sciences Kinetic spray coating method and apparatus

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB816391A (en) * 1955-02-08 1959-07-15 British Oxygen Co Ltd Methods for depositing alloy coatings by gas shielded electric arcs
BE512449A (ko) 1955-03-28 1900-01-01
US3145287A (en) * 1961-07-14 1964-08-18 Metco Inc Plasma flame generator and spray gun
DE1933306B2 (de) 1969-07-01 1972-02-10 Siemens AG, 1000 Berlin u 8000 München Verfahren zum betrieb eines lichtbogen hochdruckplasmabrenners und anordnung zur durchfuerhung des verfahrens
US3951328A (en) 1972-08-02 1976-04-20 Alcan Research And Development Limited Joining of metal surfaces
US3970237A (en) 1972-11-07 1976-07-20 Borg-Warner Corporation Method of brazing aluminum parts
US3899306A (en) 1973-12-21 1975-08-12 Johnson & Co Inc A Exothermic brazing of aluminum
US4104505A (en) * 1976-10-28 1978-08-01 Eaton Corporation Method of hard surfacing by plasma torch
US4328257A (en) 1979-11-26 1982-05-04 Electro-Plasma, Inc. System and method for plasma coating
US4471034A (en) 1982-11-16 1984-09-11 Eutectic Corporation Alloy coating for cast iron parts, such as glass molds
JPS6078205A (ja) 1983-10-04 1985-05-02 Toshiharu Yamashita プラズマバ−ナ装置
US4732311A (en) 1984-05-31 1988-03-22 Nippondenso Co., Ltd. Process of producing lightweight and corrosion-resistant heat exchanger
US4689468A (en) 1986-02-10 1987-08-25 Electro-Plasma, Inc. Method of and apparatus providing oxide reduction in a plasma environment
US4723378A (en) 1987-02-24 1988-02-09 Progressive Blasting Systems, Inc. Exhaust and reclaim system for blasting enclosures
US4841114A (en) 1987-03-11 1989-06-20 Browning James A High-velocity controlled-temperature plasma spray method and apparatus
US4877640A (en) 1988-04-13 1989-10-31 Electro-Plasma, Inc. Method of oxide removal from metallic powder
US5035089A (en) 1990-01-29 1991-07-30 Pauli & Griffin Blast media recovery and cleaning system
EP0484533B1 (en) 1990-05-19 1995-01-25 Anatoly Nikiforovich Papyrin Method and device for coating
US5070228A (en) 1990-06-18 1991-12-03 General Electric Company Method for plasma spray joining active metal substrates
GB9021767D0 (en) 1990-10-06 1990-11-21 Brico Eng Sintered materials
US5298714A (en) 1992-12-01 1994-03-29 Hydro-Quebec Plasma torch for the treatment of gases and/or particles and for the deposition of particles onto a substrate
US5459811A (en) * 1994-02-07 1995-10-17 Mse, Inc. Metal spray apparatus with a U-shaped electric inlet gas heater and a one-piece electric heater surrounding a nozzle
US5637242A (en) 1994-08-04 1997-06-10 Electro-Plasma, Inc. High velocity, high pressure plasma gun
CZ291829B6 (cs) 1995-01-24 2003-06-18 Solvay Fluor Und Derivate Gmbh Způsob tvrdého pájení kovových materiálů, tavidlo k pájení kovových materiálů a způsob jeho přípravy
US5573682A (en) * 1995-04-20 1996-11-12 Plasma Processes Plasma spray nozzle with low overspray and collimated flow
US5795626A (en) 1995-04-28 1998-08-18 Innovative Technology Inc. Coating or ablation applicator with a debris recovery attachment
US5884388A (en) 1995-05-12 1999-03-23 Aluminum Company Of America Method for manufacturing a friction-wear aluminum part
US5766693A (en) 1995-10-06 1998-06-16 Ford Global Technologies, Inc. Method of depositing composite metal coatings containing low friction oxides
US5705786A (en) 1995-12-29 1998-01-06 General Electric Company Underwater welding
CH690408A5 (de) 1996-02-23 2000-08-31 Mgc Plasma Ag Plasmabrenner für übertragenen Lichtbogen.
US5833891A (en) * 1996-10-09 1998-11-10 The University Of Kansas Methods for a particle precipitation and coating using near-critical and supercritical antisolvents
US6074135A (en) 1996-09-25 2000-06-13 Innovative Technologies, Inc. Coating or ablation applicator with debris recovery attachment
US5961772A (en) 1997-01-23 1999-10-05 The Regents Of The University Of California Atmospheric-pressure plasma jet
US6084196A (en) 1998-02-25 2000-07-04 General Electric Company Elevated-temperature, plasma-transferred arc welding of nickel-base superalloy articles
JP2002538006A (ja) 1999-03-05 2002-11-12 アルコア インコーポレイテッド フラックス又はフラックスと金属を金属ロウ付け基材上に付着させる方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914573A (en) 1971-05-17 1975-10-21 Geotel Inc Coating heat softened particles by projection in a plasma stream of Mach 1 to Mach 3 velocity
US4256779A (en) 1978-11-03 1981-03-17 United Technologies Corporation Plasma spray method and apparatus
US6139913A (en) 1999-06-29 2000-10-31 National Center For Manufacturing Sciences Kinetic spray coating method and apparatus

