KR100634444B1 - 수광 소자 및 그 형성 방법 - Google Patents

수광 소자 및 그 형성 방법 Download PDF

Info

Publication number
KR100634444B1
KR100634444B1 KR1020040108791A KR20040108791A KR100634444B1 KR 100634444 B1 KR100634444 B1 KR 100634444B1 KR 1020040108791 A KR1020040108791 A KR 1020040108791A KR 20040108791 A KR20040108791 A KR 20040108791A KR 100634444 B1 KR100634444 B1 KR 100634444B1
Authority
KR
South Korea
Prior art keywords
layer
silicon
conductivity type
germanium
region
Prior art date
Application number
KR1020040108791A
Other languages
English (en)
Other versions
KR20060070146A (ko
Inventor
김태진
윤광준
장필재
맹계원
박영준
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020040108791A priority Critical patent/KR100634444B1/ko
Priority to US11/305,033 priority patent/US7420207B2/en
Publication of KR20060070146A publication Critical patent/KR20060070146A/ko
Application granted granted Critical
Publication of KR100634444B1 publication Critical patent/KR100634444B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

수광 소자 및 그 형성 방법을 제공한다. 이 소자는 윗부분(upper portion)에 제1 도전형의 매몰 도핑층을 갖는 실리콘 기판을 포함한다. 매몰 도핑층 상에 제1 도전형의 제1 실리콘 에피층이 배치되고, 제1 실리콘 에피층 상에 제2 도전형의 제2 실리콘 에피층이 배치된다. 제1 도전형의 분리 도핑층이 제2 실리콘 에피층의 소정영역에 배치되어 제2 도전형의 바디 영역을 한정한다. 바디 영역 상에 제2 도전형의 실리콘게르마늄 에피층이 배치된다.

Description

수광 소자 및 그 형성 방법{PHOTO DETECTING DEVICES AND METHODS OF FORMING THE SAME}
도 1은 종래의 수광 소자에 포함된 포토 다이오드를 보여주는 평면도이다.
도 2는 도 1의 Ⅰ-Ⅰ'을 따라 취해진 단면도이다.
도 3은 도 2의 Ⅱ-Ⅱ'을 따라 취해진 에너지 밴드 다이어그램이다.
도 4는 도 1의 수광 소자의 광신호에 대한 반응 특성을 설명하기 위한 그래프이다.
도 5는 본 발명의 실시예에 따른 수광소자를 보여주는 평면도이다.
도 6a 및 도 6b는 각각 도 5의 Ⅲ-Ⅲ' 및 Ⅳ-Ⅳ'을 따라 취해진 단면도들이다.
도 7은 도 5의 실리콘게르마늄 에피층의 게르마늄 농도를 나타내는 도면이다.
도 8는 도 5의 실리콘게르마늄 에피층의 불순물 농도를 나타내는 도면이다.
도 9는 도 6a의 Ⅴ-Ⅴ'을 따라 취해진 에너지 밴드 다이어그램이다.
도 10a 내지 도 14a는 본 발명의 실시예에 따른 수광 소자의 형성 방법을 설명하기 위하여 도 5의 Ⅲ-Ⅲ'을 따라 취해진 단면도들이다.
도 10b 내지 도 14b는 본 발명의 실시예에 따른 수광 소자의 형성 방법을 설 명하기위하여 도 5의 Ⅳ-Ⅳ'을 따라 취해진 단면도들이다.
본 발명은 반도체 소자 및 그 형성 방법에 관한 것으로, 특히, 광신호를 전기신호로 변환시키는 수광 소자 및 그 형성 방법에 관한 것이다.
수광 소자는 외부로 부터 입사되는 광신호를 픽업(pick)하여 전기 신호로 변화시키는 반도체 소자이다. 이러한 특성의 상기 수광 소자는 광을 사용하여 컴팩트 디스크(CD; Campact Disc) 또는 디지탈 벌스타일 디스크(DVD; Digital Versatile Disc)등의 저장매체에 기록된 데이타를 읽는 드라이버(driver)등에 사용될 수 있다. 최근에, 이러한 드라이버의 배속이 점점 고속화됨에 따라, 보다 빠른 동작 속도의 상기 수광 소자가 요구되고 있다.
통상, 상기 수광 소자는 외부의 광신호를 픽업하여 전기신호로 변환시키는 수광부로서 포토 다이오드를 사용한다. 상기 포토 다이오드의 일반적인 형태를 도면들을 참조하여 설명한다.
도 1은 종래의 수광 소자에 포함된 포토 다이오드를 보여주는 평면도이고, 도 2는 도 1의 Ⅰ-Ⅰ'을 따라 취해진 단면도이다.
도 1 및 도 2를 참조하면, 실리콘으로 형성된 기판(1)의 윗부분(upper portion)에 피(p)형의 불순물들로 도핑된 매몰(buried) 도핑층(3)이 배치되고, 상기 매몰 도핑층(3) 상에 p형의 불순물로 도핑된 p형 실리콘 에피층(5, p-type epitaxial layer) 및 엔(n)형의 불순물들로 도핑된 n형 실리콘 에피층(7)이 차례로 적층된다.
상기 n형 실리콘 에피층(7)내에 n형 실리콘 바디 영역(7', n-type silicon body region)을 한정하는 분리 도핑층(8)이 배치된다. 상기 분리 도핑층(8)은 p형의 불순물로 도핑되며, 아래로 연장되어 상기 p형 실리콘 에피층(5)과 전기적으로 접속한다. 상기 n형 실리콘 바디 영역(7')는 상기 분리 도핑층(8) 및 상기 p형 실리콘 에피층(5)에 둘러싸여 격리된다. 상기 분리 도핑층(8)과 접속하는 상기 p형의 실리콘 에피층(5)에 버퍼 도핑층(6)이 배치된다. 상기 버퍼 도핑층(6)은 p형의 불순물들로 도핑된다. 이때, 상기 버퍼 도핑층(6)의 불순물 농도는 상기 p형 실리콘 에피층(5)에 비하여 높다.
상기 n형 실리콘 바디 영역(7')의 윗부분(upper portion)에 n형 고농도 도핑층(10)이 배치된다. 상기 n형 고농도 도핑층(10)은 상기 n형 실리콘 바디 영역(7')에 비하여 높은 불순물 농도를 갖는다. 상기 n형 고농도 도핑층(10) 및 상기 n형 실리콘 바디 영역(7')는 포토 다이오드의 n영역에 해당하고, 상기 n영역 아래에 위치한 상기 p형 실리콘 에피층(5) 및 상기 매몰 도핑층(3)은 포토 다이오드의 p영역에 해당한다.
상기 기판(1) 전면을 덮는 층간산화막(12)이 배치된다. 상기 층간산화막(12)은 그것을 관통하여 상기 n형 고농도 도핑층(10)을 노출시키는 개구부를 갖는다. 이때, 상기 층간산화막(12)은 상기 n형 고농도 도핑층(10)의 가장자리의 일부를 덮는다. 상기 층간산화막(12) 상에 제1 및 제2 배선들(15a,15b)이 배치된다. 상기 제 1 배선(15a)은 상기 층간산화막(12)을 관통하여 상기 분리 도핑층(8)에 전기적으로 접속한다. 이에 따라, 상기 제1 배선(15a)은 상기 분리 도핑층(8) 및 상기 버퍼 도핑층(6)을 경유하여 상기 포토다이오드의 p영역에 접속한다. 상기 제2 배선(15b)은 상기 층간산화막(12)을 관통하여 상기 n형 고농도 도핑층(10)의 가장자리에 접속한다.
상술한 종래 포토 다이오드의 동작 방법을 도 3의 에너지 밴드 다이어그램을 참조하여 설명한다.
도 3은 도 2의 Ⅱ-Ⅱ'을 따라 취해진 에너지 밴드 다이어그램이다. 도면에 있어서, 참조부호 "a", "b" 및 "c"는 각각 n형 중립(neutral) 영역, 공핍영역 및 p형 중립 영역을 나타낸다.
도 1, 도 2 및 도 3을 참조하면, 스탠바이(stand by) 상태에서 상기 포토 다이오드에 역바이어스(reverse bias)가 인가될 수 있다. 상기 공핍 영역(b)은 상기 n형 실리콘 바디 영역(7')의 대부분을 포함할 수 있다. 또한, 상기 공핍 영역(b)은 상기 n형 실리콘 바디 영역(7') 아래의 상기 p형 실리콘 에피층(5)의 대부분을 포함할 수 있다.
상기 포토 다이오드는 상기 n영역 및 p영역의 pn접합에 의해 n형 중립 영역(a), 공핍 영역(b) 및 p형 중립 영역(c)으로 구분된다. 상기 n형 및 p형 중립 영역들(a,c)은 전계가 발생하지 않는 중립 상태(neutral state)이며, 상기 공핍 영역(b)내에는 내부 전계(20)가 발생된다.
스탠바이 상태에서, 외부의 광신호가 입사되면, 상기 광신호는 상기 n형 고 농도 도핑층(10)을 통하여 상기 포토 다이오드로 입사된다. 상기 입사된 광신호는 상기 포토 다이오드내에 전자-홀 쌍들(EHPs; Electron-Hole Pairs)를 생성시킨다. 상기 생성된 전자들은 전도대(Ec)를 따라 이동하고, 상기 생성된 홀들은 가전자대(Ev)를 따라 이동되어 상기 제1 및 제2 배선들(15a,15b)간에 신호전류가 흐른다.
상술한 종래의 포토 다이오드에 있어서, 상기 광신호에 의해 상기 공핍 영역(b)내에서 생성된 전자들 및 홀들은 상기 공핍 영역(b)내의 내부 전계(20)에 의해 가속되어 신속히 이동된다. 이에 반해, 상기 중립 영역들(a,c)내에서 발생된 전자들 및 홀들은 확산에 의해 이동된다. 확산에 의해 이동되는 전자들 및 홀들은 그 주행시간이 길어짐으로써, 상기 포토 다이오드의 반응 특성(즉, 상기 광신호에 대한 반응 속도)가 저하될 수 있다.
특히, 상기 광신호는 상기 n형 중립 영역(a)의 표면(즉, 상기 n형 고농도 도핑층(10)의 표면)에서 가장 강한 세기로 입사되고, 상기 n형 중립 영역(a)의 표면으로부터 깊어질수록 상기 광신호의 세기가 점점 감소된다. 이에 따라, 상기 n형 중립 영역(a)내에서 생성된 전자들 및 홀들의 확산이동이 상기 포토 다이오드의 반응 특성을 저하시키는 주원인이 될 수 있다.
상기 포토 다이오드의 반응 특성을 도 4를 참조하여 설명한다.
도 4는 도 1의 포토 다이오드의 광신호에 대한 반응 특성을 설명하기 위한 그래프이다. 도 4에 있어서, x축은 광신호가 입사되는 시간을 나타내며, y축은 상기 광신호에 의해 발생되는 신호 전류의 량을 나타낸다. 또한, 참조부호 "t"는 광신호의 입사 종료 시간(t)을 나타낸다.
도 1 내지 도 4를 참조하면, 일정한 세기의 광신호가 포토 다이오드내로 입사되면, 주로 n형 중립 영역(a) 및 공핍 영역(b)내에서 전자-홀 쌍들이 생성된다. 상기 생성된 전자들 및 홀들은 확산 및 내부 전계(20)에 의해 이동되어 상기 배선들(15a,15b)간에 신호 전류가 흐른다. 이때, 상기 광신호는 일정한 세기로 입사됨으로써, 상기 신호 전류는 일정한 량으로 흐를 수 있다.
이 후에, 상기 광신호가 입사 종료 시간(t)을 기점으로 입사가 중단되면, 상기 신호 전류의 량은 급속히 감소된다. 이상적인 형태는 상기 입사 종료 시간(t)을 기점으로 상기 신호전류의 량이 "0"이 되는 것이다. 하지만, 상기 포토 다이오드내에서 최후에 생성된 전자들 및 홀들의 이동시간에 의해 상기 신호 전류의 량은 상기 입사 종료 시간(t)을 기점으로 테일(25, tail) 형태로 흐를 수 있다.
이때, 상기 입사 종료 시간(t)을 기점으로 상기 공핍 영역(b)에서 생성된 정공들은 상기 내부 전계(20)에 의해 신속히 이동되는 것에 반하여, 상기 n형 중립 영역(a)에서 생성된 정공들은 확산에 의해 상기 공핍 영역(b)으로 이동된다. 이에 따라, 상기 n형 중립 영역(a)에서 생성된 정공들의 주행시간이 길어짐으로써, 상기 신호 전류의 테일(25)이 길어질 수 있다.
상기 신호 전류의 테일(25)이 길어질 경우, 상기 포토 다이오드의 반응 특성이 저하되어 상기 포토 다이오드의 동작 속도가 저하될 수 있다. 또한, 상기 테일(25)이 노이즈로 작용하여 상기 포토 다이오드로 부터 출력되는 데이타가 왜곡될 수도 있다.
본 발명이 이루고자 하는 기술적 과제는 광신호에 대한 반응 특성이 향상된 수광 소자 및 그 형성 방법을 제공하는데 있다.
본 발명이 이루고자 하는 다른 기술적 과제는 고속동작이 가능한 수광 소자 및 그 형성 방법을 제공하는데 있다.
본 발명이 이루고자 하는 또 다른 기술적 과제는 데이타의 왜곡 현상을 방지할 수 있는 수광 소자 및 그 형성 방법을 제공하는데 있다.
상술한 기술적 과제들을 해결하기 위한 수광 소자를 제공한다. 이 소자는 윗부분(upper portion)에 제1 도전형의 매몰 도핑층을 갖는 실리콘 기판을 포함한다. 상기 매몰 도핑층 상에 제1 도전형의 제1 실리콘 에피층이 배치되고, 상기 제1 실리콘 에피층 상에 제2 도전형의 제2 실리콘 에피층이 배치된다. 제1 도전형의 분리 도핑층이 상기 제2 실리콘 에피층의 소정영역에 배치되어 제2 도전형의 바디 영역을 한정한다. 상기 바디 영역 상에 제2 도전형의 실리콘게르마늄 에피층이 배치된다.
일 실시예에 있어서, 상기 실리콘게르마늄 에피층은 그것의 내부에 게르마늄 농도가 최대인 최대 게르마늄 농도 영역을 가질 수 있다. 이때, 상기 실리콘게르마늄 에피층의 게르마늄 농도는 상기 실리콘게르마늄 에피층의 바닥면으로부터 상기 최대 게르마늄 농도 영역까지 점진적으로 증가하고, 상기 최대 게르마늄 농도 영역으로부터 상기 실리콘게르마늄 에피층의 상부면까지 점진적으로 감소한다. 상기 제1 도전형의 매몰 도핑층 및 제1 실리콘 에피층과, 상기 제2 도전형의 바디 영역 및 실리콘게르마늄 에피층은 피엔 접합(pn junction)을 이루어 공핍 영역이 형성될 수 있다. 이때, 상기 최대 게르마늄 농도 영역은 상기 공핍 영역내에 위치하는 것이 바람직하다.
일 실시예에 있어서, 상기 실리콘게르마늄 에피층은 윗부분(upper portion)의 불순물 농도가 아랫부분(lower portion)의 불순물 농도보다 높은 것이 바람직하다. 특히, 상기 실리콘게르마늄 에피층의 아랫부분은 상기 바디 영역과 동일한 불순물 농도를 갖고, 상기 실리콘게르마늄 에피층의 불순물 농도는 그것의 아랫부분으로 부터 상기 최대 게르마늄 농도 영역을 지나 급격히 증가할 수 있다.
일 실시예에 있어서, 상기 소자는 상기 실리콘게르마늄 에피층 주위의 상기 제2 실리콘 에피층 및 상기 분리 도핑층을 덮는 절연막, 및 상기 실리콘게르마늄 에피층 일측의 상기 절연막 상에 배치된 패드 도전 패턴을 더 포함할 수 있다. 이 경우에, 상기 패드 도전 패턴은 상기 실리콘게르마늄 에피층과 전기적으로 접속한다. 상기 패드 도전 패턴은 제2 도전형의 불순물들로 도핑된 다결정 실리콘게르마늄으로 이루어질 수 있다.
일 실시예에 있어서, 상기 소자는 층간 절연막, 제1 배선 및 제2 배선을 더 포함할 수 있다. 상기 층간 절연막은 상기 제2 실리콘 에피층 전면을 덮되, 상기 실리콘게르마늄 에피층을 노출시키는 개구부를 갖는다. 상기 제1 배선은 상기 층간 절연막 상에 배치되되, 상기 층간절연막 및 상기 절연막을 연속적으로 관통하는 제1 콘택홀을 경유하여 상기 분리 도핑층과 접속한다. 상기 제2 배선은 상기 층간절연막 상에 배치되되, 상기 층간 절연막을 관통하는 제2 콘택홀을 경유하여 상기 패 드 도전 패턴과 접속한다. 이때, 상기 분리 도핑층은 아래로 연장되어 상기 제1 실리콘 에피층과 전기적으로 접속한다.
상술한 기술적 과제들을 해결하기 위한 수광 소자의 형성 방법을 제공한다. 이 방법은 다음의 단계들을 포함한다. 윗부분(upper portion)에 제1 도전형의 매몰 도핑층을 갖는 실리콘 기판을 준비하고, 상기 매몰 도핑층 상에 제1 도전형의 제1 실리콘 에피층을 형성한다. 상기 제1 실리콘 에피층 상에 제2 도전형의 제2 실리콘 에피층을 형성하고, 상기 제2 실리콘 에피층의 소정영역에 제1 도전형의 분리 도핑층을 형성하여 제2 도전형의 바디 영역을 한정한다. 상기 바디 영역 상에 제2 도전형의 실리콘게르마늄 에피층을 형성한다.
일 실시예에 있어서, 상기 실리콘게르마늄 에피층은 그것의 내부에 게르마늄 농도가 최대인 최대 게르마늄 농도 영역를 갖도록 형성할 수 있다. 이때, 상기 실리콘게르마늄 에피층의 게르마늄 농도는 상기 실리콘게르마늄 에피층의 바닥면으로부터 상기 최대 게르마늄 농도 영역까지 점진적으로 증가되고, 상기 최대 게르마늄 농도 영역으로부터 상기 실리콘게르마늄 에피층의 상부면까지 점진적으로 감소된다. 상기 제1 도전형의 매몰 도핑층 및 제1 실리콘 에피층과, 상기 제2 도전형의 바디 영역 및 실리콘게르마늄 에피층은 피엔 접합(pn junction)을 이루어 공핍 영역이 형성될 수 있다. 이때, 상기 최대 게르마늄 농도 영역은 상기 공핍 영역내에 형성되는 것이 바람직하다.
일 실시예에 있어서, 상기 실리콘게르마늄 에피층은 윗부분의 불순물 농도가 아랫부분의 불순물 농도에 비하여 높도록 형성되는 것이 바람직하다. 특히, 상기 실리콘게르마늄 에피층의 아랫부분은 상기 바디 영역과 동일한 불순물 농도로 형성되고, 상기 실리콘게르마늄 에피층의 불순물 농도는 상기 아랫부분으로부터 상기 최대 게르마늄 농도 영역을 지나 급격히 증가되도록 형성될 수 있다.
일 실시예에 있어서, 상기 방법은 상기 바디 영역을 갖는 실리콘 기판 상에 절연막을 형성하는 단계, 상기 절연막을 패터닝하여 상기 바디 영역의 소정영역을 노출시키는 단계, 및 상기 실리콘게르마늄 에피층 일측의 상기 절연막 상에 상기 실리콘게르마늄 에피층과 전기적으로 접속하는 패드 도전 패턴을 형성하는 단계를 더 포함할 수 있다. 이때, 상기 패터닝된 절연막은 상기 분리 도핑층을 덮고, 상기 실리콘게르마늄 에피층은 상기 노출된 바디 영역 상에 형성된다.
일 실시예에 있어서, 상기 패드 도전 패턴을 형성하는 단계는 다음의 단계들을 포함할 수 있다. 상기 절연막 상에 상기 실리콘게르마늄 에피층과 접속하고, 제2 도전형의 불순물들로 도핑된 다결정 실리콘게르마늄층을 형성하고, 상기 다결정 실리콘게르마늄층을 패터닝하여 상기 패드 도전 패턴을 형성한다. 상기 실리콘게르마늄 에피층 및 상기 다결정 실리콘게르마늄층은 동시에 형성되는 것이 바람직하다.
일 실시예에 있어서, 상기 방법은 다음의 단계들을 더 포함할 수 있다. 상기 실리콘 기판 전면에 층간 절연막을 형성하고, 상기 층간절연막 및 상기 패터닝된 절연막을 연속적으로 관통하여 상기 분리 도핑층을 노출시키는 제1 콘택홀, 및 상기 층간절연막을 관통하여 상기 패드 도전 패턴을 노출시키는 제2 콘택홀을 형성한다. 상기 층간절연막 상에 상기 제1 콘택홀을 경유하여 상기 분리 도핑층과 접속되 는 제1 배선, 및 상기 제2 콘택홀을 경유하여 상기 패드 도전 패턴과 접속하는 제2 배선을 형성한다.
이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명되어지는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되어지는 것이다. 도면들에 있어서, 층(또는 막) 및 영역들의 두께는 명확성을 기하기 위하여 과장되어진 것이다. 또한, 층(또는 막)이 다른 층(또는 막) 또는 기판 "상"에 있다고 언급되어지는 경우에 그것은 다른 층(또는 막) 또는 기판 상에 직접 형성될 수 있거나 또는 그들 사이에 제3의 층(또는 막)이 개재될 수도 있다. 명세서 전체에 걸쳐서 동일한 참조번호로 표시된 부분들은 동일한 구성요소들을 나타낸다.
도 5는 본 발명의 실시예에 따른 수광소자를 보여주는 평면도이고, 도 6a 및 도 6b는 각각 도 5의 Ⅲ-Ⅲ' 및 Ⅳ-Ⅳ'을 따라 취해진 단면도들이다.
도 5, 도 6a 및 도 6b를 참조하면, 실리콘 기판(100)의 윗부분(upper portion)에 매몰 도핑층(102)이 배치된다. 상기 매몰 도핑층(102)은 단결정 실리콘으로 이루어지며, 제1 도전형의 불순물들이 도핑되어 있다. 상기 매몰 도핑층(102)은 상기 실리콘 기판(100)의 일부일 수 있다.
상기 매몰 도핑층(102) 상에 제1 도전형의 불순물들로 도핑된 제1 실리콘 에피층(104)이 배치된다. 상기 제1 실리콘 에피층(104)은 단결정 실리콘으로 이루어 지는 것이 바람직하다. 상기 제1 실리콘 에피층(104) 및 상기 매몰 도핑층(102)은 서로 동일한 타입의 불순물들로 도핑되어 있음으로, 서로 전기적으로 접속된다. 이때, 상기 매몰 도핑층(102)의 불순물 농도는 상기 제1 실리콘 에피층(104)에 비하여 높은 것이 바람직하다.
상기 제1 실리콘 에피층(104) 상에 제2 도전형의 불순물들로 도핑된 제2 실리콘 에피층(108)이 배치된다. 상기 제2 실리콘 에피층(108)은 단결정 실리콘으로 이루어지는 것이 바람직하다. 상기 제1 및 제2 실리콘 에피층들(104,108)은 서로 다른 타입의 불순물들로 도핑된다.
즉, 상기 제1 도전형의 불순물 및 제2 도전형의 불순물은 서로 다른 타입의 불순물들이다. 예컨대, 상기 제1 도전형의 불순물 및 제2 도전형의 불순물은 각각 p형 불순물 및 n형 불순물일 수 있다. 이와는 반대로, 상기 제1 도전형의 불순물 및 제2 도전형의 불순물은 각각 n형 불순물 및 p형 불순물 일수 있다.
상기 제2 실리콘 에피층(104)의 소정영역에 활성영역을 한정하는 소자분리막(112)이 배치된다. 상기 소자분리막(112)은 실리콘 산화막등과 같은 절연 물질로 이루어진다. 상기 활성영역내에 하나 이상의 포토 다이오드가 배치된다. 본 실시예에서는, 상기 활성영역내에 4개의 포토 다이오드들이 (2,2)행렬로 배열된 형태를 도시하였다. 물론, 상기 활성영역내에는 다른 갯수의 포토 다이오드들이 배치될 수도 있다.
상기 활성영역의 소정영역에 분리 도핑층(110a,110b)이 배치된다. 상기 분리 도핑층(110a,110b)은 제2 도전형의 바디 영역(108')을 한정한다. 상기 바디 영역 (108')은 상기 제2 실리콘 에피층(108)의 일부분이다. 하나의 상기 바디 영역(108')은 하나의 상기 포토 다이오드를 구성하는 일 요소가 된다. 상기 분리 도핑층(110a,110b)은 제1 도전형의 불순물들로 도핑되어 상기 제2 도전형의 바디 영역(108')을 격리시킨다. 상기 분리 도핑층(110a,110b)에 의해 상기 활성영역에는 4개의 상기 바디 영역들(108')이 배치될 수 있다.
상기 분리 도핑층(110a,110b)은 아래로 연장되어 상기 제1 실리콘 에피층(104)에 접촉한다. 상기 분리 도핑층(110a,110b)은 상기 제1 실리콘 에피층(104)과 동일한 타입의 불순물들로 도핑됨으로써, 서로 전기적으로 접속된다. 상기 분리 도핑층(110a,110b)이 상기 제1 실리콘 에피층(104)과 접속함으로써, 상기 바디 영역(108')은 상기 분리 도핑층(110a,110b)과 상기 제1 실리콘 에피층(104)에 의해 둘러싸인 형태로 격리된다.
상기 분리 도핑층(110a,110b)은 주변 분리 도핑층(110a) 및 중앙 분리 도핑층(110b)으로 구분될 수 있다. 상기 주변 분리 도핑층(110a)은 상기 활성영역의 가장자리를 따라 배치되어 상기 복수개의 바디 영역들(108')을 둘러싸고, 상기 중앙 분리 도핑층(110b)은 상기 바디 영역들(108')의 사이에 배치된다.
상기 바디 영역(108') 상에 제2 도전형의 불순물들로 도핑된 실리콘게르마늄 에피층(120)이 배치된다. 상기 실리콘게르마늄 에피층(120)은 단결정 실리콘게르마늄으로 이루어진다. 상기 활성영역 상에 상기 4개의 상기 바디 영역들(108')에 각각 대응하는 4개의 상기 실리콘게르마늄 에피층들(120)이 (2,2)행렬로 배치된다. 상기 실리콘게르마늄 에피층들(120)은 이격되어 서로 전기적으로 절연된다.
상기 바디 영역(108') 아래의 상기 매몰 도핑층(102) 및 제1 실리콘 에피층(104)은 제1 도전형의 제1 반도체 부분을 구성하고, 상기 바디 영역(108') 및 상기 실리콘게르마늄 에피층(120)은 제2 도전형의 제2 반도체 부분을 구성한다. 상기 제1 및 제2 반도체 부분들은 피엔(pn) 접합을 이루어 포토 다이오드를 구성한다. 상기 pn접합의 경계면(이하, pn접합면이라 함)은 상기 제1 실리콘 에피층(104)과 상기 바디 영역(108')의 경계면에 해당한다. 상기 pn접합면을 기점으로 상기 제1 및 제2 반도체 부분들로 연장된 공핍 영역이 형성되고, 상기 공핍 영역 아래의 상기 제1 반도체 부분에 제1 도전형 영역이 형성되며, 상기 공핍 영역 위의 상기 제2 반도체 부분에 제2 도전형 영역이 형성된다. 상기 제1 및 제2 도전형 영역들은 종래의 중립 영역들에 대응한다.
상기 공핍 영역은 상기 바디 영역(108')의 전체 및 상기 바디 영역(108') 아래의 상기 제1 실리콘 에피층(104)의 전체에 형성될 수 있다. 이에 더하여, 상기 공핍 영역은 상기 바디 영역(108') 아래의 상기 매몰 도핑층(102)의 윗부분(upper portion) 및 상기 실리콘게르마늄 에피층(102)의 아랫부분(lower portion)으로 연장될 수 있다.
절연막(116')이 상기 실리콘게르마늄 에피층(120) 주위의 상기 제1 실리콘 에피층(108)을 덮는다. 구체적으로, 상기 절연막(116')은 상기 분리 도핑층(110a,110b)을 덮는다. 또한, 상기 절연막(116')은 상기 제1 실리콘 에피층(108)에 형성된 상기 소자분리막(112)을 덮을 수 있다. 이에 더하여, 상기 절연막(116')은 상기 바디 영역(108')의 상부면의 가장자리를 덮을 수도 있다. 상기 절연막(116') 은 실리콘 산화막으로 이루어질 수 있다.
다음으로, 상기 실리콘게르마늄 에피층(120)에 대해 도 7 및 도 8을 참조하여 구체적으로 설명한다.
도 7은 도 5의 실리콘게르마늄 에피층의 게르마늄 농도를 나타내는 도면이고, 도 8는 도 5의 실리콘게르마늄 에피층의 불순물 농도를 나타내는 도면이다.
도 5, 도 6a, 도 6b, 도 7 및 도 8을 참조하면, 먼저, 도 7 및 도 8의 x축들은 실리콘게르마늄 에피층(120)의 상부면을 기준으로한 깊이를 나타낸다. 도 7의 y축은 게르마늄의 농도를 나타내며, 도 8의 y축은 상기 실리콘게르마늄 에피층(120)에 도핑된 불순물의 농도를 나타낸다.
상기 실리콘게르마늄 에피층(120)은 그것의 내부에 게르마늄 농도가 최대인 최대 게르마늄 농도 영역(140)을 포함하는 것이 바람직하다. 이때, 상기 실리콘게르마늄 에피층(120)의 게르마늄 농도는 그것의 바닥면으로 부터 상기 최대 게르마늄 농도 영역(140)까지 점진적으로 증가하고, 상기 최대 게르마늄 농도 영역(140)으로부터 상기 실리콘게르마늄 에피층(120)의 상부면까지 점진적으로 감소한다.
상술한 바와 같이, 상기 매몰 도핑층(102) 및 제1 실리콘 에피층(104)으로 구성된 제1 반도체 부분과, 상기 바디 영역(108')과 상기 실리콘게르마늄 에피층(120)으로 구성된 제2 반도체 부분은 pn접합을 이룸으로써, 상기 실리콘 기판(100) 상에는 차례로 적층된 제1 도전형 영역, 공핍 영역(165) 및 제2 도전형 영역(170)이 형성된다. 상기 제1 도전형 영역과 상기 공핍 영역(165)의 경계면을 제1 경계면이라 정의하고, 상기 공핍 영역(165)과 상기 제2 도전형 영역(170)의 경계면을 제2 경계면(150)이라 정의한다.
상기 최대 게르마늄 농도 영역(140)은 상기 공핍 영역(165)내에 배치되는 것이 바람직하다. 상기 최대 게르마늄 농도 영역(140)은 상기 제2 경계면(150)에 가까이 배치될 수 있다. 이에 따라, 상기 제2 도전형 영역(170)내의 상기 실리콘게르마늄 에피층(120)의 게르마늄 농도는 그것의 상부면으로부터 상기 제2 경계면(150)까지 점진적으로 증가한다.
도 8에 도시된 바와 같이, 상기 실리콘게르마늄 에피층(120)은 그것의 윗부분(upper portion)이 그것의 아랫부분(lower portion)에 비하여 높은 불순물 농도를 갖는다. 특히, 상기 실리콘게르마늄 에피층(120)의 아랫부분은 상기 제2 바디 영역(108')의 불순물 농도와 동일한 것이 바람직하다. 또한, 상기 실리콘게르마늄 에피층(120)의 불순물 농도는 상기 최대 게르마늄 농도 영역(140)을 지난 후에, 급격히 증가하는 것이 바람직하다. 상기 실리콘게르마늄 에피층(120)의 불순물 농도가 급격히 증가되는 부분에 상기 제2 경계면(150)이 배치될 수 있다. 이로써, 상기 공핍 영역(165)이 상기 실리콘게르마늄 에피층(120)의 아랫부분에도 형성되어 상기 최대 게르마늄 농도 영역(140)이 상기 공핍 영역(165)내에 배치될 수 있다. 상기 실리콘게르마늄 에피층(120)은 최대 불순물 농도(Cm)로 균일한 영역을 포함한다.
계속해서, 도 5, 도 6a 및 도 6b를 참조하면, 상기 실리콘게르마늄 에피층(120) 일측의 상기 절연막(116') 상에 패드 도전 패턴(122a)이 배치된다. 상기 패드 도전 패턴(122a)은 상기 실리콘게르마늄 에피층(120)에 전기적으로 접속된다. 상기 패드 도전 패턴(122a)은 제2 도전형의 불순물들로 도핑된 다결정 (polycrystalline) 실리콘게르마늄으로 이루어지는 것이 바람직하다.
상기 실리콘 기판(100) 전면을 덮되, 상기 실리콘게르마늄 에피층(120)을 노출시키는 개구부(132)를 갖는 하부 층간절연막(124)이 배치된다. 제1 콘택홀(126a)이 상기 하부 층간절연막(124) 및 상기 절연막(116')을 연속적으로 관통하여 상기 주변 분리 도핑층(110a)의 소정영역을 노출시키고, 제2 콘택홀(126b)이 상기 하부 층간절연막(124)을 관통하여 상기 패드 도전 패턴(122a)을 노출시킨다. 상기 제1 콘택홀(126a) 및 상기 제2 콘택홀(126b)은 상기 실리콘게르마늄 에피층(120)의 서로 다른 일측들에 각각 배치된다.
상기 하부 층간절연막(124) 상에 제1 및 제2 배선들(128a,128b)이 배치된다. 상기 제1 배선(128a)은 상기 제1 콘택홀(126a)을 경유하여 상기 주변 분리 도핑층(110a)과 접속하고, 상기 제2 배선(128b)은 상기 제2 콘택홀(126b)을 경유하여 상기 패드 도전 패턴(122a)과 접속한다. 상기 제1 배선(128a)은 상기 주변 분리 도핑층(110a), 제1 실리콘 에피층(104) 및 매몰 도핑층(102)을 경유하여 상기 포토 다이오드의 제1 도전형 영역에 접속된다. 상기 제2 배선(128b)은 상기 패드 도전 패턴(122a)을 경유하여 상기 실리콘게르마늄 에피층(120)에 전기적으로 접속한다. 즉, 상기 제2 배선(128b)은 상기 포토 다이오드의 제2 도전형 영역에 접속한다.
상기 제1 콘택홀(126a)은 상기 제1 배선(128a)의 연장된 부분에 의해 채워질 수 있다. 이와는 달리, 상기 제1 콘택홀(126a)은 도전성 콘택플러그에 의해 채워지고, 상기 제1 배선(128a)은 상기 제1 콘택홀(126a)을 채우는 도전성 콘택플러그에 접속할 수 있다. 이와 유사하게, 상기 제2 콘택홀(126b)은 상기 제2 배선(128b)의 연장된 부분에 의해 채워질수 있다. 이와는 달리, 상기 제2 콘택홀(126b)은 도전성 콘택플러그에 의해 채워지고, 상기 제2 배선(128b)은 상기 제2 콘택홀(126b)을 채우는 도전성 콘택플러그와 접속할 수 있다.
상기 제1 콘택홀(126a)에 노출된 상기 주변 분리 도핑층(110a)의 윗부분(upper portion)에 고농도 콘택 도핑층(114)이 배치되는 것이 바람직하다. 상기 고농도 콘택 도핑층(114)은 제1 도전형의 불순물들로 도핑된다. 이때, 상기 고농도 콘택 도핑층(114)의 불순물 농도는 상기 주변 분리 도핑층(110a)의 불순물 농도에 비하여 높은 것이 바람직하다.
상기 고농도 콘택 도핑층(114)이 형성된 상기 주변 분리 도핑층(110a) 아래의 상기 제1 실리콘 에피층(102)에 버퍼 콘택 도핑층(106)이 배치되는 것이 바람직하다. 상기 버퍼 콘택 도핑층(106)은 제1 도전형의 불순물들로 도핑된다. 이때, 상기 버퍼 콘택 도핑층(106)의 불순물 농도는 상기 제1 실리콘 에피층(102)의 불순물 농도에 비하여 높은 것이 바람직하다.
상기 고농도 콘택 도핑층(114), 주변 분리 도핑층(110a) 및 버퍼 콘택 도핑층(106)은 모두 제1 도전형의 불순물들로 도핑되어 있다. 이에 따라, 상기 제1 배선(128a)은 상기 도핑층들(114,110a,106)을 경유하여 상기 포토 다이오드의 제1 도전형 영역에 접속된다. 상기 고농도 콘택 도핑층(114) 및 버퍼 콘택 도핑층(106)의 높은 불순물 농도로 인하여, 상기 제1 배선(128a)과 상기 포토 다이오드의 제1 도전형 영역간의 저항을 감소시킨다.
한편, 상기 중앙 분리 도핑층(110b)에는 상기 고농도 콘택 및 버퍼 콘택 도 핑층들(114,106)이 배치되지 않을 수 있다. 다시 말해서, 상기 중앙 분리 도핑층(110b)은 상기 바디 영역(108')을 한정하는 기능만을 수행할 수 있다. 이와는 달리, 상기 주변 분리 도핑층(110a)은 상기 바디 영역(108')을 한정하는 기능과 더불어 상기 제1 배선(128a)과 상기 제1 도전형 영역을 접속시키는 역할을 수행한다. 이로써, 상기 주변 분리 도핑층(110a)에만 상기 고농도 고농도 콘택 및 버퍼 콘택 도핑층들(114,106)이 배치될 수 있다.
상부 층간절연막(130)이 상기 실리콘 기판(100) 전면을 덮는다. 이때, 상기 개구부(132)는 위로 연장되어 상기 상부 층간절연막(130)을 관통한다. 이에 따라, 상기 실리콘게르마늄 에피층(120)은 상기 개구부(132)에 의해 노출된다. 상기 상부 층간절연막(130)은 상기 제1 및 제2 배선들(128a,128b)을 덮는다. 상기 상부 및 하부 층간절연막들(124,130)은 실리콘 산화막으로 이루어질 수 있다.
상기 노출된 실리콘게르마늄 에피층(120) 상에 반사 방지막(135)이 배치되는 것이 바람직하다. 상기 반사 방지막(135)은 외부로 부터 입사되는 광신호의 반사를 최소화할 수 있는 물질로 이루어진다. 예를 들면, 상기 반사 방지막(135)은 실리콘 산화막 또는 실리콘 질화막등의 단일막 또는 이들의 조합막으로 이루어질 수 있다.
다음으로, 상술한 구조의 수광소자의 동작 및 특성들을 도 9의 에너지 밴드 다이어그램을 참조하여 설명한다.
도 9는 도 6a의 Ⅴ-Ⅴ'을 따라 취해진 에너지 밴드 다이어그램이다.
도 5, 도 6a, 도 6b, 도 7, 도 8 및 도 9를 참조하면, 도 9에 도시된 에너지 밴드 다이어그램은 상기 제1 및 제2 배선들(128a,128b)을 이용하여 상기 포토 다이 오드에 역바이어스를 인가한 상태를 도시하였다. 또한, 제1 도전형의 불순물 및 제2 도전형의 불순물이 각각 p형 불순물 및 n형 불순물인 경우에 대해 도시하였다.
도 9의 참조부호 "160", "165" 및 "170"은 각각 pn 접합에 의해 형성된 상기 포토 다이오드의 제1 도전형 영역(160), 공핍 영역(165) 및 제2 도전형 영역(170)을 나타낸다. 또한, 도 9의 참조부호 "145" 및 "150"은 각각 상기 제1 도전형 영역(160)과 상기 공핍 영역(165)간의 제1 경계면(145), 및 상기 공핍 영역(165)과 상기 제2 도전형 영역(170)간의 제2 경계면(150)을 나타낸다.
게르마늄의 에너지 밴드 갭(energy-band gap, 약 0.67eV)은 실리콘의 에너지 밴드 갭(약 1.1eV)에 비하여 작다. 이로써, 실리콘 및 게르마늄을 동시에 포함하는 실리콘게르마늄의 에너지 밴드 갭은 실리콘의 에너지 밴드 갭에 비하여 작고 게르마늄의 에너지 밴드갭에 비하여 크다. 게르마늄 농도가 증가할수록 실리콘게르마늄의 에너지 밴드 갭은 감소하고, 게르마늄 농도가 감소할수록 실리콘게르마늄의 에너지 밴드 갭은 증가한다.
이러한 이유로 인하여, 상기 실리콘게르마늄 에피층(120)은 게르마늄 농도를 조절하여 그것의 에너지 밴드를 조작(engineering)할 수 있다. 상기 실리콘게르마늄 에피층(120)의 게르마늄 농도는 상기 실리콘게르마늄 에피층(120)의 상부면으로부터 상기 최대 게르마늄 농도 영역(140)까지 점진적으로 증가한다. 이로 인해, 상기 제2 도전형 영역(170)의 밴드 갭이 점점 감소된다. 특히, 상기 제2 도전형 영역(170)의 가전자대(Ev)가 양의 기울기로 기울어진다. 광신호에 의해 상기 제2 도전형 영역(170)에서 생성된 정공들의 이동도는 상기 제2 도전형 영역(170)의 상기 기 울어진 가전자대(Ev)에 의하여 증가한다. 그 결과, 상기 제2 도전형 영역(170)에서 생성된 정공들은 상기 공핍 영역(165)으로 신속히 이동되고, 상기 공핍 영역(165)으로 이동된 정공들은 상기 공핍 영역(165)의 내부 전계(175)에 의해 신속하게 이동되어 상기 제1 배선(128a)으로 흐른다.
상기 최대 게르마늄 농도 영역(140)이 상기 공핍 영역(165)내에 배치됨으로써, 상기 제2 도전형 영역(170)내에는 상기 양의 기울기을 갖는 가전자대(Ev)만이 포함될 수 있다. 이에 따라, 상기 제2 도전형 영역(170)내의 생성된 정공들은 상기 공핍 영역(165)을 향하여 이동도가 증가된다. 그 결과, 상기 제2 도전형 영역(170)내에서 생성된 정공들은 상기 공핍 영역(165)으로 매우 신속하게 이동할 수 있다.
결과적으로, 상기 제2 도전형 영역(170)내에서 생성된 정공들은 상기 기울어진 가전자대(Ev)에 의하여 이동도가 증가됨으로써, 신속하게 이동한다. 즉, 상기 제2 도전형 영역(170)내의 생성된 정공들의 이동도는 종래의 확산에 의한 정공들의 이동도에 비하여 월등히 빠르다. 따라서, 상기 포토 다이오드의 반응 특성이 매우 향상되며, 상기 포토 다이오드의 동작 속도가 향상된다. 또한, 종래의 신호전류의 테일을 최소화시킴으로써, 종래의 데이타 왜곡 현상을 방지할 수 있다.
한편, 상기 실리콘게르마늄 에피층(120)의 불순물 농도는 그것의 아랫부분이 윗부분에 비하여 낮다. 이에 따라, 상기 공핍 영역(165)은 상기 실리콘게르마늄 에피층(120)의 아랫부분으로 연장되어 상기 제2 경계면(150)이 상기 실리콘게르마늄 에피층(120)내에 배치되는 것이 매우 용이하다.
이에 더하여, 상기 제2 배선(128b)은 상기 절연막(116') 상에 위치한 상기 패드 도전 패턴(122a)을 경유하여 상기 실리콘게르마늄 에피층(120)에 전기적으로 접속한다. 이에 따라, 상기 실리콘게르마늄 에피층(120)의 평면적은 종래의 n형 고농도 도핑층에 비하여 작게 형성된다. 다시 말해서, 종래의 n형 고농도 도핑층은 배선과의 접촉을 위한 면적이 요구된다. 이에 반해, 상기 실리콘게르마늄 에피층(120)은 상기 제2 배선(128b)이 접촉하기 위하기 면적을 전혀 요구하지 않는다. 결과적으로, 상기 실리콘게르마늄 에피층(120)의 평면적을 감소시켜 상기 포토 다이오드의 기생 정션(junction) 캐패시터의 정전용량을 감소시킬 수 있다. 따라서, 보다 고속으로 동작하는 포토 다이오드를 구현할 수 있다. 만약, 포토 다이오드의 기생 정션 캐패시터의 정전용량이 증가하면, 광신호에 의해 생성된 전하들의 이동도를 저하시켜 포토 다이오드의 반응 속도를 저하시킬 수 있다.
도 10a 내지 도 14a는 본 발명의 실시예에 따른 수광 소자의 형성 방법을 설명하기 위하여 도 5의 Ⅲ-Ⅲ'을 따라 취해진 단면도들이고, 도 10b 내지 도 14b는 본 발명의 실시예에 따른 수광 소자의 형성 방법을 설명하기위하여 도 5의 Ⅳ-Ⅳ'을 따라 취해진 단면도들이다.
도 10a 및 도 10b를 참조하면, 실리콘 기판(100)의 윗부분(upper portion)에 제1 도전형의 불순물들로 도핑된 매몰 도핑층(102)을 형성한다. 상기 매몰 도핑층(102)은 상기 실리콘 기판(100)의 윗부분에 제1 도전형의 불순물 이온들을 주입하여 형성할 수 있다.
상기 매몰 도핑층(102) 상에 제1 도전형의 불순물들로 도핑된 제1 실리콘 에피층(104)을 형성한다. 상기 제1 실리콘 에피층(104)은 상기 매몰 도핑층(102)을 갖는 실리콘 기판(100)에 실리콘 소스 가스를 사용하는 제1 에피택시얼 성장 공정을 사용하여 형성하는 것이 바람직하다. 상기 제1 실리콘 에피층(104)은 인시츄(in-situ) 방식으로 도핑될 수 있다. 즉, 상기 제1 에피택시얼 성장 공정은 상기 실리콘 소스 가스 및 제1 도전형의 불순물 소스 가스를 함께 사용하여 상기 제1 실리콘 에피층(104)을 형성할 수 있다. 상기 매몰 도핑층(102)의 불순물 농도는 상기 제1 실리콘 에피층(104)에 비하여 높은 것이 바람직하다.
상기 제1 실리콘 에피층(104)의 소정영역에 제1 도전형의 불순물 이온들을 선택적으로 주입하여 버퍼 콘택 도핑층(106)을 형성할 수 있다. 상기 버퍼 콘택 도핑층(106)의 불순물 농도는 상기 제1 실리콘 에피층(104)에 비하여 높은 것이 바람직하다.
상기 버퍼 콘택 도핑층(106)을 갖는 실리콘 기판(100) 상에 제2 도전형의 불순물들로 도핑된 제2 실리콘 에피층(108)을 형성한다. 상기 제2 실리콘 에피층(108)은 실리콘 소스 가스를 사용하여 제2 에피택시얼 성장 공정로 형성하는 것이 바람직하다. 이때, 상기 제2 실리콘 에피층(108)은 인시츄 방식으로 도핑할 수 있다. 즉, 상기 제2 에피택시얼 성장 공정은 상기 실리콘 소스 가스 및 제2 도전형의 불순물 소스 가스를 함께 사용하여 상기 제2 실리콘 에피층(108)을 형성할 수 있다.
상기 제1 및 제2 도전형의 불순물들은 각각 p형 불순물 및 n형 불순물일 수 있다. 이와는 반대로, 상기 제1 및 제2 도전형의 불순물들은 각각 n형 불순물 및 p형 불순물일 수 있다. 상기 제1 및 제2 실리콘 에피층들(104,108)은 서로 다른 도 전형들의 불순물들로 도핑됨으로써, 상기 제1 및 제2 실리콘 에피층들(104,108)은 서로 pn접합을 이룬다.
도 11a 및 도 11b를 참조하면, 상기 제2 실리콘 에피층(108)에 제1 도전형의 불순물 이온들을 선택적으로 주입하여 분리 도핑층(110a,110b)을 형성한다. 상기 분리 도핑층(110a,110b)에 의하여 상기 제2 실리콘 에피층(108)에 바디 영역(108')들이 한정된다. 상기 바디 영역(108')은 상기 제2 실리콘 에피층(108)의 일부분이다. 상기 분리 도핑층(110a,110b)은 주변 분리 도핑층(110a) 및 중앙 분리 도핑층(110b)으로 구분될 수 있다. 상기 주변 분리 도핑층(110a)은 상기 바디 영역들(108')의 주변을 둘러싸고, 상기 중앙 분리 도핑층(110b)은 상기 바디 영역들(108') 사이에 형성된다.
상기 분리 도핑층(110a,110b)은 아래로 연장되어 상기 제1 실리콘 에피층(104)에 접속한다. 특히, 상기 주변 분리 도핑층(110a)은 상기 버퍼 콘택 도핑층(106) 상에 형성되어 이들(110a,110b)은 서로 전기적으로 접속한다. 상기 중앙 분리 도핑층(110b) 아래에는 상기 버퍼 콘택 도핑층(106)이 형성되지 않을 수 있다.
상기 제2 실리콘 에피층(108)의 소정영역에 활성영역을 한정하는 소자분리막(112)을 형성한다. 이때, 상기 바디 영역들(108') 및 상기 분리 도핑층(110a,110b)은 상기 활성영역에 형성된다.
상기 주변 분리 도핑층(110a)의 소정영역에 선택적으로 제1 도전형의 불순물들을 주입하여 고농도 콘택 도핑층(114)을 형성한다. 상기 고농도 콘택 도핑층(114)의 불순물 농도는 상기 주변 분리 도핑층(110a)에 비하여 높은 것이 바람직하 다.
상기 분리 도핑층(110a,110b) 및 고농도 콘택 도핑층(114)을 형성한 후에, 상기 소자분리막(112)을 형성할 수 있다. 이와는 달리, 상기 소자분리막(112)을 형성한 후에, 상기 분리 도핑층(110a,110b) 및 고농도 콘택 도핑층(114)을 형성할 수 있다.
상기 실리콘 기판(100) 전면 상에 절연막(116)을 콘포말하게 형성한다. 상기 절연막(116)은 실리콘 산화막으로 형성할 수 있다. 상기 절연막(116)은 상기 바디 영역(108'), 분리 도핑층(110a,110b), 고농도 콘택 도핑층(114) 및 소자분리막(112)을 덮는다.
도 12a 및 도 12b를 참조하면, 상기 절연막(116)을 패터닝하여 상기 바디 영역(108')의 상부면을 노출시킨다. 이때, 상기 패터닝된 절연막(116')은 상기 분리 도핑층(110a,110b) 및 고농도 콘택 도핑층(114)을 덮는다. 물론, 상기 패터닝된 도핑층(116')은 상기 소자분리막(112)을 덮을 수 있다.
상기 노출된 바디 영역(108')을 갖는 상기 실리콘 기판(100)에 실리콘 및 게르마늄 소스 가스들을 포함하는 공정 가스를 사용하는 제3 에피택시얼 성장 공정을 수행하여 상기 노출된 바디 영역(108') 상에 실리콘게르마늄 에피층(120)을 형성한다. 이때, 상기 패터닝된 절연막(116') 상에는 상기 실리콘게르마늄 에피층(120)에 접촉하는 다결정 실리콘게르마늄층(122)이 형성된다. 다시 말해서, 상기 제3 에피택시얼 성장 공정에 의해 단결정 실리콘으로 이루어진 상기 노출된 바디 영역(108') 상에는 단결정 상태의 상기 실리콘게르마늄 에피층(120)이 형성되고, 상기 패터닝된 절연막(116') 상에는 다결정 상태의 실리콘게르마늄층(122)이 형성된다.
상기 실리콘게르마늄 에피층(120) 및 상기 다결정 실리콘게르마늄층(122)은 제2 도전형의 불순물들로 도핑된다. 이에 따라, 상기 실리콘게르마늄 에피층(120) 및 상기 다결정 실리콘게르마늄층(122)은 전기적으로 접속한다.
상기 실리콘게르마늄 에피층(120)은 그것의 내부에 게르마늄 농도가 최대인 최대 게르마늄 농도 영역(도 7의 140)을 포함하도록 형성하는 것이 바람직하다. 이때, 상기 실리콘게르마늄 에피층(120)의 게르마늄 농도는 그것의 바닥면으로부터 상기 최대 게르마늄 농도 영역까지 점진적으로 증가한 후에, 상기 최대 게르마늄 농도 영역으로부터 그것의 상부면까지 점진적으로 감소하는 것이 바람직하다. 상술한 바와 같이, 상기 최대 게르마늄 농도 영역은 공핍 영역내에 형성되는 것이 바람직하다. 상기 실리콘게르마늄 에피층(120)이 상술한 게르마늄 농도를 갖도록 형성하기 위하여, 상기 제3 에피택시얼 성장 공정은 상기 게르마늄 소스 가스의 량을 점진적으로 증가시켜 최대량에 도달한 후에, 점진적으로 감소시키는 것이 바람직하다.
상기 실리콘게르마늄 에피층(120)은 그것의 윗부분(upper portion)이 그것의 아랫부분(lower portion)에 비하여 높은 불순물 농도를 갖도록 형성한다. 이때, 상기 실리콘게르마늄 에피층(120)의 아랫부분은 상기 바디 영역(108')의 불순물 농도와 동일하도록 형성하는 것이 바람직하다. 또한, 상기 실리콘게르마늄 에피층(120)의 불순물 농도는 상기 최대 게르마늄 농도 영역(도 7의 140)을 지난 후에, 급격히 증가하는 것이 바람직하다. 상기 실리콘게르마늄 에피층(120)의 윗부분은 최대 불 순물 농도(도 7의 Cm)로 균일하게 유지되는 영역을 포함한다.
상기 실리콘게르마늄 에피층(120) 및 상기 다결정 실리콘게르마늄층(122)은 인시츄 방식으로 도핑되는 것이 바람직하다. 구체적으로, 상기 제3 에피택시얼 성장 공정의 공정 가스는 제2 도전형의 불순물 소스 가스를 더 포함하여 수행한다. 이때, 상기 제3 에피택시얼 성장 공정은 공정 초기에 상기 제2 도전형의 불순물 소스 가스의 량을 상기 바디 영역의 불순물 농도를 구현할 수 있는 량으로 사용한다. 또한, 상기 제3 에피택시얼 성장 공정은 상기 상기 게르마늄 소스 가스의 최대량의 인입이 지난 후에, 상기 제2 도전형의 불순물 소스 가스의 량을 급격히 증가시킨다. 그 결과, 상술한 형태의 불순물 농도(즉, 도 8에 도시된 불순물 농도)를 갖는 상기 실리콘게르마늄 에피층(120)을 형성할 수 있다.
도 13a 및 도 13b를 참조하면, 상기 다결정 실리콘게르마늄층(122)을 패터닝하여 상기 실리콘게르마늄 에피층(120)의 일측에 패드 도전 패턴(122a)을 형성한다. 상기 패드 도전 패턴(122a)은 상기 실리콘게르마늄 에피층(120)과 전기적으로 접속되어 있다.
상기 패드 도전 패턴(122a)을 갖는 상기 실리콘 기판(100) 상에 하부 층간절연막(124)을 형성한다. 상기 하부 층간절연막(124)은 실리콘 산화막으로 형성할 수 있다. 상기 하부 층간절연막(124) 및 상기 패터닝된 절연막(116')을 연속적으로 관통하여 상기 고농도 콘택 도핑층(114)을 노출시키는 제1 콘택홀(126a), 및 상기 하부 층간절연막(124)을 관통하여 상기 패드 도전 패턴(122a)을 노출시키는 제2 콘택홀(126b)을 형성한다. 상기 제1 및 제2 콘택홀들(126a,126b)은 동시에 형성되는 것이 바람직하다. 이와는 달리, 상기 제1 및 제2 콘택홀들(126a,126b)은 순차적으로 형성될 수도 있다.
상기 하부 층간절연막(124) 상에 상기 제1 콘택홀(126a)을 경유하여 상기 고농도 콘택 도핑층(114)에 접속하는 제1 배선(128a), 및 상기 제2 콘택홀(126b)을 경유하여 상기 패드 도전 패턴(122a)에 접속하는 제2 배선(128b)을 형성한다. 상기 제1 및 제2 배선들(128a,128b)은 동시에 형성되는 것이 바람직하다.
상기 제1 및 제2 콘택홀들(126a,126b)을 채우는 도전성 콘택 플러그들을 형성한 후에, 상기 하부 층간절연막(124) 상에 배선 도전막을 형성하고, 상기 배선 도전막을 패터닝하여 상기 제1 및 제2 배선들(128a,128b)을 형성할 수 있다. 이와는 다르게, 상기 콘택홀들(126a,126b)을 채우는 배선 도전막을 실리콘 기판(100) 전면에 형성하고, 상기 배선 도전막을 패터닝하여 상기 제1 및 제2 배선들(128a,128b)을 형성할 수 있다.
도 14a 및 도 14b를 참조하면, 상기 실리콘 기판(100) 전면을 덮는 상부 층간절연막(130)을 형성한다. 상기 상부 층간절연막(130)은 실리콘 산화막으로 형성할 수 있다. 상기 상부 층간절연막(130)은 상기 배선들(128a,128b) 및 상기 하부 층간절연막(124)을 덮는다.
이어서, 상기 상부 및 하부 층간절연막들(130,124)을 연속적으로 패터닝하여 상기 실리콘게르마늄 에피층(120)을 노출시키는 개구부(132)를 형성한다.
이어서, 상기 실리콘 기판(100) 전면에 도 6a 및 도 6b의 반사 방지막(135)을 콘포말하게 형성함으로써, 도 6a 및 도 6b에 도시된 수광 소자를 구현할 수 있 다. 상기 반사 방지막(135)은 실리콘산화막 또는 실리콘질화막의 단일막 또는 이들의 조합막으로 형성할 수 있다.
상술한 바와 같이, 본 발명에 따른 수광소자는 제2 도전형의 제2 실리콘 에피층 상에 에너지 밴드를 조작(engineering)하는 제2 도전형의 실리콘게르마늄 에피층이 형성된다. 이로써, 광신호가 입사되는 부분의 제2 도전형 영역(종래의 중립 영역에 해당함)의 에너지 밴드를 기울어지게 되어 상기 제2 도전형 영역내 광신호에 의해 생성된 정공들의 이동도가 크게 향상된다. 그 결과, 광신호에 대한 반응 특성이 향상되고, 고속동작이 가능한 수광 소자를 구현할 수 있다. 또한, 종래의 신호전류의 테일을 최소화시킴으로써, 데이타의 왜곡 현상을 최소화할 수 있다.
또한, 배선은 상기 실리콘게르마늄 에피층 일측의 절연막 상에 배치된 패드 도전 패턴을 경유하여 상기 실리콘게르마늄 에피층에 전기적으로 접속한다. 이에 따라, 상기 실리콘게르마늄 에피층은 종래의 배선의 접촉 면적이 요구되는 n형 고농도 도핑층에 비하여 작은 평면적을 가질 수 있다. 그 결과, 상기 포토 다이오드의 평면적을 감소시켜 기생 정션 캐패시터의 정전용량을 감소시킬 수 있다. 이로 인해, 포토 다이오드의 동작 속도를 더욱 향상시킬 수 있다.

