KR100252418B1 - 고분자절연재료및그것을사용한성형체 - Google Patents

고분자절연재료및그것을사용한성형체 Download PDF

Info

Publication number
KR100252418B1
KR100252418B1 KR1019930010859A KR930010859A KR100252418B1 KR 100252418 B1 KR100252418 B1 KR 100252418B1 KR 1019930010859 A KR1019930010859 A KR 1019930010859A KR 930010859 A KR930010859 A KR 930010859A KR 100252418 B1 KR100252418 B1 KR 100252418B1
Authority
KR
South Korea
Prior art keywords
polypropylene
weight
insulating material
less
ppm
Prior art date
Application number
KR1019930010859A
Other languages
English (en)
Other versions
KR940005721A (ko
Inventor
이노우에타케오
키무라시게루
이와타니쯔토무
야마다타카유키
이시이유키오
스기모도류이찌
Original Assignee
나까니시 히로유끼
미쓰이 가가쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27473316&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR100252418(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 나까니시 히로유끼, 미쓰이 가가쿠 가부시키가이샤 filed Critical 나까니시 히로유끼
Publication of KR940005721A publication Critical patent/KR940005721A/ko
Application granted granted Critical
Publication of KR100252418B1 publication Critical patent/KR100252418B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • C08L83/12Block- or graft-copolymers containing polysiloxane sequences containing polyether sequences
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/91Product with molecular orientation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Abstract

본 발명은, 폴리프로필렌의 중합에서 폴리프로필렌의 취득량이 촉매중의 티탄에 대해서 300,000g/g-Ti이상이고, 성형체에 사용하는 폴리프로필렌의 공기중에서 완전 연소시켜서 얻게 되는 회분이 40중량ppm이하, 그 회분조성중 티타늄이 1중량ppm이하이고, 이 폴리프로필렌중에 함유되는 염소분이 2중량ppm이하, 비등 n-헵탄가용분이 1중량%이상 10중량%이하로 함으로써 절연파괴전압이 높은 고분자절연재료 및 이 폴리프로필렌에 10㎛이상의 입자직경을 함유하지 않는 평균입자직경 1㎛이하의 무기산화물 또는 수산화물, 유기폴리실란, 무수말레산그라프트폴리프로필렌, 유기폴리에테르기를 가진 실란화합물을 첨가함으로써 절연파괴저항을 더욱 향상시킨 것을 특징으로 하는 고분자 절연재료이다. 이에 의해, 본 발명의 고분자 절연재료는 절연특성, 특히 절연파괴전압이 높고, 또 적어도 한쪽의 방향으로 연신시켜서 얻은 성형체는 절연파괴전압이 높을 뿐만 아니라, 전기특성과 물성밸런스에 우수한 폴리프로필렌을 제공할 수 있어 공업적으로 매우 가치가 있는 것이다.

Description

고분자절연재료 및 그것을 사용한 성형체
본 발명은 뛰어난 전기특성을 가진 고분자절연재료에 관한 것이다. 상세하게는, 특정의 물성을 가진 폴리프로필렌으로 이루어진 전기절연성이 양호한 고분자 절연재료 및 그것을 사용한 성형체에 관한 것이다. 더 상세하게는 특히 두께를 얇게 해도 뛰어난 전기특성을 가진 고분자절연재료에 관해서, 또 이 재료로 부터 얻게되는 두께가 얇은 성형체에 관한 것이다.
폴리올레핀, 폴리에스테르, 폴리불화비닐리덴, 실리콘수지, 에폭시수지, 폴리스티렌등의 고분자재료는 일반적으로 전기도전율이 작고, 이들의 절연성등의 전기특성을 이용해서 매우 많은 종류의 전기재료로서 사용되고 있다. 이들의 고분자 재료는 전기절연성에 뛰어난 외에, 가요성이 있고, 내열성이 있고, 소수성이 있다고 하는 특징을 가지고 있기 때문에 많은 제품에 고분자 재료가 사용되어 왔다.
폴리올레핀, 그중에서도 폴리프로필렌은 성형가공성이 용이하고 뛰어난 전기적, 기계적, 화학적 성질을 가지고, 또 값싸게 입수할 수 있기 때문에 각종의 전기재료로서 매우 잘 이용되고 있다. 예를들면 전해액재료로서 필터나 필름의 형태로 사용되거나, 전기절연용테이프나 피복재로서 혹은 2축연신 필름로서 콘덴서용 절연필름와 같은 전기절연 재료로서 널리 이용되고 있다. 이들에 사용되는 폴리프로필렌은 그 절연저항이 높은 것일수록 좋고, 그 절연파괴 강도가 높을수록 고성능의 제품을 얻게 되어, 이 개량이 진척되어 왔다.
그러나 현재 사용되고 있는 폴리프로필렌의 절연특성은 매우 뛰어난다고는 할 수 없고, 더 높은 절연특성을 가진 폴리프로필렌을 제조할 수 있다면 공업상 매우 유익하다. 이와같은 목적에서 종래부터 폴리프로필렌의 고순도화가 검토되어 왔다. 예를들면 일본국 특개소61-110906, 동 59-63609, 동 58-188627등에는 폴리프로필렌의 입체규칙성의 비율을 높이고, 비등 n-헵탄 가용분을 적게해서 결정화도를 올리므로서 2축연신폴리프로필렌의 절연파괴강도가 올라가는 것이 개시되어있다. 또 일본국 특개소62-113548, 동 특개평1-254749, 동 1-166955, 동 2-150443등에는 폴리프로필렌속에 잔류하고 있는 촉매잔사나 염소분을 될수 있는 한 적게하는 방법으로 폴리프로필렌의 절연특성을 개량하는 일이 행하여져 왔다.
그러나 그와같은 개량된 고순도의 폴리프로필렌을 공업적으로 생산코저하면 코스트가 높아져 버린다고 하는 문제가 있고, 입체규칙성을 높게하면 결정화도가 높아져서 성형품이 단단해지기 쉽고, 성형가공성도 나빠져서, 가령방사(紡絲)시에는 방사하기 어렵고, 연신시에 연신절단을 일으키거나, 필름성형시에는 보이드가 생성되어, 결국 제품으로서는 절연특성이 나쁜 성형품밖에 얻지 못한다는 문제가 있었다. 또 실제로는 불순물을 완전 제거하는 것은 매우 곤란하여 적지 않게 촉매등으로부터의 잔류불순물이 함유된다.
또한, 종래의 방법에서는, 예를들면 콘덴서필름의 절연재료로서 사용하는 경우에 이것을 사용한 전기부품이나 전자부품을 소형화하는 요망이 매우 강하고, 이것을 해결하는데는 콘덴서 필름의 절연파괴저항을 크게해서 필름을 얇게해서 소형화하는 것이 요망되고 있다.
그러나 종래의 방법에서 얻게된 폴리프로필렌의 연신필름은 10㎛ 정도이상의 두께의 필름의 경우에는 어느정도 큰 절연파괴저항을 가진 것을 얻게되나, 6㎛ 정도이하, 특히 4㎛ 정도로하면 단위 두께당의 절연파괴저항의 값이 극단으로 저하되는 결점이 생겨 두께가 얇은 필름에서 큰 절연파괴 저항의 것을 얻는 것이 곤란하고, 전기부품이나 전자부품을 소형화하는 요망을 해결하는데는 미치지 못하였다.
본 발명자들은 상기과제를 해결해서, 전해액재료로서 필터나 필름의 형태로 사용되거나, 2축연신필름로서 콘덴서필름와 같은 전기절연재료로서 사용할 때에 성형가공성을 손상하지 않고, 값싸게 제공할 수 있는 폴리올레핀재료에 대해서 여러가지 검토하였던 바, 전기절연특성이 고분자재료속에 함유되는 불순물에 의해 매우 큰 영향을 받게 되는 것을 알았다. 불순물로서는 촉매잔사나 공기속의 먼지등이 있고, 그중에서도 특정의 성분이 전기절연특성에 영향을 미치고 있고, 그 성분과 양을 제어하면 촉매잔사등의 불순물이 비교적 폴리머속에 잔존하고 있어도 양호한 절연특성을 가진 것을 발견하였다. 또 종래와 같이 비등 n-헵탄 가용분을 적게해서 결정화도를 올리는 것보다 오히려 특정의 비등 n-헵탄가용분을 가진 폴리프로필렌이 양호한 전기절연성을 가진 것을 알게 되고, 또한 가공성과 물성밸런스에 뛰어난 것을 발견하여 본 발명을 완성하였다.
즉 본 발명은, 폴리프로필렌의 중합에 있어서 폴리프로필렌의 취득량이, 촉매속의 티탄에 대해서 300,000g/g-Ti 이상이고, 성형체에 사용하는 폴리프로필렌의 공기속에서 완전연소시켜서 얻게되는 회분이 40중량 ppm 이하, 그 회분조성중 티타늄가 1중량 ppm 이하이고, 이 폴리프로필렌속에 함유하는 염소분이 2중량 ppm 이하, 비등 n-헵탄가용분이 1중량%이상 10중량%이하인 절연파괴전압이 높은 고분자 절연재료이다.
본 발명의 고분자 절연재료인 폴리프로필렌으로서는, 그 1㎤당 함유되는 1㎛ 이상 10㎛ 이하의 불순물의 개수가 6000개 이하에서 5㎛ 이상 10㎛ 이하의 불순물의 개수가 1000개 이하로서 10㎛을 초과하는 불순물을 함유하지 않는 고순도 폴리프로필렌이 바람직하다.
또 본 발명은, 상기 또는 상기의 고분자절연재료를, 적어도 1개의 방향으로 연신해서 이루어진 전기절연성이 높은 폴리프로필렌성형체이다.
또한, 본 발명에 있어서는, 상기 또는 상기의 고분자절연재료에, 특정의 첨가물을 첨가하므로서, 그 절연성파괴전압을 더 높일 수 있다.
즉, 본 발명은, 상기 또는 상기의 고분자절연재료에 무기산화물 또는 수산화물을 1중량 ppm 이상 10중량 ppm 이하 첨가해서 이루어진 절연파괴전압이 높은 고분자 절연재료이다. 무기산화물 또는 수산화물로서는, 10㎛ 이상의 입자직경을 함유하지 하지 않는 평균입자직경 1㎛ 이하의 마그네슘, 알루미늄, 철의 산화물 혹은 수산화물이 바람직하다.
첨가물로서는, 또 유기폴리실란, 무수말레산 그라프트폴리프로필렌 및 유기폴리에테르기를 가진 실란화합물이 뛰어난 효과를 나타낸다.
즉, 본 발명은, 상기 또는 상기의 고분자절연재료에, 유기폴리실란을 50중량 ppm 이상 10중량%이하 첨가하거나; 무수말레산 그라프트폴리프로필렌을 50중량 ppm 이상 10중량%이하 첨가하거나; 혹은 유기폴리에테르을 가진 실란화합물을 50중량 ppm 이상 10중량%이하 첨가해서 이루어진 절연파괴 전압이 높은 고분자 절연재료이다.
또한 본 발명은, 상기 각종의 첨가물을 첨가해서 이루어진 절연파괴전압이 높은 고분자절연재료를, 적어도 1개의 방향으로 연신해서 이루어진 전기절연성이 높은 폴리프로필렌성형체이다.
본 발명은, 또, 상기 첨가물을 첨가하거나, 또는 첨가하지 않은 상기 여러가지의 고분자절연재료를, 2축연신해서 이루어진 전기절연성필름이다.
본 발명의 고분자절연재료인 폴리프로필렌을 얻기 위해서는, 티탄, 마그네슘, 할로겐 및 내부첨가 전자공여성화합물을 함유한 고체상티탄 촉매성분과 주기율표의 제1족, 2족, 3족으로부터 선택된 금속을 함유한 유기금속화합물 및 외부첨가전자 공여성화합물로 이루어진 중합촉매의 존재하에 프로필렌을 중합시키는 것이 바람직하고, 이 중합방법으로 얻게된 폴리프로필렌을 탈 할로겐처리하므로서, 특히 바람직한 본 발명의 고분자절연재료를 얻을 수 있다.
또, 본 발명의 고분자절연재료를 2축연신해서 이루어진 전기절연필름에 있어서는, 필름의 두께가 1~6㎛ 일때에, 특히 뛰어난 본 발명의 효과를 달성할 수가 있다.
본 발명의 방법에서는 폴리프로필렌의 중합에 있어서 폴리프로필렌의 취득량이, 촉매속의 티탄에 대해서 300,000g/g-Ti 이상, 더 바람직하게는 1,000,000g/g-Ti 이상, 더욱 바람직하게는 3,000,000g/g-Ti 이상일 것이 필요하다.
종래부터 고분자 절연재료로서 사용하는 폴리프로필렌은 회분이 적은 폴리프로필렌을 사용하는 것이 필요로하게 되어 있었으므로, 종합해서 얻게된 폴리프로필렌에 특별한 후처리를 행하여 회분을 감소시키는 방법이 취해지고, 그에 의해서 폴리프로필렌의 회분을 감소시키는 것은 가능하였다. 그러나, 종합의 과정에서 그 취득량이 촉매속의 티탄에 대해서 300,000g/g-Ti 미만인 폴리프로필렌에 대해서 후처리를 연구해서 전체의 회분을 감소시킨 경우에는, 이 폴리프로필렌으로부터 얻게된 연신필름은 10㎛정도이상의 두께의 필름의 경우는 상당히 큰 절연파괴저항을 가진 것을 얻게되나, 필름의 두께를 6㎛ 정도이하, 특히 4㎛ 정도로 하면 단위두께당의 절연파괴저항의 값이 극단으로 저하되는 결점이 생겨 두께가 얇은 필름에서 큰 절연파괴저항의 것을 얻는 것이 곤란하였다.
원인은 불명하지만, 종합의 과정에서 그 취득량이 촉매속의 티탄에 대해서 커지 않은 경우는, 회분을 감소시키는 후처리를 행하므로서 티탄성분이 전체적으로 어느정도 제거되어도, 부분적으로 티탄성분이 제거되지 않고 남는 부분이 존재하고, 그 부분이 필름을 얇게한 경우에 절연파괴저항을 낮게하는 결함으로 되는 것으로 본 발명자들은 추정하고 있다.
본 발명자들은 예의 검토한 결과, 본 발명에서 사용하는 폴리프로필렌은 먼저 중합의 과정에서 생성폴리프로필렌속에 티탄성분이 충분히 분산해서, 응집되어 있지 않을 것이 필요하고, 이것이 충분히 분산하기 위해서는, 중합에서 생성하는 폴리프로필렌을 티탄금속당 충분히 큰 취득량으로한 폴리프로필렌을 원료로할 것이 필요한 것이 중요한 것을 발견하여 본 발명에 도달한 것이다.
또 본 발명에 있어서는 회분 조성의 분석으로부터, 폴리프로필렌속에, 티타늄은 1중량 ppm 이하, 바람직하게는 0.5중량 ppm 이하, 더 바람직하게는 0.3중량 ppm 이하일 것이 요구된다. 이것은 취득량이 낮은 경우는 중합해서 얻게된 폴리프로필렌으로부터 촉매잔사속의 티탄을 제거할 필요가 있으나, 중합의 과정에서의 폴리프로필렌의 티탄당 취득량이 1,000,000g/g-Ti 이상이면 촉매성분속의 티탄은 전연제거할 필요는 없고, 촉매계와 중합조건을 선택하면 중합해서 얻게된 폴리프로필렌의 후처리를 대폭으로 간소화하는 것이 가능해진다.
폴리머속에 잔류한 촉매잔사는 매우 미세하게 되어 폴리머속에 분산되어 있으면 문제는 없지만, 그중에서도 티탄성분은, 응집되기 쉽고, 큰 핵이된 것은 후처리로서는 제거되지 않기 때문에 전기특성에 악영향을 미친다. 그 때문에 폴리프로필렌의 공기속에서 연소시켜서 얻게 되는 회분이 40중량 ppm 이하에서도, 그 회분조성중 티타늄이 1중량 ppm이상이면 전기특성에 악영향을 미친다. 촉매의 활성이 충분히 높지 않는 경우에는 생성한 중합체를 세정하므로서 촉매잔사를 적게할 수 있으나, 그 경우에도 티탄성분이 응집해 있으면 잔류량이 미량에서도 전기특성에 악영향을 미친다.
본 발명의 고분자재료는 폴리머속의 회분이 40중량 ppm 이하, 바람직하게는 20중량 ppm 이하, 더 바람직하게는 15중량 ppm 이하이다. 회분이 40중량 ppm을 초과하면, 섬유나 필름으로 가공할 때에 연신절단이나 보이드가 생성되는 등해서 절연특성이 나빠진다.
종래방법과 같이 티탄당의 취득량이 작은 종합과정에서 얻게된 폴리프로필렌을 원료로서 후처리로 촉매잔사를 매우 소량이 될때까지 제거하는 경우보다도 본 발명의 경우는 회분은 많아도 상관없으므로 후처리의 간략화가 가능하게 되어, 공업적인 이익은 크다.
본 발명의 고분자절연재료는 그 비등 n-헵탄가용분이 1중량%이상 10중량%이하, 바람직하게는 1.0중량%이상 9.0중량%이하, 더 바람직하게는 1.5중량%이상 8.5중량%이하인 폴리프로필렌이다. 여기서 비등 n-헵탄가용분이란 폴리프로필렌 2g을 속슬레추출기를 사용해서 비등 n-헵탄으로 6시간 추출한 n-헵탄가용분을 사입량에 대한 중량%로 표시한 것이다. 비등 n-헵탄가용분이 1중량%미만의 폴리프로필렌은 결정화도가 높아지고, 결정화도가 너무 높아서 성형품이 단단해지기 쉽고, 성형가공성이 나쁘고, 전기절연특성이 나쁜 성형품밖에 얻지 못한다. 본 발명의 폴리프로필렌에서는, 종래의 지견과는 달리, 비등 n-헵탄 추출나머지가 95~90중량%의 범위의 것이라도 전기절연특성이 저하되지 않고, 오히려 연신성이 양호하고 바람직한 결과를 부여한다.
또, 비등 n-헵탄불용부의 아이오소탁틱펜타드분율은 0.900이상, 바람직하게는 0.92이상, 더 바람직하게는 0.950이상이다.
또, 본 발명에 있어서는 폴리프로필렌속에 함유되는 염소분은 2중량 ppm이하, 더 바람직하게는 1중량 ppm 이하이다. 이온성의 불순물이 전기특성에 악영향을 미치는 것은 공지의 사실이고, 그중에서도 미량의 염소가 큰 영향을 미치는 것이 앞서 예로든 일본국 특개소62-113548, 동 특개평1-254749, 동 1-166955, 동 2-150443등에도 기술되어 있다. 그러나 이들의 인용예에는 염소분이 10 ppm 미만에서, 유전손율에의 효과는 기재되어 있으나 전기절연성에 관해서는 하등기재가 없다. 이 폴리머속의 염소분과 전기절연성의 관계에 대해서는, 실은 폴리머속의 염소분이 2중량 ppm을 경계로 해서 크게 변화되는 것이 발견되었다. 즉 염소분이 2중량 ppm을 초과하면 절연특성이 나빠지나, 염소분이 2중량 ppm 이하기 되면 절연특성은 대폭으로 개량된다. 후술하는 중합촉매속에는 염소가 많이 함유되어 있기 때문에 세정후에 염소의 함유량이 많은 경우에는 또 아민화합물, 에폭시화합물, 암모니아, 유기지방산등으로 탈염소처리를 행하여 폴리머속의 염소분을 2중량 ppm 이하로 하는 것이 바람직하다.
이들의 탈염소처리중에서도 특히 에폭시화합물을 사용한 탈염소처리가 바람직하다. 여기서 에폭시화합물로서는 에틸렌옥사이드, 프로필렌옥사이드, 부텐옥사이드, 시클로헥센옥사이드등의 알킬렌옥사이드나 글리시딜알코올, 글리시딜산, 글리시딜에스테르등이 바람직하게 사용된다. 이들의 에폭시화합물을 사용해서 폴리머의 탈염소처리를 행할 때는 에폭시화합물과 동몰이상의 OH기를 가진 화합물을 사용하면 매우 효과가 있다. 여기서 OH기를 가진 화합물로서는, 물, 알코올 화합물을 들수 있다. 또 에폭시화합물의 사용량은 폴리머속에 함유되어 있는 염소에 대해서 동몰이상, 바람직하게는 2배몰~10,000배몰, 더 바람직하게는 10배몰~1,000배몰의 양비로 사용된다. 에폭시화합물을 사용한 폴리머의 탈염소처리는 배치식에서나 유통식에서도 특히 제한은 없고, 요컨대 반응이 용이하게 일어나도록 염소분과 이들의 화합물이 접촉되면 된다. 탈염소처리의 온도도 특히 제한은 없으나, 통상 실온에서 폴리머의 융점이하이면 되고, 바람직하게는 50℃~100℃이다. 탈염소처리를 행하기 위한 처리시간은 에폭시화합물에 의한 탈염소반응이 완결하는데 필요한 시간이고, 통상은 10초~1시간, 바람직하게는 1분~30분간이다. 또 반응생성물은 계외로 제거하는 일이 바람직하고, 감압하거나, 공기나 질소를 유통시켜서 제거한다.
본 발명의 폴리프로필렌은, 촉매의 단위량당의 폴리머의 취득량이 낮은 경우에는 후처리를 행하여, 촉매잔사를 제거할 필요가 있다. 또 촉매의 활성이 높아서 폴리머의 취득량이 많은 경우에도 후처리를 행하여 촉매잔사를 제거하는 일이 바람직하다. 후처리방법으로서는 중합해서 얻게된 폴리프로필렌을 액형상의 프로필렌, 부탄, 헥산 혹은 헵탄등으로 세정한다. 이때 물, 알코올화합물, 케톤화합물, 에테르화합물, 에스테르화합물, 아민화합물, 유기산화합물, 무기산등을 첨가해서 티탄이나 마그네슘등의 촉매성분을 가용화해서 더욱 추출하기 쉽게하는 일도 행하여 진다. 또 물이나 알코올등의 극성화합물로 세정하는 일도 바람직하다.
또 상기의 탈염소처리는 상기의 세정전, 세정중 혹은 세정후에 행하여진다. 세정전, 세정중 혹은 세정후에 계속해서 탈염소처리를 행할때는 상기의 용액속에 이들의 아민화합물, 에폭시화합물, 암모니아. 유기지방산을 첨가해서 폴리머에 좋게 접촉시킨다. 혹은 이들의 용액을 제거한 후에 폴리머와 기체형상의 이들의 화합물을 접촉시키는 일도 바람직하다. 또는 생성된 폴리머에 안정제를 첨가해서, 압출기를 사용해서 펠릿화할때에 압축기속에 이들의 화합물을 첨가하는 것도 바람직하다.
여기서 폴리프로필렌은 프로필렌의 단독중합체 뿐만아니라 1종류 또는 그 이상의 다른 불포화탄화수소 또는 불포화실란화합물와의 랜덤공중합체 혹은 블록공중합체도 포함된다. 여기서 다른 불포화탄화수소로서는 에틸렌, 1-부텐, 1-펜텐, 3-메틸펜텐-1, 1-펜텐, 3-메틸부텐-1, 1-헥센, 4-메틸펜텐-1, 5-에틸헥센-1, 1-옥텐, 1-데센, 1-도데센, 비닐시클로헥센, 스티렌, 알릴벤젠, 시클로펜텐, 노르보르넨, 5-메틸-2-노르보르넨등이, 불포화실란화합물로서는 알릴실란등을 들수 있다. 이 공중합체에 있어서는, 비등 n-헵탄가용분이 1중량%이상 10중량%이하가 되도록 랜덤공중합에서는 프로필렌이외의 코모노머의, 비율이 10wt%미만, 블록공중합일때에는, 프로필렌단독에서의 중합부분이 전체의 50wt%이상을 점하는 것이 바람직하다.
또한 폴리프로필렌이외의 다른 종류폴리머를 혼합해서도 사용할 수가 있다. 예를들면, 폴리프로필렌과 폴리부텐, 폴리펜텐, 폴리헥센, 폴리헵텐, 폴리옥텐 등의 폴리-α-올레핀이나 폴리시클로펜텐, 폴리노르보르넨등의 고리상폴리올레핀과의 혼합물이나, 프로필렌과 탄소수 2~20의 올레핀과의 공중합체와 상기 타종류의 폴리머와의 혼합물이 예시되나, 이들의 혼합폴리머의 경우, 혼합물속에 점하는 타종류의 폴리머의 비율은 전체의 30wt%이하가 바람직하다.
본 발명의 폴리프로필렌을 제조하는데 사용하는 촉매로서는, 통상, 공업적으로 폴리프로필렌을 제조하기 위하여 사용되고 있는 촉매가 사용된다. 예를들면 3염화티탄과 유기알루미늄화합물이나, 할로겐화마그네슘등의 담체위에 3염화티탄이나 4염화티탄을 담지한 것과 유기알루미늄화합물등이 사용된다.
폴리프로필렌을 제조하는 촉매로서는 고활성에서 티탄성분이 원래 적은 촉매를 사용하는 것이 바람직하고, 상기에든 중에서는 3염화티탄계의 것보다 할로겐화 마그네슘등의 담체위에 3염화티탄이나 4염화티탄을 담지한 촉매계를 사용하는 것이 바람직하다.
그중에서도 할로겐화마그네슘 담체위에 내부첨가전자 공여성화합물로서 C-O 또는 C-N결합을 함유하는 화합물과 적어도 1개의 할로겐을 가진 4가의 티탄화합물을 담지한 천이금속촉매성분, 유기알루미늄화합물 및 외부첨가전자공여성 화합물로 이루어진 촉매가 바람직하다.
이와같은 촉매는 할로겐화마그네슘으로서는 염화마그네슘, 브롬화마그네슘, 혹은 그들과 에테르, 모노에스테르와의 복합체 혹은 염화마그네슘와 브롬화마그네슘의 공정체(共晶體)등이 사용된다. 내부첨가전자공여성화합물로서 사용되는 C-O 또는 C-N결합을 함유하는 화합물로서는, 에스테르, 에테르, 오르토에스테르, 알콕시규소화합물을 들수 있다. 그중에서도 벤조산, 프탈산의 에스테르등의 방향족산의 에스테르화합물이 바람직하고, 특히 프탈산과 탄소수 1~12의 알코올와의 에스테르가 바람직하게 이용된다.
또 4가의 티탄의 할로겐화물로서는, 할로겐으로서 바람직하게는, 염소를 예시할 수 있고, 일부의 할로겐이 알콕시기로 변한 것도 이용되나, 특히 바람직하게는, 4염화티탄이 사용된다. 방향족산의 에스테르와 할로겐화티탄의 사용비율로서 0.3:1~1:0.3몰비이고, 더 바람직하게는 0.5:1~1:0.5이다. 또 할로겐화마그네슘에 대한 할로겐화티탄의 비율로서는 1:0.001~1:0.5중량비 정도가 바람직하다.
외부첨가전자공여성화합물로서, 에스테르, 에테르, 오르토에스테르, 알콕시규소화합물이 사용되고 구체적으로는, 변조산 및 핵치환의 벤조산과 탄소수 1~10의 알코올와의 에스테르나 알콕시실란을 들수 있다.
여기서 사용하는 알콕시 실란으로서는, 일반식:RxSi(OR1)4-x(식중 R는 탄소수 3~12의 알킬기, R1는 탄소수 1~12의 알킬기, X는 1,2 또는 3)로 표시되는 것이다.
바람직한 외부첨가전자공여성화합물로서는, 메틸트리메톡시실란, 에틸트리에톡시실란, 1-부틸트리메톡시실란, 비닐트리에톡시실란, 페닐트리메톡시실란, 디페닐디메톡시실란, 페닐메틸디메톡시실란, 시클로헥실메틸디메톡시실란, 디시클로헥실디메톡시실란, 2-노르보르넨트리에톡시실란, 2-노르보르넨메틸디메톡시실란, 디시클로펜틸디메톡시실란, 시클로펜틸메틸디메톡시실란, 시클로펜틸디메틸메톡시실란, 트리시클로펜틸메톡시실란, 디이소프로필디메톡시실란, 1-부틸메틸디메톡시실란, 디노르말프로필디메톡시실란이 있고, 또 바람직하게는, 디페닐디메톡시실란, 시클로헥실메틸디메톡시실란, 디시클로헥실디메톡시실란, 디시클로펜틸디메톡시실란, 디이소프로필디메톡시실란, 1-부틸메틸디메톡시실란, 디노르말프로필디메톡시실란등이 사용된다.
유기알루미늄화합물로서는, 바람직하게는 트리메틸알루미늄, 트리에틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄등의 트리알킬알루미늄 및 그 1~2개의 탄화수소잔기가 염소 또는 브롬으로 치환된 디에틸알루미늄 클로라이드, 디프로필알루미늄클로라이드, 디헥실알루미늄클로라이드와 같은 디알킬알루미늄클로라이드 등의 알킬알루미늄할로겐 및 이들의 조합된 것이 예시된다.
천이금속촉매성분속의 티탄에 대한 유기알루미늄화합물 및 상기 외부첨가전자공여성화합물의 사용비율로서는 1:1:1~10,000:10,000몰비, 통상은 1:1:1~1,000:1,000몰비이다.
이들의 할로겐화마그네슘에 담지된 할로겐화티탄 촉매성분의 제조방법에 대해서는 공지의 방법이 사용되고 각별한 한정은 없으나, 활성이 큰 촉매, 특히 중합에 있어서의 폴리프로필렌의 취득량이 1,000,000g/g-Ti 이상, 특히 3,000,000g/g-Ti 이상을 얻게되는 것이 바람직하다.
이들의 담지 촉매는 고활성이고 담체의 염화마그네슘이 부드럽기 때문에, 중합후 미세하게 분산해서 티탄의 응집을 일으키지 않기 때문에 바람직하다.
중합시온도는 상온~150℃, 압력은 상압~100kg/㎠에서 행하는 것이 일반적이다. 중합방법은 용매중합법, 덩어리형상중합법, 기상중합법등 종래의 중합법이 사용되나, 특히 티탄 당의 취득량을 향상시켜서, 본원 발명의 취득량이 300,000g/g-Ti 이상을 만족하기 위해서는 덩어리형상 중합법, 기상중합법이 바람직하다.
상술한 회분, 티탄 및 염소의 정량방법으로서는, 공지의 방법이 이용된다. 예를들면 회분을 측정하는 방법으로서는, 먼저 1g~100g 정도의 시료를 사용해서, 백금, 석영 또는 자기제의 도가니나 접시속에서 그들의 시료를 연소시킨다. 또 전기로속에서 생성된 탄소를 약 800℃에서 완전연소시켜서, 도가니가 상시 중량이 된후, 남은 회분의 중량을 구해서, 시료에 대한 중량백분율을 산출하는 방법등을 들수 있다. 회분조성은 이들의 회분을 사용해서 원자흡광법이나 형광X선법이나 비색법등의 통상의 분석방법으로 구할 수 있다.
또 염소를 정량하는 방법으로서는, 시료에 스테아르산나트륨을 첨가연소시키는 일없이 휘산시켜, 회분화후 NaCl로서 포집된 염소를 물로 추출하고, 티오시안산 제2수은에 의한 비색법으로 정량하는 방법(비색법)이나, 시료를 아르곤가스와 산소가스의 혼합기류속에서 연소하고, 생성된 염소이온을 전량(電量)적으로 발생시킨 은이온으로 적정(適定)해서 정량하는 방법(전기량법), 또 마찬가지로 해서 시료를 연소한 후, 생성된 염소이온을 이온크로마토그래프로 정량하는 방법(이온크로마토그래프법), 혹은 평판 또는 정제형으로한 시료에 X선을 조사해서, 얻게된 형광X선의 강도에 의해 정량하는 방법(형광X선법), 시료에 열중성자를 조사해서, 핵반응에 의해서 생성하는 염소의 방사선핵 종류의 방사능을 정량하는 방법(방사화분석법)등을 들수 있다.
본원 발명의 바람직한 용도로서는 전기절연필름으로서 연신필름을 들수 있다. 이연신필름의 성질은 그 원료가 되는 압출필름의 원단의 성질의 영향을 크게 받는다. 전기절연필름로서의 연신필름은 절연파괴전압이 높을 것이 필요하고, 그렇기 위해서는 이 필름속의 불순물수가 적을 것이 필요하다. 그 때문에 그 원료가 되는 압출필름원단의 불순물의 수를 적게하는 것이 필요하다. 이 불순물은 주로 촉매잔사에 기인되는 것으로, 이것은 압출필름원단을 현미경으로 주의 깊게 관찰하므로서 평가할 수 있다.
여기서 원단속의 불순물의 개수를 세는 방법으로서는 현미경을 사용해서 불순물의 개수를 세는 방법을 들수 있다. 그러나 1㎛ 전후의 불순물을 현미경을 사용해서 직접찾아내는 것은 매우 곤란하기 때문에, 먼저 원단을 더 연신해서 얇은 2축연신필름로서 불순물을 중심으로한 보이드를 형성시킨다. 통상 이 조작에 의해 보이드의 크기는 불순물의 핵을 중심으로 해서 연신배율에 비례한 크기가 되므로 보이드는 쉽게 찾아낼수 있게 된다. 불순물은 이 보이드속에 함유되므로 보이드를 더 상세히 관찰하므로서 불순물을 발견할 수 있다. 구체적으로는 20mmψ의 2층 T다이에서 시료인 폴리프로필렌에 대해서 두께 140㎛의 원단을 작성하고, 145℃에서 1분간예열한 후, 15cm/초의 연신속도로 세로방향으로 5배, 가로방향으로 7배 순차적으로 연신을 행하고, 제막한 필름을 위상차 현미경을 사용해서 1㎛이상의 보이드를 발견하고, 잘관찰해서 그핵이 되고 있는 고체불순물의 크기를 측정하고, 단위면적당의 개수를 환산해서, 압출 필름원단 1㎤당 함유되는 직경 1㎛ 이상의 불순물의 개수로 한다.
본 발명의 방법에 있어서는, 압출필름원단속의 직경 1㎛ 이상 10㎛이하의 불순물의 1㎤당에 함유되는 수가 6000개이하, 바람직하게는 5000개 이하일 것이 바람직하고, 10㎛을 초과하는 직경의 불순물의 존재는 바람직하지 않다.
이들의 불순물은 촉매의 잔사에 유래되는 것 뿐만아니라, 중합의 과정이나 성형 가공시에도 혼입되는 것이 있기 때문에, 될수 있는 한 이들의 혼입이 일어나지 않도록 하는 것도 필요하다.
본 발명에 있어서는 상기의 폴리프로필렌을 통상의 방법으로 고분자절연재료로서 사용될 수 있으나, 또 본 발명에서는 이폴리프로필렌에 10㎛이상의 입자직경을 함유하지 않은 평균입자직경 1㎛ 이하의 무기산화물 또는 수산화물, 유기폴리실란, 무수말레산그라프트폴리프로필렌, 유기폴리에테르기를 가진 실란화합물을 첨가해서 절연파괴저항을 더 향상시킬 수 있다.
종래, 고분자절연재료로서 사용하기 위해서는 무기화합물등의 불순물은 매우 적을 것이 필요하고, 그 때문에 중합해서 얻게된 폴리프로필렌으로부터 회분을 제거하기 위해 복잡한 후처리방법을 적용하고, 매우 고가의 방법이 행하여져 왔다.
그러나, 본 발명에 있어서는, 상기 특성의 화합물의 첨가는 반대로 절연파괴저항을 더 향상시킬 수 있는 것을 발견하였다. 이것은 놀라운 사실이다.
이들의 첨가제를 첨가하므로서 절연파괴저항이 향상되는 이유는 지금 현시점에서 명백하지 않으나, 아마도 이들의 미소한 화합물은 전자를 트랩하거나, 반대로 전자를 분산시키는 효과를 가지고 있다고 사료된다. 이들의 첨가제의 효과는 단지 절연파괴전압을 향상시킬 뿐만아니라, 고온하에서도 절연파괴전압이 저하되지 않는다고 하는 성질을 부여할 수 있다. 즉, 통상, 2축연신폴리프로필렌필름의 절연파괴전압은 실온부근에서 측정되나, 실온부근에서의 측정치와 비해서, 예를들면 80℃~100℃에서의 절연파괴전압을 현저하게 저하되는 결점이 있는 것이 알려져 있다. 콘덴서는 축방전을 반복하게되나, 이에 의해 열이 발생하고, 실제로 사용되는 경우는 실온보다 훨씬 높은 온도가 된다. 이 경우, 2축연신폴리프로필렌을 사용한 콘덴서는 온도의 상승에 의해서 절연파괴전압이 저하해서 콘덴서의 성능에 악영향을 미친다. 본 발명의 폴리프로필렌절연재료는 그 자체로 뛰어난 성능을 가지나, 또 상기 유기폴리실란, 무수말레산그라프트폴리프로필렌, 유기폴리에테르기를 가진 실란화합물을 첨가하므로서 내열성을 대폭으로 향상시킬 수 있다.
본 발명은 또 이들의 고분자절연재료에, 무기산화물 또는 수산화물을 1중량 ppm 이상 10중량%이하, 바람직하게는 30중량 ppm에서 5중량%, 더바람직하게는 100중량 ppm로부터 5중량% 첨가해서 이루어진 절연파괴전압이 높은 고분자절연재료이다. 여기서 무기산화물 또는 수산화물은 10㎛ 이상의 입자직경을 함유하지 않는 평균입자직경 1㎛ 이하, 더 바람직하게는 0.1㎛ 이하의 마그네슘, 알루미늄, 철의 산화물 혹은 수산화물이다. 이들의 화합물의 첨가효과는, 그 기구는 정확하게 알지 못하나, 전기절연성을 향상시키는 효과가 있다. 마그네슘, 알루미늄, 철의 산화물 혹은 수산화물은 공업적으로 생산되고 있고, 분말상의 것이 입수 가능하고, 평균입자직경이 상기의 수치보다 큰 것은 더 분쇄하거나, 분급해서 사용할 수 있다. 또 분산성을 개량하기 위해 표면처리를 한 것도 사용할 수가 있다.
또 분산성을 높이기 위해 분산성이 좋은 화합물을 폴리프로필렌속에 미리 분산시켜 놓고 화학반응에 의해, 그들의 마그네슘, 알루미늄, 철의 화합물을 산화물이나 수산화물로 바꾸는 방법도 들수 있다.
구체적으로는 마그네슘, 알루미늄, 철의 할로겐화물이나 황산염 혹은 유기산염 등의 화합물을 알칼리나 아민화합물, 옥시실란화합물, 암모니아등과 접촉반응시켜서 수산화물이나 산화물로 바꿀수 있다. 이들의 반응은 액상으로나 기상에서도 행할 수 있다.
본 발명은 또 이들의 고분자절연재료에, 유기폴리실란, 무수말레산그라프트폴리프로필렌, 유기폴리에테르기를 가진 실란화합물등의 고분자량의 화합물을 50중량 ppm 이상 10중량%이하, 더 바람직하게는 100중량 ppm 이상 5중량%이하 첨가해서 이루어진 절연파괴전압이 높은 고분자절연재료이다.
여기서 유기폴리실란으로서는 하기의 일반식(1)으로 표시되는 주사슬이 규소인 유기폴리실란의 호모폴리머, 코폴리머, 더폴리머이다.
(식중, R1, R2, R3, R4, R5및 R6은, 수소, 알킬, 아릴, 알콕시, 시릴알킬을 표시하고, n,m 및 p는 폴리머화합물속의 모노머단위의 비율을 표시한 0을 함유한 정수이고 또한 다음식, n+m+p3을 만족시키는 정수를 표시한다.)
이들의 유기폴리실란은 공업적으로 생산되고 있고, 또 디할로겐화실란을 나트륨등으로 탈염소중축합한 리시실렌화합물이나 고리상실란화합물을 중합하는 방법, 혹은 모노실란을 천이금속화합물을 사용해서 탈수중축합해서 제조할 수가 있다.
구체적으로는 폴리페닐메틸실란, 폴리디페닐실란, 폴리페닐메틸-코-디메틸실란, 폴리페닐에틸실란, 폴리디헥실실란, 폴리페닐메틸-코-디페닐실란, 폴리프로필메틸실란, 폴리디펜틸실란, 폴리디-1-부틸-코-디메틸실란, 폴리부틸메틸실란, 폴리디부틸실란, 폴리펜틸메틸실란, 폴리디옥틸실란, 폴리도데실메틸실란, 폴리트리메틸시릴메틸실란, 폴리트리메톡시시릴메틸실란, 폴리페닐실란, 폴리시클로헥실메틸실란, 폴리시아노에틸메틸실란, 폴리2-아세톡시에틸메틸실란, 폴리2-카르보메톡시에틸메틸실란등을 들수 있다.
이들의 폴리실란화합물과 폴리올레핀의 혼합방법으로서 특히 제한은 없고 간단하게 양자를 용융혼합하는 방법, 혹은 폴리실란을 함유한 촉매를 사용해서 폴리올레핀을 중합하고, 폴리실린을 분산시키는 방법등을 들수 있다. 또 이들의 폴리실란 화합물을 고농도로 함유한 마스터배치를 제조한 후 필요에 따라서 다른 폴리올레핀으로 적당한 농도가 되도록 희석해서 사용할 수도 있다.
이들의 폴리실란화합물의 폴리올레핀에 대한 비율로서는 50중량 ppm~10중량%가 바람직하다. 더 바람직하게는 100중량 ppm 이상 5중량%이하이다. 50중량 ppm에 차지않으면 효과가 작고, 10중량%를 초과해도, 각별히 그 효과가 증대하는 일은 없고, 섬유나 필름으로 가공할 때에 연신절단이나 보이드가 생성되는 등해서 절연특성이 나빠지는 경우가 있으므로 바람직하지 않다.
본 발명에서 사용되는 무수말레산그라프트폴리프로필렌은 공업적으로 생산되고 있고, 여러가지의 그레이드의 것이 입수가능하고, 또 폴리프로필렌에 무수말레산을 래디칼발생제와 같이 첨가해서 가열하므로서 제조할 수도 있다.
무수말레산그라프트폴리프로필렌속에 함유되는 무수말레산의 그라프트율은 0.1%~25%의 것이 사용되고, 이들의 무수말레산그라프트폴리프로필렌과 폴리올레핀의 혼합방법으로서 특히 제한은 없고 간단히 양자를 혼합 용융하는 방법 혹은 이들의 무수말레산그라프트폴리프로필렌을 고농도로 함유한 마스터배치를 제조한 후 필요에 따라서 다른 폴리올레핀으로 적당한 농도가 되도록 희석해서 사용할 수도 있다.
이들의 무수말레산그라프트폴리프로필렌의 폴리올레핀에 대한 비율로서는 무수말레산의 그라프트율에 의해서도 다르나 무수말레산 그라프트폴리프로필렌의 비율이 50중량 ppm~10중량%, 더 바람직하게는 100중량 ppm 이상 5중량%이하이다. 50중량 ppm에 차지않으면 효과가 작고, 10중량%를 초과해도, 각별히 그 효과가 증대하는 일은 없고, 섬유나 필름으로 가공할 때에 연신절단이나 보이드가 생성되는 등해서 절연특성이 나빠지는 경우가 있어서 바람직하지 않다.
유기폴리에테르기를 가진 실란화합물은 하기의 일반식(2)으로 표시되는 화합물이다.
(여기서 R1은 동일하거나 또는 각각 다른 탄화수소잔기, R2는 도일하거나 또는 각각 다른 탄화수소잔기를 표시한다. 또 n 및 m은 괄호내의 구조단위의 비율을 표시하고, 여기서 m은 0 또는 자연수, n은 1이상의 자연수이고, m+n은 1이상 1000이하이다. 또 k는 0 또는 자연수, ℓ은 1이상의 자연수이다.)
이들의 폴리에테르기를 가진 실란화합물은 공업적으로 생산되고 있고, 시장에서 용이하게 입수할 수 있다. 구체적으로는, 트리스(2-메톡시에톡시)비닐실란, 트리스(2-메톡시에톡시)메틸실란, 트리메톡시시릴(폴리에테르), 폴리에테르변성실리콘오일 등을 들수 있다.
이들의 폴리에테르기를 가진 실란화합물과 폴리올레핀의 혼합방법은, 특히 제한은 없고 간단히 양자를 용융혼합하는 방법, 혹은 폴리에테르기를 가진 실란화합물을 함유한 촉매를 사용해서 폴리올레핀을 중합하고, 폴리에테르기를 가진 실란화합물을 분산시키는 방법등을 들수 있다. 또 이들의 폴리에테르기를 가진 실란화합물을 고농도로 함유한 마스터배치를 제조한 후 필요에 따라서 다른 폴리올레핀으로 적당한 농도가 되도록 희석해서 사용할 수도 있다.
이들의 폴리에테르기를 가진 실란화합물의 폴리올레핀에 대한 비율로서는 50중량ppm~10중량%가 바람직하다. 더 바람직하게는 100중량 ppm 이상 5중량% 이하이다. 50중량 ppm에 차지 않으면 효과가 작고, 10중량%를 초과해도, 각별히 그 효과가 증대하는 일은 없고, 섬유나 필름으로 가공할 때 연신절단이나 보이드가 생성되는 등해서 절연특성이 나빠지는 경우가 있으므로 바람직하지 않다.
본 발명의 또하나의 실시태양은 상기의 고분자절연재료를 적어도 1개의 방향으로 연신해서 이루어진 전기절연성이 높은 폴리프로필렌성형체이다.
또 본 발명은 상기의 고분자절연재료를, 2축연신해서 이루어진 전기절연성필름이다.
본 발명의 고분자절연재료는 성형가공되어 사용되나, 특히 섬유나 필름의 형상으로 사용된다. 이들의 성형체는 미연신필름, 1축연신필름, 2축연신필름으로서 바람직하게 사용된다. 본 발명의 실시태양의 하나는 고분자절연재료를 적어도 한개의 방향으로 연신해서 이루어진 전기절연성이 높은 폴리프로필렌성형체이다. 필름의 연신방법으로서는 공지의 방법으로 행하여지고, 특히 제한은 없으나, 통상의 1축연신법 혹은 로울연신법이나, 2축연신방법에서는 길이방향과 폭방향을 동시에 연신하는 인프레이션법이나 길이방향과 폭방향을 순차적으로 연신하는 텐터방법을 들 수 있다.
예를들면 텐터법에서는 T다이로부터 용융압출된 용융필름을 냉각로울로 고화시키고, 용융성형필름을 필요에 따라 예열한 후 연신존에 도입하고, 이어서 120~150℃의 온도에서 세로방향으로 1.5~8배 연신된다. 이 연신배율은 1.5~8배, 바람직하게는 2~7배이고, 1.5배보다 낮으면 필름강도가 크게 되지 않고, 8배를 초과하면 보이드가 발생하기 쉽고, 폭방향의 강도가 낮아지고, 길이방향으로 찢어지기 쉽게 된다. 이어서 또 140~170℃의 온도에서 6~12배로 폭방향으로 연신한다. 최후로 이 2축연신된 필름은 160~190℃에서 열고정하는 것도 필요에 따라 행하여진다.
본 발명의 고분자절연재료는, 그 자체 매우 전기절연성이 높은 재료이나, 그것을 사용한 성형체의 경우, 필름이나 섬유등 특히 연신처리한 성형체는 매우 높은 전기 절연성을 나타내는 일이 특징이다. 특히 2축연신해서 얻게되는 필름은 기계적인 강도도 높고, 얇은 것으로부터 두꺼운 것까지 제조가능하며, 본 발명의 재료는 특히 20㎛이하의 박막, 바람직하게는 10㎛이하, 더 바람직하게는 1㎛~6㎛의 필름두께의 2축연신필름으로 했을 때 공지의 재료를 사용한 경우보다 양호한 전기특성을 표시한다.
본 발명의 성형체를 성형할때에는, 본 발명에 있어서의 폴리프로필렌에, 통상의 폴리프로필렌에 사용되는 여러가지의 안정제나 첨가제를 첨가해서 사용할 수가 있다.
본 발명에 있어서 절연파괴전압은 이하의 방법으로 측정하였다.
JIS-2330에 준해서, 일본국 가스가 전기(주)제 직류내압시험기를 사용, 레인지를 20KV로 세트하고, 100V/Sec의 전압상승으로서, 필름에 전압을 인가해서 절연파괴전압을 측정하고, 내압특성을 구하였다. 절연파괴전압은 절연파괴전압측정치(V)를 필름의 두께(㎛)로 나눈 것이다.
측정에 요한 필름은 폴리프로필렌의 펠릿을 270℃에서 압출하고, 두께 140㎛의 시트형상필름을 작성하고, 또 이 필름을 TM 통사 제2축연신기를 사용해서, 150℃에서, 먼저 MD방향으로 5배, 이어서 TD방향으로 7배연신해서 두께 4㎛의 2축연신필름을 작성하였다. 이 필름을 150mm×150mm 크기의 것을 50매 사용해서, 시험편의 측정개소를 1개소로 한정하였다.
측정방법은 하기와 같고, 상부전극은, 주변에 3mm의 둥근모양을 가진 25mmψ의 잘닦은 황동제원주를 (+)전극으로서, 하부전극은 약 150mm×150mm에서 두께 30mm의 금속판위에 고무쇼어 60~70°의 탄성판에 얹고, 이것에 JIS-H-4160에 규정하는 두께 0.007mm 이상, 폭 80mm의 알루미늄박을 감아서, 이것을 (-)전극으로 하였다.
이하에 실시예를 표시하고 또 본 발명을 설명한다.
[실시예 1]
직경 12mm의 강구 9kg이 들어 있는 내용적 4ℓ의 분쇄용포트를 4개 장비한 진동밀을 준비하였다. 각 포트에 질소분위기속에서 염화마그네슘 300g, 프탈산 디이소부틸 75㎖, 4염화티탄 60㎖을 첨가 40시간 분쇄하였다.
상기 공분쇄물 10g을 200mg의 플라스크에 넣고 톨루엔 60㎖을 첨가 114℃에서 30분간 교반처리하고, 이어서 정치해서 상징액을 제거하였다. 이어서 n-헵탄 100㎖로 20℃에서 3회, 고형분을 세정하고 또 100㎖의 n-헵탄에 분산해서 고체촉매성분슬러리로 하였다. 얻게된 고체촉매성분을 티탄올 1.9wt% 함유하고, 프탈산디이소부틸을 14.2wt% 함유하고 있었다.
내용적 70ℓ의 충분히 건조한 질소로 치환한 오토클레이브를 준비하고, 헵탄 1000㎖에 희석한 트리에틸알루미늄 2㎖, 디노르말프로필디메톡시실란 0.8㎖, 상기 천이금속촉매 150㎖을 첨가 프로필렌 20kg, 수소 17Nℓ을 첨가 70℃에서 2시간 중합하였다. 중합후 미반응의 프로필렌을 경사법에 의해 분리하고, 중합 생성물을 액화프로필렌으로 3회 세정하였다. 이어서 생성물에 물 0.2g와 프로필렌옥사이드 10㎖을 첨가해서, 또 90℃에서 15분간 처리하고, 감압하에서 5분간 건조하였다. 이 프로필렌옥사이드에 의한 처리를 3회 반복하고, 생성폴리머를 꺼내서 평량하였던바 13.45kg의 폴리프로필렌을 얻게 되었다. 이 중합에서 티탄당의 취득량은 472만g-PP/g-Ti이었다.
또 폴리프로필렌의 135℃ 테트라린용액으로 측정한 극한점도(이하, n로 약기)는 1.65, 속슬레추출기로 측정한 비등 n-헵탄추출잔을(추출나머지 폴리머의 중량/추출전 폴리머의 중량을 100분율로 표시, 이하, II로 약기)은 98.1%, 겔투과 크로마토그래피로 134℃의 1,2,4-트리클로로벤젠을 용매로서 측정한 중량평균분자량과 수평균분자량의 비(이하, MW/MN로 약기함)는 5.5이였다.
얻게된 상기 폴리프로필렌 100중량부에 대해서 이르가녹스-1330(상품명 치바가이기사 제품) 0.2중량부, 칼슘스테아레이트 0.002중량부를 혼합해서 250℃에서 펠릿화하였다.
이 폴리프로필렌의 회분을 측정하기 위해, 시료 20g을 자기제의 도가니에 넣고, 급격하게 타지않도록 회분화시키고, 또 850℃의 전기로에 넣어서 완전회분화시켰다. 이것을 건조한 진공건조기속에서 냉각해서 회분을 측정하였던 바 14중량 ppm 이고, 이것을 더 분석해서 티탄이 0.2 ppm, 칼슘이 1.3 ppm이였다. 또 본 실시예에서 얻게된 펠릿속의 염소는 0.31 ppm이였다.
이어서 이 펠릿을 270℃에서 압출하고, 두께 140㎛ 및 525㎛의 시트형상 필름을 얻었다. 이 필름을 TM통사제 2축연신기를 사용해서 150℃에서, 먼저 MD 방향으로 5배, 이어서 TD방향으로 7배 연신해서 두께 4㎛ 및 15㎛의 2축연신필름을 작성하였다. 두께 140㎛의 시트형상필름을 연신했을 때의 연신응력은 TD방향으로 당기기 시작했을 때가 35kg/㎠, 7배연신했을 때가 42kg/㎠이였다. 이 필름의 절연파괴전압은 각각 610V/㎛, 725V/㎛, tan δ는 다같이 0.001이였다.
또한, 두께 4㎛의 연신필름의 100㎠를 위상차 현미경을 사용해서 1㎛이상의 보이드를 관찰해서, 그핵이 되고 있는 고체불순물의 크기와 수를 측정하였던 바, 1㎛ 이상 5㎛ 이하의 불순물이 60개(/㎤당으로 환산하면 1500개) 함유되어 있고, 5㎛을 초과하는 불순물을 함유되지 않았다.
또, 두께 4㎛의 필름의 80℃에서의 절연 파괴전압은 534V/㎛이였다.
[실시예 2]
무수염화마그네슘 300g, 등유 1.6ℓ, 2-에틸헥실알코올 1.5ℓ을 140℃에서 3시간 가열해서 균일용액으로 하였다. 이 용액에 무수프탈산 70g을 첨가하고 130℃에서 1시간 교반해서 용해한후 실온까지 냉각하였다. 또 상기 실온까지 냉각한 용액을 -20℃로 냉각한 4염화티탄 8.5ℓ속에 천천히 적하하고, 적하종료후, 110℃까지 승온하고, 프탈산디이소부틸 215㎖를 첨가, 또 2시간 교반하였다. 열시여과에 의해 고체를 분리하고. 얻게된 고체를 재차 4염화티탄 10ℓ속에 현탁시키고, 다시 110℃에서 2시간 교반하였다. 열시여과에 의해 고체를 분리하고, 얻게된 고체를 n-헵탄으로 세정액에 티탄이 실질적으로 검출되지 않을 때 까지 세정하였다. 얻게된 고체촉매성분은 티탄 2.3wt%, 프탈산디이소부틸 11.6wt%를 함유하고 있었다.
실시예 1의 방법에 있어서, 촉매로서 헵탄 1000㎖에 희석한 트리에틸알루미늄 4㎖, 디노르말프로필디메톡시실란 1.6㎖, 상기 고체촉매성분 300mg을 사용해서 중합을 행하였다. 중합을 결과, 9.97kg의 폴리프로필렌을 얻게 되고, 이 중합에서 티탄당의 취득량은 145만g-PP/gTi이였다.
이 폴리프로필렌을 실시예 1과 마찬가지로 후처리를 행하고, 폴리프로필렌분말을 얻었다. 이 폴리프로필렌분말의 n은 1.70, II는 98.3%, MW/MN은 5.1, 회분 33wt ppm, 미만 7 ppm, 염소 0.53 ppm이였다.
이 폴리프로필렌분말로부터 실시예 1과 마찬가지로 해서 두께 4㎛ 및 15㎛의 2축 연신필름을 작성하였다. 이 필름의 절연파괴전압은 각각 600V/㎛, 710V/㎛, tanδ는 다같이 0.001이였다.
또한, 두께 4㎛의 연신필름의 100㎠를 위상차 현미경을 사용해서 1㎛ 이상의 보이드를 관찰해서, 그 핵으로 되어 있는 고체불순물의 크기와 수를 측정하였던바, 1㎛ 이상 5㎛ 이하의 불순물이 120개(㎦당으로 환산하면 3000개) 함유되어 있고, 5㎛을 초과하는 불순물이 5개(1㎤당으로 환산하면 75개), 10㎛을 초과하는 불순물은 함유되어 있지 않았다.
또, 두께 4㎛의 필름의 80℃에서의 절연파괴전압은 520V/㎛이였다.
[실시예 3]
실시예 1에 있어서 중합조건을 고체촉매성분을 180mg, 트리에틸알루미늄 1.5㎖, 디노르말프로필디메톡시실란 0.4㎖로한 이외는 실시예 1과 마찬가지로 중합을 행하고 15.28kg의 폴리프로필렌을 얻게 되었다. 이 중합에서 티탄당의 폴리프로필렌의 취득량은 447만 g-PP/g-Ti 이였다.
이 폴리프로필렌을 실시예 1과 마찬가지로 후처리를 행하고 폴리프로필렌분말을 얻었다. 이 폴리프로필렌분말의 n로 1.75, II는 92.7%, MW/MN은 5.0, 회분 9wtppm, 티탄 0.2ppm, 염소 0.74 ppm 이였다.
이 폴리프로필렌분말로부터 실시에 1과 마찬가지로 해서 2축 연신필름을 작성하였다. 두께 140㎛의 시트형상필름을 연신했을 때의 연신응력은 TD방향으로 당기기 시작했을 때가 25kg/㎠, 7배 연신했을 때가 35kg/㎠이고, 연신성은 매우 좋았다. 이 필름의 절연파괴전압은 각각 640V/㎛, 720V/㎛, tanδ는 다같이 0.001이였다.
또한, 두께 4㎛의 연신필름의 100㎠를 위상차 현미경을 사용해서 1㎛ 이상의 보이드를 관찰해서, 그 핵으로 되어 있는 고체불순물의 크기와 수를 측정하였던 바, 1㎛ 이상 5㎛ 이하의 불순물이 50개(1㎤당으로 환산하면 1250개) 함유되어 있고, 5㎛을 초과하는 불순물은 함유되지 않았다.
또, 두께 4㎛의 필름의 80℃에서의 절연파괴전압은 548V/㎛이였다.
[비교예 1]
실시예 1에 있어서 폴리프로필렌의 중합이 끝난 다음 물과 프로필렌옥사이드를 첨가하지 않은 외는 실시예 1과 마찬가지로 해서 13.2kg의 폴리프로필렌을 얻었다(463만 g-PP/g-Ti의 취득량). 이 폴리프로필렌의 n은 1.65, II는 98.0%, MW/MN은 5.3이였다. 이 폴리프로필렌의 회분을 측정하였던바 16중량 ppm 이였다. 또 염소의 수를 측정하였던 바 3.6중량 ppm이였다. 이를 폴리프로필렌 분말을 사용해서 실시예 1과 마찬가지로 해서 작성한 필름의 절연파괴전압은 두께 4㎛에서 440V/㎛, 두께 15㎛에서 635V/㎛이였다.
또한, 두께 4㎛의 연신필름의 100㎠를 위상차현미경을 사용해서 1㎛ 이상의 보이드를 관찰해서, 그 핵이 되고 있는 고체불순물의 크기와 수를 측정하였던 바, 1㎛ 이상 5㎛ 이하의 불순물이 80개(1㎤당으로 환산하면 2000개) 함유되어 있고, 5㎛ 이상 10㎛ 이하의 불순물이 2개(1㎤당으로 환산하면 50개) 함유되어 있고, 10㎛을 초과하는 불순물은 함유되지 않았다.
또, 두께 4㎛의 필름의 80℃에서의 절연파괴전압은 395V/㎛이였다.
[비교예 2]
니용적 70ℓ의 충분히 건조한 질소로 치환한 오토클레이브를 준비하고, 이것에 헵탄 1000㎖, 디에틸알루미늄클로리드 32mmol, 트리페닐포스파이트 1.4mmol, 티탄촉매로서 실시예 1에서 사용한 상기 천이금속촉매 대신 3염화티탄 고체촉매(4염화티탄을 유기알루미늄화합물로 환원하고, 디이소아밀에테르 및 4염화티탄으로 활성화한 것) 1.42g을 장입하고, 이어서 액화프로필렌 15kg 및 수소가스를 장입후 오토클레이브를 승온하였다. 오토클레이브내온을 60℃에서 4.5시간 교반하에 중합을 계속하였다. 4.5시간후에 프로필렌 및 수소가스를 퍼어지하였다. 이어서 메탄올 8.5ℓ, n-헵탄 14ℓ 및 아세토아세트산메틸 200mmol을 장입후, 110℃에서 2시간 촉매성분의 가용화처리를 행하였다. 분액후 10ℓ의 물로 55℃에서 세정하는 조작을 4회 반복하고, 생성폴리프로필렌을 여과해서, 건조하여 10.05kg의 폴리프로필렌을 얻게 되었다. 이 중합반응에서의 티탄금속당의 폴리프로필렌의 취득량은 21200g/g-Ti 이였다.
이 폴리프로필렌의 n은 1.83, II는 99.3%, MW/MN은 8.3이였다. 이 폴리프로필렌의 회분을 측정하였던 바 5중량 ppm, 티탄 1.5 ppm 이였다. 또 염소의 양을 측정하였던 바 3중량 ppm이였다. 이 폴리프로필렌분말을 사용해서 실시예 1과 마찬가지로 해서 작성한 필름의 절연파괴전압은 두께 4㎛에서 405V/㎛, 두께 15㎛에서 635V/㎛이였다. 두께 140㎛의 시트형상필름을 연신했을 때의 연신응력은 TD방향으로 당기기 시작했을 때가 37kg/㎠, 7배연신했을 때가 47kg/㎠이고, 연신성이 나빴다.
또한, 두께 4㎛의 연신필름의 10㎠를 위상차현미경을 사용해서 1㎛ 이상의 보이드를 관찰해서, 그 핵으로 되어있는 고체불순물의 크기와 수를 측정하였던 바, 1㎛ 이상 5㎛ 이하의 불순물이 25개(1㎤당으로 환산하면 6250개) 함유되어 있고, 5㎛ 이상 10㎛ 이하의 불순물이 7개(1㎤당으로 환산하면 1750개) 함유되어 있고, 10㎛을 초과하는 불순물도 2개(1㎤당으로 환산하면 500개) 함유되어 있다.
또, 두께 4㎛의 필름의 80℃에서의 절연파괴전압은 320V/㎛이였다.
[비교예 3]
내용적 20ℓ의 충분히 건조한 질소로 치환한 오토클레이브를 준비하고, 이것에 헵탄 10ℓ, 디에틸알루미늄클로리드 30mmol, 티탄촉매로서 실시예 1에서 사용한 상기 전이금속촉매 대신 3염화티탄고체촉매(4염화티탄을 금속알루미늄으로 환원해서, 활성화한 것) 2.5g을 장입하고, 또 수소가스를 장입후, 승온하고, 70℃에서 5kg/㎠-G를 유지하도록 프로필렌가스를 장입해서 중합을 행하였다. 6시간 후 프로필렌가스의 장입을 정지하였다. 얻게된 폴리프로필렌슬러리를 내용적 70ℓ의 오토클레이브에 옮기고 메탄올 4.4ℓ, 아세토아세트산메틸 150mmol을 장입후 110℃에서 2시간 촉매성분의 가용화처리를 행하였다. 분액후 5ℓ의 물로 55℃에서 세정하는 조작을 4회 반복하고, 생성폴리프로필렌을 여과해서, 건조하여 4.2kg의 폴리프로필렌분말을 얻게 되었다. 이 중합반응에서의 티탄금속당의 폴리프로필렌의 취득량은 5040g/g-Ti 이였다.
이 폴리프로필렌의 n은 1.83, II는 97.4%, MW/MN은 6.5이였다. 이 폴리프로필렌의 회분을 측정하였던 바 16중량 ppm, 티탄 3.5 ppm 이였다. 또 염소의 양을 측정하였던바 4중량 ppm이였다. 이 폴리프로필렌분말을 사용해서 실시예 1과 마찬가지로 해서 작성한 필름의 절연파괴전압은 두께 4㎛에서 390V/㎛, 두께 15㎛에서 570V/㎛이였다.
또한, 두께 4㎛의 연신필름의 10㎠를 위상차 현미경을 사용해서 1㎛ 이상의 보이드를 관찰해서, 그 핵으로 되어 있는 고체불순물의 크기와 수를 측정하였던 바, 1㎛ 이상 5㎛ 이하의 불순물이 100개 이상(1㎤당으로 환산하면 25000개 이상) 함유되어 있고, 5㎛ 이상 10㎛ 이하의 불순물이 42개(1㎤당으로 환산하면 10500개)함유되어 있고, 10㎛을 초과하는 불순물도 11개(1㎤당으로 환산하면 2700개) 함유되어 있다.
또, 두께 4㎛의 필름의 80℃에서의 절연파괴전압은 310V/㎛이였다.
[실시예 4]
실시예 1의 폴리프로판분말을 사용해서 폴리프로필렌분말 100중량부에 대해서, 2,6-디-t-부틸-P-크레졸 0.1중량부, 칼슘스테아레이트 0.005중량부, 및 이르가녹스-1330(상품명, 치바가이기사 제품) 0.2중량부를 처가혼합한 다음, 또 폴리페닐메틸-코-디메틸실란(일본국, 닛소오 합성사제, PPS-100:폴리페닐메틸실란디클로라이드와 디메틸실란디클로라이드와의 모노머 비 1/1의 공중합체)을 3중량부 첨가해서, 250℃에서 압출하여 펠릿화하였다. 이어서 이 펠릿을 270℃에서 압출하고, 두께 140㎛의 시트형상필름을 얻었다. 이 필름을 TM통사제 2축연신기를 사용해서 150℃에서, 먼저 MD방향으로 5배, 이어서 TD방향으로 7배 연신해서 두께 4㎛의 2축연신필름을 작성하였다. 이와 같이 해서 얻게된 필름의 23℃와 80℃에 있어서의 절연파괴전압(이하 BDV로 약기)을 측정하였던 바, 각각 BDV는 641V/㎛, 585V/㎛이였다. 즉 상온에서의 BDV가 매우 높고, 또한 고온에서의 BDV의 저하하는 비율도 작았다.
[실시예 5]
폴리페닐메틸-코-디메틸실란의 첨가량을 폴리프로필렌에 대해서 0.1중량부로 바꾼외는 실시예 4와 마찬가지로 한 결과, 얻게된 필름의 23℃와 80℃에 있어서의 BDV는 각각 641V/㎛, 582V/㎛ 이였다.
[실시예 6]
폴리페닐메닐-코-디메틸실란 대신 디헥시실란디클로라이드와 금속나트륨을 톨루엔속에서 톨루엔의 비점에서 반응해서 얻은 폴리디헥실실란 1중량부 사용한 외는 실시예 4와 마찬가지로 한 결과, 얻게된 필름의 23℃와 80℃에 있어서의 BDV는 각각 638V/㎛, 583V/㎛이였다.
[실시예 7]
폴리페닐메틸-코-디메틸실란 대신 메틸부틸실란디클로라이드와 금속나트륨을 톨루엔속에서 톨루엔의 비점에서 반응해서 얻은 폴리메틸부틸실란 1중량부 사용한 외는 실시예 4와 마찬가지로 한 결과, 얻게된 필름의 23℃와 80℃에 있어서의 BDV는 각각 625V/㎛, 581V/㎛ 이였다.
[실시예 8]
실시예 1의 폴리프로필렌분말 100중량부에 대해서, 2,6-디-t-부틸-P-크레졸 0.1중량부, 칼슘스테아레이트 0.005중량부, 및 이르가녹스-1330(상품명, 치바가이기사 제품) 0.2중량부를 첨가 혼합한 다음, 또 무수말레산그라프트폴리프로피렌(무수말레산그라프트율 5%)을 3중량부 첨가해서, 50℃에서 압출하여 펠릿화하였다.
이어서 이 펠릿을 270℃에서 압출하고, 두께 140㎛의 시트형상필름을 얻었다. 이 필름을 TM통사제 2축 연신기를 사용해서 150℃에서, 먼저 MD방향으로 5배, 이어서 TD방향으로 7배, 연신해서 두께 4㎛의 2축연신필름을 작성하였다. 이와같이 해서 얻게된 필름의 23℃와 80℃에 있어서의 BDV는 각각 636V/㎛, 589V/㎛이였다. 즉 상온에서의 BDV가 매우 높고, 또한 고온에서의 BDV가 거의 저하하지 않는다.
[실시예 9]
무수말레산그라프트폴리프로필렌(무수말레산그라프트율 8%)을 사용해서 첨가량을 폴리프로필렌에 대해서 50ppm중량부로 바꾼외는 실시예 8과 마찬가지로 해서 얻게된 필름의 23℃와 80℃에 있어서의 BDV를 측정하였던 바, 각각 635V/㎛, 584V/㎛이였다.
[실시예 10]
폴리페닐메틸-코-디메틸실란 대신 트리메톡시시릴(폴리에테르)의 첨가량을 폴리프로필렌에 대해서 0.1중량부로 한 외는 실시예 4와 마찬가지로 한 결과, 얻게된 두께 4㎛ 필름의 23℃와 80℃에 있어서의 BDV는 각각 815V/㎛, 583V/㎛ 이였다.
[실시예 11]
폴리페닐메틸-코-디메틸실란 대신 트리스(2-메톡시에톡시)메틸실란(일본국, 신에쯔 화학사 제, LS-3660)를 1중량부 사용한 외는 실시예 4와 마찬가지로 한 결과, 얻게된 필름의 23℃와 80℃에 있어서의 BDV는 각각 624V/㎛, 583V/㎛ 이였다.
[실시예 12]
폴리페닐메틸-코-디메틸실란 대신 폴리에테르변성실리콘 오일(일본국 토시바 실리콘사 제, TSF-160)을 1중량부 사용한 외는 실시예 4와 마찬가지로 한 결과, 얻게된 필름의 23℃와 80℃에 있어서의 BDV는 각각 616V/㎛, 578V/㎛이였다.
[실시예 13]
폴리페닐메틸-코-디메틸실란 대신 수산화알루미늄(일본국, 이시쯔 제약사 제, S-100의 입자직경 10㎛ 이상을 분급해서 제거한 평균입자직경이 1㎛ 이하)을, 폴리머속의 함유량이 30중량 ppm이 되는 양 첨가한 외는 실시예 4와 마찬가지로 한 결과, 얻게된 필름의 23℃에 있어서의 BDV는 635V/㎛이였다.
[실시예 14]
폴리페닐메틸-코-디메틸실란 대신 수산화마그네슘(일본국, 교와화학사제, 키스마 5A의 입자직경 10㎛ 이상을 분급해서 제거한 평균입자직경이 1㎛이하)을 폴리머속의 함량이 30중량 ppm이 되는 양첨가한 외는 실시예 4와 마찬가지로 한 결과, 얻게된 필름의 23℃에 있어서의 BDV는 640V/㎛이였다.
[실시예 15]
폴리페닐메틸-코-디메틸실란 대신 산화철(일본국, 쇼와 전공사제, 나노타이트, 평균입자직경 0.02㎛의 산화 제2철)을 폴리머속의 함량이 30중량 ppm이 되는 양첨가한 외는 실시예 4와 마찬가지로 한 결과, 얻게된 필름의 23℃에 있어서의 BDV는 655V/㎛이였다.
[실시예 16]
직경 12mm의 강구 9kg이 들어 있는 내용적 4ℓ의 분쇄용포트를 4개 장비한 진동밀을 준비하였다. 각 포트에 질소분위기속에서 염화마그네슘 300g, 프탈산 디이소부틸 75㎖, 4염화티탄 20㎖을 첨가 40시간 분쇄하였다. 얻게된 공분쇄를 10g을 200㎖의 플라스크에 넣고 톨루엔 60㎖를 첨가, 114℃에서 30분간 교반처리하고, 이어서 정치해서 상징액을 제거하였다. 이어서 n-헵탄 100㎖로 20℃에서 3회, 고형분을 세정하고, 또 100㎖의 n-헵탄에 분산해서 고체촉매성분 슬러리로 하였다. 얻게된 고체촉매성분은 티탄올 0.1wt 함유하고, 프탈산디이소부틸을 14.2wt% 함유하고 있었다.
내용적 3ℓ의 충분히 건조한 질소로 치환한 오토클레이브를 준비하고, 헵탄 1000㎖를 넣고, 또 헵탄 100㎖에 희석한 트리에틸알루미늄 5g, 시클로헥실메틸 디메톡시실란 2.5㎖, 상기 고체촉매성분 750mg을 첨가 프로필렌을 가압해서 5kg/㎠-G로서, 70℃에서 2시간 중합하였다. 중합후 반응생성물을 여과해서 모우고, 80℃에서 감압건조하였다. 얻게된 분말을, 프로필렌옥사이드 1g당 물을 0.02g의 비율로 함유한 혼합물과 90℃에서 15분간 접촉처리하였다. 감압하에서 5분간 건조처리를 3회 반복해서, 생성폴리머를 꺼내서 평량하였던 바 599g의 폴리프로필렌분말 (B)이 얻게 되었다.
이 폴리프로필렌(B)의 n은 0.83, 회분은 1.13중량%이였다. 이들중, 산화마그네슘와 수산화마그네슘의 혼합물이 230ppm 함유되어 있었다. 또 염소의 양을 방사화분석법으로 측정해서 구하였던 바, 5.5중량 ppm이였다.
실시예 1과 마찬가지로 해서 얻은 폴리프로필렌분말(A) 100중량부에 대해서, 산화마그네슘와 수산화마그네슘의 혼합물을 함유한 폴리프로필렌분말(B)을 마그네슘의 양이 전체의 30중량 ppm이 되도록 첨가, 또 2.6-디-t-부틸-P-크레졸 0.1중량부, 칼슘스테아레이트 0.01중량부 및 이르가녹스-1330을 0.2중량부 첨가혼합한 다음, 250℃에서 압출하여 펠릿화하였다. 이 펠릿의 염소의 양을 방사화분석법으로 측정해서 구하였던 바 0.95중량 ppm이였다. 이어서 이 펠릿으로부터 실시예 1와 마찬가지로 해서 작성한 필름의 절연파괴전압은 640V/㎛, tanδ는 0.001이였다.
본 발명의 고분자절연재료는 절연특성, 특히 절연파괴전압이 높은, 또 적어도 또 1개의 방향으로 연신시켜서 얻은 성형체는 절연파괴전압이 높은 것은 물론, 전기 특성과 물성밸런스에 뛰어난 폴리프로필렌을 제공하는 것이고, 공업적으로 매우 가치가 있다.

Claims (18)

  1. 폴리프로필렌의 중합에서 폴리프로필렌의 취득량이 촉매중의 티탄에 대해서 3000,000g/g-Ti이상이고, 성형체에 사용하는 폴리프로필렌을 공기중에서 완전히 연소시켜서 얻어지는 회분이 40중량ppm이하, 그 회분조성중, 티타늄이 1중량ppm이하이고, 상기 폴리프로필렌중에 함유되는 염소분이 2중량ppm이하, 비등 n-헵탄가용분이 1중량%이상 10중량%이하로 함으로써, 절연파괴전압이 높은 것을 특징으로 하는 고분자절연재료.
  2. 제1항에 있어서,
    1㎤당에 함유되는 1㎛이상 10㎛이하의 불순물의 개수가 6000개 이하이고 5㎛이상 10㎛이하의 불순물의 개수가 1000개 이하로서 10㎛를 초과하는 불순물을 함유하지 않는 고순도 폴리프로필렌으로 이루어진 것을 특징으로 하는 고분자절연재료.
  3. 제1항에 있어서,
    무기산화물, 무기수산화물, 유기폴리실란, 무수말레산그라프트폴리프로필렌 및 유기폴리에테르기를 가진 실란화합물로 이루어진 군중에서 적어도 1개의 첨가제를 첨가해서 이루어지는 것을 특징으로 하는 고분자절연재료.
  4. 제3항에 있어서,
    첨가제가 무기산화물 또는 수산화물로서, 그 첨가량이 1중량ppm이상 10중량% 이하인 것을 특징으로 하는 고분자절연재료.
  5. 제4항에 있어서,
    무기산화물 또는 수산화물이 10㎛이상의 입자직경을 함유하지 않는 평균직경 1㎛이하의 마그네슘, 알루미늄, 철의 산화물 또는 수산화물인 것을 특징으로 하는 고분자절연재료.
  6. 제3항에 있어서,
    첨가제가 유기폴리실란이고, 그 첨가량이 50중량ppm이상 10중량%이하인 것을 특징으로 하는 고분자절연재료.
  7. 제3항에 있어서,
    첨가제가 무수말레산그라프트폴리프로필렌이고, 그 첨가량이 50중량ppm이상 10중량%이하인 것을 특징으로 하는 고분자절연재료.
  8. 제3항에 있어서,
    첨가제가 유기폴리에테르기를 가진 실란화합물이고, 그 첨가량이 50중량 ppm 이상 10중량%이하인 것을 특징으로 하는 고분자절연재료.
  9. 제1항에 있어서,
    폴리프로필렌이, 티탄, 마그네슘, 할로겐 및 전자공여성화합물(내부첨가전자공여성화합물)을 함유한 고체형상의 티탄촉매성분과 주기율표의 제1족, 제2족 제3족으로부터 선택된 금속을 함유한 유기금속화합물 및 전자공여성화합물(외부첨가전자공여성화합물)로 이루어진 중합촉매의 존재하에 프로필렌을 중합해서 얻게 되는 것을 특징으로 하는 고분자절연재료.
  10. 제9항에 있어서,
    상기 중합방법으로 얻게된 폴리프로필렌을 탈할로겐처리해서 얻게 된 폴리프로필렌을 사용하는 것을 특징으로 하는 고분자절연재료.
  11. 제9항에 있어서,
    상기 중합방법으로 얻게 된 폴리프로필렌을 불활성탄화수소로 세정한 후 탈할로겐 처리해서 얻게 된 폴리프로필렌을 사용하는 것을 특징으로 하는 고분자절연재료.
  12. 제1항에 기재된 상기 고분자절연재료를 적어도 한쪽의 방향으로 연신해서 이루어진 것을 특징으로 하는 폴리프로필렌성형체.
  13. 제3항에 기재된 고분자절연재료를 적어도 한쪽의 방향으로 연신해서 이루어진 것을 특징으로 하는 폴리프로필렌성형체.
  14. 제1항에 기재된 고분자절연재료를 2축연신해서 이루어진 것을 특징으로 하는 전기절연성필름.
  15. 제1항에 기재된 고분자절연재료를 2축연신해서 두께 1~6㎛를 얻는 것을 특징으로 하는 전기절연성필름.
  16. 제4항에 기재된 고분자절연재료를 적어도 한쪽의 방향으로 연신해서 이루어진 것을 특징으로 하는 폴리프로필렌성형체.
  17. 제3항에 기재된 고분자절연재료를 2축연신해서 이루어진 것을 특징으로 하는 전기절연성필름.
  18. 제3항에 기재된 고분자절연재료를 2축연신해서 두께 1~6㎛를 얻는 것을 특징으로 하는 전기절연성필름.
KR1019930010859A 1992-06-15 1993-06-15 고분자절연재료및그것을사용한성형체 KR100252418B1 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP92-154850 1992-06-15
JP15485092 1992-06-15
JP33439392 1992-12-15
JP92-334393 1992-12-15
JP33597492 1992-12-16
JP92-335974 1992-12-16
JP92-337309 1992-12-17
JP33730992 1992-12-17

Publications (2)

Publication Number Publication Date
KR940005721A KR940005721A (ko) 1994-03-22
KR100252418B1 true KR100252418B1 (ko) 2000-04-15

Family

ID=27473316

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930010859A KR100252418B1 (ko) 1992-06-15 1993-06-15 고분자절연재료및그것을사용한성형체

Country Status (4)

Country Link
US (2) US5476709A (ko)
EP (1) EP0575111B1 (ko)
KR (1) KR100252418B1 (ko)
DE (1) DE69333757T2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100890972B1 (ko) * 2007-06-11 2009-03-27 가부시키가이샤 프라임 폴리머 폴리프로필렌 및 그 폴리프로필렌의 전기 재료에의 응용
US7691958B2 (en) 2004-11-25 2010-04-06 Prime Polymer Co., Ltd. Polypropylene and application of said polypropylene to electric material
KR20140054348A (ko) * 2011-08-30 2014-05-08 보레알리스 아게 커패시터 필름의 제조 방법

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9504705D0 (en) * 1995-03-08 1995-04-26 Scapa Group Plc Wire coating composition
CA2290317A1 (en) 1999-11-24 2001-05-24 Peter Jackson Tracking resistant electrical insulating material suitable for high voltage applications
JP4795528B2 (ja) 2000-11-30 2011-10-19 住友電装株式会社 オレフィン系樹脂組成物および被覆電線
JP4808840B2 (ja) 2000-12-01 2011-11-02 住友電装株式会社 オレフィン系樹脂組成物および被覆電線
US6414068B1 (en) 2001-01-16 2002-07-02 Sumitomo Wiring Systems, Ltd. Olefin-based resin composition
EP1585452A2 (en) * 2001-04-27 2005-10-19 Robert D. Kross Disinfecting oral rinse compositions and process for using the same
CN1761524B (zh) * 2002-07-22 2012-03-21 Mba聚合物公司 介质调节静电分离
US20040219319A1 (en) * 2003-04-30 2004-11-04 Brooks Gary T. High clarity formed articles of polypropylene
EP1741725B1 (en) * 2005-07-08 2014-04-09 Borealis Technology Oy Propylene polymer composition
ATE437901T1 (de) * 2006-04-24 2009-08-15 Total Petrochemicals Res Feluy Verfahren zur herstellung von propylenpolymeren mit geringem aschegehalt
US8288495B2 (en) 2009-01-27 2012-10-16 Mitsui Chemicals, Inc. Propylene homopolymer for capacitors
WO2010107052A1 (ja) 2009-03-17 2010-09-23 株式会社プライムポリマー フィルムコンデンサ用ポリプロピレン、フィルムコンデンサ用ポリプロピレンシート、それらの製造方法、およびその用途
US9001495B2 (en) 2011-02-23 2015-04-07 Fastcap Systems Corporation High power and high energy electrodes using carbon nanotubes
CA2838558C (en) 2011-05-24 2022-08-30 Fastcap Systems Corporation Power system for high temperature applications with rechargeable energy storage
WO2012170749A2 (en) 2011-06-07 2012-12-13 Fastcap Systems Corporation Energy storage media for ultracapacitors
WO2013009720A2 (en) 2011-07-08 2013-01-17 Fastcap Systems Corporation High temperature energy storage device
US9558894B2 (en) 2011-07-08 2017-01-31 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
EP3783192A1 (en) 2011-11-03 2021-02-24 FastCAP SYSTEMS Corporation Production logging instrument
US10872737B2 (en) 2013-10-09 2020-12-22 Fastcap Systems Corporation Advanced electrolytes for high temperature energy storage device
EP3084481B8 (en) 2013-12-20 2024-01-03 Fastcap Systems Corporation Electromagnetic telemetry device
US11270850B2 (en) 2013-12-20 2022-03-08 Fastcap Systems Corporation Ultracapacitors with high frequency response
KR20240055878A (ko) 2014-10-09 2024-04-29 패스트캡 시스템즈 코포레이션 에너지 저장 디바이스를 위한 나노구조 전극
CN116092839A (zh) 2015-01-27 2023-05-09 快帽系统公司 宽温度范围超级电容器
WO2016174034A1 (en) * 2015-04-28 2016-11-03 Borealis Ag Polypropylene film structure
CN109843933A (zh) 2016-08-30 2019-06-04 格雷斯公司 用于生产聚烯烃的催化剂体系及其制备和使用方法
JP2020501367A (ja) 2016-12-02 2020-01-16 ファーストキャップ・システムズ・コーポレイションFastCAP SYSTEMS Corporation 複合電極
US11557765B2 (en) 2019-07-05 2023-01-17 Fastcap Systems Corporation Electrodes for energy storage devices

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197454A (en) * 1962-04-02 1965-07-27 Phillips Petroleum Co Removal of catalyst residues from olefin polymers
JPS48100444A (ko) * 1972-03-31 1973-12-18
FR2186494A1 (en) * 1972-03-31 1974-01-11 Showa Denko Kk Hydrated alumina contg propylene resins - have good mechanical props and wide applicability
US4064315A (en) * 1974-09-09 1977-12-20 Mobil Oil Corporation Maleic anhydride-modified polymer lager coated with polymeric composition derived from vinylidene chloride
JPS53105587A (en) * 1977-02-25 1978-09-13 Sumitomo Chem Co Ltd Method of pufification of high-crystallinity polyolefin
JPS58188627A (ja) * 1982-04-30 1983-11-04 Toray Ind Inc ポリプロピレンフイルムの製造方法
JPS5963609A (ja) * 1982-10-05 1984-04-11 三井東圧化学株式会社 二軸延伸ポリプロピレンフイルムよりなる電気絶縁材料
JPS61110906A (ja) * 1984-11-02 1986-05-29 東レ株式会社 電気物品用ポリプロピレンフイルム
US4681803A (en) * 1985-10-18 1987-07-21 Mobil Oil Corporation Pigmented, heat-sealable coating composition for application to oriented polyolefin films
DE3540214A1 (de) * 1985-11-13 1987-05-14 Hoechst Ag Koextrudierte, biaxial orientierte mehrschichtfolie
DE3889230T2 (de) * 1987-01-23 1994-08-11 Fuji Photo Film Co Ltd Verpackungsmaterial für lichtempfindliches Material.
DE3740449A1 (de) * 1987-11-28 1989-06-08 Hoechst Ag Coextrudierte, biaxial orientierte mehrschichtfolie
DE3805165A1 (de) * 1988-02-19 1989-08-31 Hoechst Ag Rohstoff und daraus hergestellte folie mit verbesserten elektrischen eigenschaften
DE3831355A1 (de) * 1988-09-15 1990-03-29 Hoechst Ag Hochleistungsdielektrikumsfolie mit verbesserter thermostabilitaet
DE3901969A1 (de) * 1989-01-24 1990-07-26 Hoechst Ag Biaxial orientierte kunststoffolie
JPH02225346A (ja) * 1989-02-27 1990-09-07 Central Glass Co Ltd 熱線反射ガラス

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7691958B2 (en) 2004-11-25 2010-04-06 Prime Polymer Co., Ltd. Polypropylene and application of said polypropylene to electric material
KR100890972B1 (ko) * 2007-06-11 2009-03-27 가부시키가이샤 프라임 폴리머 폴리프로필렌 및 그 폴리프로필렌의 전기 재료에의 응용
KR20140054348A (ko) * 2011-08-30 2014-05-08 보레알리스 아게 커패시터 필름의 제조 방법
KR101663393B1 (ko) * 2011-08-30 2016-10-06 보레알리스 아게 커패시터 필름의 제조 방법
US10253115B2 (en) 2011-08-30 2019-04-09 Borealis Ag Process for the manufacture of a capacitor film

Also Published As

Publication number Publication date
EP0575111A3 (ko) 1994-02-23
US5476709A (en) 1995-12-19
EP0575111A2 (en) 1993-12-22
DE69333757D1 (de) 2005-03-24
EP0575111B1 (en) 2005-02-16
KR940005721A (ko) 1994-03-22
DE69333757T2 (de) 2005-08-11
US5573840A (en) 1996-11-12

Similar Documents

Publication Publication Date Title
KR100252418B1 (ko) 고분자절연재료및그것을사용한성형체
EP1883080B1 (en) Electrical insulation film
EP2519550B1 (en) Bopp-film
KR101667891B1 (ko) 생산성이 개선된 폴리프로필렌의 제조 방법
EP1881507B1 (en) Cable layer on polypropylene basis with high electrical breakdown strength
JP3369253B2 (ja) 高分子絶縁材料およびそれを用いた成形体
EP3279254A1 (en) Polypropylene for film condenser, biaxial stretching film for film condenser, film condenser and manufacturing methods therefor
EA037751B1 (ru) Двухосноориентированные пленки, изготовленные из композиций пропиленового полимера
JP2008133351A (ja) コンデンサーフィルム用プロピレン系重合体
KR20180076413A (ko) 전력 케이블용 폴리프로필렌 수지 및 이를 절연층에 포함하는 전력 케이블
JP3973248B2 (ja) コンデンサー絶縁フィルム
EP4116997A1 (en) Multilayer polypropylene film for capacitor
JPS62122009A (ja) 電気特性の改良されたポリプロピレン延伸フイルムよりなる電気絶縁材料
JP3100427B2 (ja) 耐熱性絶縁フイルム
Kakhramanov et al. Physico-mechanical and tribological properties of nanocomposites and their vulcanizates on the basis of molybdenum disulphide and ethylene-propylene block copolymer
JP7345257B2 (ja) プロピレン重合体組成物からなる微多孔フィルム
CN114989512A (zh) 聚乙烯树脂组合物和成型体
Kamarudin et al. DC Breakdown Performance of Polyethylene/Silicon Nitride Nanocomposites upon Non-isothermal Crystallization
JP3142937B2 (ja) 耐熱性絶縁フイルム
JP3171644B2 (ja) 耐熱性絶縁フイルム
Boiteux et al. Poly (allylbenzene). Dielectric properties
JPH0418643B2 (ko)
JPS60238308A (ja) ポリアセチレンの精製方法
JPH02248409A (ja) ポリアセチレンフィルムの製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
N231 Notification of change of applicant
E601 Decision to refuse application
J201 Request for trial against refusal decision
B601 Maintenance of original decision after re-examination before a trial
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 19980914

Effective date: 19990731

Free format text: TRIAL NUMBER: 1998101002866; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 19980914

Effective date: 19990731

S901 Examination by remand of revocation
E902 Notification of reason for refusal
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121227

Year of fee payment: 14

EXPY Expiration of term