Also Published As

Publication number Publication date
WO2002085532A1 (en) 2002-10-31
EP1383610B1 (en) 2006-03-29
US20020168466A1 (en) 2002-11-14
US6915964B2 (en) 2005-07-12
US20050153069A1 (en) 2005-07-14
EP1383610A1 (en) 2004-01-28
DE60210267D1 (de) 2006-05-18
KR20040031700A (ko) 2004-04-13
US7178744B2 (en) 2007-02-20
ATE321612T1 (de) 2006-04-15
CA2482287A1 (en) 2002-10-31
MXPA03009813A (es) 2005-03-07
DE60210267T2 (de) 2006-08-24
CA2482287C (en) 2010-11-09

Similar Documents

Publication Publication Date Title
KR100830245B1 (ko) 열 소성 변형을 사용하는 고속 분말 입자의 고체 증착 및경화를 위한 장치 및 방법
JP2683134B2 (ja) レーザプラズマ溶射装置および方法
US6074135A (en) Coating or ablation applicator with debris recovery attachment
US3996398A (en) Method of spray-coating with metal alloys
EP0484533B1 (en) Method and device for coating
Sova et al. Potential of cold gas dynamic spray as additive manufacturing technology
EP1579921A2 (en) Improved kinetic spray nozzle system design
JP2007516827A (ja) 粉末予熱装置が具備された低温スプレー装置
US4958058A (en) Transverse flow laser spray nozzle
WO2002005969A2 (en) Apparatus and method for synthesizing films and coatings by focused particle beam deposition
JP2006176880A (ja) コールドスプレープロセスおよび装置
JP2006176881A (ja) コールドスプレーアルミニウム材料を用いる部材修理方法
US6602545B1 (en) Method of directly making rapid prototype tooling having free-form shape
US5459811A (en) Metal spray apparatus with a U-shaped electric inlet gas heater and a one-piece electric heater surrounding a nozzle
US5529809A (en) Method and apparatus for spraying molten materials
US20050211799A1 (en) Kinetic spray nozzle design for small spot coatings and narrow width structures
WO2007091102A1 (en) Kinetic spraying apparatus and method
US7351450B2 (en) Correcting defective kinetically sprayed surfaces
US20220356583A1 (en) Post-treatment via ultrasonic consolidation of spray coatings
US20230073429A1 (en) Methods to create structures with engineered internal features, pores, and/or connected channels utilizing cold spray particle deposition
Shiva et al. Evolution in additive manufacturing techniques of metals as net-shaped products
JP2018508644A (ja) 粒子の選択的除去を一体化する溶射方法
Kosarev et al. Recently patented facilities and applications in cold spray engineering
Wang et al. Novel implementations of plasma spraying for fabricating components made of a multiphase perfect material
Fauchais et al. Thermal Plasmas Surface Treatment

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee