KR100545814B1 - 광섬유 인선 용해로 및 이를 이용한 광섬유 인선방법 - Google Patents

광섬유 인선 용해로 및 이를 이용한 광섬유 인선방법 Download PDF

Info

Publication number
KR100545814B1
KR100545814B1 KR1020020052300A KR20020052300A KR100545814B1 KR 100545814 B1 KR100545814 B1 KR 100545814B1 KR 1020020052300 A KR1020020052300 A KR 1020020052300A KR 20020052300 A KR20020052300 A KR 20020052300A KR 100545814 B1 KR100545814 B1 KR 100545814B1
Authority
KR
South Korea
Prior art keywords
furnace
base material
inert gas
optical fiber
core tube
Prior art date
Application number
KR1020020052300A
Other languages
English (en)
Other versions
KR20040020648A (ko
Inventor
배상준
권영일
이준근
김철민
장명호
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Priority to KR1020020052300A priority Critical patent/KR100545814B1/ko
Priority to US10/420,374 priority patent/US20040050112A1/en
Publication of KR20040020648A publication Critical patent/KR20040020648A/ko
Application granted granted Critical
Publication of KR100545814B1 publication Critical patent/KR100545814B1/ko
Priority to US12/365,057 priority patent/US7823419B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/36Dispersion modified fibres, e.g. wavelength or polarisation shifted, flattened or compensating fibres (DSF, DFF, DCF)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/80Means for sealing the preform entry or upper end of the furnace
    • C03B2205/81Means for sealing the preform entry or upper end of the furnace using gas
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/82Means for sealing the fibre exit or lower end of the furnace
    • C03B2205/83Means for sealing the fibre exit or lower end of the furnace using gas
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/90Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/90Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles
    • C03B2205/96Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles using tangential feed approximately perpendicular to the draw axis
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/90Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles
    • C03B2205/98Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles using annular gas inlet distributors

Abstract

본 발명은 광섬유 모재가 인입되는 상부 개구부와 상기 모재로부터 인선된 광섬유가 배출되는 하부 개구부가 형성된 노체; 상기 노체의 내부에 설치되며, 그 내부의 용융공간에 상기 모재를 수용하고 용융시킴으로써 광섬유로 인선되도록 하는 발열수단; 상기 하부 개구부에 설치되어 상기 인선된 광섬유가 그 내부를 통과하도록 함으로써 외부 대기로부터 차단시키는 대기 차단 튜브; 상기 노체의 상부에 형성되며, 상기 모재를 향해 불활성 가스를 유입시켜 그 일부가 상기 모재와 상부 개구부 사이의 틈을 통해 외부로 배출되도록 하는 상부 유입구; 상기 노체의 중간부에 형성되어 용해로 내부로 불활성 가스가 유입되도록 하는 중심 유입구; 상기 노체의 하부에 형성되어 용해로 내부로 불활성 가스가 유입되도록 하는 하부 유입구; 상기 중심 유입구를 통해 유입된 불활성 가스를 상기 발열수단의 용융공간을 따라 용해로 상방으로 유동시켜 상기 상부 유입구를 통해 유입된 불활성 가스 흐름과 만나도록 하고, 이어서 상기 모재의 표면을 따라 용해로 하방으로 다시 유동하도록 하는 제1 유동경로설정수단; 및 상기 하부 유입구를 통해 유입된 불활성 가스를 상기 발열수단의 용융공간을 따라 용해로 상방으로 유동시켜 상기 중심 유입구로부터 유입되어 유동하는 불활성 가스 흐름과 만나게 함으로써 상기 인선된 광섬유의 표면을 따라 상기 대기 차단 튜브를 통해 외부로 배출되도록 하는 제2 유동경로설정수단;을 포함하는 광섬유 인선 용해로 및 이를 이용한 광섬유 인선방법에 관한 것이다.
광섬유 인선 드로우잉