Claims (24)

  1. 삭제
  2. 윗부분(upper portion)에 제1 도전형의 매몰 도핑층을 갖는 실리콘 기판;
    상기 매몰 도핑층 상에 배치된 제1 도전형의 제1 실리콘 에피층;
    상기 제1 실리콘 에피층 상에 배치된 제2 도전형의 제2 실리콘 에피층;
    상기 제2 실리콘 에피층의 소정영역에 배치되어 제2 도전형의 바디 영역을 한정하는 제1 도전형의 분리 도핑층; 및
    상기 바디 영역 상에 배치된 제2 도전형의 실리콘게르마늄 에피층을 포함하되,
    상기 실리콘게르마늄 에피층은 그것의 내부에 게르마늄 농도가 최대인 최대 게르마늄 농도 영역를 갖고,
    상기 실리콘게르마늄 에피층의 게르마늄 농도는 상기 실리콘게르마늄 에피층의 바닥면으로부터 상기 최대 게르마늄 농도 영역까지 점진적으로 증가하고, 상기 최대 게르마늄 농도 영역으로부터 상기 실리콘게르마늄 에피층의 상부면까지 점진적으로 감소하는 것을 특징으로 하는 수광 소자.
  3. 제 2 항에 있어서,
    상기 제1 도전형의 매몰 도핑층 및 제1 실리콘 에피층과, 상기 제2 도전형의 바디 영역 및 실리콘게르마늄 에피층은 피엔 접합(pn junction)을 이루어 공핍 영역이 형성되되, 상기 최대 게르마늄 농도 영역은 상기 공핍 영역내에 위치하는 것을 특징으로 하는 수광 소자.
  4. 윗부분(upper portion)에 제1 도전형의 매몰 도핑층을 갖는 실리콘 기판;
    상기 매몰 도핑층 상에 배치된 제1 도전형의 제1 실리콘 에피층;
    상기 제1 실리콘 에피층 상에 배치된 제2 도전형의 제2 실리콘 에피층;
    상기 제2 실리콘 에피층의 소정영역에 배치되어 제2 도전형의 바디 영역을 한정하는 제1 도전형의 분리 도핑층; 및
    상기 바디 영역 상에 배치된 제2 도전형의 실리콘게르마늄 에피층을 포함하되,
    상기 실리콘게르마늄 에피층은 그것의 윗부분(upper portion)의 불순물 농도가 그것의 아랫부분(lower portion)의 불순물 농도에 비하여 높은 것을 특징으로 하는 수광 소자.
  5. 윗부분(upper portion)에 제1 도전형의 매몰 도핑층을 갖는 실리콘 기판;
    상기 매몰 도핑층 상에 배치된 제1 도전형의 제1 실리콘 에피층;
    상기 제1 실리콘 에피층 상에 배치된 제2 도전형의 제2 실리콘 에피층;
    상기 제2 실리콘 에피층의 소정영역에 배치되어 제2 도전형의 바디 영역을 한정하는 제1 도전형의 분리 도핑층; 및
    상기 바디 영역 상에 배치된 제2 도전형의 실리콘게르마늄 에피층을 포함하되,
    상기 실리콘게르마늄 에피층은 그것의 내부에 게르마늄 농도가 최대인 최대 게르마늄 농도 영역를 갖고, 상기 실리콘게르마늄 에피층의 게르마늄 농도는 상기 실리콘게르마늄 에피층의 바닥면으로부터 상기 최대 게르마늄 농도 영역까지 점진적으로 증가하며, 상기 최대 게르마늄 농도 영역으로부터 상기 실리콘게르마늄 에피층의 상부면까지 점진적으로 감소하고,
    상기 실리콘게르마늄 에피층은 그것의 윗부분의 불순물 농도가 그것의 아랫부분의 불순물 농도에 비하여 높은 것을 특징으로 하는 수광 소자.
  6. 제 5 항에 있어서,
    상기 제1 도전형의 매몰 도핑층 및 제1 실리콘 에피층과, 상기 제2 도전형의 바디 영역 및 실리콘게르마늄 에피층은 피엔 접합(pn junction)을 이루어 공핍 영역이 형성되되, 상기 최대 게르마늄 농도 영역은 상기 공핍 영역내에 위치하고,
    상기 실리콘게르마늄 에피층의 아랫부분은 상기 바디 영역의 불순물 농도와 동일하고, 상기 실리콘게르마늄 에피층의 불순물 농도는 그것의 아랫부분으로부터 상기 최대 게르마늄 농도 영역을 지나 급격히 증가하는 것을 특징으로 하는 수광 소자.
  7. 제 2 항 내지 제 6 항 중에 어느 한 항에 있어서,
    상기 실리콘게르마늄 에피층 주위의 상기 제2 실리콘 에피층 및 상기 분리 도핑층을 덮는 절연막; 및
    상기 실리콘게르마늄 에피층 일측의 상기 절연막 상에 배치된 패드 도전 패턴을 더 포함하되, 상기 패드 도전 패턴은 상기 실리콘게르마늄 에피층과 전기적으로 접속하는 것을 특징으로 하는 수광 소자.
  8. 제 7 항에 있어서,
    상기 패드 도전 패턴은 제2 도전형의 불순물들로 도핑된 다결정 실리콘게르마늄으로 이루어진 것을 특징으로 하는 수광 소자.
  9. 제 7 항에 있어서,
    상기 제2 실리콘 에피층 전면을 덮되, 상기 실리콘게르마늄 에피층을 노출시 키는 개구부를 갖는 층간 절연막;
    상기 층간 절연막 상에 배치되되, 상기 층간절연막 및 상기 절연막을 연속적으로 관통하는 제1 콘택홀을 경유하여 상기 분리 도핑층과 접속하는 제1 배선; 및
    상기 층간절연막 상에 배치되되, 상기 층간 절연막을 관통하는 제2 콘택홀을 경유하여 상기 패드 도전 패턴과 접속하는 제2 배선을 더 포함하되, 상기 분리 도핑층은 아래로 연장되어 상기 제1 실리콘 에피층과 전기적으로 접속하는 것을 특징으로 하는 수광 소자.
  10. 제 9 항에 있어서,
    상기 제1 배선이 접속되는 상기 분리 도핑층에 형성되되, 제1 도전형의 불순물들로 도핑되고, 상기 분리 도핑층에 비하여 높은 불순물 농도를 갖는 고농도 콘택 도핑층; 및
    상기 제1 배선이 접속되는 상기 분리 도핑층 아래의 상기 제1 실리콘 에피층에 형성되되, 제1 도전형의 불순물들로 도핑되고, 상기 제1 실리콘 에피층에 비하여 높은 불순물 농도를 갖는 버퍼 콘택 도핑층을 더 포함하되,
    상기 제1 배선은 상기 고농도 콘택 도핑층, 상기 분리 도핑층 및 상기 버퍼 콘택 도핑층을 경유하여 상기 제1 실리콘 에피층 및 상기 매몰 도핑층에 접속되는 것을 특징으로 하는 수광 소자.
  11. 제 9 항에 있어서,
    상기 노출된 실리콘게르마늄 에피층 상에 배치된 반사 방지막을 더 포함하는 것을 특징으로 하는 수광 소자.
  12. 삭제
  13. 윗부분(upper portion)에 제1 도전형의 매몰 도핑층을 갖는 실리콘 기판을 준비하는 단계;
    상기 매몰 도핑층 상에 제1 도전형의 제1 실리콘 에피층을 형성하는 단계;
    상기 제1 실리콘 에피층 상에 제2 도전형의 제2 실리콘 에피층을 형성하는 단계;
    상기 제2 실리콘 에피층의 소정영역에 제1 도전형의 분리 도핑층을 형성하여 제2 도전형의 바디 영역을 한정하는 단계; 및
    상기 바디 영역 상에 제2 도전형의 실리콘게르마늄 에피층을 형성하는 단계를 포함하되,
    상기 실리콘게르마늄 에피층은 그것의 내부에 게르마늄 농도가 최대인 최대 게르마늄 농도 영역를 갖도록 형성하고,
    상기 실리콘게르마늄 에피층의 게르마늄 농도는 상기 실리콘게르마늄 에피층의 바닥면으로부터 상기 최대 게르마늄 농도 영역까지 점진적으로 증가되고, 상기 최대 게르마늄 농도 영역으로부터 상기 실리콘게르마늄 에피층의 상부면까지 점진적으로 감소되는 것을 특징으로 하는 수광 소자의 형성 방법.
  14. 제 13 항에 있어서,
    상기 제1 도전형의 매몰 도핑층 및 제1 실리콘 에피층과, 상기 제2 도전형의 바디 영역 및 실리콘게르마늄 에피층은 피엔 접합(pn junction)을 이루어 공핍 영역이 형성되되, 상기 최대 게르마늄 농도 영역은 상기 공핍 영역내에 형성되는 것을 특징으로 하는 수광 소자의 형성 방법.
  15. 제 13 항에 있어서,
    상기 실리콘게르마늄 에피층을 형성하는 단계는,
    상기 바디 영역 상에 실리콘 및 게르마늄 소스 가스들을 포함하는 공정가스를 사용하는 에피택시얼 성장 공정을 수행하여 상기 실리콘게르마늄 에피층을 형성하는 단계를 포함하되, 상기 에피택시얼 성장 공정은 상기 게르마늄 소스 가스의 량을 점진적으로 증가시켜 최대량에 도달한 후에, 점진적으로 감소시키는 것을 특징으로 하는 수광 소자의 형성 방법.
  16. 윗부분(upper portion)에 제1 도전형의 매몰 도핑층을 갖는 실리콘 기판을 준비하는 단계;
    상기 매몰 도핑층 상에 제1 도전형의 제1 실리콘 에피층을 형성하는 단계;
    상기 제1 실리콘 에피층 상에 제2 도전형의 제2 실리콘 에피층을 형성하는 단계;
    상기 제2 실리콘 에피층의 소정영역에 제1 도전형의 분리 도핑층을 형성하여 제2 도전형의 바디 영역을 한정하는 단계; 및
    상기 바디 영역 상에 제2 도전형의 실리콘게르마늄 에피층을 형성하는 단계를 포함하되,
    상기 실리콘게르마늄 에피층은 그것의 윗부분의 불순물 농도가 그것의 아랫부분의 불순물 농도에 비하여 높도록 형성되는 것을 특징으로 하는 수광 소자의 형성 방법.
  17. 윗부분(upper portion)에 제1 도전형의 매몰 도핑층을 갖는 실리콘 기판을 준비하는 단계;
    상기 매몰 도핑층 상에 제1 도전형의 제1 실리콘 에피층을 형성하는 단계;
    상기 제1 실리콘 에피층 상에 제2 도전형의 제2 실리콘 에피층을 형성하는 단계;
    상기 제2 실리콘 에피층의 소정영역에 제1 도전형의 분리 도핑층을 형성하여 제2 도전형의 바디 영역을 한정하는 단계; 및
    상기 바디 영역 상에 제2 도전형의 실리콘게르마늄 에피층을 형성하는 단계를 포함하되,
    상기 실리콘게르마늄 에피층은 그것의 내부에 게르마늄 농도가 최대인 최대 게르마늄 농도 영역를 갖도록 형성하고, 상기 실리콘게르마늄 에피층의 게르마늄 농도는 상기 실리콘게르마늄 에피층의 바닥면으로부터 상기 최대 게르마늄 농도 영역까지 점진적으로 증가되고, 상기 최대 게르마늄 농도 영역으로부터 상기 실리콘게르마늄 에피층의 상부면까지 점진적으로 감소되고,
    상기 실리콘게르마늄 에피층은 그것의 윗부분의 불순물 농도가 그것의 아랫부분의 불순물 농도에 비하여 높도록 형성되는 것을 특징으로 하는 수광 소자의 형성 방법.
  18. 제 17 항에 있어서,
    상기 제1 도전형의 매몰 도핑층 및 제1 실리콘 에피층과, 상기 제2 도전형의 바디 영역 및 실리콘게르마늄 에피층은 피엔 접합(pn junction)을 이루어 공핍 영역이 형성되되, 상기 최대 게르마늄 농도 영역은 상기 공핍 영역내에 형성되고,
    상기 실리콘게르마늄 에피층의 아랫부분은 상기 바디 영역과 동일한 불순물 농도로 형성되고, 상기 실리콘게르마늄 에피층의 불순물 농도는 그것의 아랫부분으로부터 상기 최대 게르마늄 농도 영역을 지나 급격히 증가하도록 형성하는 것을 특징으로 하는 수광 소자의 형성 방법.
  19. 제 17 항에 있어서,
    상기 실리콘게르마늄 에피층을 형성하는 단계는,
    상기 바디 영역 상에 실리콘 및 게르마늄 소스 가스들, 및 제2 도전형의 불순물 소스 가스를 포함하는 공정가스를 사용하는 에피택시얼 성장 공정을 수행하여 상기 실리콘게르마늄 에피층을 형성하는 단계를 포함하되,
    상기 에피택시얼 성장 공정은 상기 게르마늄 소스 가스의 량을 점진적으로 증가시켜 최대량에 도달한 후에 점진적으로 감소시키고,
    상기 에피택시얼 성장 공정은 공정 초기에 상기 제2 도전형의 불순물 소스 가스의 량을 상기 바디 영역의 불순물 농도를 구현할 수 있는 량으로 사용하고, 상기 게르마늄 소스 가스의 최대량의 주입이 지난 후에, 상기 제2 도전형의 불순물 소스 가스의 량을 급격히 증가시키는 것을 특징으로 하는 수광 소자의 형성 방법.
  20. 제 13 항 내지 제 19 항 중에 어느 한 항에 있어서,
    상기 바디 영역을 갖는 실리콘 기판 상에 절연막을 형성하는 단계;
    상기 절연막을 패터닝하여 상기 바디 영역의 소정영역을 노출시키는 단계; 및
    상기 실리콘게르마늄 에피층 일측의 상기 절연막 상에 상기 실리콘게르마늄 에피층과 전기적으로 접속하는 패드 도전 패턴을 형성하는 단계를 더 포함하되, 상기 패터닝된 절연막은 상기 분리 도핑층을 덮고, 상기 실리콘게르마늄 에피층은 상기 노출된 바디 영역 상에 형성되는 것을 특징으로 하는 수광 소자의 형성 방법.
  21. 제 20 항에 있어서,
    상기 패드 도전 패턴을 형성하는 단계는,
    상기 절연막 상에 상기 실리콘게르마늄 에피층과 접속하고, 제2 도전형의 불순물들로 도핑된 다결정 실리콘게르마늄층을 형성하는 단계; 및
    상기 다결정 실리콘게르마늄층을 패터닝하여 상기 패드 도전 패턴을 형성하는 단계를 포함하되,
    상기 실리콘게르마늄 에피층 및 상기 다결정 실리콘게르마늄층은 동시에 형성되는 것을 특징으로 하는 수광 소자의 형성 방법.
  22. 제 20 항에 있어서,
    상기 실리콘 기판 전면에 층간 절연막을 형성하는 단계;
    상기 층간절연막 및 상기 패터닝된 절연막을 연속적으로 관통하여 상기 분리 도핑층을 노출시키는 제1 콘택홀, 및 상기 층간절연막을 관통하여 상기 패드 도전 패턴을 노출시키는 제2 콘택홀을 형성하는 단계; 및
    상기 층간절연막 상에 상기 제1 콘택홀을 경유하여 상기 분리 도핑층과 접속되는 제1 배선, 및 상기 제2 콘택홀을 경유하여 상기 패드 도전 패턴과 접속하는 제2 배선을 형성하는 단계를 더 포함하는 것을 특징으로 하는 수광 소자의 형성 방법.
  23. 제 22 항에 있어서,
    상기 제1 실리콘 에피층의 소정영역에 제1 도전형의 불순물들로 도핑되고, 상기 제1 실리콘 에피층에 비하여 높은 농도의 버퍼 콘택 도핑층을 형성하는 단계; 및
    상기 제1 배선이 접속하는 상기 분리 도핑층의 일부에 제1 도전형의 불순물들로 도핑되고, 상기 분리 도핑층에 비하여 높은 불순물 농도를 갖는 고농도 콘택 도핑층을 형성하는 단계를 더 포함하되,
    상기 제1 배선은 상기 고농도 콘택 도핑층, 상기 분리 도핑층 및 상기 버퍼 콘택 도핑층을 경유하여 상기 제1 실리콘 에피층 및 상기 매몰 도핑층에 접속하는 것을 특징으로 하는 수광 소자의 형성 방법.
  24. 제 22 항에 있어서,
    상기 층간절연막을 패터닝하여 상기 실리콘게르마늄 에피층을 노출시키는 단계; 및
    상기 노출된 실리콘게르마늄 에피층 상에 반사 방지막을 형성하는 단계를 더 포함하는 것을 특징으로 하는 수광 소자의 형성 방법.
KR1020040108791A 2004-12-20 2004-12-20 수광 소자 및 그 형성 방법 KR100634444B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020040108791A KR100634444B1 (ko) 2004-12-20 2004-12-20 수광 소자 및 그 형성 방법
US11/305,033 US7420207B2 (en) 2004-12-20 2005-12-19 Photo-detecting device and related method of formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040108791A KR100634444B1 (ko) 2004-12-20 2004-12-20 수광 소자 및 그 형성 방법

Publications (2)

Publication Number Publication Date
KR20060070146A KR20060070146A (ko) 2006-06-23
KR100634444B1 true KR100634444B1 (ko) 2006-10-16

Family

ID=36610466

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040108791A KR100634444B1 (ko) 2004-12-20 2004-12-20 수광 소자 및 그 형성 방법

Country Status (2)

Country Link
US (1) US7420207B2 (ko)
KR (1) KR100634444B1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100672701B1 (ko) * 2004-12-29 2007-01-22 동부일렉트로닉스 주식회사 씨모스(cmos) 이미지 센서 및 그의 제조 방법
JP2006278620A (ja) 2005-03-29 2006-10-12 Texas Instr Japan Ltd 半導体装置およびその製造方法
US7755079B2 (en) * 2007-08-17 2010-07-13 Sandia Corporation Strained-layer superlattice focal plane array having a planar structure
KR100927661B1 (ko) * 2007-11-05 2009-11-20 한국전자통신연구원 광신호를 전기적 신호로 변환시키는 수광 소자
JP5967944B2 (ja) * 2012-01-18 2016-08-10 キヤノン株式会社 固体撮像装置およびカメラ
US8772899B2 (en) * 2012-03-01 2014-07-08 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for backside illumination sensor
EP3296805B1 (en) 2013-06-12 2021-03-03 Massachusetts Institute Of Technology Optical modulator from standard fabrication processing
US11105974B2 (en) 2015-06-30 2021-08-31 Massachusetts Institute Of Technology Waveguide-coupled silicon-germanium photodetectors and fabrication methods for same
WO2017058319A2 (en) * 2015-06-30 2017-04-06 Massachusetts Institute Of Technology Waveguide-coupled silicon-germanium photodetectors and fabrication methods for same
JP2017045873A (ja) * 2015-08-27 2017-03-02 ルネサスエレクトロニクス株式会社 半導体装置の製造方法および半導体装置
US11018230B1 (en) * 2019-12-20 2021-05-25 Nxp B.V. Semiconductor devices with a mixed crystal region
WO2022123954A1 (ja) * 2020-12-10 2022-06-16 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、電子機器及び固体撮像装置の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4651187A (en) * 1984-03-22 1987-03-17 Nec Corporation Avalanche photodiode
US4745449A (en) * 1985-01-28 1988-05-17 American Telephone And Telegraph Company, At&T Bell Laboratories Integrated electronics suitable for optical communications
US5218213A (en) * 1991-02-22 1993-06-08 Harris Corporation SOI wafer with sige
JPH05198787A (ja) * 1991-11-08 1993-08-06 Canon Inc 固体撮像装置及びその製造方法
US5576221A (en) * 1993-12-20 1996-11-19 Nec Corporation Manufacturing method of semiconductor device
JP3170463B2 (ja) 1996-09-30 2001-05-28 シャープ株式会社 回路内蔵受光素子
JP3016371B2 (ja) 1997-03-26 2000-03-06 日本電気株式会社 光検出器の製造方法
US6534335B1 (en) * 1999-07-22 2003-03-18 Micron Technology, Inc. Optimized low leakage diodes, including photodiodes
JP3717104B2 (ja) * 2000-05-30 2005-11-16 シャープ株式会社 回路内蔵受光素子
JP2001352093A (ja) 2000-06-07 2001-12-21 Sharp Corp 半導体受光装置
JP2002118280A (ja) 2000-10-05 2002-04-19 Sharp Corp 半導体受光装置
JP3719998B2 (ja) * 2002-04-01 2005-11-24 松下電器産業株式会社 半導体装置の製造方法
US6646318B1 (en) * 2002-08-15 2003-11-11 National Semiconductor Corporation Bandgap tuned vertical color imager cell
US7598513B2 (en) * 2003-06-13 2009-10-06 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University, A Corporate Body Organized Under Arizona Law SixSnyGe1-x-y and related alloy heterostructures based on Si, Ge and Sn
US7122392B2 (en) * 2003-06-30 2006-10-17 Intel Corporation Methods of forming a high germanium concentration silicon germanium alloy by epitaxial lateral overgrowth and structures formed thereby
US7166878B2 (en) * 2003-11-04 2007-01-23 Sarnoff Corporation Image sensor with deep well region and method of fabricating the image sensor

Also Published As

Publication number Publication date
US7420207B2 (en) 2008-09-02
US20060138580A1 (en) 2006-06-29
KR20060070146A (ko) 2006-06-23

Similar Documents

Publication Publication Date Title
US7420207B2 (en) Photo-detecting device and related method of formation
EP3511983A2 (en) Image sensors
US7041525B2 (en) Three-dimensional island pixel photo-sensor
KR100676284B1 (ko) 고체 촬상 소자 및 그 제조 방법
US5049962A (en) Control of optical crosstalk between adjacent photodetecting regions
US4847210A (en) Integrated pin photo-detector method
JP2009164604A (ja) イメージセンサー及びその製造方法
US11205668B2 (en) Light receiving device, method of manufacturing light receiving device, imaging device, and electronic apparatus
JP2009065163A (ja) イメージセンサ及びその製造方法
US5994751A (en) Photodiode having reduced series resistance, and method for fabrication thereof
JP3049015B2 (ja) バンドギャップ設計型アクティブ・ピクセル・セル
KR100898621B1 (ko) 향상된 감도를 가진 광반도체장치
JP4584159B2 (ja) 半導体装置及び半導体装置の製造方法
US20060151814A1 (en) Optical semiconductor device
JPS6286756A (ja) 光電変換装置
JP2001237452A (ja) フォトダイオード及びフォトダイオードの製造方法
CN101304036A (zh) 图像传感器及其形成方法
US20090065885A1 (en) Image Sensor and Method for Manufacturing the Same
KR100882468B1 (ko) 이미지센서 및 그 제조방법
JPH02238664A (ja) 回路内蔵受光素子
JPS5914180B2 (ja) 光検出器セル
JPH01216581A (ja) 半導体装置
JPH08130324A (ja) 高耐圧プレーナ型受光素子
JP3967083B2 (ja) 半導体受光素子
US5593902A (en) Method of making photodiodes for low dark current operation having geometric enhancement

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee