RU2636211C2 - Способ защиты технологического оборудования нефтехимического производства - Google Patents

Способ защиты технологического оборудования нефтехимического производства Download PDF

Info

Publication number
RU2636211C2
RU2636211C2 RU2016104929A RU2016104929A RU2636211C2 RU 2636211 C2 RU2636211 C2 RU 2636211C2 RU 2016104929 A RU2016104929 A RU 2016104929A RU 2016104929 A RU2016104929 A RU 2016104929A RU 2636211 C2 RU2636211 C2 RU 2636211C2
Authority
RU
Russia
Prior art keywords
coating
burner
layer
spraying
functional
Prior art date
Application number
RU2016104929A
Other languages
English (en)
Other versions
RU2016104929A (ru
Inventor
Лев Христофорович Балдаев
Раиса Дмитриевна Бакаева
Динар Зуфарович Ишмухаметов
Максим Викторович Ершов
Вадим Сергеевич Шарыгин
Александр Геннадиевич Александров
Владимир Вячеславович Каминский
Игнат Михайлович Старшов
Александр Николаевич Ригин
Original Assignee
Общество с ограниченной ответственностью "Технологические системы защитных покрытий", ООО "ТСЗП"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Технологические системы защитных покрытий", ООО "ТСЗП" filed Critical Общество с ограниченной ответственностью "Технологические системы защитных покрытий", ООО "ТСЗП"
Priority to RU2016104929A priority Critical patent/RU2636211C2/ru
Priority to PCT/RU2016/000079 priority patent/WO2017142431A1/ru
Publication of RU2016104929A publication Critical patent/RU2016104929A/ru
Application granted granted Critical
Publication of RU2636211C2 publication Critical patent/RU2636211C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Изобретение относится к области химического, нефтехимического, нефтеперерабатывающего машиностроения и может быть использовано для защиты основного и вспомогательного оборудования указанных производств от воздействия агрессивных коррозионно-активных сред. Способ формирования на поверхности детали нефтехимического оборудования покрытия методом высокоскоростного газопламенного напыления включает активацию поверхности детали механическим воздействием ускоренных абразивных частиц в процессе абразивно-струйной обработки, выбор оптимального режима напыления материала покрытия, который осуществляют по структурному фактору покрытия, обеспечивающему его пористость не более 1% и газопроницаемость до 8-10 атмосфер в атмосфере гелия, подачу наносимого материала покрытия в горелку, закрепленную на манипуляторе, вращающемся на 360 градусов, формирование однослойного функционального покрытия толщиной 410±10 мкм напылением покрытия при движении горелки или формирование гетерогенного многослойного функционального покрытия толщиной 410±10 мкм путем послойного нанесения покрытия при движении горелки, при этом толщина функционального слоя, обеспечивающего повышение адгезии с материалом основы, составляет не более 200 мкм, и управление режимом напыления при помощи контрольно-измерительного оборудования, поддерживающего давление в камере сгорания горелки не менее 3 МПа и степень избытка окислителя 0,6-1. Изобретение позволяет повысить адгезию покрытия с материалом основы, повысить коррозионно-механические свойства, такие как износостойкость, абразивная стойкость и коррозионная стойкость. 2 н. и 3 з.п. ф-лы.

Description

Способ защиты технологического оборудования нефтехимического производства
Область техники, к которой относится изобретение
Изобретение относится к области химического, нефтехимического, нефтеперерабатывающего машиностроения и может быть использовано для защиты основного и вспомогательного оборудования указанных производств от воздействия агрессивных коррозионно-активных сред, а также сред, в составе которых могут дополнительно присутствовать абразивные частицы, ржавчина, твердые побочные продукты производств, либо дополнительные гидродинамические явления в виде кавитации, гидроударов.
Уровень техники
Из уровня техники широко известны способы нанесения различного рода порошков в один или несколько слоев методами газотермического напыления (см. например, [1] US 6503290, МПК B22F 1/00, С22С 1/04, опубл. 07.01.2003; [2] US 6749894, МПК С23С 26/00, опубл. 15.06.2004).
Недостатками аналога [1] является ограниченная применимость в условиях воздействия коррозионно-активных сред, что обусловлено высокой твердостью материала покрытия (низкая пластичность), что при эксплуатации (перепады температур, перепады внутреннего давления среды) будет способствовать растрескиванию материала с последующим отслоением от основы.
Недостатками аналога [2] является ограниченность применения (преимущественно титановые сплавы), а также высокая стоимость исходного материала в качестве базовой основы (никель и кобальт) под последующий наполнитель в виде керамики. Для придания защиты от высокотемпературной коррозии (преимущественно газовой) состав базовой основы также легируется дорогостоящими легирующими элементами, что в конечном итоге дополнительно сказывается на стоимости конечного решения.
Раскрытие изобретения
Задача изобретений является повышение ресурса внутренних поверхностей (объемов) технологического оборудования, подвергаемого коррозионно-абразивному износу под действием агрессивной среды в процессе эксплуатации (коррозионно-активные компоненты: хлориды, сероводород, меркаптаны, продукты побочных реакций и др.; а также твердые абразивные примеси: ржавчина, частицы катализаторного комплекса, частицы отложений на внутренних стенках).
Технический результат изобретения заключается в повышении энергоэффективности технологических процессов производств по добыче и переработке нефти и газа, химии и нефтехимии, а более конкретно в повышении защиты металлоемкого оборудования (реакторы, колонны); в повышении адгезии с материалом основы; в повышении коррозионно-механических свойств: износостойкость, абразивная стойкость, коррозионная стойкость, надежность - по сравнению с базовым материалом основы; в сокращении издержек предприятий на содержание и обслуживание крупногабаритного оборудования (реакторы, колонны и др.), участвующего в добыче и переработке сырья (нефти и ее производных).
Технический результат достигается за счет заявленного способа формирования на поверхности детали нефтехимического оборудования покрытия методом высокоскоростного газопламенного напыления, включающего:
- активацию поверхности детали механическим воздействием ускоренных абразивных частиц в процессе абразивно-струйной обработки;
- выбор оптимального режима напыления материала покрытия, который осуществляют по структурному фактору покрытия, обеспечивающему его пористость не более 1% и газопроницаемость до 8-10 атмосфер в атмосфере гелия;
- подачу наносимого материала покрытия в горелку, закрепленную на манипуляторе, вращающемся на 360 градусов;
- формирование однослойного функционального покрытия толщиной 410±10 мкм напылением покрытия при движении горелки;
- управление режимом напыления при помощи контрольно-измерительного оборудования, поддерживающего давление в камере сгорания горелки не менее 3 МПа и степень избытка окислителя 0,6-1.
Технический результат также достигается за счет способа формирования на поверхности детали нефтехимического оборудования покрытия методом высокоскоростного газопламенного напыления, включающий:
- активацию поверхности детали механическим воздействием ускоренных абразивных частиц в процессе абразивно-струйной обработки;
- выбор оптимального режима напыления материала покрытия, который осуществляют по структурному фактору покрытия, обеспечивающему его пористость не более 1% и газопроницаемость до 8-10 атмосфер в атмосфере гелия;
- подачу наносимого материала покрытия в горелку, закрепленную на манипуляторе, вращающемся на 360 градусов;
- формирование гетерогенного многослойного функционального покрытия толщиной 410±10 мкм путем послойного нанесения покрытия при движении горелки, при этом толщина функционального слоя, обеспечивающего повышение адгезии с материалом основы, составляет не более 200 мкм;
- управление режимом напыления при помощи контрольно-измерительного оборудования, поддерживающего давление в камере сгорания горелки не менее 3 МПа и степень избытка окислителя 0,6-1.
Наносимым слоем материала покрытия являются железная (Fe) или никелевая (Ni) основа легированная хромом (Cr), никелем (Ni), железом (Fe), кобальтом (Со), углеродом (С), марганцем (Mn), молибденом (Мо), вольфрамом (W), бором (В), кремнием (Si), ниобием (Nb), титаном (Ti).
В качестве материала функционального слоя многослойного функционального покрытия используют материал с химическим составом, обеспечивающим эквивалент хрома Crэкв не менее 19, PREN в пределах 20-65, эквивалент углерода Сэкв не более 0,05%.
Осуществление изобретения
Под основным технологическим оборудованием следует понимать оборудование, задействованное непосредственно в процессе производства или переработки сырья (нефти, газа или химии). Сюда входят реакторы, колонны, сепараторы, теплообменники, то есть то оборудование, которое непосредственно взаимодействует (соприкасается) со средой. Под вспомогательным оборудованием следует понимать оборудование, задействованное в подготовительных и транспортных операциях с сырьем, например насосное оборудование, сырьевые емкости, трубы.
Поскольку результат направлен на защиту металлоемкого оборудования, то наиболее агрессивная среда находится внутри аппаратов, снаружи действуют лишь внешние факторы (атмосферная коррозия от газов, примесей, осадки и т.д.).
На внутреннюю поверхность технологического оборудования методами газотермического напыления наносится функциональное покрытие. Функционал, это тот набор свойств, которые может обеспечить покрытие, например, оно может быть только коррозионно-стойким и плохо работать при влиянии абразива; либо оно может быть и коррозионно-стойким и износостойким и стойким к кавитации и т.д. Поскольку среда в колонном оборудовании в разных частях в различном агрегатном состоянии, например, внизу колонны - жидкая фаза; верху - газообразная, то в разных зонах могут реализовываться разные процессы по своей природе (кавитация, коррозия общая или локальная и т.д.). Следовательно, состав и функциональные свойства покрытия (коррозионная стойкость, износостойкость, кавитационная стойкость и др.) варьируются в зависимости от рабочих условий технологического оборудования, агрессивности протекающих коррозионно-механических процессов, их локализации, типа применяемой технологии газотермического напыления.
В качестве базового материала рассматриваются никель и железо, которые в последующем легируются такими элементами как Cr, Ni, С, Mn, Mo, W, В, Si, Nb, Ti, чтобы обеспечить высокую стойкость к локальным типам коррозии в виде питтингов и язв, структурную стабильной для температурного диапазона работы технологического оборудования, а также скорость общей коррозии не более 0,1 мм/год. Легирующие элементы как Ni, Mn, С, Cr, позволяют значительно повысить коррозионную стойкость материала. Модифицирование бором, кремнием в совокупности с углеродом, молибденом улучшает высокотемпературную структурную стабильность материала, способствует формированию мелкодисперсных карбидных и других упрочняющих фаз, что также предает материалу износо- и абразивную стойкость. Увеличение содержания углерода ограничивается в виду того, при его значительном количестве происходит выделение устойчивых карбидов по границам зерен с основными легирующими элементами Cr, Mo, Si, В и тем самым снижаются упругопластические и коррозионные свойства твердого раствора из-за обеднения.
Для технологического оборудования, подвергаемого значительной коррозии внутренних поверхностей (скорость коррозии выше проектной) нанесение покрытия осуществляется с применением мобильного комплекса высокоскоростного газопламенного напыления, которое позволяет осуществлять процесс нанесения покрытия как в полевых условиях (например, на территории заказчика), так и в условиях цеха (производства).
Высокоскоростное газопламенное нанесение обеспечивает формирование плотного сплошного коррозионно-стойкого покрытия (без сквозной пористости). При этом для обеспечения качества покрытия напыление может осуществляться в автоматическом режиме с применением промышленного манипулятора оригинальной конструкции. Конструкция манипулятора зависит от исполнения (оборудование горизонтального или вертикального типа по расположению в пространстве) технологического оборудования и его геометрических размеров внутреннего пространства. Оригинальность конструкции манипулятора заключается в возможности нанесения покрытия без остановки по заданной траектории движения горелки и вращения на 360 градусов, что не требует промежуточных остановок при нанесении покрытия с целью перемещения манипулятора от обработанного участка с покрытием к участку, требующему обработки (напыления). Применение автоматизированного процесса нанесения позволяет обеспечить повторяемость свойств покрытия и толщин слоев в различных участках наносимого покрытия, что в целом сказывается на эксплуатационной надежности покрытия.
Для остального технологического оборудования, когда скорость коррозии на уровне проектной, конфигурация оборудования не позволяет применение автоматизированных манипуляторов (наличие опорных балок или элементов конструкции, мешающих процессу нанесения, что требует частых остановок (перестановок манипулятора)) нанесения покрытия может осуществляться с применением ручных высокопроизводительных горелок для газотермического напыления. При этом качество покрытия обеспечивается за счет применения контрольно-измерительных средств на различных этапах процесса (управляемые газовые расходомеры для стабильной подачи топлива и окислителя и обеспечения требуемого типа пламени, сжатого воздуха, управляемого устройства подачи наносимого материала, лазерного дальномера и других контрольно-измерительных устройств).
Автоматизированный комплекс позволяет обеспечить стабильность процесса нанесения покрытий (равномерность толщины покрытия, плотность покрытия, и др.), это, соответственно, сказывается на эксплуатационной стойкости материала покрытия (в том числе коррозионной стойкости).
Применение ручных горелок необходимо в том случае, где нет возможности использования автоматизированных комплексов с манипуляторами. При этом на условия формирования покрытия и его свойства будет сказываться ручной труд, поэтому для применения этого метода необходимо применение контрольно-измерительных средств. Без наличия контрольно-измерительных средств нет возможности обеспечить стабильность задаваемых параметров работы оборудования.
Формирование плотного покрытия (без сквозной пористости), с повышенной коррозионной и абразивной стойкостью, обеспечивается за счет метода высокоскоростного газопламенного напыления. Наносимый материал покрытия подается в горелку, закрепленную на манипуляторе. Послойное наращивание покрытия до требуемой толщины производится в процессе движения горелки, закрепленной на манипуляторе, вращающемся на 360 градусов. При этом варьирование составом исходного материала позволяет уменьшить скорость коррозионно-механического изнашивания технологического оборудования в зависимости от его функционального назначения и коррозионной активности среды. Для сред, способствующих активному развитию питтингов и язв в составе материала, обеспечивается повышенное значение Мо, при этом PREN (эквивалентное число сопротивления к питтинговой коррозии) должен находится в пределах 20-65.
Послойное нанесение покрытия позволяет формировать как однослойное функциональное покрытие, толщиной 410±10 мкм (преимущественно коррозионно-стойкое), так и гетерогенное многослойное функциональное покрытие, также толщиной 410±10 мкм, где каждый слой выполняет самостоятельную функцию (адгезионная составляющая + коррозионная стойкость или адгезионная составляющая + коррозионная и абразивная стойкость), при этом толщина функционального слоя, обеспечивающего повышение адгезии с материалом основы, составляет не более 200 мкм. Материал покрытия имеет железную (Fe) или никелевую (Ni) основу легированную хромом (Cr), никелем (Ni), железом (Fe), кобальтом (Со), углеродом (С), марганцем (Mn), молибденом (Мо), вольфрамом (W), бором (В), кремнием (Si), ниобием (Nb), титаном (Ti). Функциональным слоем многослойного функционального покрытия является материал с химическим составом, обеспечивающим стойкость к локальным и общим процессам коррозии (эквивалент хрома Crэкв не менее 19, PREN в пределах 20-65, эквивалент углерода Сэкв не более 0,05%).
Непосредственно выбор оптимального режима нанесения (давление в камере сгорания горелки не менее 3 МПа; степень избытка окислителя 0,6-1; газонепроницаемость до 8-10 атмосфер при проверке гелием, видимая пористость не более 1%) выбранного материала покрытия на оборудование осуществляется по структурному критерию и газопроницаемости. Оптимальный режим - это комплексный параметр, и для каждого материала он может быть свой. Причем для одних рабочих условий эксплуатации колонного оборудования (среда, температура, давление) это один тип режима, для других - другой.
Структурный критерий обеспечивает минимизацию содержания дефектов в покрытии (поры, трещины), а также количество окислов. Как известно, наличие окислов в структуре покрытия приводит к существенному повышению электрохимической гетерогенности материала покрытия, что отрицательно сказывается на ее коррозионной стойкости.
После структурной оптимизация производится проверка на газопроницаемость (либо оптимизация по показателю газопроницаемости с корректировкой режимов напыления, при условии обеспечения того же уровня окислов, и структурных дефектов подобранных при структурной оптимизации). Проверка на газопроницаемость осуществляется с применением инертного газа - гелия, который подается под давлением. Давление гелия при испытании выбирается исходя из рабочих условий эксплуатации технологического оборудования (рабочего давления технологического оборудования) и последующей прибавкой запаса в 2-3 атмосферы. Для особо ответственного технологического оборудования давление при испытании достигает 8-10 атмосфер гелия. Рабочие условия эксплуатации оборудования включают воздействие температуры от 60 и более градусов, давления (измерение в МПа) от ниже атмосферного и более, а также среду (газовую, жидкую или смешанную). Для каждого технологического оборудования рабочие условия могут быть своими (давление, температура, среда), варьируются в определенных пределах (проектных), при которых обеспечивается оптимальное протекание химических, физико-механических реакций, обеспечивающих выпуск конечного продукта (полупродукта).
Обеспечение высокой адгезии к материалу основы технологического оборудования осуществляется за счет оптимального варьирования параметрами сгорания топливной смеси (давление в камере сгорания горелки не менее 3 МПа, степень избытка окислителя 0,6-1), подаваемой в горелку, качеством подготовки поверхности оборудованием перед нанесением покрытия, а также конструкции высокоскоростной горелки, которая позволяет управлять скоростью и температурой частиц.
Для технологического оборудования, где имеется возможность применения исключительно ручных высокопроизводительных горелок для газотермического напыления покрытий, подбор и оптимизация режимов также осуществляются по структурному критерию и газопроницаемости. При этом качество покрытия обеспечивается за счет применения контрольно-измерительных средств на различных этапах процесса (управляемые газовые расходомеры для стабильной подачи топлива и окислителя и обеспечения требуемого типа пламени, сжатого воздуха, управляемого устройства подачи наносимого материала, лазерного дальномера и других контрольно-измерительных устройств).
Таким образом, решением обеспечивается повышение ресурса внутренних поверхностей (объемов) технологического оборудования, подвергаемого коррозионно-абразивному износу под действием агрессивной среды в процессе эксплуатации.
Повышение ресурса внутренних поверхностей вертикального цилиндрического технологического оборудования, подвергаемого коррозионно-абразивному износу под действием агрессивной среды в процессе эксплуатации (коррозионно-активные компоненты: хлориды, сероводород, меркаптаны, продукты побочных реакций и др.; а также твердые абразивные примеси: ржавчина, частицы катализаторного комплекса, частицы отложений на внутренних стенках) достигается за счет применения технологии высокоскоростного газопламенного напыления материала покрытия с химическим составом, обеспечивающим стойкость к локальным и общим процессам коррозии (эквивалент хрома Crэкв не менее 19, PREN в пределах 20-65, эквивалент углерода Сэкв не более 0,05). При этом подбор материала покрытия осуществляется за счет предварительного анализа рабочих условий технологического оборудования, а также агрессивности протекающих коррозионных процессов (коррозионно-механического изнашивания) в процессе эксплуатации.

Claims (15)

1. Способ формирования на поверхности детали нефтехимического оборудования покрытия методом высокоскоростного газопламенного напыления, включающий:
- активацию поверхности детали механическим воздействием ускоренных абразивных частиц в процессе абразивно-струйной обработки;
- выбор оптимального режима напыления материала покрытия, который осуществляют по структурному фактору покрытия, обеспечивающему его пористость не более 1% и газопроницаемость до 8-10 атмосфер в атмосфере гелия;
- подачу наносимого материала покрытия в горелку, закрепленную на манипуляторе, вращающемся на 360 градусов;
- формирование однослойного функционального покрытия толщиной 410±10 мкм напылением покрытия при движении горелки;
- управление режимом напыления при помощи контрольно-измерительного оборудования, поддерживающего давление в камере сгорания горелки не менее 3 МПа и степень избытка окислителя 0,6-1.
2. Способ по п. 1, отличающийся тем, что наносят слой материала покрытия на основе железа (Fe) или никеля (Ni), легированный хромом (Cr), никелем (Ni), железом (Fe), кобальтом (Со), углеродом (С), марганцем (Mn), молибденом (Мо), вольфрамом (W), бором (В), кремнием (Si), ниобием (Nb), титаном (Ti).
3. Способ формирования на поверхности детали нефтехимического оборудования покрытия методом высокоскоростного газопламенного напыления, включающий:
- активацию поверхности детали механическим воздействием ускоренных абразивных частиц в процессе абразивно-струйной обработки;
- выбор оптимального режима напыления материала покрытия, который осуществляют по структурному фактору покрытия, обеспечивающему его пористость не более 1% и газопроницаемость до 8-10 атмосфер в атмосфере гелия;
- подачу наносимого материала покрытия в горелку, закрепленную на манипуляторе, вращающемся на 360 градусов;
- формирование гетерогенного многослойного функционального покрытия толщиной 410±10 мкм путем послойного нанесения покрытия при движении горелки, при этом толщина функционального слоя, обеспечивающего повышение адгезии с материалом основы, составляет не более 200 мкм;
- управление режимом напыления при помощи контрольно-измерительного оборудования, поддерживающего давление в камере сгорания горелки не менее 3 МПа и степень избытка окислителя 0,6-1.
4. Способ по п. 3, отличающийся тем, что наносят слой материала покрытия на основе железа (Fe) или никеля (Ni), легированный хромом (Cr), никелем (Ni), железом (Fe), кобальтом (Со), углеродом (С), марганцем (Mn), молибденом (Мо), вольфрамом (W), бором (В), кремнием (Si), ниобием (Nb), титаном (Ti).
5. Способ по п. 3, отличающийся тем, что в качестве материала функционального слоя многослойного функционального покрытия используют материал с химическим составом, обеспечивающим эквивалент хрома Crэкв не менее 19, PREN в пределах 20-65, эквивалент углерода Сэкв не более 0,05%.
RU2016104929A 2016-02-15 2016-02-15 Способ защиты технологического оборудования нефтехимического производства RU2636211C2 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2016104929A RU2636211C2 (ru) 2016-02-15 2016-02-15 Способ защиты технологического оборудования нефтехимического производства
PCT/RU2016/000079 WO2017142431A1 (ru) 2016-02-15 2016-02-16 Способ защиты технологического оборудования нефтехимического производства

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016104929A RU2636211C2 (ru) 2016-02-15 2016-02-15 Способ защиты технологического оборудования нефтехимического производства

Publications (2)

Publication Number Publication Date
RU2016104929A RU2016104929A (ru) 2017-08-18
RU2636211C2 true RU2636211C2 (ru) 2017-11-21

Family

ID=59626154

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016104929A RU2636211C2 (ru) 2016-02-15 2016-02-15 Способ защиты технологического оборудования нефтехимического производства

Country Status (2)

Country Link
RU (1) RU2636211C2 (ru)
WO (1) WO2017142431A1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110157964A (zh) * 2019-04-04 2019-08-23 上海新益电力线路器材有限公司 一种铝合金镀层电力线路输变电用构件及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020168466A1 (en) * 2001-04-24 2002-11-14 Tapphorn Ralph M. System and process for solid-state deposition and consolidation of high velocity powder particles using thermal plastic deformation
US6749894B2 (en) * 2002-06-28 2004-06-15 Surface Engineered Products Corporation Corrosion-resistant coatings for steel tubes
WO2011096231A1 (ja) * 2010-02-05 2011-08-11 日鉄ハード株式会社 溶射材料および溶射皮膜の形成方法
RU2542218C2 (ru) * 2013-03-13 2015-02-20 Анвар Юсуфович Боташев Способ получения наноструктурированного покрытия
RU2013143859A (ru) * 2013-09-30 2015-04-10 Анвар Юсуфович Боташев Способ получения наноструктурированного покрытия и устройство для его реализации

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4869936A (en) * 1987-12-28 1989-09-26 Amoco Corporation Apparatus and process for producing high density thermal spray coatings
SU1638198A1 (ru) * 1988-05-11 1991-03-30 Всесоюзное Научно-Производственное Объединение Восстановления Деталей "Ремдеталь" Способ нанесени газотермических покрытий на детали машин
RU48140U1 (ru) * 2005-03-28 2005-09-10 Самарский государственный аэрокосмический университет им. акад. С.П. Королева Плазменная установка
RU141545U1 (ru) * 2013-09-30 2014-06-10 Анвар Юсуфович Боташев Установка для газопламенного напыления наноструктурированного покрытия

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020168466A1 (en) * 2001-04-24 2002-11-14 Tapphorn Ralph M. System and process for solid-state deposition and consolidation of high velocity powder particles using thermal plastic deformation
US6749894B2 (en) * 2002-06-28 2004-06-15 Surface Engineered Products Corporation Corrosion-resistant coatings for steel tubes
WO2011096231A1 (ja) * 2010-02-05 2011-08-11 日鉄ハード株式会社 溶射材料および溶射皮膜の形成方法
RU2542218C2 (ru) * 2013-03-13 2015-02-20 Анвар Юсуфович Боташев Способ получения наноструктурированного покрытия
RU2013143859A (ru) * 2013-09-30 2015-04-10 Анвар Юсуфович Боташев Способ получения наноструктурированного покрытия и устройство для его реализации

Also Published As

Publication number Publication date
WO2017142431A1 (ru) 2017-08-24
RU2016104929A (ru) 2017-08-18

Similar Documents

Publication Publication Date Title
Paul et al. Cobalt-free laser cladding on AISI type 316L stainless steel for improved cavitation and slurry erosion wear behavior
Chakraborty et al. Studies on the development of protective coating on TZM alloy and its subsequent characterization
Marya et al. A metallurgical investigation of the direct energy deposition surface repair of ferrous alloys
RU2636210C2 (ru) Состав коррозионно-стойкого покрытия для защиты технологического нефтехимического оборудования
Bochenek et al. Microstructure, mechanical, and wear properties of NiCr-Re-Al2O3 coatings deposited by HVOF, atmospheric plasma spraying, and laser cladding
RU2636211C2 (ru) Способ защиты технологического оборудования нефтехимического производства
Min et al. Influence of defects on high-temperature oxidation performance of GH3536 superalloys fabricated by laser powder bed fusion
Radhamani et al. 316L stainless steel microstructural, mechanical, and corrosion behavior: a comparison between spark plasma sintering, laser metal deposition, and cold spray
Illana et al. Experimental study on steam oxidation resistance at 600° C of Inconel 625 coatings deposited by HVOF and laser cladding
Zhang et al. 18Ni300/Inconel 625 alloy gradient materials fabricated by directed energy deposition
Awasthi et al. Corrosion characteristics of Ni-based Hardfacing alloy deposited on stainless steel substrate by laser cladding
Roshith et al. Improvements on hot corrosion behaviour of HVOF coated CO2 laser beam and pulsed gas tungsten arc weldments in 2.5% sulphur gas plus molten salt in industrial waste incinerator environment
Eremin et al. The properties of chromium steel overlaying used as a hardening coating for stop valve sealing surface
Tougherghi et al. Microstructure, Tribological, and Electrochemical Characterization of Hardfacing WC-Ni-Cr on AISI 1045 Carbon Steel Alloy
Sundaram et al. Comparative investigation of surface modification and corrosion behaviour on SS304 and SS316 Coated with Inconel 625 in Air and Molten Salt Environment
Suthar et al. Optimization of GTAW process parameters for deposition of nickel-based hardfacing alloy using Taguchi method
Sathisha et al. Elevated temperature fretting wear behavior of cobalt-based alloys
Anghel et al. Microstructure and properties of Co based laser cladded composite coatings
Pascal Development of high temperature vacuum brazed WC-Co-NiP functional composite coatings
Biswas et al. A review on TIG cladding of engineering material for improving their surface property
Kornienko et al. Effect of Modes of Spark Plasma Sintering on the Structure and Properties of Materials of the Ni–Cr–Si–B–C System
Krylova et al. Development of technology of robotized laser welding of thin wall products from heat-resistant alloys
Zhang et al. Investigation of the Thermochemical Erosion Properties of High-Strength Steel Surfaces in High-Temperature Propellant Gas
Jindal et al. Effect of molybdenum addition in hardfacing layer on erosion resistance behavior of steel
Muratov et al. The Surface Hardening of Parts of Liquid Dampers Made of High-Strength Steels

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20201008

Effective date: 20201008