Description

광섬유 인선 용해로 및 이를 이용한 광섬유 인선방법 {Furnace for drawing down optical fiber preform into optical fiber and method for optical fiber drawing using the same}
본 발명은 아래 도면들에 의해 구체적으로 설명될 것이지만, 이러한 도면은 본 발명의 바람직한 실시예를 나타낸 것이므로 본 발명의 기술사상이 그 도면에만 한정되어 해석되어서는 아니된다.
도 1은 본 발명의 바람직한 실시예에 따른 광섬유 인선 용해로의 구조를 보여주는 측단면도이다.
도 2는 도 1의 II-II선에 따른 단면도이다.
도 3은 도 1의 III-III선에 따른 단면도이다.
도 4a 내지 도 4c는 본 발명의 바람직한 실시예에 따른 광섬유 인선 용해로 내부에서 불활성 가스의 공기 흐름 분포를 시뮬레이션한 것으로서, 도 4a는 도 1의 영역U에서, 도 4b는 영역M에서, 도 4c는 영역L에서의 분포를 나타낸 것이다.
도 5a 내지 도 5c는 본 발명의 바람직한 실시예에 따른 광섬유 인선 용해로 내부에서 불활성 가스의 각 지점별 유동 속도 분포를 시뮬레이션한 것으로서, 도 5a는 도 1의 영역U에서, 도 5b는 영역M에서, 도 5c는 영역L에서의 분포를 나타낸 것이다.
본 발명은 광섬유 모재(Preform)를 용융 인선(drawing)하여 광섬유를 제조하는 광섬유 인선 용해로(Fiber-drawing furnace) 및 그 인선방법에 관한 것으로서, 더욱 구체적으로는 광섬유의 외경 불균일과 비원율을 감소시켜 낮은 PMD(Polarization Mode Dispersion)를 갖는 광섬유를 인선하기 위한 광섬유 인선 용해로 및 이를 이용한 인선방법에 관한 것이다.
일반적으로 광섬유는 광섬유 모재라고 불리우는 투명한 유리 소결체를 고온의 용해로에서 인선함으로써 제조된다. 잘 알려진 바와 같이, 상기 용해로에는 전기 저항식 용해로(Resistance furnace)와 유도 가열식 용해로(Induction furnace)가 있다.
상기 용해로는, 작업장에 수직으로 설치되어 그 상부 개구부를 통해 공급되는 모재를 수용하는 그라파이트(graphite) 코어 튜브를 포함한다. 상기 그라파이트 코어 튜브는 유동가열 또는 저항식가열에 의해 발열체로 작용하는데 상기 모재를 녹여 광섬유를 인선하기 위해 통상 2,100∼2,300℃의 온도까지 가열된다. 이와 같이 높은 온도에서는 상기 그라파이트 코어 튜브가 쉽게 산화되므로 이를 방지하기 위해 상기 코어 튜브는 헬륨, 질소, 아르곤과 같은 불활성가스 분위기 내에 유지되어야 한다.
또한, 용해로 내부에는 상기 코어 튜브와 투명 글래스 모재로부터 분리된 SiO2 및 C입자가 반응하여 SiC입자가 형성되어 있는데, 이들 탄화규소 입자와 탄소입자들이 모재에 점착하게 되면, 점착 지점의 인장강도가 급격히 저하되어 인선 도중 광섬유의 단선을 초래한다. 동시에, 모재로부터 발생된 용융 가스(melt vapor) 성분이 상기 코어 튜브의 내벽에 점착하면서 이를 손상시키기도 한다.
위와 같은 문제점을 방지하기 위해, 용해로 내부로 불활성 가스를 비교적 강하게 불어 넣는데, 이러한 불활성 가스의 유입은 광섬유 형성에 큰 영향을 미치게 된다. 즉, 용해로 내부로 유입되는 불활성 가스는 난류를 발생하며, 특히 광섬유 모재가 용융되어 그 단면적이 급격히 줄어드는 넥-다운-영역(Neck-down zone)에서 난류가 심하게 생성되어 기체의 흐름이 모재의 원주방향으로 불균일하게 된다. 이로 인해, 넥-다운-영역 부근에서 모재의 외경이 불규칙하게 변화하고 따라서 인선되는 광섬유는 원주방향으로 직경이 일정하지 않아 비원율이 증가하게 된다.
또한, 모재로부터 인선된 광섬유는 인선장치의 하방으로 하강하면서 냉각되는데 이때 광섬유의 표면에 형성되는 불활성 가스의 경계층은 광섬유의 냉각에 영향을 미친다. 용해로 내부로 유입되는 불활성 가스는 상기 인선된 광섬유의 표면에 균일한 층류를 형성시키지 못하는데, 이 경우 광섬유는 반경방향으로 불규칙하게 냉각되어 광섬유의 외경 편차(variations in the diameter)가 증가하게 된다.
잘 알려진 바와 같이, 광섬유의 정원도(Perfect circular symmetry)가 손상되면 광섬유를 통한 신호 전송시에 복굴절(birefringence)을 야기하여 고속 광전송 특성에 영향을 미치는 편광모드분산(Polarization mode dispersion;PMD)을 초래하 게 된다.
광섬유 모재에 균일한 층류를 제공하기 위해서 모재가 공급되는 코어 튜브 상단을 밀봉하고 불활성 가스를 상부에서 하부 방향으로 유동시키는 구조가 제안되었다. 격막(Diaphragm)에 의해 코어 튜브의 상단을 가스차단(gastightness)하는 밀봉구조가 독일 특허 DE-A 37 31 347호에 개시되어 있다. 상기 가스차단은 모재가 통과하는 격막의 개구부에 연소가스를 분사하는 노즐을 설치하고 이를 연소시킴으로써 달성된다. 그러나 이러한 밀봉장치는 설치하기에 구조가 복잡하고 모재를 용해로 중심으로 정확하게 인입되도록 하기에도 어려움이 있다.
광섬유의 외경 불균일을 줄이기 위한 한 가지 방법은 인선된 광섬유가 용해로를 빠져나올 때까지 서냉시키는 것이며, 이러한 서냉 구간에서 균일한 냉각을 유도하기 위해 불활성 가스의 급격한 불균일 유동을 방지하고 균일한 층류를 유지하는 것이 중요하다. 나카야마(Nagayama) 등에 허여된 미국 특허 제5,637,130호에는 인선된 광섬유를 서냉하고 불활성 기체의 흐름을 조절하기 위하여 용해로 내부의 하부에 원통형 부재를 형성시킨 기술이 개시되어 있다. 그러나, 상기 원통형 부재만으로는 충분한 서냉과 균일한 층류를 제공할 수 없으며, 특히 용해로 내부에서 발생하는 불순물 미립자들이 상기 원통형 부재로 인해 외부로 원활하게 배출되지 못하고 모재 또는 광섬유에 점착함으로써 잦은 단선의 원인으로 작용한다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 창안된 것으로서, 간편한 구조로 용해로 내부에서 불활성 가스의 흐름을 균일하게 제공할 수 있을 뿐만 아니 라, 용해로 내부에서 발생한 불순물을 원활하게 외부로 배출함으로써 인선된 광섬유의 제품 신뢰성을 높일 수 있는 광섬유 인선 용해로 및 이를 이용한 광섬유 인선방법을 제공하는데 그 목적이 있다.
본 발명에 따르면, 용해로의 내부는 상단의 가스 주입구를 통해 분사되는 가스에 의해 대기와 차단되며, 용해로 내부에서 발생한 불순물 입자들은 중간 주입구를 통해 분사되는 불활성 가스에 의해 상부로 운반되어 외부로 배출된다. 또한, 용해로의 하단에 형성된 주입구를 통해 공급되는 불활성 가스는 인선된 광섬유를 대기와 차단시키며 그 표면에 균일한 층류를 제공한다.
본 발명에 따르면, 인선된 광섬유는 대기 차단 튜브내를 통과하면서 서냉되는 것과 동시에 광섬유 표면에 균일한 층류가 형성됨으로써 광섬유의 외경 편차를 감소시킬 수 있다. 이를 위해, 본 발명의 바람직한 실시예에 따르면 광섬유의 인선속도에 따른 대기 차단 튜브의 길이가 설정될 수 있다.
상기와 같은 목적을 달성하기 위해 본 발명에 따른 광섬유 인선 용해로는, 광섬유 모재가 인입되는 상부 개구부와 상기 모재로부터 인선된 광섬유가 배출되는 하부 개구부가 형성된 노체; 상기 노체의 내부에 설치되며, 그 내부의 용융공간에 상기 모재를 수용하고 용융시킴으로써 광섬유로 인선되도록 하는 발열수단; 상기 하부 개구부에 설치되어 상기 인선된 광섬유가 그 내부를 통과하도록 함으로써 외부 대기로부터 차단시키는 대기 차단 튜브; 상기 노체의 상부에 형성되며, 상기 모재를 향해 불활성 가스를 유입시켜 그 일부가 상기 모재와 상부 개구부 사이의 틈 을 통해 외부로 배출되도록 하는 상부 유입구; 상기 노체의 중간부에 형성되어 용해로 내부로 불활성 가스가 유입되도록 하는 중심 유입구; 상기 노체의 하부에 형성되어 용해로 내부로 불활성 가스가 유입되도록 하는 하부 유입구; 상기 중심 유입구를 통해 유입된 불활성 가스를 상기 발열수단의 용융공간을 따라 용해로 상방으로 유동시켜 상기 상부 유입구를 통해 유입된 불활성 가스 흐름과 만나도록 하고, 이어서 상기 모재의 표면을 따라 용해로 하방으로 다시 유동하도록 하는 제1 유동경로설정수단; 및 상기 하부 유입구를 통해 유입된 불활성 가스를 상기 발열수단의 용융공간을 따라 용해로 상방으로 유동시켜 상기 중심 유입구로부터 유입되어 유동하는 불활성 가스 흐름과 만나게 함으로써 상기 인선된 광섬유의 표면을 따라 상기 대기 차단 튜브를 통해 외부로 배출되도록 하는 제2 유동경로설정수단;을 포함한다.
바람직하게, 상기 발열수단은, 상기 노체의 벽으로부터 이격되어 설치되며 그 내부에 상기 모재를 수용하여 용융시키는 용융공간을 형성하는 원통형의 제1 그라파이트 코어 튜브; 및 상기 제1 그라파이트 코어 튜브 하부에 상기 노체의 벽으로부터 이격되어 설치되는 원통형의 제2 그라파이트 코어 튜브;를 포함한다. 바람직하게, 본 발명의 제1 그라파이트 코어 튜브는 2,100 ∼ 2,300℃의 온도로 발열하고, 제2 그라파이트 코어 튜브는 1,600 ∼ 1,800℃의 온도로 발열한다. 또한, 상기 제2 그라파이트 코어 튜브는 자체적으로 발열하지 않고 제1 그라파이트 코어 튜브로부터 열을 전달받아 간접적으로 열을 발산할 수도 있다.
여기서, 상기 제1유동경로설정수단은, 상기 상부 유입구가 형성된 노체의 벽과 상기 제1 그라파이트 코어 튜브 사이에 형성된 통로; 상기 제2 그라파이트 코어 튜브를 지지하기 위해 상기 노체의 벽과 밀봉되도록 연결된 지지플랜지; 및 상기 제1 그라파이트 코어 튜브의 내경보다 작은 외경을 가진 상기 제2 그라파이트 코어 튜브의 상단 일부가 상기 제1 그라파이트 코어 튜브 내로 삽입됨으로써 그들 사이에 형성된 통로;를 포함한다.
또한, 상기 제2 유동경로설정수단은, 상기 하부 유입구가 형성된 노체의 벽과 상기 제2 그라파이트 코어 튜브 사이에 형성된 통로; 및 상기 대기 차단 튜브와 제 2 그라파이트 코어 튜브 사이에 형성된 통로;를 포함한다.
본 발명의 바람직한 실시예에 따르면, 상기 중심 유입구에서의 불활성 가스의 유량은 상부 유입구의 유량에 비해 약 3∼4배이고, 상기 하부 유입구에서의 유량은 상부 유입구의 유량에 비해 2∼3배가 되도록 한다.
바람직하게, 상기 대기 차단 튜브는, 상기 인선된 광섬유가 대기 차단 튜브를 빠져 나올 때 약 1,200∼1,300℃의 온도가 유지되도록 그 길이가 설정되며, 더욱 바람직하게, 2.0∼2.5m 범위에서 설정된다.
본 발명의 다른 측면에 따르면,
광섬유 모재가 인입되는 상부 개구부와 상기 모재로부터 인선된 광섬유가 배출되는 하부 개구부가 형성된 노체; 상기 노체의 내부에 노체의 벽으로부터 이격되도록 설치되어 노체벽과의 사이에 제1 통로를 형성하며, 그 내부에 상기 모재를 용융하여 용융시키는 용융공간을 형성하는 원통형의 제1 코어 튜브; 상기 노체벽으로부터 이격되도록 설치되어 노체벽과의 사이에 제2 통로를 형성하며, 그 외경이 상기 제1 코어 튜브의 내경보다 작아 그 상단 일부가 상기 제1 코어 튜브의 하단 내부로 삽입됨으로써 제1 코어 튜브와의 사이에 제3 통로를 형성하는 원통형의 제2 코어 튜브; 상기 노체의 상부에 형성되며, 상기 모재를 향해 불활성 가스를 유입시켜 그 일부가 상기 모재와 상부 개구부 사이의 틈을 통해 외부로 배출되도록 하는 상부 유입구; 상기 제1 코어 튜브와 상기 노체벽 사이에 형성된 제1 통로와 연통되도록 형성되며 이를 통해 불활성 가스가 유입되는 중심 유입구; 상기 제2 코어 튜브와 상기 노체벽 사이에 형성된 제2 통로와 연통되도록 형성되며 이를 통해 불활성 가스가 유입되는 하부 유입구; 상기 제1 통로와 제2 통로 사이에 개재되어 이들을 분리하도록 설치된 지지플랜지; 및 상기 제2 코어 튜브와의 사이에 상기 제2 통로를 통해 유입된 불활성 가스가 유동되는 제4 통로를 형성하도록 상기 하부 개구부에 설치되며, 상기 인선된 광섬유가 그 내부를 통과하도록 함으로써 외부 대기로부터 차단시키는 대기 차단 튜브;를 포함하는 광섬유 인선 용해로가 제공된다.
본 발명의 또 다른 측면에 따르면, 용해로 내에서 모재를 용융하여 광섬유를 인선하는 인선방법이 제공되는데, 상기 용해로는, 상기 모재가 인입되는 상부 개구부와 상기 모재로부터 인선된 광섬유가 배출되는 하부 개구부와 함께, 불활성 가스가 유입되는 상부 유입구, 중심 유입구, 하부 유입구가 각각 형성된 노체; 상기 노체의 내부에 설치되며, 그 내부의 용융공간에 상기 모재를 수용하고 용융시키는 발열수단; 상기 하부 개구부에 설치되어 인선된 광섬유가 통과하는 대기 차단 튜브;를 포함하고,
(a) 모재를 상기 상부 개구부를 통해 상기 용융공간으로 공급하는 단계;
(b) 상기 발열수단에 의해 상기 모재를 가열하여 모재를 용융시키는 단계;
(c) 상기 모재 하단의 용융된 부분으로부터 광섬유를 인선하는 단계;
(d) 상기 상부 유입구를 통해 불활성 가스를 투입하여, 그 일부가 상기 모재와 상부 개구부 사이의 틈을 통해 외부로 배출되도록 하는 단계;
(e) 상기 중심 유입구를 통해 불활성 가스를 투입하여, 상기 용융공간내에서 용해로 상방으로 유동시켜 상기 상부 유입구를 통해 유입된 불활성 가스 흐름과 만나도록 하고, 이어서 상기 모재의 표면을 따라 용해로 하방으로 유동하도록 하는 단계; 및
(f) 상기 하부 유입구를 통해 불활성 가스를 투입하여, 상기 용융공간을 따라 용해로 상방으로 유동시켜 상기 중심 유입구로부터 유입되어 유동하는 불활성 가스 흐름과 만나게 함으로써 상기 인선된 광섬유의 표면을 따라 상기 대기 차단 튜브를 통해 외부로 배출되도록 하는 단계;를 포함하여 이루어진다.
바람직하게, 상기 단계(e)는,
상기 노체의 벽과 노체 내부에 설치된 원통형 제1 코어 튜브 사이에 형성된 통로로 불활성 가스를 공급하는 단계; 및 상기 노체벽과 제1 코어 튜브 사이의 통로를 지난 불활성 가스를, 상기 제1 코어 튜브의 내면과 제2 코어 튜브의 상단 일부의 외면 사이에 형성되는 통로를 통해 용융공간 상부로 유동하도록 유도하는 단계;를 포함한다.
또한 바람직하게, 상기 단계(f)는,
상기 노체의 벽과 상기 제2 코어 튜브 사이에 형성된 통로로 불활성 가스를 공급하는 단계; 및 상기 노체벽과 제2 코어 튜브 사이의 통로를 지난 불활성 가스를 상기 대기 차단 튜브와 제2 코어 튜브 사이에 형성된 통로를 통해 용융공간 상부로 유동하도록 유도하는 단계;를 포함한다.
그러면 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한 다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1에는 본 발명의 바람직한 실시예에 따른 광섬유 인선 용해로의 개략적인 구성이 도시되어 있다. 도면을 참조하면, 광섬유 인선 용해로는 바람직하게 일반적으로 스테인레스 스틸로 이루어진 원통형의 노체(furnace body)(10)를 포함한다. 노체(10)의 상단에는 모재(100)가 공급되기 위한 상부 개구부(11)가 형성되고, 바닥에는 모재(100)로부터 인선된 광섬유(100')가 통과하여 배출되는 하부 개구부(13)가 각각 형성된다.
상기 노체(10)의 내부에는 상기 인입되는 모재(100)를 용융공간내에 수용하고 이를 가열 용융시켜 광섬유로 인선하는 발열수단이 구비된다. 바람직하게, 상기 발열수단은 상기 노체(10)의 내부에 고정 설치된 원통형의 제1 그라파이트 코어 튜브(20)와 제2 그라파이트 코어 튜브(30)를 포함한다. 상기 제1 및 제2 그라파이트 코어 튜브(20)(30)는 미도시된 공급수단에 의해 상방으로부터 공급되는 광섬유 모재(100)를 수용한다. 상기 그라파이트 코어 튜브는 미도시된 전원으로부터 전기를 공급받아 저항에 의해 발열함으로써 상기 용해로 내부의 광섬유 모재(100)를 용융시킨다. 바람직하게, 본 발명의 제1 그라파이트 코어 튜브(20)는 2,100 ∼ 2,300℃의 온도로 발열하고, 제2 그라파이트 코어 튜브(30)는 1,600 ∼ 1,800℃의 온도로 발열한다. 또한, 상기 제2 그라파이트 코어 튜브(30)는 자체적으로 발열하지 않고 제1 그라파이트 코어 튜브(20)로부터 열을 전달받아 간접적으로 광섬유 모재에 전달할 수도 있다. 또 다른 예로서, 상기 코어 튜브(20)(30)는 코어 튜브와 용해로의 노체(10) 사이의 공간에 설치된 코일(미도시)에 의해 유도방식으로 가열될 수도 있다.
본 발명에 따르면, 상기 제1 그라파이트 코어 튜브(20)는 노체(10)의 벽과 이격되어 그 사이에 후술하는 바와 같이 불활성 가스가 유동하기 위한 공간을 확보한다. 이때, 제1 코어 튜브(20)의 상단은 노체(10)와 밀봉되도록 결합되고 하단은 개방되므로 유동공간 내에서 기체는 하방으로 흐르게 된다. 상기 제1 그라파이트 코어 튜브(20) 하부에 설치되는 원통형의 제2 그라파이트 코어 튜브(30)도 노체(10)에 연결된 지지플랜지(12)에 고정플랜지(12a)로 고정되어 역시 노체(10)의 벽과 공간을 유지한다. 상기 제2 코어 튜브(30)의 하단은 노체(10)의 바닥과 접촉하지 않고 소정 공간을 두고 이격되어 있으므로 후술하는 바와 같이 제2 코어 튜브(30)와 노체(10)의 벽 사이의 유동 공간으로 유입된 가스는 상방으로 방향이 전환되어 유동한다.
본 발명의 실시예에서는 원통형의 노체가 개시되었으나, 상기 노체의 하단에 그 노체와 일체로 연결된 보조 튜브가 더 구비될 수 있으며, 이러한 변형은 본 발명의 사상에 포함되는 것으로 이해되어야 한다.
상기 용해로의 노체(10)에는 불활성 가스를 불어 넣기 위한 상부 유입구(40), 중심 유입구(50) 및 하부 유입구(60)가 각각 형성된다. 상기 상부 유입구(40)는 노체(10) 외부로부터 모재(100) 표면을 향해 용해로 내부 방향으로 형 성된다. 바람직하게, 상부 유입구(40)는 도 2에 도시된 바와 같이 용해로의 접선 방향을 따라 형성되며, 상기 용해로 상부에는 유입되는 가스를 모재에 골고루 공급하기 위하여 복수개의 분사공(31)이 형성된 환형의 분사 슬리이브(32)가 설치된다.
본 발명에 따르면, 상기 중심 유입구(50)를 통해 유입된 불활성 가스를 상기 발열수단의 용융공간을 따라 용해로 상방으로 유동시켜 상기 상부 유입구(40)를 통해 유입된 불활성 가스 흐름과 만나도록 하고, 이어서 상기 모재(100)의 표면을 따라 용해로 하방으로 다시 유동하도록 하는 제1 유동경로설정수단이 구비된다. 상기 제1 유동경로설정수단은 상기 제1 그라파이트 코어 튜브(20)와 노체(10) 사이의 통로 및 제1, 제2 그라파이트 코어 튜브(20)(30) 사이의 통로에 의해 형성될 수 있다.
구체적으로, 상기 중심 유입구(50)는 상기 제1 그라파이트 코어 튜브(20)와 노체(10)의 벽 사이에 형성된 통로와 연통되도록 형성된다. 또한, 상기 제1 그라파이트 코어 튜브(20)의 내경은 상기 제2 그라파이트 코어 튜브(30)의 외경보다 커서 제2 코어 튜브(30)의 상단부가 제1 코어 튜브(20)의 하단으로부터 내부로 소정 길이만큼 삽입될 수 있다. 이로써, 제1 코어 튜브(20)와 제2 코어 튜브(30) 사이에도 불활성 가스가 통과할 수 있는 통로가 형성되는데, 상기 지지플랜지(12)가 제2 코어 튜브(30)와 노체(10)의 내벽 사이를 차단하므로 중심 유입구(40)를 통해 유입되는 가스는 제1 코어 튜브(20)와 노체(10)의 내벽 사이 통로를 따라 하강한 뒤 지지플랜지(12)에 의해 방향이 전환되어 제1 코어 튜브(20)와 제2 코어 튜브(30) 사이의 통로를 통해 용해로 내부의 용융공간 상부로 유동한다. 바람직하 게, 상기 중심 유입구(50)로부터 유입된 불활성 가스는 모재(100)의 넥-다운-영역 근처에서 용해로 상방을 향해 유동하도록 설계된다.
한편, 본 발명의 용해로는, 상기 하부 유입구(60)를 통해 유입된 불활성 가스를 상기 발열수단의 용융공간을 따라 용해로 상방으로 유동시켜 상기 중심 유입구(50)로부터 유입되어 유동하는 불활성 가스 흐름과 만나게 함으로써 상기 인선된 광섬유(100')의 표면을 따라 상기 대기 차단 튜브(70)를 통해 외부로 배출되도록 하는 제2 유동경로설정수단을 더 포함한다. 바람직하게, 상기 제2 유동경로설정수단은 제2 코어 튜브(30)와 노체(10) 사이의 통로와 대기 차단 튜브(70)에 의해 달성될 수 있다.
구체적으로, 상기 하부 유입구(60)는 제2 코어 튜브(30)와 노체(10)의 벽 사이에 형성된 통로와 연통하도록 형성된다. 도 3은 도 1의 III-III선에 따른 단면도로서 하부 유입구(60) 부근의 단면 구조를 보여준다.
상기 노체의 하부 개구부(13)에는 본 발명에 따른 대기 차단 튜브(70)가 설치된다. 상기 대기 차단 튜브(70)는 인선된 광섬유 클래드의 점도가 광섬유 원주방향으로 응력차를 최소화할 수 있을 정도로 커질 때까지 광섬유를 대기와 차단시켜 서냉을 가능케하고 불활성 가스의 층류를 유도한다.
상기 대기 차단 튜브(70)는 용해로 내부의 고온에 견딜 수 있도록 석영 또는 그라파이트로 이루어지며, 외경은 불활성 가스의 유입량에 따라 약 15∼50mm 범위에서 선택된다. 본 발명에 따르면, 상기 대기 차단 튜브(70)의 길이는 광섬유의 인선 속도에 따라 조절되는데, 바람직하게 인선된 광섬유(100')가 대기 차단 튜브(70)의 하단을 빠져나올 때 그 온도가 대략 1,200∼1,300℃ 정도가 되도록 길이가 설정된다. 예를 들어, 광섬유의 인선 속도가 25m/sec인 경우 대기 차단 튜브(70)의 길이는 1.5∼2.5m이며, 더욱 바람직하게 2.0∼2.5m이다.
본 발명에 따르면, 상기 대기 차단 튜브(70)의 상단은 상기 모재(100)의 넥-다운-영역으로부터 약 200∼250mm 이내에 위치하도록 설치되는데, 이것은 모재(100)가 광섬유 형태로 인선되어 단면적이 감소한 다음 대기 차단 튜브(70) 내부로 진입되도록 함으로써 광섬유 표면 근처에서의 가스 경계층이 균일한 상태를 유지할 수 있도록 하기 위함이다. 상기 대기 차단 튜브(70)가 모재의 넥-다운-영역에 너무 근접할 경우 불활성 가스의 유동이 불안정해지는 반면, 너무 멀어지면 대기 차단 튜브의 효과를 충분히 기대할 수 없다.
이상과 같은 구성에서, 상기 하부 유입구(60)로부터 유입된 불활성 가스는 제2 코어 튜브(30)와 노체벽 사이에 형성된 통로 및 제2 코어 튜브(30)와 대기 차단 튜브(70) 사이의 통로에 의해 용해로 내부에서 용융공간 상부로 유도된다.
미도시된 본 발명의 또 다른 예에서, 상기 제1 및 제2 그라파이트 코어 튜브(20)(30)와 노체(10) 사이에는 단열재가 설치될 수 있으며, 이 경우에도 전술한 불활성 가스의 통로는 확보되도록 한다.
상기와 같은 구성을 가진 본 발명의 용해로를 이용하여 모재로부터 광섬유를 인선하는 과정에 대해서 상세히 살펴보기로 한다.
상기 노체(10)의 상부 개구부(11)를 통해서 미도시된 공지의 공급수단에 의해 모재(100)가 용해로 내부로 공급된다. 이어서, 미도시된 전원에 의해 상기 제1 및 제2 그라파이트 코어 튜브(20)(30)로 전류가 공급되어 코어 튜브(20)(30)가 발열한다. 그러면, 모재(100)가 가열 용융되고 그 하단으로부터 광섬유(100')를 인선한다. 인선된 광섬유(100')는 대기 차단 튜브(70)를 통과하여 하방으로 이동하여 표면에 폴리머가 코팅된 후 경화공정을 거쳐 보빈에 균일하게 권선된다.
이와 동시에, 용해로 내부를 불활성 가스 분위기로 만들기 위해 상기 상부 유입구(40), 중심 유입구(50) 및 하부 유입구(60)를 통해 헬륨, 질소, 아르곤과 같은 불활성 가스를 주입한다. 바람직하게, 상기 불활성 가스의 유입량은 유입구의 위치에 따라 조절되는데, 중심 유입구(50)에서의 유량은 상부 유입구(40)의 유량에 비해 약 3∼4배, 그리고 하부 유입구(60)에서의 유량은 상부 유입구(40)의 유량에 비해 약 2∼3배가 되도록 조정된다.
이 경우, 용해로 내부에서 불활성 가스의 유동은 도 1의 화살표에 도시된 바와 같이 나타난다. 즉, 상부 유입구(40)에서 유입된 불활성 가스는 모재의 표면을 향해 분사되는 동시에 후술하는 바와 같이 중심 유입구(50)를 통해 유입되어 용해로 상방으로 유동하는 가스 흐름과 함께 용해로 상부 개구부(11)와 모재(100) 사이의 틈을 통해 외부로 배출된다. 따라서, 상부 유입구(40)를 통해 유입되는 불활성 가스는 용해로 상부 개구부(11)를 통해 그 내부로 유입되는 대기를 차단하고 용해로 내부에서 생성된 미세입자들을 용해로 외부로 배출시킨다.
중심 유입구(50)에서 유입된 불활성 가스는 제1 코어 튜브(20)와 노체(10) 벽 사이의 통로를 따라 유동하다가 지지플랜지(12)와 제2 코어 튜브(30)에 의해 방향이 전환된 뒤, 제1 코어 튜브(20)와 제2 코어 튜브(30) 사이의 통로를 통해 용해 로 상방으로 투입된다. 상기 유입된 불활성 가스는 제1 코어 튜브(20)의 내벽을 따라 상방으로 유동하면서 용해로 내부에서 발생한 불순물 입자들을 함께 이동시킨다. 이어서, 불순물 입자는 전술한 상부 유입구(40)를 통해 유입된 불활성 가스의 흐름을 따라 용해로 상부 개구부(11)를 통해 외부로 배출된다. 중심 유입구(50)를 통해 유입된 불활성 가스는 상기 상부 유입구(40) 근처에서 그 일부가 방향이 전환되어 모재(100) 표면을 따라 하강하게 된다.
본 발명에 따르면, 중심 유입구(50)를 통해 용해로 내부로 유입된 불활성 가스는 직접 모재(100) 표면과 접촉하지 않으므로 불균일한 난류를 생성시키지 않는다. 즉, 불활성 가스는 용해로 내부에서 상방으로 유동한 뒤 다시 모재(100)의 표면을 따라 하강하면서 모재 표면 근처에 균일한 층류를 형성한다.
