KR100759065B1 - 리소그래피 장치 및 디바이스 제조방법 - Google Patents

리소그래피 장치 및 디바이스 제조방법 Download PDF

Info

Publication number
KR100759065B1
KR100759065B1 KR1020060031143A KR20060031143A KR100759065B1 KR 100759065 B1 KR100759065 B1 KR 100759065B1 KR 1020060031143 A KR1020060031143 A KR 1020060031143A KR 20060031143 A KR20060031143 A KR 20060031143A KR 100759065 B1 KR100759065 B1 KR 100759065B1
Authority
KR
South Korea
Prior art keywords
liquid
space
substrate
projection system
array
Prior art date
Application number
KR1020060031143A
Other languages
English (en)
Other versions
KR20060107357A (ko
Inventor
마르첼 벡커스
쇼에르트 니콜라스 람베르투스 돈더스
크리스티안 알렉산더 후겐담
요한네스 헨리쿠스 빌헬무스 야콥스
니콜라스 텐 카테
니콜라스 루돌프 켐퍼
페르디 믹첼브링크
엘마르 에버스
Original Assignee
에이에스엠엘 네델란즈 비.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이에스엠엘 네델란즈 비.브이. filed Critical 에이에스엠엘 네델란즈 비.브이.
Publication of KR20060107357A publication Critical patent/KR20060107357A/ko
Application granted granted Critical
Publication of KR100759065B1 publication Critical patent/KR100759065B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

침지 리소그래피 장치용 액체공급시스템은 투영시스템의 최종 요소와 기판 사이에 침지 액체의 층류 유동을 제공한다. 제어시스템은 오버플로잉(overflowing)의 가능성을 최소화시키고 추출기는 진동들을 최소화시키도록 구성되는 유출부들의 어레이를 포함한다.

Description

리소그래피 장치 및 디바이스 제조방법{LITHOGRAPHIC APPARATUS AND DEVICE MANUFACTURING METHOD}
이하, 대응되는 참조부호들이 대응되는 부분들을 나타내는 개략적인 첨부 도면을 참조하여, 본 발명의 실시예들이 예시의 방법으로 설명될 것이다.
도 1은 본 발명의 일 실시예에 따른 리소그래피 장치를 나타낸 도;
도 2 및 3은 종래기술의 리소그래피 투영장치에 사용되는 액체공급시스템을 나타낸 도;
도 4는 또 다른 종래기술의 리소그래피 투영장치에 따른 액체공급시스템을 나타낸 도;
도 5는 유럽특허출원 제03252955.4호에 개시된 바와 같은 시일부재를 나타낸 도;
도 6은 본 발명의 시일 부재를 개략적으로 나타낸 단면도;
도 7a 및 7b는 본 발명의 시일부재의 평면도;
도 8a-c는 침지 액체의 구멍 직경 대 플레이트 두께 비를 갖는, 시일부재를 통한 유동 방향으로의 변화들을 나타낸 도;
도 9a-e는 본 발명에 따른 오버플로우들의 상이한 실시예들을 예시한 도;
도 10a-e는 본 발명에 따른 액체 추출의 상이한 실시예들을 나타낸 도;
도 11은 본 발명에 따른 시일부재의 침지 액체의 관리를 위한 제어시스템을 나타낸 도이다.
본 발명은 리소그래피 장치 및 디바이스 제조방법에 관한 것이다.
리소그래피 장치는 기판, 통상적으로는 기판의 타겟부상에 원하는 패턴을 적용시키는 기계이다. 리소그래피 장치는, 예를 들어 집적회로(IC)의 제조에 사용될 수 있다. 이 예에서, 대안적으로는 마스크 또는 레티클이라 지칭되는 패터닝 디바이스가 IC의 개별층상에 형성될 회로 패턴을 생성시키는데 사용될 수 있다. 이 패턴은 기판(예를 들어, 실리콘웨이퍼)상의 (예를 들어, 1 또는 수개의 다이의 부분을 포함하는) 타겟부상에 전사(transfer)될 수 있다. 통상적으로, 패턴의 전사는 기판상에 제공되는 방사선 감응재(레지스트) 층상으로의 이미징(imaging)을 통해 이루어진다. 일반적으로, 단일 기판은 연속하여 패터닝되는 인접한 타겟부들의 네트워크를 포함할 것이다. 공지된 리소그래피 장치는, 전체패턴을 한번에 타겟부상에 노광함으로써 각각의 타겟부가 조사되는, 소위 스테퍼, 및 방사선 빔을 통해 주어진 방향("스캐닝"- 방향)으로 패턴을 스캐닝하는 한편, 이 방향과 평행한 방향 또는 반대 방향으로 기판을 동기적으로 스캐닝함으로써 각각의 타겟부가 조사되는, 소위 스캐너를 포함한다. 패턴을 기판상에 임프린팅(imprint)함으로써 패터닝 디바이스로부터 기판상으로 패턴을 전사하는 것도 가능하다.
리소그래피 투영장치에서, 투영시스템의 최종요소와 기판 사이의 공간을 채우기 위해 비교적 높은 굴절률을 가지는 액체, 예를 들어, 물에 기판을 침지(immerse)시키는 방법이 제안되어 왔다. 이것의 핵심은, 노광 방사선이 액체내에서 보다 짧은 파장을 가지기 때문에 더욱 작은 피처들을 이미징할 수 있다는 데에 있다. (또한, 액체의 효과는 상기 시스템의 유효 개구수(NA)를 증가시키며 또한 초점심도를 증가시키는 것으로도 간주될 수 있다.) 고체 입자들(예를 들어, 쿼츠(quartz))이 그 안에 부유(suspend)된 물을 포함하는 여타의 침지 액체들이 제안되어 왔다.
하지만, 액체의 바스(bath)내에 기판 또는 기판과 기판테이블을 담그는(submersing) 것(예를 들어, 본 명세서에서 전문이 인용참조되고 있는 미국특허 제 4,509,852호 참조)은, 스캐닝 노광 중에 가속되어야만 하는 많은 양의 액체(large body of liquid)가 존재한다는 것을 의미한다. 이는 추가적인 또는 보다 강력한 모터들을 필요로 하며, 액체내에서의 난류가 바람직하지 않은 영향 및 예측할 수 없는 영향들을 초래할 수도 있다.
제안된 해결책 중 하나는, 액체공급시스템이, 액체한정시스템(liquid confinement system)을 사용하여, 단지 기판의 국부적인 영역에 그리고 투영시스템의 최종요소와 기판 사이에 액체를 제공하도록 하는 것이다(일반적으로, 기판은 투영시스템의 최종요소보다 큰 표면적을 가진다). 이러한 구성을 위해 제안된 한가지 방법이 WO 99/49504호에 개시되어 있으며, 그 전문이 본 명세서에서 인용참조되고 있다. 도 2 및 도 3에 예시된 바와 같이, 액체는 1이상의 유입구(IN)에 의하여, 예 를 들어 최종요소에 대한 기판의 이동방향을 따라 기판상으로 공급되며, 투영시스템 아래를 통과한 후에는 1이상의 유출구(OUT)에 의하여 제거된다. 즉, 기판이 -X 방향으로 요소의 밑에서 스캐닝되기 때문에, 액체는 상기 요소의 +X 쪽에서 공급되고 -X 쪽에서 흡수(take up)된다. 도 2는, 액체가 유입구(IN)를 통하여 공급되고 저 압력 소스에 연결된 유출구(OUT)에 의하여 요소의 다른 측상에서 흡수되는 구성을 개략적으로 도시하고 있다. 도 2의 예시에서, 액체는 최종요소에 대한 기판의 이동방향을 따라 공급되나, 반드시 이와 같을 필요는 없다. 최종요소 주위에 위치된 유입구들 및 유출구들의 방위 및 개수는 다양할 수 있으며, 도 3에는 양쪽에 유출구를 갖는 유입구의 4개의 세트들이 최종요소 주위에 규칙적인 패턴으로 제공되는 일례가 예시되어 있다.
제안되어 온 또 다른 해법은 액체공급시스템에, 투영시스템의 최종 요소와 기판테이블 사이 공간의 경계부의 적어도 일부를 따라 연장되는 시일부재를 제공하는 것이다. 이러한 해법이 도 4에 예시되어 있다. 상기 시일부재는 Z방향(광학 축선 방향)으로 얼마간의 상대적인 움직임이 있다 하더라도, XY 평면에서 투영시스템에 대해 실질적으로 정지되어 있다. 시일부재와 기판 표면간에는 시일(seal)이 형성된다. 시일은 가스 시일과 같은 무접촉 시일인 것이 바람직하다. 가스 시일을 이용한 이러한 시스템은, 도 5에 예시되어 있으며, 본 명세서에서 인용 참조된 EP-A-1 420 298에 개시되어 있다.
EP-A-1 420 300에는, 트윈 또는 듀얼 스테이지 침지 리소그래피의 아이디어가 개시되어 있다. 이러한 장치에는 기판을 지지하는 2개의 스테이지가 제공된다. 레벨링 측정은 침지액체가 없는 제1위치의 스테이지를 이용하여 수행되며, 노광은 침지액체가 존재하는 제2위치의 스테이지를 이용하여 수행된다. 대안적으로, 상기 장치는 단 하나의 스테이지를 가질 수도 있다.
EP-A-1 420 298에 개시된 시일 부재는 몇가지 문제점을 갖는다. 상기 시스템은 투영시스템의 최종 요소와 기판 사이에 침지액체를 제공할 수 있으나, 때때로 침지액체가 넘칠 수 있고(overflow), 투영시스템의 최종요소와 기판 사이의 공간에서의 침지액체의 재순환이 발생하여, 재순환 영역을 통해 방사선 빔이 투영되어 침지액체를 가열시키고 그것의 굴절지수를 변화시키는 경우 이미징 오차를 초래할 수 있다.
본 발명은 상술된 문제들을 극복하는 시일 부재 또는 배리어 부재를 제공하는 것이 바람직하다. 본 발명의 일 실시형태는 난류가 저감되고 침지액체의 넘침이 저감되는 시일 부재 또는 배리어 부재를 제공하는 것이다.
본 발명의 일 실시형태에 따르면, 기판을 잡아주도록 구성된 기판테이블을 포함하는 리소그래피 장치, 패터닝된 방사선을 상기 기판의 타겟부상으로 투영하도록 구성된 투영시스템, 및 상기 투영시스템의 최종요소와 상기 기판 사이의 공간내에 액체를 포함하도록 구성된 기판테이블과 상기 투영시스템의 최종요소 사이의 공간을 둘러싸는 표면을 갖는 배리어 부재를 포함하는 리소그래피 장치가 제공되고; 상기 배리어 부재는 상기 공간으로 액체를 제공하도록 구성된 액체 유입구 및 상기 공간으로부터 액체를 제거하도록 구성되는 액체 유출구를 포함하고; 상기 액체 유입구 및/또는 액체 유출구는 상기 표면의 내주부의 부분(fraction) 주위에서 연장된다.
본 발명의 또 다른 실시형태에 따르면, 기판을 잡아주도록 구성된 기판테이블, 패터닝된 방사선 빔을 상기 기판의 타겟부상으로 투영하도록 구성된 투영시스템, 및 상기 기판의 최종요소와 상기 기판 사이의 공간내에 액체를 포함하도록 구성된 기판테이블과 상기 투영시스템의 최종 요소 사이의 공간을 둘러싸는 표면을 갖는 배리어 부재를 포함하는 리소그래피 장치가 제공되고; 상기 배리어 부재는 상기 공간에 액체를 제공하도록 구성된 액체 유입부를 포함하고, 상기 유입부는 플레이트 부재에 의해 상기 공간으로부터 이격되는 상기 배리어 부재의 챔버를 포함하고, 상기 플레이트 부재는 상기 표면의 적어도 일부를 형성하고, 채널과 액체의 유동이 통과할 수 있는 공간 사이에서 연장되는 복수의 관통 홀(through hole)을 갖는다.
본 발명의 또 다른 실시형태에 따르면, 기판을 잡아주도록 구성되는 기판테이블; 패터닝된 방사선 빔을 상기 기판의 타겟부상으로 투영하도록 구성되는 투영시스템; 상기 투영시스템의 최종요소와 기판 사이의 공간으로 액체를 공급하도록 구성되는 액체공급시스템; 및 상기 액체공급시스템에 의해 상기 공간으로부터의 액체의 추출 속도를 동역학적으로 변화시키고 및/또는 상기 공간내의 액체의 레벨이 사전설정된 최소치와 사전설정된 최대치 사이에서 유지시키기 위해 상기 액체공급시스템에 의한 액체의 공급 속도를 동역학적으로 변화시키도록 구성되는 제어시스 템을 포함하는 리소그래피 장치가 제공된다.
본 발명의 또 다른 실시형태에 따르면, 기판을 잡아주도록 구성되는 기판테이블; 패터닝된 방사선 빔을 상기 기판의 타겟부상으로 투영하도록 구성된 투영시스템; 및 상기 투영시스템의 최종 요소와 기판 사이의 공간내에 액체를 제공하도록 구성되는 액체공급시스템을 포함하는 리소그래피 장치가 제공되고; 상기 액체공급시스템은 상기 공간으로부터 액체를 제거하도록 구성된 추출기(extractor)를 포함하고, 상기 추출기는 상기 액체가 상기 공간으로부터 추출될 수 있는 오리피스들의 2차원 어레이를 포함한다.
본 발명의 또 다른 실시형태에 따르면, 투영시스템을 사용하여, 패터닝된 방사선 빔을 기판상으로 투영하는 단계로서, 배리어 부재가 상기 패터닝된 빔을 투영하는 투영시스템의 최종 요소와 상기 기판 사이의 공간을 둘러싸는 표면 가져, 상기 최종 요소와 상기 기판 사이의 공간에 액체를 포함하도록 하는 단계; 액체 유입부를 통해 상기 공간으로 액체를 제공하는 단계; 및 액체 유출부를 통해 상기 공간으로부터 액체를 제거하는 단계를 포함하되, 상기 액체 유입부 및/또는 액체 유출부가 상기 표면 내주부의 프랙션 주위에서 연장되는 디바이스 제조방법이 제공된다.
본 발명의 또 다른 실시형태에 따르면, 투영시스템을 사용하여, 패터닝된 방사선 빔을 기판상으로 투영하는 단계를 포함하는 디바이스 제조방법이 제공되며, 상기 투영시스템의 최종 요소와 상기 기판 사이에는 액체가 제공되고, 상기 액체는 표면을 갖는 배리어 부재에 의하여 한정되고, 플레이트 부재에 의하여 상기 공간으 로부터 이격되는 상기 배리어 부재의 챔버를 포함하는 유입부를 통해 상기 공간으로 제공되고, 상기 플레이트 부재는 상기 액체가 유동하는 상기 공간과 상기 챔버 사이에서 연장되는 복수의 관통 홀을 갖는다.
본 발명의 또 다른 실시형태에 따르면, 투영시스템을 사용하여, 패터닝된 방사선 빔을 기판상으로 투영하는 단계를 포함하는 디바이스 제조방법이 제공되며, 투영시스템의 최종 요소와 기판 사이의 공간으로 액체가 제공되며, 상기 공간으로부터의 액체의 추출 속도는 동역학적으로 변화되고 및/또는 상기 공간으로의 액체의 공급 속도는 상기 공간내의 액체의 레벨을 사전설정된 최소치와 사전설정된 최대치 사이에서 유지시킨도록 동역학적으로 변화된다.
본 발명의 또 다른 실시형태에 따르면, 투영시스템을 사용하여, 패터닝된 방사선 빔을 기판상으로 투영하는 단계를 포함하는 디바이스 제조방법이 제공되며, 투영시스템의 최종 요소와 기판 사이의 공간으로 액체가 제공되며, 상기 액체는 투영시스템의 최종 요소와 기판 사이의 공간으로 제공되고, 오리피스들의 2차원 어레이를 포함하는 추출기를 통한 공간으로부터 추출된다.
도 1은 본 발명의 일 실시예에 따른 리소그래피장치를 개략적으로 나타내고 있다. 상기 장치는 방사선 빔(B)(예를 들어, UV 방사선 또는 DUV 방사선)을 콘디셔닝하도록 구성된 조명시스템(일루미네이터)(IL)을 포함한다. 지지부(예를 들어, 마스크 테이블)(MT)는 패터닝 디바이스(MA)(예를 들어, 마스크)를 지지하고, 특정 파라미터에 따라 패터닝 디바이스를 정확히 위치시키도록 구성된 제1위치설정장치(PM)에 연결된다. 기판테이블(예를 들어, 웨이퍼 테이블)(WT)은 기판(예를 들어, 레지스트-코팅된 웨이퍼)(W)을 잡아주고, 특정 파라미터에 따라 기판을 정확히 위치시키도록 구성된 제2위치설정장치에 연결된다. 투영시스템(예를 들어, 굴절형 투영 렌즈 시스템)(PS)은 패터닝 디바이스(MA)에 의하여 방사선 빔(B)에 부여된 패턴을 기판(W)의 타겟부(C)(예를 들어, 1이상의 다이를 포함)상으로 투영하도록 구성된다.
조명시스템은 방사선을 지향, 성형 또는 제어하기 위하여, 굴절, 반사, 자기, 전자기, 정전기 또는 다른 타입의 광학 구성요소, 또는 그들의 조합과 같은 다양한 종류의 광학구성요소를 포함할 수도 있다.
지지부는, 패터닝 디바이스의 무게를 지지, 예를 들어 지탱한다. 그것은, 패터닝 디바이스의 방위, 리소그래피 장치의 디자인, 및 예를 들어 패터닝 디바이스가 진공 환경에서 유지되는지의 여부와 같은 여타 조건들에 따르는 방식으로 패터닝 디바이스를 유지시킨다. 상기 지지부는 패터닝 디바이스를 잡아주기 위하여 기계적 클램핑, 진공 클램핑, 정전기적 클램핑 또는 여타 클램핑 기술들을 사용할 수 있다. 지지부는, 예를 들어 필요에 따라 고정되거나 이동할 수 있는 프레임 또는 테이블일 수 있다. 지지부는 패터닝 디바이스가, 예를 들어 투영시스템에 대해 원하는 위치에 자리할 수 있도록 할 수도 있다. 본 명세서의 "레티클" 또는 "마스크"라는 용어의 어떠한 사용도 "패터닝 디바이스"와 같은 좀 더 일반적인 용어와 동의어로 간주될 수 있다.
여기서 사용되는 "패터닝 디바이스(patterning device)"라는 용어는 기판의 타겟부에 패턴을 생성하기 위해서, 방사선 빔의 단면에 패턴을 부여하는데 사용될 수 있는 디바이스를 의미하는 것으로 폭넓게 해석되어야 한다. 예를 들어, 패턴이 위상-시프팅 피처들 또는 소위 어시스트 피처들을 포함한다면, 방사선 빔에 부여된 패턴은 기판의 타겟부내의 원하는 패턴과 정확히 일치하지 않을 수도 있다는 것에 유의해야 한다. 일반적으로, 방사선 빔에 부여된 패턴은 집적회로와 같이 타겟부에 생성되는 디바이스내의 특정기능층에 해당할 것이다.
패터닝 디바이스는 투과형 또는 반사형일 수 있다. 패터닝 디바이스의 예로는 마스크, 프로그램가능한 거울 어레이 및 프로그램가능한 LCD 패널을 포함한다. 마스크는 리소그래피에서 잘 알려져 있으며, 바이너리형, 교번 위상-시프트형 및 감쇠 위상-시프트형 마스크와 다양한 하이브리드 마스크형식도 포함한다. 프로그램가능한 거울 어레이의 일례에서는 작은 거울들의 매트릭스 구성을 채용하며, 그 각각은 입사하는 방사선 빔을 상이한 방향으로 반사시키도록 개별적으로 기울어질 수 있다. 상기 기울어진 거울들은 거울 매트릭스에 의하여 반사되는 방사선 빔에 패턴을 부여한다.
본 명세서에서 사용되는 "투영시스템"이라는 용어는, 사용되는 노광방사선에 대해, 또는 침지 유체(immersion fluid)의 사용 또는 진공의 사용과 같은 여타의 인자에 대하여 적절하다면, 굴절광학시스템, 반사광학시스템 및 카타디옵트릭시스템, 자기광학시스템, 전자기광학시스템 및 정전기광학시스템 또는 그들의 조합을 포함하는 여하한의 투영시스템을 내포하는 것으로서 폭넓게 해석되어야 한다. 본 명세서에서의 "투영렌즈"라는 용어의 어떠한 사용도 "투영시스템"과 같은 좀 더 일반적인 용어와 동의어로 간주될 수 있다.
도시된 바와 같이, 상기 장치는 (예를 들어, 투과마스크를 채택하는) 투과형이다. 대안적으로, 상기 장치는 (예를 들어, 위에서 언급한 바와 같은 형태의 프로그램가능한 거울 어레이를 채용하거나 반사형 마스크를 채용하는) 반사형으로 구성될 수도 있다.
리소그래피 장치는 2개(듀얼스테이지)이상의 기판테이블(및/또는 2이상의 마스크테이블)을 갖는 형태로 구성될 수도 있다. 이러한 "다수스테이지" 기계에서는 추가 테이블이 병행하여 사용될 수 있으며, 1이상의 테이블이 노광을 위해 사용되고 있는 동안 1이상의 다른 테이블에서는 준비작업 단계가 수행될 수 있다.
도 1을 참조하면, 일루미네이터(IL)는 방사선소스(S0)로부터 방사선의 빔을 수용한다. 예를 들어, 상기 소스가 엑시머 레이저인 경우, 상기 소스 및 리소그래피 장치는 별도의 개체일 수 있다. 이러한 경우, 상기 소스는 리소그래피장치의 부분을 형성하는 것으로 간주되지는 않으며, 상기 방사선은 예를 들어, 적절한 지향 거울 및/또는 빔 익스펜더를 포함하는 빔 전달 시스템(BD)의 도움으로, 상기 소스(SO)로부터 일루미네이터(IL)로 통과된다. 여타의 경우, 예를 들어 상기 소스가 수은 램프인 경우, 상기 소스는 리소그래피 장치의 통합부일 수 있다. 상기 소스(SO) 및 일루미네이터(IL)는, 필요하다면 빔 전달 시스템(BD)과 함께 방사선 시스템이라 칭해질 수도 있다.
일루미네이터(IL)는 방사선 빔의 각도 세기 분포를 조정하는 조정기구(AD)를 포함할 수도 있다. 일반적으로, 일루미네이터의 퓨필평면내의 세기분포의 적어도 외반경 및/또는 내반경 크기(통상적으로, 각각 외측-σ 및 내측-σ라 함)가 조정될 수 있다. 또한, 일루미네이터(IL)는 인티그레이터(IN) 및 콘덴서(CO)와 같은 다양한 다른 구성요소들을 포함할 수도 있다. 일루미네이터(IL)는 그 단면에 원하는 균일성과 세기 분포를 갖도록 방사선 빔을 콘디셔닝하는데 사용될 수도 있다.
상기 방사선 빔(B)은 지지부(예를 들어, 마스크테이블(MT))상에서 유지되어 있는 패터닝 디바이스(예를 들어, 마스크(MA))상에 입사되며, 패터닝 디바이스에 의해 패터닝된다. 마스크(MA)를 가로지른 상기 방사선 빔(B)은, 투영시스템(PS)을 통과하고, 상기 투영시스템(PS)은 기판(W)의 타겟부(C)상에 상기 빔을 투영한다. 제2위치설정장치(PW) 및 위치센서(IF)(예를 들어, 간섭계 디바이스, 선형 인코더(linear encoder) 또는 캐퍼서티 센서(capacitive sensor))의 도움으로, 기판테이블(WT)은, 예를 들어 방사선 빔(B)의 경로내에 상이한 타겟부(C)를 위치시키도록 정확하게 이동될 수 있다. 이와 유사하게, 제1위치설정장치(PM) 및 또 다른 위치센서(도 1에 명확히 도시되지는 않았으나, 간섭계 디바이스, 선형 인코더 또는 캐퍼서티 센서일 수 있음)는, 예를 들어 마스크 라이브러리로부터의 기계적인 회수 후에, 또는 스캔하는 동안, 방사선 빔(B)의 경로에 대하여 마스크(MA)를 정확히 위치시키는데 사용될 수 있다. 일반적으로, 마스크 테이블(MT)의 이동은, 긴 행정 모듈(long stroke module)(개략 위치설정) 및 짧은 행정 모듈(미세 위치설정)의 도움을 받아 실현될 것이며, 이는 제1위치설정장치(PM)의 일부를 형성한다. 이와 유사하게, 기판테이블(WT)의 이동은 제2위치설정장치(PW)의 일부를 형성하는 긴 행정 모듈 및 짧은 행정 모듈을 사용하여 실현될 수도 있다. 스캐너와는 대조적으로 스테퍼의 경우, 상기 마스크테이블(MT)은 단지 짧은 행정 액츄에이터에만 연결되거나 고정될 수도 있다. 마스크(MA) 및 기판(W)은 마스크 정렬마크(M1, M2) 및 기판 정렬마크(P1, P2)를 이용하여 정렬될 수도 있다. 예시된 바와 같이 기판 정렬 마크들이 할당된 타겟부를 점유하기는 하나, 그들은 타겟부들 사이의 공간들에 배치될 수도 있다(이들은 스크라이브-레인(scribe-lane) 정렬 마크로 알려져 있음). 이와 유사하게, 마스크(MA)상에 1이상의 다이가 제공되는 상황에서는, 다이들 사이에 마스크 정렬 마크들이 배치될 수도 있다.
상술된 장치는 다음의 바람직한 모드들 중 1이상에서 사용될 수 있다.
1. 스텝 모드에서는, 마스크테이블(MT) 및 기판테이블(WT)은 기본적으로 정지상태로 유지되며, 방사선 빔에 부여되는 전체 패턴은 한번에 타겟부(C)상에 투영된다{즉, 단일 정적 노광(single static exposure)}. 그런 후, 기판테이블(WT)은 X 및/또는 Y 방향으로 시프트되어 다른 타겟부(C)가 노광될 수 있다. 스텝 모드에서, 노광필드의 최대 크기는 단일 정적 노광시에 묘화되는 타겟부(C)의 크기를 제한한다.
2. 스캔 모드에서는, 마스크테이블(MT)과 기판테이블(WT)은 방사선 빔에 부여되는 패턴이 타겟부(C)상에 투영되는 동안에 동기적으로 스캐닝된다{즉, 단일 동적 노광(single dynamic exposure)}. 마스크테이블(MT)에 대한 기판테이블(WT)의 속도 및 방향은 확대(축소) 및 투영시스템(PS)의 이미지 반전 특성에 의하여 결정될 수도 있다. 스캔 모드에서, 노광필드의 최대크기는 단일 동적노광시 타켓부의 (스캐닝되지 않는 방향으로의) 폭을 제한하는 반면, 스캐닝 동작의 길이는 타겟부의 (스캐닝 방향으로의) 높이를 결정한다.
3. 또 다른 모드에서는, 마스크테이블(MT)은 프로그램가능한 패터닝 디바이스를 유지하여 기본적으로 정지된 상태로 유지되며, 방사선 빔에 부여되는 패턴이 타겟부(C)상에 투영되는 동안, 기판테이블(WT)이 이동되거나 스캐닝된다. 이 모드에서는, 일반적으로 펄스 방사선 소스(pulsed radiation source)가 채용되며, 프로그램가능한 패터닝 디바이스는 기판테이블(WT)이 각각 이동한 후, 또는 스캔중에 계속되는 방사선펄스 사이에서 필요에 따라 업데이트된다. 이 작동 모드는 상기 언급된 바와 같은 종류의 프로그램가능한 거울 어레이와 같은 프로그램가능한 패터닝 디바이스를 이용하는 마스크없는 리소그래피(maskless lithography)에 용이하게 적용될 수 있다.
또한, 상술된 모드들의 조합 및/또는 변형, 또는 완전히 다른 상이한 사용 모드들이 채용될 수도 있다.
도 6은 본 발명의 시일 부재 또는 배리어 부재(12)를 예시하고 있다. 투영시스템의 광학 축선으로부터 반경방향 바깥쪽으로 작동하며, 투영시스템(PS)과 기판(W) 사이의 공간(11)에 침지 액체(500)가 제공되는 복수의 유입부(124)가 제공된다. 시일 부재(12)의 저부 표면(80)상에는, 본 명세서에서 인용 참조되는, 2004년 8월 19일에 출원된 미국출원 10/921,348에 개시된 것과 같은 액체 제거 디바이스(180)가 제공된다. 액체 제거 디바이스(180)의 반경방향 바깥쪽으로는, 유입부(322)를 통해서는 대기와, 유출부(324)를 통해서는 저압 소스로 연결되는 후퇴부(320)가 제공된다. 후퇴부(320)의 반경방향 바깥쪽으로는 가스 나이프(gas knife;420)가 있다. 시일 부재(12) 저부 표면(80)상의 이들 세 아이템들의 구성에 대해서는, 본 명세서에서 인용 참조되는, 2005년 1월 14일에 출원된 미국출원 60/643,626에 상세히 기술되어 있다. 시일 부재(12)의 최상부 내측면에는, 침지 액체(500)가 오버플로우 영역(222)내로 유동하고, 포트(228)에 부착된 저압 소스를 통해 홀 어레이(224)를 통하여 추출될 수 있는, 수직방향으로 연장된 돌출부 또는 다이크(dike;220)가 있다.
도 6은 시일 부재(12)의 개략적인 단면도이다. 상술된 5개의 요소들 각각이, 반드시 시일 부재의 전체 둘레부 주위에 존재하는 것은 아니다. 특히, 이것은 침지 액체 유입부(124) 및 액체 유출부 또는 추출기(즉, 다이크(220)/홀 어레이(224))를 갖는 경우이다. 도 7a에서 알 수 있는 바와 같이, 이들은 시일 부재(12)의 국부화된 내측 둘레부 주위에만 제공되는 것이 유리하며, 서로 대향되는 것이 바람직하다. 도면들로부터 알 수 있듯이, 액체 유입부(124) 및 액체 유출부는 기판(W)으로부터 상이한 거리에 있다. 액체 유입부(124) 및/또는 액체 유출부 길이의 적절한 비율들은 시일 부재(12)의 내측 둘레부의 1/2보다 작고, 바람직하게는 1/3보다 작다. 액체 유입부(124) 및/또는 액체 유출부의 길이는 1/20보다 큰 것이 바람직하며, 시일 부재(12) 내측 둘레부의 1/15 또는 1/10보다 크면 더욱 바람직하다. 이것은, 방사선 빔이 기판을 이미징하는 타겟부(TP)를 통해 투영시스템(PS)과 기판 사이의 공간(11)을 가로질러, 그리고 홀 어레이(224)를 통한 공간으로부터 나오는, 유출부(124)로부터의 침지 액체의 층류인 비-난류 유동(laminar non-turbulent flow)의 생성을 돕는다. 또한, 시일 부재(12)의 대향 측상의 액체 추출 유닛(180)을 유입 포트(124)에 제공함으로써 공간(11)에 걸친 침지 액체의 유동을 촉진할 수 있다. 대안적으로, 아마 유입부(124)와는 반대로 보다 큰 추출 압력이 가해지는 추출 유닛(180)이 전체 둘레부 주위에 위치될 수 있다. 도 7b는, 배리어 부재(12)의 내측 둘레부 주위에 3개의 액체 유출부 또는 추출기들(224)이 제공되는 또 다른 실시예를 예시하고 있다. 3개의 유출부들은 대략 120°떨어져 위치되고, 가장 큰 유출부는 액체 유입부(124)에 대향해 있고, 다른 2개의 유출부들은 보다 작고 유입부들(124)의 어느 한 측면상에 위치된다.
이하, 액체가 유입부(124)로 제공되는 방식 및 액체 유입부들(124) 자체의 디자인에 대해서는 도 6 및 8을 참조하여 상세히 설명될 것이다. 도 6에서 알 수 있듯이, 침지 액체는 유입부(128)를 통해 시일 부재(12)내로 제공된다. 제1챔버(120)를 제2챔버(122)와0 액체 연통시키는 오리피스(121)를 통해 침지 액체를 가압함으로써 상기 침지 액체내에서 제1압력 강하가 발생된다. 실제에 있어, 오리피스(121)는 챔버 120과 122를 분리시키는 플레이트(123)에 생성되는 복수의 개별 홀들이다. 복수의 홀(121)은 나타낸 실시예에서 정규적인 1차원 어레이로 구성되지만, 2개 이상의 서로 상하로(one above another) 평행한 홀(121)들의 행과 같은 다른 구성들이 사용될 수도 있다. 상기 홀(121)들은, 접선 방향으로, 공간(11)으로부터 챔버(122)를 분리시키는 플레이트(126)에 걸쳐 유동을 분배시키고, 공급부(128)의 구성과는 무관한 오리피스들(124)의 어레이의 전체 폭에 걸쳐 균일한 유동을 보장한다. 침지 액체는 제2챔버(122)로 들어가고 나면, 오리피스(124)를 통해 투영시스템(PS)과 기판(W) 사이의 공간내로 들어간다. 오리피스(124)는 시일 부재(12)의 플레이트(126)에 (정규적인) 2차원 어레이로 제공된다. 이는, 공간(11) 내측에 평행 하고 균일한 유동을 발생시킨다. 오리피스(124)들의 어레이는 플레이트(126)의 하부 표면(80)을 향하여 위치되며, 바람직하게는 시일 부재(12)가 사용중인 경우 투영시스템(PS)의 레벨 아래에 위치된다.
본 발명인들은, 오리피스(124) 직경(d) 대 외측 플레이트(126) 두께(t)의 비는 침지 액체가 챔버(122)를 떠난는 방향을 제어하는 것을 고려해야 한다고 판단하였다. 이는, 오리피스(124)들 모두가 사용시 기판(W)과 평행한 평면의 플레이트(126)를 통해 드릴가공되는 경우에도 그러하다.
도 8a에서 알 수 있듯이, 오리피스(124)의 직경(d)이 외측 플레이트(126)의 두께(t)보다 크다면, 침지 액체의 유동은 화살표(127)에 의해 예시된 각도, 즉 기판(W) 표면과 평행하게 나갈 수 있다. 도 8b에서, 벽 두께(t)는 오리피스(124)의 직경(d)과 동일하고, 도 8c에서, 오리피스(124)의 직경(d)은 외측 벽(126)의 두께(t)보다 작다. 오리피스 직경은 플레이트(126)의 두께보다 작아야 한다는 것이 판명되었다. 통상적으로, 플레이트 두께는 대략 0.4mm이고, 오리피스(124)의 직경은 대략 0.15mm로 되어 있어, 유동이 기판 표면과 평행하고 오리피스가 플레이트(126)에서 기계가공되는 방향과 평행하게 나간다(플레이트(126)는 반드시 수직방향으로 배향되는 것은 아니며 예시된 바와 같이 경사질 수도 있다). 크기는, 충분히 큰 압력 강하를 발생시키기 위해 충분히 작은 오리피스(124)를 구비해야 하는 경우와 원하는 경도(stiffness)를 제공하기에 충분한 플레이트 두께를 구비해야 하는 경우 사이에서 절충된다. 결과적으로, 종래기술의 디자인을 사용하는 경우보다, 더 낮은 속도 및 적은 믹싱(mixing)을 갖는 보다 더 층류의 유동이 생성된다. 평행한 유동 은 상대적으로 두꺼운 플레이트에 작은 오리피스를 만듦으로써 촉진된다. 플레이트 두께(t) 대 오리피스 직경(d)의 바람직한 비는, 적어도 1:2.5로서, 유동이 오리피스의 축선과 동일한 방향으로 지향될 수 있다. 오리피스들은 서로에 대해 실질적으로 평행하고, 기판(W) 평면에 대해 실질적으로 평행하며, 그들이 연장되는 플레이트(126)의 표면에 대해 실질적으로 수직하게 기계가공(드릴링)된다. 오리피스들은, 레이저에 의해, 20㎛ 정도로 작게 그리고 원하는 만큼 크게 커팅될 수 있다. 플레이트에 작은 홀들을 제조하는 또 다른 방법은, 예를 들어 니켈의 전기주조(electroforming)(전기분해 증착(electrolytical deposition))에 의한 것이 있다. 10㎛ 내지 1mm 사이의 두께 시트에서 5 내지 500㎛ 직경을 갖는 홀들은 이 기술을 사용하여 실행가능하다. 이 기술은 본 설명의 어느 곳에서도 기술된 바와 같이 유입부들과 유출부들 둘 모두를 제작하는데 사용될 수 있다. 하지만, 여타의 제조 방법들을 이용할 때와는 달리, 이 방법을 사용하여 관통 홀의 축선을 정확하게 정렬시키는 것은 어렵다.
오리피스들의 개수와 각도, 그들의 축선이 외측 플레이트(126)와 만드는 각도 및 그들의 직경은 액체가 유동하는 방향과 관련한 효과을 갖는다. 일반적으로, 단일 홀을 가지면, 유동은 홀의 축선으로부터 약간 멀어져 홀의 축선과 예각을 이루는 플레이트의 측면을 향하여, 즉, 도 8에서 홀의 축선이 기판(W)과 평행하다면, 수평으로부터 기판을 향해 약간 하향하도록 지향된다. 보다 많은 홀들이 존재할수록, 보다 나은 효과를 보장한다. 이 효과는 여러 응용례에서 여하한의 유체 타입의 유동들(예를 들어, 공기샤워, 퍼지 후드(purge hood))을 재지향시키는데 사용될 수 있으며, 이에 의해 베인(vane)들이나 편향 플레이트 또는 코안다 효과(Coanda effect)의 사용을 제거 또는 저감시킨다. 상기 효과는 너무 강력해서, 중력에 대항하여 작용할 수 있다. 상기 효과의 기원은 많은 수의 비대칭 유체 제트들의 상호작용이라고 사려된다. 또한, 유체가 동일 유체의 큰 볼륨내로 유동하는 경우에는 유동 편향이 발생하므로, 상기 유동 편향은 찻주전자(teapot)의 분출부(spout)를 따라 차가 누출되는 찻주전자 누출 문제와는 관련이 없다. 외측 벽(126)이 수직하다면, 오리피스들(124)의 축선은 기판(W) 상부 표면과 평행해야 한다. 예시된 바와 같이, 기판 표면과 평행한 유동을 얻기 위하여 외측 벽(126)이 포함된다면, 오리피스들(124)의 축선은 대략 20도, 바람직하게는 5 내지 40도의 범위내에서, 기판의 최상부 표면으로부터 약간 경사져야 한다는 것이 판명되어 왔다.
2단계의 압력 강하(액체가 오리피스들(121)을 통해 가는(go through) 경우, 상술된 바와 같이 압력 강하가 존재하며, 액체가 오리피스들(124)을 통과하는 경우에도 압력 강하가 분명 존재함)가 공급부의 높이 및 공급부의 폭 전체에 걸쳐 있도록 조성된다. 이러한 방식으로, 제1압력 강하는, 상술된 바와 같이, 공급 채널 구조(즉, 입력부(128)와 챔버(120) 사이의 채널)와는 무관하게 오리피스(124)들에 걸쳐 균일하게 유동이 제공되도록 한다.
층류 유동은, 액체의 재순환되는 영역들이 잔류하는 액체보다 뜨겁거나 차가워지도록 하여, 상이한 굴절지수를 갖도록 하거나, 또는 레지스트의 특정 영역들이 여타의 것들(즉, 침지 액체의 굴절 지수를 변화시킬 수 있는 침지 액체내의 불균일한 농도의 레지스트)보다 침지 액체 의해 보다 잘 용해되도록 하며 투영 렌즈로의 레지스트의 이송을 방지할 수 있는, 침지 액체의 재순환을 방지하기 때문에 바람직하다.
플레이트(126)내의 홀들의 밀도는 평방 mm 당 15의 홀 정도가 바람직하다. 평방 mm 당 1 내지 30개의 홀의 범위가 바람직하다.
종래기술의 시일 부재에서는, 공간(11)을 형성하는 시일 부재(12)의 내측 벽에 위치되는 단일 유출부 또는 시일 부재(12)의 저부 표면(80)으로부터 액체가 추출되었다. 유출부는 시일 부재(12) 내측 표면의 전체 둘레부 주위의 홀들의 1차원 어레이이었거나, 또는 둘레부 주위의 환형(annular) 홈들이었다. 이러한 타입의 액체 추출이 갖는 문제는, 시일 부재 내측 벽의 홀들은 추출중이거나 추출중이 아닌 것, 그리고 추출과 비 추출간의 전이부가 시일 부재(12)의 바람직하지 않은 진동을 야기할 수 있다는 것이다. 제안되어 온 해법은, 본 명세서에서 인용 참조되는 유럽특허출원 제04256585.3호에 개시되어 있다. 이 문헌에서는, 도 6에 예시된 것과 유사한 다이크(220)가 제공된다. 여기서, 공간내의 침지 액체(500)의 레벨이 상기 다이크 레벨 위로 상승한다면, 그것은 상기 다이크 위로 넘쳐 흘러(overflow) 풀 또는 다이크 뒤에 있으며 다이크보다 낮은 레벨을 갖는 오버플로우(200)로 유동한다. 그 다음, 침지 액체는 오버플로우(222)로부터 제거될 수도 있다. 다시, 이러한 시스템이 갖는 어려움은 추출이 발생하거나 발생하지 않으려는 경향이 있으며, 때때로 오버플로우를 초래하는 추출 양의 제어에 있어서의 어려움이 존재한다.
본 발명에서는, 액체가 추출되는 시일 부재(12)의 벽에 홀 또는 메시(224)의 2차원 어레이가 제공된다. 다이크(220)를 넘쳐 흐르거나 또는 2차원 어레이(224)의 가장 낮은 홀 위로 유동하는 침지 액체는 추출기(228)에 의해 추출된다. 시일 부재의 벽내의 홀들의 불균일 어레이는 단위 면적 당 홀들의 개수 및/또는 홀의 크기가 기판으로부터 가장 먼 최소치로부터 기판에 가장 가깝거나 가장 낮은 위치의 최대치까지 증가하는 것이 바람직하다. 따라서, 침지 액체가 가장 낮은 레벨의 어레이를 통과하는데에는 보다 작은 저항이, 플레이트 상부 레벨의 공기에 대해서는 보다 높은 저항이 존재한다. 따라서, (크기나 밀도 또는 둘 모두에 있어서의) 홀 분포의 수직방향 구배를 사용함으로써, 수직방향의 높이가 높아지면 유동에 대한 플레이트의 저항이 증가된다. 따라서, 공기 유동이 홀들을 통해 나가 물을 멀리 밀어내고, 따라서 이에 따른 레벨 제어의 어려움이 초래되는 문제가 생긴다. 도 9a-e에 이러한 실시예들이 예시되어 있다. 도 10a-e에 예시된 대안실시예에서는, 다이크가 존재하지 않으며, 침지 액체는 그것의 레벨이 어레이(224)의 가장 낮은 홀 위에 도달하자 마자 제거된다. 도 7a 및 7b에 예시된 바와 같이, 도 9a-e 및 10a-e에 예시된 추출 구조들은 시일 부재(12)의 내측 둘레부의 부분 주위에만, 바람직하게는 유입부들(124)에 대향하여 제공될 수도 있다. 하지만, 분명히 도 9a-e 및 10a-e에 예시된 유출부들이 시일 부재(12)의 내측 둘레부 주위의 전체 경로에 제공될 수 있다. 나중의 실시예에서, 시일 부재의 둘레부 주위의 유출부(228)의 하부 압력하의 상이한 레벨을 제공하여, 시일 부재(12)의 내측 둘레부 주위에 상이한 추출 속도를 조성할 수 있다. 시일 부재(12)의 전체 둘레부 주위에서 연장되는 추출기의 압력을 변화시키거나 또는 국부화된 추출기만을 구성하여 상이한 추출 속도를 조성하는 것은, 타겟부(TP)에 걸친 유입부들(124)로부터의, 그리고 추출기를 통해 나오는 침지 액체의 층류 유동의 촉진을 도울 수 있다.
홀들(224)의 어레이는 0.1 내지 0.5mm 직경 정도의 홀들을 포함할 수도 있다. 평방 mm 당 0.25 내지 5인 홀의 밀도가 바람직하다. 보다 높은 침지 액체의 레벨은 어레이(224)의 보다 많은 홀들을 적셔서(wet) 보다 높은 추출 속도를 가져오기 때문에, 홀들의 2차원 어레이의 사용은 침지 액체(11)가 보다 쉽게 제어될 수 있다는 장점을 갖는다. 이와는 달리, 보다 낮은 레벨의 침지 액체는 보다 적은 홀들을 적셔서, 낮은 추출 속도를 가져온다. 이러한 방식으로, 침지 액체의 추출은 유출부(228)에서의 추출 속도를 조정할 필요없이 자동적으로 조절된다. 이는, 특히 홀 어레이(224)가 수직방향 또는 적어도 부분적으로 수직방향으로 배향되는 경우이다. 다이크(220)의 사용은 홀들(224)의 어레이가 추출 용량(capacity)을 증가시키는 다이크보다 낮은 레벨로 연장되도록 한다. 배리어 부재(12)가 친 액체성(liquid philic)(침지 액체가 물인 경우에는 친수성)으로 만들어진다면, 표면장력 효과로 인한 액체 레벨의 조성이 최소화될 수 있다.
오버플로우(220)는 오버 스필링(over spilling)의 우려 없이 침지 액체의 급작스럽고 짧은 조성을 가능하게 한다. 예를 들어, 기판(W)이나 폐쇄 디스크(closing disc)를 시일 부재(12)의 표면에 보다 가깝게 이동시키는 동안에는, 공간(11)의 볼륨의 급작스럼 감소 및 그에 따른 침지 액체 레벨의 상승이 있을 것이다. 디치(222)는 초과된 액체가 추출되는 동안, 이 초과된 액체 중 일부를 수용하는 할 수 있다.
홀들(310)의 어레이는 메시 또는 등가물(equivalent)로서 제공될 수 있다는 것을 이해해야 한다.
도 9a-e는 추출기의 다이크 실시예에 대한 상이한 구성들을 예시하고 있다. 도 9a에서, 침지 액체는 추출기(228)에 의해 추출되기 이전의 볼륨(330)으로 들어간다. 이와는 대조적으로, 도 9b의 디자인에서는, 침지 액체가 유출부(228)에서 추출되기 이전에 좁은 갭(340)으로 들어가도록 구성된다. 모세관력으로 인해, 갭(340)은 침지 액체로 완전 충전되고(그것이 충분히 좁게 설계된 경우에 해당), 하부-압력(under-pressure)이 홀들(224)의 크기와 매칭된다면, 추출된 침지 액체내의 버블의 형성 또는 추출된 침지 액체내의 버블의 함유(inclusion)가 방지되어, 추출 유동을 단일 상태의 유동을 만들고 해로운 진동들을 방지할 수 있다. 도 9c 및 9d에는, 홀들(224)의 어레이가 형성되는 벽의 상이한 각도들이 예시되어 있다. 도 9e에서는, 액체 매니스커스(meniscus)가 투영시스템의 윤곽(contour)을 따르도록 하는 경우, 액체의 흡입(suction)이 투영시스템(PS)에 보다 가깝게 한다는 사실로 인해 추출 용량을 개선시키는 오버플로우 영역 위에 최상부 플레이트(223)가 부가된다. 이들 도면들의 목적은, 또한 본 발명의 실시형태들을 갖는 여러 구조들이 가능하다는 것을 예시하기 위한 것이다.
도 10a-e는 다이크(220) 없는 다양한 실시예들을 예시하고 있다. 홀들(224)의 어레이가 형성되는 어떠한 각도의 경사도 가능하며, 침지 액체가 유출부(228)를 따르도록 하는 경로들의 상이한 구조들이 예시되어 있다. 예를 들어, 도 10b에서, 갭(340)은 단일 위상 유동 추출이 가능하도록 도 9b의 갭과 유사하며, 도 10e에서는, 최상부 플레이트(223)가 도 9e의 것과 유사하다.
침지 액체의 오버플로우의 우려를 최소화시키도록 하는 또 다른 방법이 도 11에 예시되어 있다. 도 11에 예시된 시스템은 추출 및 입력 속도를 동역학적으로 변화시킴으로써 제거된 침지 액체의 양와 들어오는 침지 액체의 양을 매칭시킨다. 알 수 있는 바와 같이, 침지 액체는 도 6을 참조하여 상술된 것처럼 유입부(128)를 통해 시일 부재(12)로 공급되고, 유출부(184, 228, 328)를 통해 제거된다. 제어가능한 공급부를 구비하는 것은 작동 환경들을 보다 유연하게 한다. 예를 들어, 유출부(328)를 통한 누출 유속의 보다 많은 변화들이 허용가능하며, 추출 시스템(224)이 최대 유속에 대처하기에 충분한 용량을 갖지 않는 경우에도, 침지 액체의 공급이 감소되어 보상할 수 있기 때문에 오버플로우를 유도할 필요가 없다. 일정한 공급의 유동을 갖는 경우에도, 상이한 작동 조건들, 예를 들어 상이한 방향으로의 스캐닝은 추출을 변화시킴으로써 대처될 수 있는 가변적인 누출 및 추출 파라미터들을 가져올 수 있기 때문에, 제어가능한 추출이 바람직하다. 각각의 추출 포트는 제어가능한 밸브들(1228, 1184, 1328)을 포함한다. 유출 포트들(228, 128, 328) 모두는 예시된 바와 같이 밸브를 통해 저압 소스(2228, 2148, 2328)에 연결된다. 침지 액체가 재순환되어질 경우, 유입부(1248)에 대한 소스일 수 있는 저장소(1500)로 추출된 침지 액체가 나아간다. 공급은 밸브(1128)에 의하여 제어되며, 저장소(1500)로의 오버플로우 경로에는 이를 제어하는 밸브(1148)가 제공된다.
물 레벨 제어 기구는 침지 액체의 공급 속도뿐만 아니라 오버플로우(224), 액체 추출기(180) 및 후퇴부 추출기(recess extractor;320)를 통한 추출이 변화되도록 한다. 각각의 밸브(1228, 1148, 1128, 1184, 1328)는 그들이 온 또는 오프인 밸브일 수 있지만 가변 밸브이다. 추출 양은, 하부 압력을 제어하는 밸브를 사용하여, 가해지는 하부 압력을 변화시키거나, 밸브(1128, 1184, 1328)를 변화시키거나 또는 주변(ambient)(또한 도 11에 예시됨)에 대한 바이패스를 변화시킴으로써 변화될 수 있다.
다이나믹 제어 작용(dynamic control action)이 필요한 경우를 결정하기 위한 3가지 옵션이 존재한다. 이들은 침지 액체의 레벨이 측정되는 직접적인 피드백, 각 추출기로부터의 추출 유동이 측정되는 간접적인 피드백, 또는 추출 유동 및 작업 환경들의 지식이, 환경이 변할 때 공급 및/또는 추출 유속들을 조정하는데 사용되는 피드-포워드(feed-forward)이다.
물의 레벨은, 몇가지 방법, 예를 들어 저장소(1500) 또는 공간(11)내에서의 플로트(float)에 의해 또는 시일 부재(12) 저부의 물의 압력을 측정함으로써 측정될 수 있다. 침지 액체 상부 표면상의 어쿠스틱 또는 광학 신호들의 검출 및 반사에 의하여 물 표면의 위치를 측정한다. 추가적인 가능성은, 물의 양의 함수로서 어쿠스틱, 광학 또는 전기 신호의 흡수 또는 투과율을 측정하거나, 공간(11)의 알려진 위치에 잠겨 있는 와이어의 열 손실을 측정(와이어가 더 많이 잠겨 있을 수록, 열 손실이 보다 크다)하는 방법이 있다.
본 명세서에서는 IC의 제조에 있어서 리소그래피 장치의 사용례에 대하여 언급하였으나, 상기 리소그래피장치는 집적 광학 시스템, 자기 도메인 메모리용 유도 및 검출패턴, 평판 디스플레이, 액정 디스플레이(LCD), 박막 자기 헤드 등의 제조와 같이 여타의 응용례를 가질 수도 있다는 것을 이해하여야 한다. 이러한 대안적 인 적용례와 관련하여, 본 명세서에서 사용되는 "웨이퍼" 또는 "다이"와 같은 어떠한 용어의 사용도 각각 "기판" 또는 "타겟부" 등과 같은 좀 더 일반적인 용어와 동의어로 간주될 수도 있음을 이해해야 한다. 본 명세서에서 언급되는 기판은, 노광 전후에, 예를 들어 트랙(통상적으로, 기판에 레지스트층을 도포하고 노광된 레지스트를 현상하는 툴), 또는 메트롤로지 툴 및/또는 검사 툴에서 처리될 수 있다. 적용가능하다면, 이러한 기판처리툴과 여타의 기판처리툴에 본 명세서의 기재내용이 적용될 수 있다. 또한, 예를 들어 다층 IC를 생성하기 위하여 기판이 한번 이상 처리될 수 있으므로, 본 명세서에 사용되는 기판이라는 용어는 여러번 처리된 층들을 이미 포함하고 있는 기판을 칭할 수도 있다.
광학 리소그래피와 관련해 본 발명의 실시예들을 사용하여 특정한 언급이 있었으나, 본 발명은, 여타 응용례, 예를 들어, 임프린트 리소그래피에서 사용될 수도 있으며, 상황이 허락한다면 광학 리소그래피로만 제한되지 않는다는 것을 이해해야 한다. 임프린트 리소그래피에서, 패터닝 디바이스의 토포그래피(topography)는 기판상에 생성된 패턴을 한정한다. 패터닝 디바이스의 토포그래피는 전자기 방사선, 열, 압력 또는 그들의 조합을 적용함으로써 레지스트가 경화되는(cured) 기판으로 공급되는 레지스트의 층내로 프레싱될 수도 있다. 패터닝 디바이스는 레지스트로부터 이동되어, 레지스트가 경화된 후에 그 안에 패턴을 남긴다.
본 명세서에서 사용되는 "방사선" 및 "빔"이란 용어는 (예를 들어, 파장이 365, 248, 193, 157 또는 126㎚인) 자외(UV)선, 및 (예를 들어, 파장이 5-20㎚ 범위에 있는) 극자외(EUV)선을 포함하는 모든 형태의 전자기방사선 뿐만 아니라, 이 온 빔 또는 전자 빔과 같은 입자 빔을 포괄한다.
본 명세서에서 사용되는 "렌즈"라는 용어는, 굴절, 반사, 자기, 전자기 및 정전기적 광학 구성요소들을 포함하는 다양한 타입의 광학 구성요소들 중 하나 또는 그들의 조합을 지칭할 수도 있다.
본 발명의 특정 실시예들에 대해 상술하였으나, 본 발명은 설명된 것과는 달리 실행될 수도 있다는 것을 이해해야 한다. 예를 들어, 본 발명은, 상술된 바와 같은 방법을 설명하는 기계-판독가능 명령어들의 1이상의 시퀀스를 포함하는 컴퓨터 프로그램이나, 또는 이러한 컴퓨터 프로그램이 내부에 저장되는 데이터 저장매체(예를 들어, 반도체 메모리, 자기 또는 광학 디스크)의 형태를 취할 수도 있다.
본 발명은 특히 침지 리소그래피 장치에 대해 적용될 수 있으나, 상술된 타입의 것들로만 제한되지 않는다.
상술된 설명은 예시에 지나지 않으며, 제한의 의도는 없다. 따라서, 당업자라면, 후술되는 청구항들의 범위를 벗어나지 않는 선에서 본 발명에 대한 수정들이 이루어질 수도 있다는 것을 명백히 이해할 것이다.
본 발명에 따르면, 난류가 저감되고 침지액체의 넘침이 저감되는 시일 부재 또는 배리어 부재를 얻을 수 있다.

Claims (55)

  1. 리소그래피 장치에 있어서,
    기판을 잡아주도록 구성된 기판테이블;
    패터닝된 방사선 빔을 상기 기판의 타겟부상으로 투영하도록 구성된 투영시스템; 및
    상기 투영시스템의 최종 요소와 상기 기판테이블 사이의 공간을 둘러싸는 표면을 갖고, 상기 최종 요소와 상기 기판 사이의 공간내에 액체를 포함하도록 구성되고, 상기 공간에 액체를 제공하도록 구성된 액체 유입부 및 상기 공간으로부터 액체를 제거하도록 구성된 액체 유출부를 포함하되, 상기 액체 유입부과 상기 액체 유출부 중 하나 이상은 상기 표면의 내측 둘레부의 일부분 주위에서 연장되는 배리어 부재를 포함하는 것을 특징으로 하는 리소그래피 장치.
  2. 제1항에 있어서,
    상기 표면의 내측 둘레부의 일부분은, 상기 표면의 내측 둘레부 길이의 1/2보다 작은 것을 특징으로 하는 리소그래피 장치.
  3. 제1항에 있어서,
    상기 표면의 내측 둘레부의 일부분은, 상기 표면의 내측 둘레부 길이의 1/3보다 작은 것을 특징으로 하는 리소그래피 장치.
  4. 제1항에 있어서,
    상기 표면의 내측 둘레부의 일부분은, 상기 표면의 내측 둘레부 길이의 1/20보다 큰 것을 특징으로 하는 리소그래피 장치.
  5. 제1항에 있어서,
    상기 표면의 내측 둘레부의 일부분은, 상기 표면의 내측 둘레부 길이의 1/15보다 큰 것을 특징으로 하는 리소그래피 장치.
  6. 제1항에 있어서,
    상기 액체 유입부 및 상기 액체 유출부는 그들이 상기 공간에 걸쳐 서로 마주하도록 상기 표면상에 위치되는 것을 특징으로 하는 리소그래피 장치.
  7. 제1항에 있어서,
    상기 액체 유입부는, 상기 액체 유출부가 연장되는 내측 둘레부의 일부분과는 서로 다른 내측 둘레부의 일부분 주위로 연장되는 것을 특징으로 하는 리소그래피 장치.
  8. 제1항에 있어서,
    상기 액체 유출부는 상기 내측 둘레부를 따르는 방향으로 그것의 길이를 따라 가변적인 액체 추출 속도를 제공하도록 구성되는 것을 특징으로 하는 리소그래피 장치.
  9. 제8항에 있어서,
    최대 추출 속도는 실질적으로 상기 액체 유입부와 대향하여 제공되는 것을 특징으로 하는 리소그래피 장치.
  10. 제1항에 있어서,
    상기 액체 유출부는 실질적으로 상기 내측 둘레부 주위에서 연장되는 것을 특징으로 하는 리소그래피 장치.
  11. 리소그래피 장치에 있어서,
    기판을 잡아주도록 구성된 기판테이블;
    패터닝된 방사선 빔을 상기 기판의 타겟부상으로 투영하도록 구성된 투영시스템; 및
    상기 투영시스템의 최종 요소와 상기 기판테이블 사이의 공간을 둘러싸는 표면을 갖고, 상기 최종 요소와 상기 기판 사이의 공간내에 액체를 포함하도록 구성되고, 상기 공간에 액체를 제공하도록 구성된 액체 유입부를 포함하고, 상기 액체 유입부가 플레이트 부재에 의해 상기 공간으로부터 분리되는 배리어부재의 챔버를 포함하고, 상기 플레이트 부재가 적어도 표면의 부분을 형성하고 그를 통해 액체가 유동하기 위한 공간과 챔버 사이에서 연장되는 복수의 관통 홀을 갖는, 배리어 부재를 포함하는 것을 특징으로 하는 리소그래피 장치.
  12. 제11항에 있어서,
    상기 복수의 관통 홀은 상기 플레이트 부재에 2차원의 어레이를 형성하는 것 을 특징으로 하는 리소그래피 장치.
  13. 제11항에 있어서,
    상기 관통 홀은 상기 플레이트 부재의 두께보다 크지 않은 직경을 갖는 것을 특징으로 하는 리소그래피 장치.
  14. 제11항에 있어서,
    상기 관통 홀은 플레이트 부재 두께의 0.75배보다 크지 않은 직경을 갖는 것을 특징으로 하는 리소그래피 장치.
  15. 제11항에 있어서,
    상기 관통 홀은 상기 플레이트 부재 두께의 0.5배보다 크지 않은 직경을 갖는 것을 특징으로 하는 리소그래피 장치.
  16. 제11항에 있어서,
    상기 관통 홀은 mm2 당 1이상의 관통 홀의 밀도를 갖는 것을 특징으로 하는 리소그래피 장치.
  17. 제11항에 있어서,
    상기 관통 홀의 직경은 0.005 내지 1mm의 범위내에 있는 것을 특징으로 하는 리소그래피 장치.
  18. 제11항에 있어서,
    상기 관통 홀의 직경은 0.05 내지 1mm인 것을 특징으로 하는 리소그래피 장치.
  19. 제11항에 있어서,
    상기 플레이트의 두께는 0.01 내지 5mm의 범위내에 있는 것을 특징으로 하는 리소그래피 장치.
  20. 제11항에 있어서,
    상기 플레이트의 두께는 0.1 내지 5mm의 범위내에 있는 것을 특징으로 하는 리소그래피 장치.
  21. 제11항에 있어서,
    상기 관통 홀들의 축선 방향은 실질적으로 상기 기판과 평행한 것을 특징으로 하는 리소그래피 장치.
  22. 제11항에 있어서,
    상기 관통 홀들의 축선 방향은 실질적으로 상기 표면에 대해 수직한 것을 특징으로 하는 리소그래피 장치.
  23. 제11항에 있어서,
    상기 관통 홀들의 축선 방향들은 실질적으로 평행한 것을 특징으로 하는 리소그래피 장치.
  24. 제11항에 있어서,
    상기 관통 홀들의 축선 방향들은 5°내지 40°사이만큼, 상기 기판으로부터 상기 투영시스템을 향하여 먼 쪽으로 경사지는 것을 특징으로 하는 리소그래피 장치.
  25. 제11항에 있어서,
    상기 액체 유입부의 유동 저항은 상기 챔버내로의 진입시 액체의 제1압력 강하를 발생시키도록 구성되는 것을 특징으로 하는 리소그래피 장치.
  26. 제11항에 있어서,
    상기 관통 홀들은 상기 둘레부의 부분을 따라 연장되는 것을 특징으로 하는 리소그래피 장치.
  27. 리소그래피 장치에 있어서,
    기판을 잡아주도록 구성된 기판테이블;
    패터닝된 방사선 빔을 상기 기판의 타겟부상으로 투영하도록 구성된 투영시스템; 및
    상기 투영시스템의 최종 요소와 기판 사이의 공간으로 액체를 공급하도록 구성된 액체공급시스템; 및
    상기 액체공급시스템에 의하여 상기 공간으로부터의 액체의 추출 속도와 액체의 공급 속도 중 하나 이상을 동역학적으로 변화시켜, 상기 공간내의 액체의 레벨이 사전설정된 최소치와 사전설정된 최대치 사이에서 유지되도록 구성되는 제어시스템을 포함하는 것을 특징으로 하는 리소그래피 장치.
  28. 제27항에 있어서,
    상기 제어시스템은 상기 공간내의 액체 레벨의 측정에 반응하여 상기 속도 또는 속도들을 동역학적으로 변화시키는 것을 특징으로 하는 리소그래피 장치.
  29. 제28항에 있어서,
    상기 공간내의 사전설정된 위치에서 상기 액체의 압력을 측정하여 상기 공간내의 액체의 레벨을 결정하도록 구성된 압력 센서를 더 포함하는 것을 특징으로 하는 리소그래피 장치.
  30. 삭제
  31. 삭제
  32. 삭제
  33. 제28항에 있어서,
    상기 공간내 액체의 최상부 표면상에서 플로팅(float)되도록 구성된 플로트 및 상기 플로트의 위치를 측정하여 상기 공간내 액체의 레벨을 측정하도록 구성된 센서를 더 포함하는 것을 특징으로 하는 리소그래피 장치.
  34. 제27항에 있어서,
    상기 제어시스템은, 상기 액체공급시스템에 의해 상기 공간으로부터 추출되는 액체 양의 측정을 토대로 하여 상기 속도 또는 속도들을 능동적으로(actively) 변화시키는 것을 특징으로 하는 리소그래피 장치.
  35. 제27항에 있어서,
    상기 제어시스템은 상기 장치의 작동 상황들을 토대로 하여, 피드 포워드 방식으로 상기 속도 또는 속도들을 동역학적으로 변화시키는 것을 특징으로 하는 리소그래피 장치.
  36. 제27항에 있어서,
    추출 및 공급 속도 중 하나 이상을 제어하도록 구성된 밸브들을 더 포함하는 것을 특징으로 하는 리소그래피 장치.
  37. 제27항에 있어서,
    상기 액체공급시스템의 액체 추출기들에 가해지는 하부 압력(under pressure)을 제어하도록 구성되는 밸브들을 더 포함하는 것을 특징으로 하는 리소 그래피 장치.
  38. 리소그래피 장치에 있어서,
    기판을 잡아주도록 구성된 기판테이블;
    패터닝된 방사선 빔을 상기 기판의 타겟부상으로 투영하도록 구성된 투영시스템; 및
    상기 투영시스템의 최종 요소와 기판 사이의 공간으로 액체를 제공하도록 구성되고, 상기 공간으로부터 액체를 제거하도록 구성된 추출기를 포함하되, 상기 추출기는 상기 액체가 상기 공간으로부터 추출될 수 있는 오리피스의 2차원 어레이를 포함하는, 액체공급시스템을 포함하는 것을 특징으로 하는 리소그래피 장치.
  39. 제38항에 있어서,
    상기 어레이는 상기 장치의 광학 축선의 방향으로 연장되는 것을 특징으로 하는 리소그래피 장치.
  40. 제38항에 있어서,
    상기 어레이는 적어도 부분적으로 상기 공간의 외측 둘레부 주위에서 연장되는 것을 특징으로 하는 리소그래피 장치.
  41. 제40항에 있어서,
    상기 어레이는 상기 외측 둘레부의 부분을 따라 연장되는 것을 특징으로 하는 리소그래피 장치.
  42. 제40항에 있어서,
    상기 어레이는 상기 액체공급시스템의 유입부에 대향하여 위치되며, 상기 유입부는 상기 공간에 액체를 제공하도록 구성되는 것을 특징으로 하는 리소그래피 장치.
  43. 제38항에 있어서,
    상기 어레이는 상기 공간내의 액체의 레벨이 높을수록 상기 액체가 추출되는 오리피스들이 많도록, 위치 및 배향되는 것을 특징으로 하는 리소그래피 장치.
  44. 제38항에 있어서,
    상기 어레이를 통과한 후에 액체가 통과하는 1이상의 채널은, 상기 액체상에 모세관력이 작용하여 그것이 상기 어레이로부터 끌어올려져 단일 상태의 추출을 촉진하는 크기로 이루어지는 것을 특징으로 하는 리소그래피 장치.
  45. 제38항에 있어서,
    상기 액체공급시스템은 상기 공간을 둘러싸는 표면을 제공하고 상기 액체를 한정하도록 구성되는 배리어 부재를 포함하며, 상기 추출기가 상기 표면에 형성되 는 것을 특징으로 하는 리소그래피 장치.
  46. 제38항에 있어서,
    상기 배리어 부재는, 수직방향으로 연장된 돌출부를 포함하며, 상기 공간에서의 액체의 레벨이 상기 돌출부의 최상부의 레벨 위에 있을 때 상기 돌출부 위로 액체가 유동하는 것을 특징으로 하는 리소그래피 장치.
  47. 제46항에 있어서,
    상기 어레이는 상기 돌출부의 반경방향 바깥쪽으로 위치되며 상기 돌출부로부터 이격되어, 상기 돌출부보다 낮은 레벨에 있는 오버플로우(overflow) 영역이 상기 돌출부와 상기 어레이 사이에 위치되도록 하는 것을 특징으로 하는 리소그래피 장치.
  48. 제47항에 있어서,
    상기 어레이는 실질적으로 상기 오버플로우 영역의 가장 낮은 레벨로 연장되는 것을 특징으로 하는 리소그래피 장치.
  49. 디바이스 제조방법에 있어서,
    투영시스템을 사용하여 패터닝된 방사선 빔을 기판상으로 투영하는 단계로서, 배리어 부재가 상기 패터닝된 빔을 투영하는 투영시스템의 최종 요소와 상기 기판사이의 공간을 둘러싸는 표면을 가지고, 상기 배리어 부재가 상기 최종 요소와 상기 기판 사이의 공간내에 액체를 한정하도록 구성되는 상기 단계;
    액체 유입부를 통해 상기 공간에 액체를 제공하는 단계; 및
    액체 유출부를 통해 상기 공간으로부터 액체를 제거하는 단계를 포함하되,
    상기 액체 유입부 및 상기 액체 유출부 중 하나 이상은 상기 표면의 내측 둘레부의 일부분 주위에서 연장되는 것을 특징으로 하는 디바이스 제조방법.
  50. 디바이스 제조방법에 있어서,
    투영시스템을 사용하여 패터닝된 방사선 빔을 기판상으로 투영하는 단계를 포함하되,
    상기 투영시스템의 최종 요소와 상기 기판 사이에 액체를 제공하고, 상기 액체는 표면을 갖는 배리어 부재에 의해 한정되고, 플레이트 부재에 의해 상기 공간으로부터 분리되는 배리어 부재의 챔버를 포함하는 유입부를 통해 상기 공간으로 제공되며, 상기 플레이트 부재는 상기 액체가 유동하는 공간과 상기 챔버 사이에서 연장되는 복수의 관통 홀을 갖는 것을 특징으로 하는 디바이스 제조방법.
  51. 디바이스 제조방법에 있어서,
    투영시스템을 사용하여 패터닝된 방사선 빔을 기판상으로 투영하는 단계를 포함하되,
    상기 투영시스템의 최종 요소와 상기 기판 사이의 공간에 액체가 제공되고, 상기 공간으로부터의 액체의 추출 속도 및 상기 공간으로의 액체의 공급 속도 중 하나 이상은 상기 공간내의 액체의 레벨을 사전설정된 최소치와 사전설정된 최대치 사이에서 유지시키기 위해 동역학적으로 변화되는 것을 특징으로 하는 디바이스 제조방법.
  52. 디바이스 제조방법에 있어서,
    투영시스템을 사용하여 패터닝된 방사선 빔을 기판상으로 투영하는 단계를 포함하되,
    상기 투영시스템의 최종 요소와 상기 기판 사이의 공간에 액체가 제공되고, 액체는 오리피스들의 2차원 어레이를 포함하는 공간으로부터 추출되는 것을 특징으로 하는 디바이스 제조방법.
  53. 제51항에 있어서,
    상기 공간내의 액체의 레벨은, 상기 액체의 최상부 표면을 떠나는 광학 및 어쿠스틱 신호들 중 하나 이상의 반사 및 후속하는 검출에 의하여 결정되는 것을 특징으로 하는 디바이스 제조방법.
  54. 제51항에 있어서,
    상기 공간내의 액체의 레벨은, 상기 공간내의 액체의 어쿠스틱/광학/전기 신호를 발생시키고 상기 어쿠스틱/광학/전기 신호를 검출함에 의하여 결정되는 것을 특징으로 하는 디바이스 제조방법.
  55. 제51항에 있어서,
    상기 공간내의 액체의 레벨은, 상기 공간내의 사전설정된 위치에서 상기 액체내에 잠기도록 구성된 와이어의 온도를 측정함에 의하여 결정되는 것을 특징으로 하는 디바이스 제조방법.
KR1020060031143A 2005-04-05 2006-04-05 리소그래피 장치 및 디바이스 제조방법 KR100759065B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/098,615 US7411654B2 (en) 2005-04-05 2005-04-05 Lithographic apparatus and device manufacturing method
US11/098,615 2005-04-05

Publications (2)

Publication Number Publication Date
KR20060107357A KR20060107357A (ko) 2006-10-13
KR100759065B1 true KR100759065B1 (ko) 2007-09-19

Family

ID=36591286

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060031143A KR100759065B1 (ko) 2005-04-05 2006-04-05 리소그래피 장치 및 디바이스 제조방법

Country Status (7)

Country Link
US (8) US7411654B2 (ko)
EP (1) EP1710630A3 (ko)
JP (3) JP4667290B2 (ko)
KR (1) KR100759065B1 (ko)
CN (3) CN1847987B (ko)
SG (4) SG147423A1 (ko)
TW (2) TWI328721B (ko)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG121818A1 (en) * 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US8692973B2 (en) 2005-01-31 2014-04-08 Nikon Corporation Exposure apparatus and method for producing device
EP2506289A3 (en) 2005-01-31 2013-05-22 Nikon Corporation Exposure apparatus and method for manufacturing device
US7324185B2 (en) 2005-03-04 2008-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TW200644079A (en) * 2005-03-31 2006-12-16 Nikon Corp Exposure apparatus, exposure method, and device production method
US20070132976A1 (en) * 2005-03-31 2007-06-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7411654B2 (en) 2005-04-05 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8248577B2 (en) 2005-05-03 2012-08-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7385673B2 (en) * 2005-06-10 2008-06-10 International Business Machines Corporation Immersion lithography with equalized pressure on at least projection optics component and wafer
US7474379B2 (en) * 2005-06-28 2009-01-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7834974B2 (en) 2005-06-28 2010-11-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7468779B2 (en) * 2005-06-28 2008-12-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411658B2 (en) * 2005-10-06 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JPWO2007055373A1 (ja) * 2005-11-14 2009-04-30 株式会社ニコン 液体回収部材、露光装置、露光方法、及びデバイス製造方法
US7633073B2 (en) * 2005-11-23 2009-12-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7701551B2 (en) * 2006-04-14 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9477158B2 (en) 2006-04-14 2016-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8144305B2 (en) 2006-05-18 2012-03-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8004651B2 (en) 2007-01-23 2011-08-23 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
US20080231823A1 (en) * 2007-03-23 2008-09-25 Nikon Corporation Apparatus and methods for reducing the escape of immersion liquid from immersion lithography apparatus
US20090122282A1 (en) * 2007-05-21 2009-05-14 Nikon Corporation Exposure apparatus, liquid immersion system, exposing method, and device fabricating method
US8681308B2 (en) * 2007-09-13 2014-03-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG151198A1 (en) * 2007-09-27 2009-04-30 Asml Netherlands Bv Methods relating to immersion lithography and an immersion lithographic apparatus
US8233139B2 (en) * 2008-03-27 2012-07-31 Nikon Corporation Immersion system, exposure apparatus, exposing method, and device fabricating method
NL1036715A1 (nl) * 2008-04-16 2009-10-19 Asml Netherlands Bv Lithographic apparatus.
NL2003333A (en) * 2008-10-23 2010-04-26 Asml Netherlands Bv Fluid handling structure, lithographic apparatus and device manufacturing method.
US8896806B2 (en) * 2008-12-29 2014-11-25 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JP5407383B2 (ja) * 2009-02-05 2014-02-05 株式会社ニコン 露光装置、及びデバイス製造方法
NL2004162A (en) * 2009-02-17 2010-08-18 Asml Netherlands Bv A fluid supply system, a lithographic apparatus, a method of varying fluid flow rate and a device manufacturing method.
EP2381310B1 (en) 2010-04-22 2015-05-06 ASML Netherlands BV Fluid handling structure and lithographic apparatus
US20120013864A1 (en) * 2010-07-14 2012-01-19 Nikon Corporation Liquid immersion member, immersion exposure apparatus, liquid recovering method, device fabricating method, program, and storage medium
CN104570613B (zh) * 2013-10-25 2018-01-19 上海微电子装备(集团)股份有限公司 浸没头、浸没流场初始化和维持方法及光刻设备
CN104950585B (zh) * 2014-03-25 2017-06-27 上海微电子装备有限公司 一种浸液限制机构
USD850951S1 (en) * 2017-08-04 2019-06-11 Inno Instrument (China) .Inc Optical time domain reflectometer
CN112631082B (zh) * 2020-12-25 2024-04-05 浙江启尔机电技术有限公司 一种浸液供给装置
CN113189849B (zh) * 2021-04-22 2023-08-11 中国科学院光电技术研究所 一种近场光刻浸没系统及其浸没单元和接口模组

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040103401A (ko) * 2003-05-30 2004-12-08 에이에스엠엘 네델란즈 비.브이. 리소그래피장치 및 디바이스 제조방법
KR20050001433A (ko) * 2003-06-27 2005-01-06 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치 및 디바이스 제조방법
KR20060045412A (ko) * 2004-04-01 2006-05-17 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치 및 디바이스 제조방법

Family Cites Families (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE242880C (ko)
DE224448C (ko)
DE206607C (ko)
DE221563C (ko)
GB1242527A (en) * 1967-10-20 1971-08-11 Kodak Ltd Optical instruments
US3573975A (en) * 1968-07-10 1971-04-06 Ibm Photochemical fabrication process
EP0023231B1 (de) 1979-07-27 1982-08-11 Tabarelli, Werner, Dr. Optisches Lithographieverfahren und Einrichtung zum Kopieren eines Musters auf eine Halbleiterscheibe
FR2474708B1 (fr) 1980-01-24 1987-02-20 Dme Procede de microphotolithographie a haute resolution de traits
JPS5754317A (en) * 1980-09-19 1982-03-31 Hitachi Ltd Method and device for forming pattern
US4346164A (en) * 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
US4509852A (en) * 1980-10-06 1985-04-09 Werner Tabarelli Apparatus for the photolithographic manufacture of integrated circuit elements
US4390273A (en) * 1981-02-17 1983-06-28 Censor Patent-Und Versuchsanstalt Projection mask as well as a method and apparatus for the embedding thereof and projection printing system
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JPS58202448A (ja) 1982-05-21 1983-11-25 Hitachi Ltd 露光装置
DD206607A1 (de) 1982-06-16 1984-02-01 Mikroelektronik Zt Forsch Tech Verfahren und vorrichtung zur beseitigung von interferenzeffekten
DD242880A1 (de) 1983-01-31 1987-02-11 Kuch Karl Heinz Einrichtung zur fotolithografischen strukturuebertragung
DD221563A1 (de) 1983-09-14 1985-04-24 Mikroelektronik Zt Forsch Tech Immersionsobjektiv fuer die schrittweise projektionsabbildung einer maskenstruktur
DD224448A1 (de) 1984-03-01 1985-07-03 Zeiss Jena Veb Carl Einrichtung zur fotolithografischen strukturuebertragung
JPS6265326A (ja) 1985-09-18 1987-03-24 Hitachi Ltd 露光装置
JPS62121417A (ja) 1985-11-22 1987-06-02 Hitachi Ltd 液浸対物レンズ装置
JPS63157419A (ja) 1986-12-22 1988-06-30 Toshiba Corp 微細パタ−ン転写装置
US5040020A (en) * 1988-03-31 1991-08-13 Cornell Research Foundation, Inc. Self-aligned, high resolution resonant dielectric lithography
JPH03209479A (ja) 1989-09-06 1991-09-12 Sanee Giken Kk 露光方法
US5121256A (en) * 1991-03-14 1992-06-09 The Board Of Trustees Of The Leland Stanford Junior University Lithography system employing a solid immersion lens
JPH04305917A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH04305915A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH06124873A (ja) 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
JP2753930B2 (ja) * 1992-11-27 1998-05-20 キヤノン株式会社 液浸式投影露光装置
JP2520833B2 (ja) 1992-12-21 1996-07-31 東京エレクトロン株式会社 浸漬式の液処理装置
JPH07220990A (ja) 1994-01-28 1995-08-18 Hitachi Ltd パターン形成方法及びその露光装置
US6297871B1 (en) * 1995-09-12 2001-10-02 Nikon Corporation Exposure apparatus
US6104687A (en) * 1996-08-26 2000-08-15 Digital Papyrus Corporation Method and apparatus for coupling an optical lens to a disk through a coupling medium having a relatively high index of refraction
US5825043A (en) * 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
JP3612920B2 (ja) 1997-02-14 2005-01-26 ソニー株式会社 光学記録媒体の原盤作製用露光装置
JPH10255319A (ja) 1997-03-12 1998-09-25 Hitachi Maxell Ltd 原盤露光装置及び方法
JP3747566B2 (ja) 1997-04-23 2006-02-22 株式会社ニコン 液浸型露光装置
JP3817836B2 (ja) 1997-06-10 2006-09-06 株式会社ニコン 露光装置及びその製造方法並びに露光方法及びデバイス製造方法
US5900354A (en) * 1997-07-03 1999-05-04 Batchelder; John Samuel Method for optical inspection and lithography
JPH11176727A (ja) 1997-12-11 1999-07-02 Nikon Corp 投影露光装置
EP1039511A4 (en) 1997-12-12 2005-03-02 Nikon Corp PROJECTION EXPOSURE PROCESSING METHOD AND PROJECTION APPARATUS
AU2747999A (en) 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
JP2000058436A (ja) 1998-08-11 2000-02-25 Nikon Corp 投影露光装置及び露光方法
TWI242111B (en) * 1999-04-19 2005-10-21 Asml Netherlands Bv Gas bearings for use in vacuum chambers and their application in lithographic projection apparatus
JP4504479B2 (ja) 1999-09-21 2010-07-14 オリンパス株式会社 顕微鏡用液浸対物レンズ
TW591653B (en) * 2000-08-08 2004-06-11 Koninkl Philips Electronics Nv Method of manufacturing an optically scannable information carrier
US7731904B2 (en) * 2000-09-19 2010-06-08 Canon Kabushiki Kaisha Method for making probe support and apparatus used for the method
JP3507462B2 (ja) * 2000-09-19 2004-03-15 キヤノン株式会社 プローブ担体の製造方法及びそれに用いる装置
DE10050349C2 (de) * 2000-10-11 2002-11-07 Schott Glas Verfahren zur Bestimmung der Strahlenbeständigkeit von Kristallen und deren Verwendung
US20020163629A1 (en) * 2001-05-07 2002-11-07 Michael Switkes Methods and apparatus employing an index matching medium
US6600547B2 (en) * 2001-09-24 2003-07-29 Nikon Corporation Sliding seal
KR20050044371A (ko) * 2001-11-07 2005-05-12 어플라이드 머티어리얼스, 인코포레이티드 광학 스폿 그리드 어레이 프린터
DE10229818A1 (de) * 2002-06-28 2004-01-15 Carl Zeiss Smt Ag Verfahren zur Fokusdetektion und Abbildungssystem mit Fokusdetektionssystem
JP4117530B2 (ja) 2002-04-04 2008-07-16 セイコーエプソン株式会社 液量判定装置、露光装置、および液量判定方法
US6788477B2 (en) * 2002-10-22 2004-09-07 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for method for immersion lithography
CN101424881B (zh) * 2002-11-12 2011-11-30 Asml荷兰有限公司 光刻投射装置
DE60335595D1 (de) * 2002-11-12 2011-02-17 Asml Netherlands Bv Lithographischer Apparat mit Immersion und Verfahren zur Herstellung einer Vorrichtung
CN100568101C (zh) * 2002-11-12 2009-12-09 Asml荷兰有限公司 光刻装置和器件制造方法
SG121818A1 (en) * 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP2495613B1 (en) 2002-11-12 2013-07-31 ASML Netherlands B.V. Lithographic apparatus
SG121822A1 (en) * 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP1420300B1 (en) 2002-11-12 2015-07-29 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
SG131766A1 (en) * 2002-11-18 2007-05-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
DE10257766A1 (de) 2002-12-10 2004-07-15 Carl Zeiss Smt Ag Verfahren zur Einstellung einer gewünschten optischen Eigenschaft eines Projektionsobjektivs sowie mikrolithografische Projektionsbelichtungsanlage
US7242455B2 (en) * 2002-12-10 2007-07-10 Nikon Corporation Exposure apparatus and method for producing device
KR101036114B1 (ko) 2002-12-10 2011-05-23 가부시키가이샤 니콘 노광장치 및 노광방법, 디바이스 제조방법
TW200421444A (en) 2002-12-10 2004-10-16 Nippon Kogaku Kk Optical device and projecting exposure apparatus using such optical device
JP4352874B2 (ja) 2002-12-10 2009-10-28 株式会社ニコン 露光装置及びデバイス製造方法
WO2004053957A1 (ja) 2002-12-10 2004-06-24 Nikon Corporation 面位置検出装置、露光方法、及びデバイス製造方法
JP4232449B2 (ja) 2002-12-10 2009-03-04 株式会社ニコン 露光方法、露光装置、及びデバイス製造方法
WO2004053951A1 (ja) 2002-12-10 2004-06-24 Nikon Corporation 露光方法及び露光装置並びにデバイス製造方法
CN100429748C (zh) 2002-12-10 2008-10-29 株式会社尼康 曝光装置和器件制造方法
KR20050085236A (ko) 2002-12-10 2005-08-29 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
SG171468A1 (en) 2002-12-10 2011-06-29 Nikon Corp Exposure apparatus and method for producing device
KR20050062665A (ko) 2002-12-10 2005-06-23 가부시키가이샤 니콘 노광장치 및 디바이스 제조방법
JP4362867B2 (ja) 2002-12-10 2009-11-11 株式会社ニコン 露光装置及びデバイス製造方法
JP4184346B2 (ja) 2002-12-13 2008-11-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 層上のスポットを照射するための方法及び装置における液体除去
DE60307322T2 (de) 2002-12-19 2007-10-18 Koninklijke Philips Electronics N.V. Verfahren und anordnung zum bestrahlen einer schicht mittels eines lichtpunkts
KR100971440B1 (ko) 2002-12-19 2010-07-21 코닌클리케 필립스 일렉트로닉스 엔.브이. 레이어 상의 스폿을 조사하기 위한 방법 및 장치
TW201908879A (zh) * 2003-02-26 2019-03-01 日商尼康股份有限公司 曝光裝置、曝光方法及元件製造方法
CN100433253C (zh) * 2003-02-26 2008-11-12 株式会社尼康 曝光装置以及器件制造方法
WO2004090956A1 (ja) * 2003-04-07 2004-10-21 Nikon Corporation 露光装置及びデバイス製造方法
KR101177331B1 (ko) 2003-04-09 2012-08-30 가부시키가이샤 니콘 액침 리소그래피 유체 제어 시스템
EP2921905B1 (en) 2003-04-10 2017-12-27 Nikon Corporation Run-off path to collect liquid for an immersion lithography apparatus
KR101177330B1 (ko) 2003-04-10 2012-08-30 가부시키가이샤 니콘 액침 리소그래피 장치
SG141425A1 (en) 2003-04-10 2008-04-28 Nikon Corp Environmental system including vacuum scavange for an immersion lithography apparatus
WO2004090633A2 (en) * 2003-04-10 2004-10-21 Nikon Corporation An electro-osmotic element for an immersion lithography apparatus
JP4315198B2 (ja) 2003-04-11 2009-08-19 株式会社ニコン 液浸液体を光学アセンブリ下に維持するリソグラフィ装置及び液浸液体維持方法並びにそれらを用いるデバイス製造方法
KR101508809B1 (ko) 2003-04-11 2015-04-06 가부시키가이샤 니콘 액침 리소그래피에 의한 광학기기의 세정방법
JP4582089B2 (ja) 2003-04-11 2010-11-17 株式会社ニコン 液浸リソグラフィ用の液体噴射回収システム
JP2006523958A (ja) 2003-04-17 2006-10-19 株式会社ニコン 液浸リソグラフィで使用するためのオートフォーカス素子の光学的構造
TWI295414B (en) * 2003-05-13 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7274472B2 (en) * 2003-05-28 2007-09-25 Timbre Technologies, Inc. Resolution enhanced optical metrology
US7684008B2 (en) * 2003-06-11 2010-03-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US6867844B2 (en) 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
JP4343597B2 (ja) * 2003-06-25 2009-10-14 キヤノン株式会社 露光装置及びデバイス製造方法
JP2005019616A (ja) * 2003-06-25 2005-01-20 Canon Inc 液浸式露光装置
JP3862678B2 (ja) * 2003-06-27 2006-12-27 キヤノン株式会社 露光装置及びデバイス製造方法
EP1494074A1 (en) * 2003-06-30 2005-01-05 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2005026634A (ja) * 2003-07-04 2005-01-27 Sony Corp 露光装置および半導体装置の製造方法
EP2466382B1 (en) 2003-07-08 2014-11-26 Nikon Corporation Wafer table for immersion lithography
US7738074B2 (en) * 2003-07-16 2010-06-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7779781B2 (en) * 2003-07-31 2010-08-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US6954256B2 (en) * 2003-08-29 2005-10-11 Asml Netherlands B.V. Gradient immersion lithography
JP4168880B2 (ja) * 2003-08-29 2008-10-22 株式会社ニコン 液浸用溶液
US7070915B2 (en) * 2003-08-29 2006-07-04 Tokyo Electron Limited Method and system for drying a substrate
KR101748923B1 (ko) * 2003-09-03 2017-06-19 가부시키가이샤 니콘 액침 리소그래피용 유체를 제공하기 위한 장치 및 방법
JP4378136B2 (ja) * 2003-09-04 2009-12-02 キヤノン株式会社 露光装置及びデバイス製造方法
JP3870182B2 (ja) * 2003-09-09 2007-01-17 キヤノン株式会社 露光装置及びデバイス製造方法
KR101238134B1 (ko) * 2003-09-26 2013-02-28 가부시키가이샤 니콘 투영노광장치 및 투영노광장치의 세정방법, 메인터넌스 방법 그리고 디바이스의 제조방법
US7411653B2 (en) * 2003-10-28 2008-08-12 Asml Netherlands B.V. Lithographic apparatus
EP1528433B1 (en) 2003-10-28 2019-03-06 ASML Netherlands B.V. Immersion lithographic apparatus and method of operating the same
JP2005159322A (ja) * 2003-10-31 2005-06-16 Nikon Corp 定盤、ステージ装置及び露光装置並びに露光方法
JP2005175016A (ja) * 2003-12-08 2005-06-30 Canon Inc 基板保持装置およびそれを用いた露光装置ならびにデバイス製造方法
JP2005175034A (ja) * 2003-12-09 2005-06-30 Canon Inc 露光装置
US20050126282A1 (en) * 2003-12-16 2005-06-16 Josef Maatuk Liquid sensor and ice detector
US7394521B2 (en) * 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589818B2 (en) * 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
JP2005191393A (ja) * 2003-12-26 2005-07-14 Canon Inc 露光方法及び装置
JP2005191381A (ja) * 2003-12-26 2005-07-14 Canon Inc 露光方法及び装置
US8064044B2 (en) * 2004-01-05 2011-11-22 Nikon Corporation Exposure apparatus, exposure method, and device producing method
JP4429023B2 (ja) * 2004-01-07 2010-03-10 キヤノン株式会社 露光装置及びデバイス製造方法
JP4018647B2 (ja) * 2004-02-09 2007-12-05 キヤノン株式会社 投影露光装置およびデバイス製造方法
JP4510494B2 (ja) * 2004-03-29 2010-07-21 キヤノン株式会社 露光装置
JP2005286068A (ja) 2004-03-29 2005-10-13 Canon Inc 露光装置及び方法
US7057702B2 (en) * 2004-06-23 2006-06-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7701550B2 (en) 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7379155B2 (en) * 2004-10-18 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1681597B1 (en) * 2005-01-14 2010-03-10 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411654B2 (en) * 2005-04-05 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN101414833B (zh) * 2007-10-19 2010-08-04 中兴通讯股份有限公司 低密度生成矩阵码的编码方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040103401A (ko) * 2003-05-30 2004-12-08 에이에스엠엘 네델란즈 비.브이. 리소그래피장치 및 디바이스 제조방법
KR20050001433A (ko) * 2003-06-27 2005-01-06 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치 및 디바이스 제조방법
KR20060045412A (ko) * 2004-04-01 2006-05-17 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치 및 디바이스 제조방법

Also Published As

Publication number Publication date
US20080212051A1 (en) 2008-09-04
KR20060107357A (ko) 2006-10-13
US20150309420A1 (en) 2015-10-29
CN101807011B (zh) 2012-09-26
US10209629B2 (en) 2019-02-19
US8259287B2 (en) 2012-09-04
JP2010074187A (ja) 2010-04-02
JP4667290B2 (ja) 2011-04-06
TWI340303B (en) 2011-04-11
JP5270631B2 (ja) 2013-08-21
SG147423A1 (en) 2008-11-28
US8988651B2 (en) 2015-03-24
JP5474524B2 (ja) 2014-04-16
CN101807011A (zh) 2010-08-18
SG126135A1 (en) 2006-10-30
CN101256365A (zh) 2008-09-03
US9429853B2 (en) 2016-08-30
US7411654B2 (en) 2008-08-12
SG171645A1 (en) 2011-06-29
CN1847987B (zh) 2011-02-16
US8976334B2 (en) 2015-03-10
SG171646A1 (en) 2011-06-29
US9857695B2 (en) 2018-01-02
US20160370713A1 (en) 2016-12-22
CN101256365B (zh) 2012-12-26
EP1710630A3 (en) 2006-10-25
TW201020697A (en) 2010-06-01
JP2006295161A (ja) 2006-10-26
JP2011066416A (ja) 2011-03-31
TW200643661A (en) 2006-12-16
CN1847987A (zh) 2006-10-18
US20060221315A1 (en) 2006-10-05
US20190179232A1 (en) 2019-06-13
EP1710630A2 (en) 2006-10-11
US10495984B2 (en) 2019-12-03
US20120008116A1 (en) 2012-01-12
TWI328721B (en) 2010-08-11
US20120008118A1 (en) 2012-01-12
US20180081285A1 (en) 2018-03-22

Similar Documents

Publication Publication Date Title
KR100759065B1 (ko) 리소그래피 장치 및 디바이스 제조방법
KR100830141B1 (ko) 리소그래피 장치
JP5290333B2 (ja) リソグラフィ装置およびデバイス製造方法
JP5237322B2 (ja) リソグラフィ装置
JP2010147466A (ja) 流体ハンドリング構造、テーブル、リソグラフィ装置、液浸リソグラフィ装置、及びデバイス製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120831

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130830

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140901

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150828

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160902

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170901

Year of fee payment: 11