하부 유입구(60)에서 유입된 불활성 가스는 제2 코어 튜브(30)와 노체(10) 벽 사이의 통로를 따라 유동하여 제2 코어 튜브(30) 하단과 노체(10) 바닥 사이의 틈을 통해 용해로 내부로 유입된다. 하부 유입구(60)로부터 유입된 불활성 가스 역시 인선된 광섬유(100')에 직접 공급되지 않고 대기 차단 튜브(70)와 제2 코어 튜브(30) 사이의 통로에 의해 용해로 상방으로 유동한 뒤, 중심 유입구(50)로부터 유입되어 모재(100)의 표면을 따라 하강하는 가스의 흐름과 함께 대기 차단 튜브(70) 속으로 배출된다. 이 같은 불활성 가스는 용해로 하부를 통해 유입되는 대기를 차단하는 동시에 대기 차단 튜브(70) 내부를 통과하는 인선된 광섬유(100')의 표면에 균일한 층류를 형성시킨다.
본 발명에 따른 용해로 내부에서의 불활성 가스의 공기 흐름 분포의 예가 도 4a 내지 도 4c에 도시되어 있다. 도 4a는 상부영역(U)에 대해, 도 4b는 중심영역(M)에 대해, 그리고 도 4c는 하부영역(L)에 대한 것이다. 이들 도면들은 약 45℃의 아르곤 가스를 상부 유입구(40)에서 1.351×10-4kg/sec의 유량으로, 중심 유입구(50)에서 4.866×10-4kg/sec의 유량으로, 그리고 하부 유입구(60)에서 4.055×10-4kg/sec의 유량으로 투입할 경우에 대한 컴퓨터 시뮬레이션 결과이다. 여기서, 용해로 상부 개구부(11)의 노체와 모재 사이의 간격은 1.5mm이다. 도 4a에서 보는 바와 같이, 용해로 내부의 불활성 가스는 개구부(11)를 통해 외부로 배출되는 공기 흐름을 형성한다. 특히, 도 4b에서 알 수 있듯이, 넥-다운-영역 근처에서 모재(100)의 표면을 따라 균일한 층류가 형성되며, 이러한 층류의 흐름은 도 4c에 도시된 대기 차단 튜브(70) 내부까지 그대로 유지된다. 따라서, 모재(100)로부터 인선된 광섬유(100')는 상기 대기 차단 튜브(70)를 통과하면서 그 표면의 가스 경계층을 균일하게 유지한 채 서서히 냉각될 수 있다. 이로 인해, 인선된 광섬유(100')는 반경방향으로 균일한 속도로 냉각이 진행되어 광섬유의 원주방향으로 균일한 응력분포를 갖게 된다.
상기 시뮬레이션에 있어서, 용해로 내부로 유입된 불활성 가스의 각 지점별 유동 속도 분포가 도 5a 내지 도 5c에 도시되어 있다. 여기서, 도 5a는 상부영역(U)에 대해, 도 5b는 중심영역(M)에 대해, 그리고 도 5c는 하부영역(L)에 대한 것이다.
도 5a에서 보는 바와 같이, 상부 유입구(40)로부터 유입된 불활성 가스는 중 심 유입구(50)로부터 유입된 가스와 함께 용해로의 상부로 유동하여, 상부 개구부(11)를 통해 빠른 속도로 배출된다. 이것은 용해로 내부를 외부 대기로부터 차단할 뿐만 아니라 용해로 내부의 불순물 입자들을 외부로 원활하게 배출시킬 수 있음을 의미한다. 도 5b에 나타난 바와 같이, 중심 유입구(50)로부터 유입된 불활성 가스는 용해로 상방으로 유동한 뒤 방향을 전환하여 모재(100) 표면을 따라 용해로 하방으로 빠른 속도로 이동하면서 모재 표면에 균일한 층류를 형성한다. 나아가, 이러한 흐름은 도 5c에서 보듯이, 하부 유입구(60)로부터 유입된 불활성 가스와 함께 대기 차단 튜브(70) 내부까지 이어져 인선된 광섬유(100')의 표면에서 층류의 빠른 가스 흐름을 만들어내면서, 외부 공기가 용해로 하부를 통해 유입되지 못하도록 한다.
본 발명에 따르면 인선된 광섬유(100')를 서냉시키기 위해서 상기 대기 차단 튜브(70)의 길이는 적절히 선택되는데, 바람직하게 대기 차단 튜브(70)로부터 빠져 나온 광섬유의 온도가 대략 1,200∼1,300℃ 정도가 되도록 그 길이가 설정된다.
실험예
본 발명에 따른 광섬유 인선 용해로에 의해 광섬유 모재를 인선하였다. 용해로의 사양은 내경 110mm, 길이 450mm의 원통형이며, 아르곤 가스는 상부 유입구(40)에서 5 liter/min, 중심 유입구(50)에는 20 liter/min, 그리고 하부 유입구(60)에서 10 liter/min의 유량으로 각각 투입되었다. 제1 그라파이트 코어 튜브(20)는 2,100℃로 발열하고, 제2 그라파이트 코어 튜브(30)는 1,600℃의 온도로 발열하는 상태에서 지름 90mm의 모재를 용융시켜 광섬유를 각각 10m/sec, 20m/sec, 25m/sec의 속도로 인선하였다. 이때, 대기 차단 튜브를 설치하지 않은 경우와 내경 25mm, 두께 2mm, 길이 2.0m의 석영관 대기 차단 튜브(70)를 설치한 경우에 대해 레이저 비접촉 외경측정기를 사용하여 광섬유의 외경을 각각 측정하여, 그 결과를 아래 표 1에 나타내었다.
구 분 대기차단튜브 인선속도 외경편차
실험예1 없음 10m/sec ±0.70㎛
실험예2 없음 20m/sec ±1.50㎛
실험예3 구비함 25m/sec ±0.15㎛
위 표에서 알 수 있는 바와 같이, 대기 차단 튜브가 구비되어 있지 않은 경우, 인선속도가 10m/sec이하의 비교적 저속에서 외경편차가 양호한 반면 20m/sec 이상의 고속에서는 외경편차가 증가하였다.
실험예3은 본 발명에 따른 용해로와 대기 차단 튜브를 모두 채용한 경우로서, 이 경우에는 광섬유의 인선속도가 25m/sec 이상으로 비교적 고속이라고 하더라도 양호한 외경편차를 나타냈다.
본 발명에 따르면, 용해로 상부에서 외부로부터 유입되는 대기는 간단한 구조의 상부 유입구에 의해 차단될 수 있으므로, 종래와 같이 복잡한 밀봉장치를 구비할 필요가 없다. 동시에, 용해로 중심에서 유입되는 불활성 가스는 모재에 특히, 넥-다운-영역에 직접적으로 부딪히지 않고 안정된 유동흐름을 제공할 뿐만 아 니라, 용해로 내부에서 발생한 불순물 입자들을 용해로 상방으로 이동시켜 외부로 원활하게 배출될 수 있도록 한다. 또한, 용해로 하부에 마련된 대기 차단 튜브는 인선된 광섬유를 대기와 차단시킬 뿐만 아니라 광섬유 주변의 가스 흐름을 안정적인 층류로 만들어 광섬유의 외부 클래딩의 점성이 충분히 낮아지는 온도까지 광섬유가 균일하게 서냉될 수 있도록 한다. 나아가, 용해로 하부 유입구에서 유입되는 불활성 가스는 외부 공기가 상기 대기 차단 튜브를 통해 유입되지 못하도록 차단하는 역할을 한다.
본 발명의 이러한 효과는 결국 외경편차가 현저히 감소된 광섬유의 인선을 가능케하여 편광모드분산(PMD)을 억제함으로써 광섬유를 통한 고속 광전송 특성을 향상시키게 된다.

Claims (24)

  1. 삭제
  2. 광섬유 모재가 인입되는 상부 개구부와 상기 모재로부터 인선된 광섬유가 배출되는 하부 개구부가 형성된 노체;
    상기 노체의 내부에 설치되며, 그 내부의 용융공간에 상기 모재를 수용하고 용융시킴으로써 광섬유로 인선되도록 하는 발열수단;
    상기 하부 개구부에 설치되어 상기 인선된 광섬유가 그 내부를 통과하도록 함으로써 외부 대기로부터 차단시키는 대기 차단 튜브;
    상기 노체의 상부에 형성되며, 상기 모재를 향해 불활성 가스를 유입시켜 그 일부가 상기 모재와 상부 개구부 사이의 틈을 통해 외부로 배출되도록 하는 상부 유입구;
    상기 노체의 중간부에 형성되어 용해로 내부로 불활성 가스가 유입되도록 하는 중심 유입구;
    상기 노체의 하부에 형성되어 용해로 내부로 불활성 가스가 유입되도록 하는 하부 유입구;
    상기 중심 유입구를 통해 유입된 불활성 가스를 상기 발열수단의 용융공간을 따라 용해로 상방으로 유동시켜 상기 상부 유입구를 통해 유입된 불활성 가스 흐름과 만나도록 하고, 이어서 상기 모재의 표면을 따라 용해로 하방으로 다시 유동하도록 하는 제1 유동경로설정수단; 및
    상기 하부 유입구를 통해 유입된 불활성 가스를 상기 발열수단의 용융공간을 따라 용해로 상방으로 유동시켜 상기 중심 유입구로부터 유입되어 유동하는 불활성 가스 흐름과 만나게 함으로써 상기 인선된 광섬유의 표면을 따라 상기 대기 차단 튜브를 통해 외부로 배출되도록 하는 제2 유동경로설정수단;을 포함하고,
    상기 발열수단은,
    상기 노체의 벽으로부터 이격되어 설치되며 그 내부에 상기 모재를 수용하여 용융시키는 용융공간을 형성하는 원통형의 제1 그라파이트 코어 튜브; 및
    상기 제1 그라파이트 코어 튜브 하부에 상기 노체의 벽으로부터 이격되어 설치되는 원통형의 제2 그라파이트 코어 튜브;를 포함하는 것을 특징으로 하는 광섬유 인선 용해로.
  3. 제2항에 있어서, 상기 제1유동경로설정수단은,
    상기 상부 유입구가 형성된 노체의 벽과 상기 제1 그라파이트 코어 튜브 사이에 형성된 통로;
    상기 제2 그라파이트 코어 튜브를 지지하기 위해 상기 노체의 벽과 밀봉되도록 연결된 지지플랜지; 및
    상기 제1 그라파이트 코어 튜브의 내경보다 작은 외경을 가진 상기 제2 그라파이트 코어 튜브의 상단 일부가 상기 제1 그라파이트 코어 튜브 내로 삽입됨으로써 그들 사이에 형성된 통로;를 포함하는 것을 특징으로 하는 광섬유 인선 용해로.
  4. 제3항에 있어서,
    상기 제1 그라파이트 코어 튜브와 제2 그라파이트 코어 튜브 사이의 통로는 상기 모재의 넥-다운-영역 부근에 형성된 것을 특징으로 하는 광섬유 인선 용해로.
  5. 제2항 또는 제3항에 있어서, 상기 제2 유동경로설정수단은,
    상기 하부 유입구가 형성된 노체의 벽과 상기 제2 그라파이트 코어 튜브 사이에 형성된 통로; 및
    상기 대기 차단 튜브와 제 2 그라파이트 코어 튜브 사이에 형성된 통로;를 포함하는 것을 특징으로 하는 광섬유 인선 용해로.
  6. 제2항에 있어서,
    상기 중심 유입구에서의 불활성 가스의 유량은 상부 유입구의 유량에 비해 약 3∼4배이고, 상기 하부 유입구에서의 유량은 상부 유입구의 유량에 비해 2∼3배가 되는 것을 특징으로 하는 광섬유 인선 용해로.
  7. 제2항에 있어서,
    상기 상부 유입구를 통해 유입되는 불활성 가스를 상기 모재에 균일하게 공급하기 위하여 복수개의 분사공이 형성된 환형의 분사 슬리이브를 더 포함하는 것을 특징으로 하는 광섬유 인선 용해로.
  8. 제2항에 있어서, 상기 대기 차단 튜브는,
    상기 인선된 광섬유가 대기 차단 튜브를 빠져 나올 때 약 1,200∼1,300℃의 온도가 유지되도록 그 길이가 설정되는 것을 특징으로 하는 광섬유 인선 용해로.
  9. 제8항에 있어서,
    상기 대기 차단 튜브의 길이는 2.0∼2.5m 범위에서 설정되는 것을 특징으로 하는 광섬유 인선 용해로.
  10. 제8항 또는 제9항에 있어서,
    상기 대기 차단 튜브의 상단은 상기 모재의 넥-다운-영역으로부터 200∼250mm 하부 지점에 위치하는 것을 특징으로 하는 광섬유 인선 용해로.
  11. 삭제
  12. 광섬유 모재가 인입되는 상부 개구부와 상기 모재로부터 인선된 광섬유가 배출되는 하부 개구부가 형성된 노체;
    상기 노체의 내부에 노체의 벽으로부터 이격되도록 설치되어 노체벽과의 사이에 제1 통로를 형성하며, 그 내부에 상기 모재를 용융하여 용융시키는 용융공간을 형성하는 원통형의 제1 코어 튜브;
    상기 노체벽으로부터 이격되도록 설치되어 노체벽과의 사이에 제2 통로를 형성하며, 그 외경이 상기 제1 코어 튜브의 내경보다 작아 그 상단 일부가 상기 제1 코어 튜브의 하단 내부로 삽입됨으로써 제1 코어 튜브와의 사이에 제3 통로를 형성하는 원통형의 제2 코어 튜브;
    상기 노체의 상부에 형성되며, 상기 모재를 향해 불활성 가스를 유입시켜 그 일부가 상기 모재와 상부 개구부 사이의 틈을 통해 외부로 배출되도록 하는 상부 유입구;
    상기 제1 코어 튜브와 상기 노체벽 사이에 형성된 제1 통로와 연통되도록 형성되며 이를 통해 불활성 가스가 유입되는 중심 유입구;
    상기 제2 코어 튜브와 상기 노체벽 사이에 형성된 제2 통로와 연통되도록 형성되며 이를 통해 불활성 가스가 유입되는 하부 유입구;
    상기 제1 통로와 제2 통로 사이에 개재되어 이들을 분리하도록 설치된 지지플랜지; 및
    상기 제2 코어 튜브와의 사이에 상기 제2 통로를 통해 유입된 불활성 가스가 유동되는 제4 통로를 형성하도록 상기 하부 개구부에 설치되며, 상기 인선된 광섬유가 그 내부를 통과하도록 함으로써 외부 대기로부터 차단시키는 대기 차단 튜브;를 포함하고,
    상기 제3 통로는 상기 모재의 넥-다운-영역 부근에 형성된 것을 특징으로 하는 광섬유 인선 용해로.
  13. 제12항에 있어서,
    상기 중심 유입구에서의 불활성 가스의 유량은 상부 유입구의 유량에 비해 약 3∼4배이고, 상기 하부 유입구에서의 유량은 상부 유입구의 유량에 비해 2∼3배가 되는 것을 특징으로 하는 광섬유 인선 용해로.
  14. 제12항에 있어서,
    상기 상부 유입구를 통해 유입되는 불활성 가스를 상기 모재에 균일하게 공급하기 위하여 복수개의 분사공이 형성된 환형의 분사 슬리이브를 더 포함하는 것을 특징으로 하는 광섬유 인선 용해로.
  15. 제12항에 있어서, 상기 대기 차단 튜브는,
    상기 인선된 광섬유가 대기 차단 튜브를 빠져 나올 때 약 1,200∼1,300℃의 온도가 유지되도록 그 길이가 설정되는 것을 특징으로 하는 광섬유 인선 용해로.
  16. 제15항에 있어서,
    상기 대기 차단 튜브의 길이는 2.0∼2.5m 범위에서 설정되는 것을 특징으로 하는 광섬유 인선 용해로.
  17. 제15항 또는 제16항에 있어서,
    상기 대기 차단 튜브의 상단은 상기 모재의 넥-다운-영역으로부터 200∼250mm 하부 지점에 위치하는 것을 특징으로 하는 광섬유 인선 용해로.
  18. 용해로 내에서 모재를 용융하여 광섬유를 인선하는 인선방법에 있어서,
    상기 용해로는,
    상기 모재가 인입되는 상부 개구부와 상기 모재로부터 인선된 광섬유가 배출되는 하부 개구부와 함께, 불활성 가스가 유입되는 상부 유입구, 중심 유입구, 하부 유입구가 각각 형성된 노체; 상기 노체의 내부에 설치되며, 그 내부의 용융공간에 상기 모재를 수용하고 용융시키는 발열수단; 상기 하부 개구부에 설치되어 인선된 광섬유가 통과하는 대기 차단 튜브;를 포함하고,
    (a) 모재를 상기 상부 개구부를 통해 상기 용융공간으로 공급하는 단계;
    (b) 상기 발열수단에 의해 상기 모재를 가열하여 모재를 용융시키는 단계;
    (c) 상기 모재 하단의 용융된 부분으로부터 광섬유를 인선하는 단계;
    (d) 상기 상부 유입구를 통해 불활성 가스를 투입하여, 그 일부가 상기 모재와 상부 개구부 사이의 틈을 통해 외부로 배출되도록 하는 단계;
    (e) 상기 중심 유입구를 통해 불활성 가스를 투입하여, 상기 용융공간내에서 용해로 상방으로 유동시켜 상기 상부 유입구를 통해 유입된 불활성 가스 흐름과 만나도록 하고, 이어서 상기 모재의 표면을 따라 용해로 하방으로 유동하도록 하는 단계; 및
    (f) 상기 하부 유입구를 통해 불활성 가스를 투입하여, 상기 용융공간을 따라 용해로 상방으로 유동시켜 상기 중심 유입구로부터 유입되어 유동하는 불활성 가스 흐름과 만나게 함으로써 상기 인선된 광섬유의 표면을 따라 상기 대기 차단 튜브를 통해 외부로 배출되도록 하는 단계;를 포함하는 것을 특징으로 하는 광섬유 인선방법.
  19. 제18항에 있어서, 상기 단계(e)는,
    상기 노체의 벽과 노체 내부에 설치된 원통형 제1 코어 튜브 사이에 형성된 통로로 불활성 가스를 공급하는 단계; 및
    상기 노체벽과 제1 코어 튜브 사이의 통로를 지난 불활성 가스를, 상기 제1 코어 튜브의 내면과 제2 코어 튜브의 상단 일부의 외면 사이에 형성되는 통로를 통해 용융공간 상부로 유동하도록 유도하는 단계;를 포함하는 것을 특징으로 하는 광섬유 인선방법.
  20. 제18항에 있어서, 상기 단계(f)는,
    상기 노체의 벽과 상기 제2 코어 튜브 사이에 형성된 통로로 불활성 가스를 공급하는 단계; 및
    상기 노체벽과 제2 코어 튜브 사이의 통로를 지난 불활성 가스를 상기 대기 차단 튜브와 제2 코어 튜브 사이에 형성된 통로를 통해 용융공간 상부로 유동하도록 유도하는 단계;를 포함하는 것을 특징으로 하는 광섬유 인선방법.
  21. 제18항에 있어서,
    상기 중심 유입구에서의 불활성 가스의 유량은 상부 유입구의 유량에 비해 약 3∼4배이고, 상기 하부 유입구에서의 유량은 상부 유입구의 유량에 비해 2∼3배가 되는 것을 특징으로 하는 광섬유 인선방법.
  22. 제18항에 있어서, 상기 단계(c)에서,
    상기 인선된 광섬유가 대기 차단 튜브를 빠져 나올 때 약 1,200∼1,300℃의 온도가 유지되도록 조절하는 단계를 더 포함하는 것을 특징으로 하는 광섬유 인선방법.
  23. 제2항에 있어서,
    상기 제1 그라파이트 코어 튜브는 2,100 ∼ 2,300℃로 발열하고, 상기 제2 그라파이트 코어 튜브는 1,600 ∼ 1,800℃의 온도로 발열하는 것을 특징으로 하는 광섬유 인선 용해로.
  24. 제2항에 있어서,
    상기 제1 그라파이트 코어 튜브는 2,100 ∼ 2,300℃로 발열하고, 상기 제2 그라파이트 코어 튜브는 상기 제1 그라파이트 코어 튜브로부터 열을 전달받아 이를 광섬유 모재로 전달하는 것을 특징으로 하는 광섬유 인선 용해로.
KR1020020052300A 2002-08-31 2002-08-31 광섬유 인선 용해로 및 이를 이용한 광섬유 인선방법 KR100545814B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020020052300A KR100545814B1 (ko) 2002-08-31 2002-08-31 광섬유 인선 용해로 및 이를 이용한 광섬유 인선방법
US10/420,374 US20040050112A1 (en) 2002-08-31 2003-04-22 Furnace for drawing optical fiber preform to make optical fiber and method for drawing optical fiber using the same
US12/365,057 US7823419B2 (en) 2002-08-31 2009-02-03 Optical fiber drawing furnace with gas flow tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020052300A KR100545814B1 (ko) 2002-08-31 2002-08-31 광섬유 인선 용해로 및 이를 이용한 광섬유 인선방법

Publications (2)

Publication Number Publication Date
KR20040020648A KR20040020648A (ko) 2004-03-09
KR100545814B1 true KR100545814B1 (ko) 2006-01-24

Family

ID=31987294

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020052300A KR100545814B1 (ko) 2002-08-31 2002-08-31 광섬유 인선 용해로 및 이를 이용한 광섬유 인선방법

Country Status (2)

Country Link
US (2) US20040050112A1 (ko)
KR (1) KR100545814B1 (ko)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100747351B1 (ko) * 2006-02-15 2007-08-07 엘에스전선 주식회사 복수의 가열 영역을 구비한 히터, 이 히터를 구비한 광섬유인선 용해로 및 이를 이용한 광섬유 인선방법
CN101533122B (zh) * 2009-04-27 2010-08-04 中天科技光纤有限公司 高强度大盘长海底光缆用单模光纤的制备方法
US20110256692A1 (en) * 2010-04-14 2011-10-20 Applied Materials, Inc. Multiple precursor concentric delivery showerhead
US9066412B2 (en) * 2010-04-15 2015-06-23 Asml Netherlands B.V. Systems and methods for cooling an optic
CN103342463B (zh) * 2013-07-05 2015-05-27 江苏法尔胜光子有限公司 一种光纤拉丝炉
US10308544B2 (en) * 2015-10-13 2019-06-04 Corning Incorporated Gas reclamation system for optical fiber production
JP2017171549A (ja) * 2016-03-25 2017-09-28 信越化学工業株式会社 光ファイバプリフォームの絞り加工方法及び加工装置
JP6691881B2 (ja) * 2017-03-01 2020-05-13 信越化学工業株式会社 線引き用光ファイバ母材の製造方法および製造装置
WO2019182136A1 (ja) * 2018-03-23 2019-09-26 住友電気工業株式会社 炉内ガス供給装置、光ファイバ製造装置、光ファイバの製造方法
CN108218195B (zh) * 2018-03-27 2023-04-25 中建材衢州金格兰石英有限公司 一种石英玻璃棒的缩径装置及其缩径方法
CN108975678A (zh) * 2018-10-30 2018-12-11 湖北凯乐量子通信光电科技有限公司 拉丝炉高温提棒防石墨件氧化装置
CN109592894A (zh) * 2018-12-25 2019-04-09 通鼎互联信息股份有限公司 一种光纤拉丝密封装置及密封方法
JPWO2021193567A1 (ko) * 2020-03-23 2021-09-30
JP2023528227A (ja) 2020-05-15 2023-07-04 コーニング インコーポレイテッド 光ファイバ形成装置
CN114262149B (zh) * 2022-01-18 2023-09-08 安徽理工大学 一种光纤拉丝冷却系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186941U (ko) * 1986-05-15 1987-11-27
JPS632738U (ko) * 1986-06-25 1988-01-09
JPH03237031A (ja) * 1990-02-09 1991-10-22 Furukawa Electric Co Ltd:The ガラス棒の加熱延伸方法
JPH10338538A (ja) * 1997-06-09 1998-12-22 Showa Electric Wire & Cable Co Ltd 加熱炉

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096823A (en) * 1977-01-27 1978-06-27 University Of Virginia Apparatus for metallization of fibers
NL7902201A (nl) * 1979-03-21 1980-09-23 Philips Nv Werkwijze en inrichting voor het vervaardigen van op- tische fibers alsmede optische fibers vervaardigd met de werkwijze.
US4407666A (en) * 1981-08-31 1983-10-04 Gte Laboratories Incorporated Methods for prolonging the useful life of a graphite element in an optical fiber-drawing furnace
US4437870A (en) * 1981-11-05 1984-03-20 Corning Glass Works Optical waveguide fiber cooler
NL8203843A (nl) * 1982-10-04 1984-05-01 Philips Nv Werkwijze en inrichting voor het trekken van een optische vezel uit een vaste voorvorm die in hoofdzaak uit sio2 en gedoteerd sio2 bestaat.
JPS59217641A (ja) * 1983-05-23 1984-12-07 Furukawa Electric Co Ltd:The 光フアイバ線引装置の加熱炉
IT1184909B (it) * 1985-03-18 1987-10-28 Cselt Centro Studi Lab Telecom Procedimento ed apparecchiatura per la riduzione dei difetti di volume e di superficie nelle fibre ottiche in silice
JP2760697B2 (ja) * 1992-04-03 1998-06-04 株式会社フジクラ 光ファイバ線引き炉
EP0659699B1 (en) * 1993-07-13 1999-11-10 Sumitomo Electric Industries, Ltd. Optical fiber drawing furnace and drawing method
DE4339077C2 (de) * 1993-11-16 1997-03-06 Rheydt Kabelwerk Ag Verfahren zum Ziehen einer optischen Faser und Vorrichtung zu dessen Durchführung
KR0165211B1 (ko) * 1995-09-29 1998-12-15 김광호 광섬유의 인출 장치
DE69800554T2 (de) * 1997-03-27 2001-10-25 Alcatel Sa Thermische Isolierung eines Ofens zum Ziehen von optischen Fasern
FR2761979B1 (fr) * 1997-04-14 1999-05-28 Alsthom Cge Alcatel Procede et appareil de fabrication d'une fibre optique munie d'un revetement hermetique
JP3481466B2 (ja) * 1997-07-24 2003-12-22 古河電気工業株式会社 光ファイバ線引炉、およびそれを用いた光ファイバ線引方法
JP3785782B2 (ja) * 1998-01-27 2006-06-14 住友電気工業株式会社 ガラスロッド延伸用加熱炉及びガラスロッドの延伸方法
ID26017A (id) * 1998-04-03 2000-11-16 Sumitomo Electric Industries Tanur dan metode untuk penarikan kabel serat optis
CA2370494C (en) * 1999-05-10 2008-11-25 Pirelli & C. S.P.A. Method and induction furnace for drawing large diameter preforms to optical fibres
JP4356155B2 (ja) * 1999-10-12 2009-11-04 住友電気工業株式会社 光ファイバの製造方法
KR100393612B1 (ko) * 2001-01-29 2003-08-02 삼성전자주식회사 비접촉식으로 광섬유 편광모드분산 제어를 위한 광섬유인출 장치
US20040107736A1 (en) * 2002-12-09 2004-06-10 Alcatel Pure upflow furnace
US20070113589A1 (en) * 2005-11-18 2007-05-24 Paganessi Joseph E Gas Control Device and Corresponding Method for Recovering Coolant Gases in a Fiber Coolant System

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186941U (ko) * 1986-05-15 1987-11-27
JPS632738U (ko) * 1986-06-25 1988-01-09
JPH03237031A (ja) * 1990-02-09 1991-10-22 Furukawa Electric Co Ltd:The ガラス棒の加熱延伸方法
JPH10338538A (ja) * 1997-06-09 1998-12-22 Showa Electric Wire & Cable Co Ltd 加熱炉

Also Published As

Publication number Publication date
KR20040020648A (ko) 2004-03-09
US7823419B2 (en) 2010-11-02
US20090145169A1 (en) 2009-06-11
US20040050112A1 (en) 2004-03-18

Similar Documents

Publication Publication Date Title
US7823419B2 (en) Optical fiber drawing furnace with gas flow tubes
EP0567961B1 (en) Method and apparatus for drawing optical fibers
CA2708342C (en) Fiber air turn for low attenuation fiber
KR860000996B1 (ko) 광안내 섬유를 인발하도록 예형을 가열시키기 위한 방법
US7797965B2 (en) Method for producing tubes of quartz glass
EP1069086B1 (en) Furnace and method for optical fiber wire drawing
US20020088253A1 (en) Method and induction furnace for drawing large diameter preforms to optical fibres
KR0175640B1 (ko) 광섬유모재와 보조용 석영유리봉의 연결 방법
EP0659699A1 (en) Optical fiber drawing furnace and drawing method
JPH0248500B2 (ko)
US4894078A (en) Method and apparatus for producing optical fiber
JPS62246837A (ja) 光フアイバ用線引き炉
KR100201186B1 (ko) 신장 유리 기질 가열방법 및 장치
JP4302367B2 (ja) 光ファイバの線引き方法および線引き装置
US20020178762A1 (en) Methods and apparatus for forming and controlling the diameter of drawn optical glass fiber
JP2000247688A (ja) 光ファイバの冷却装置
KR100747351B1 (ko) 복수의 가열 영역을 구비한 히터, 이 히터를 구비한 광섬유인선 용해로 및 이를 이용한 광섬유 인선방법
KR100704070B1 (ko) 광섬유 인선용 전기로
JP2004161563A (ja) 光ファイバの線引き方法及び線引き装置
KR100507627B1 (ko) 입구와 출구의 내경이 상이한 광섬유 제조용 로
JPS62138340A (ja) 光フアイバ線引装置
JPS62260730A (ja) 光ファイバ線引炉
JP2003206155A (ja) 紡糸炉および光ファイバの製造方法
KR20050018082A (ko) 광섬유 제조용 프리폼의 인발을 위한 보조튜브
JPH03126636A (ja) 光ファイバ線引炉

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110929

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee