KR0156563B1 - 광 비임 위치 에러 보정 시스템 - Google Patents

광 비임 위치 에러 보정 시스템 Download PDF

Info

Publication number
KR0156563B1
KR0156563B1 KR1019890005256A KR890005256A KR0156563B1 KR 0156563 B1 KR0156563 B1 KR 0156563B1 KR 1019890005256 A KR1019890005256 A KR 1019890005256A KR 890005256 A KR890005256 A KR 890005256A KR 0156563 B1 KR0156563 B1 KR 0156563B1
Authority
KR
South Korea
Prior art keywords
error correction
signal
optical
target surface
optical beam
Prior art date
Application number
KR1019890005256A
Other languages
English (en)
Other versions
KR890016408A (ko
Inventor
엠.페일도프 로버트
브이.고츠 하워드
에이.보트넴 마크
이.에드슨 부루스
Original Assignee
오.디.핀레이
일렉트로 싸이언티픽 인더스트리즈 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오.디.핀레이, 일렉트로 싸이언티픽 인더스트리즈 인코포레이티드 filed Critical 오.디.핀레이
Publication of KR890016408A publication Critical patent/KR890016408A/ko
Application granted granted Critical
Publication of KR0156563B1 publication Critical patent/KR0156563B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • B23K26/043Automatically aligning the laser beam along the beam path, i.e. alignment of laser beam axis relative to laser beam apparatus
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • G05B19/4015Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes going to a reference at the beginning of machine cycle, e.g. for calibration

Abstract

광 비임 위치 결정 시스템(10)은 타켓면(18)상의 두 위치사이에 프로그래밍된 속도로 정확하게 위치 결정된 비임 경로를 발생할 수 있는 능력을 가지고 있다. 상기 비임 위치는 시스템 제어 컴퓨터(22)에 처리된 비임 위치 및 속도 명령 데이터와 대응된다. 본 발명은 종래 위치 데이터 발생기에 의해 생성된 X 및 Y 위치 좌표 신호(X 및 Y 신호)를 수신하고 광 비임 위치 결정기(12)에의 전달을 위해 X 및 Y 위치 좌표 신호(Xc 및 Yc 신호)를 발생하는 에러 보정 처리기(52)를 이용한다. 상기 Xc 및 Yc 신호는 상기 광 비임이 상기 타켓면상에 제공될 수 있는 위치를 나타내는 어드레스 가능 필드의 측정 맵으로부터 도출된다. 상기 Xc 및 Yc 신호는 상기 X 및 Y 신호의 다항식 함수를 나타내며 비임 위치 에러를 상쇄시켜서 시스템 광학 소자(26,28,30)의 광 방향 결정 특성을 생성한다. 에러 보정 처리기는 동일한 모델 형태의 상이한 시스템을 제어할 수 있는 시스템 제어 컴퓨터에서 단일의 명령 데이터 파일의 사용할 수 있도록 해 준다. 이는 사용중인 특정 광 비임 위치 결정기에 적절한 필드 보정 계수를 상기 에러 보정 처리기에 간단히 로딩함으로써 달성될 수 있다. 이러한 융통성은 상기 시스템 제어 컴퓨터의 소프트웨어 파일에 대한 변화 없이 달성될 수 있다.

Description

광 비임 위치 에러 보정 시스템
제1a도 및 제1b도는 종래 컴퓨터 제어 비임 위치 결정 시스템의 각각의 블록과 구성을 나타낸 도면.
제2도는 제1a도 및 제1b도에 도시된 형태의 에러 보상되지 않은 종래 검류계 비임 위치 결정 시스템 고유의 비임 위치 핀쿠션 왜곡을 가지고 있는 예시적인 어드레스 가능한 필드의 맵을 나타낸 도면.
제3도는 본 발명에 따른 비임 위치 에러 교정을 가지고 있는 컴퓨터 제어 광 비임 결정 시스템의 블록도.
제4도는 Xc 신호 및 Yc 신호를 표현하는 다항식 항의 필드 교정 계수를 얻기 위해 수행되는 교정 처리 단계의 흐름도.
제5도는 제4도의 흐름도에 따른 필드 교정 계수를 구하는데 사용되는 13개의 교정점의 위치를 보인 도면.
제6a도는 제2도에 도시된 케릭터의 어드레스 가능한 필드 패턴중 X방향에서 핀큐션 왜곡의 도시도.
제6b도 및 제6c도는 제6a도의 어드레스 가능한 필드 패턴 형성을 위해 첨가된 각각의 웨지형 및 포물형 구성의 표시도.
제7도는 제3도의 시스템에서 실행된 에러 보정 처리기의 단순화 블록도.
제8도는 비임 위치 핀쿠션 왜곡 제거시 본 발명의 위치 에러 보정 기술의 영향을 도시하는 어드레스 가능한 필드 예의 맵도.
* 도면의 주요부분에 대한 부호의 설명
22 : 시스템 제어 컴퓨터 52 : 에러 보정 처리기
88 : 순차 제어기 90 : RAM
[기술 분야]
본 발명은 광 비임 위치 결정 시스템에 관한 것으로, 특히 광 비임 위치 에러 보정 능력을 가지고 있는 광 비임 위치 결정 시스템에 관한 것이다.
[발명의 배경]
종래의 자동 광 비임 위치 결정 시스템은 통상적으로 광 비임 위치 결정기(light beam positioner) 및 시스템 제어 컴퓨터를 포함하고 있다. 일반적으로 이동 가능한 광 방향 조절면을 가지고 있는 광학 소자를 포함하고 있는 상기 광 비임 위치 결정기는 비임 위치, 및 상기 시스템 제어 컴퓨터에 의해 처리된 속도 명령 데이터(명령 데이터)를 수신한다. 상기 광학 소자는 반사 광 방향 조절 특성 또는 굴절 광 방향 조절 특성을 가지고 있다. 상기 광 비임 위치 결정기는, 상기 명령 데이터에 응답하여, 워크피스(workpiece)상의 소정의 위치로 방향 조절하기 위해서 입사 광 비임의 전달 경로를 결정한다.
상기 워크피스를 따라 상기 광 비임이 이동하는 경로를 바꾸기 위해서, 상기 광 비임 위치 결정기는 상이한 명령 데이터에 응답하여 상기 광학 소자의 이동 가능한 광 방향 조절면의 방향을 변화시킨다. 이러한 장치의 일예가 검류계 비임 위치 결정기이며, 이 위치 결정기는 입사 광 비임을 타켓면상의 원하는 위치로 방향 조절하기 위해서 상기 명령 데이터에 응답하여 협력적이고 선택적으로 피봇가능한 한 쌍의 미러를 사용하고 있다.
제1a도 및 제1b도는 레이저 소스(16)로부터 방출되는 입사 광 비임(14)을 평면 타켓면(18)상의 원하는 위치로 방향 조절하기 위해서 검류계 비임 위치 결정기(12)를 사용하는 종래의 광 비임 위치 결정 시스템(10)을 나타낸 도면이다. 제1a도는 검류계 비임 위치 결정기(12)를 제어하기 위한 데이터 처리 모듈의 블록도이고, 제1b도는 광 비임 위치 결정 시스템(10)의 광학 소자를 나타낸 도면이다.
제1a도 및 제1b도를 참조하면, 자기 디스크와 같은 주변 기억 매체(20)가 시스템 제어 컴퓨터(22)에 명령 데이터를 제공한다. 일반적으로, 시스템 제어 컴퓨터(22)는 많은 작업을 수행하며, 이때 이들 작업중 적어도 일부는 광 비임 위치 결정 동작과는 관련이 없다. 상기 명령 데이터는 가능한 경로의 시작 위치와 끝 위치 및 상기 워크피스를 따라 이동하는 광 비임의 이동 속도의 테이블(table)을 나타낸다. 시스템 제어 컴퓨터(22)는 전기적 측정 데이터를 취득하고, 이 측정 데이터에 응답하여 각각의 가능한 경로중 하나의 경로와 상기 광 비임의 속도를 선택한다. 예컨대, 레이저 기초 레지스터 트리머(laser-based resistor trimmer)를 위한 명령 데이터는 일련의 각각의 시작 위치 및 끝 위치를 나타내며, 이때, 레이저 비임(14)은 특정 레지스터 회로망에서 알려진 패턴으로 트리밍 동작(trimming operation)을 수행하기 위해서 상기 시작 위치와 끝 위치에 대해 이동을 행한다.
시스템 제어 컴퓨터(22)는 X위치 좌표 디지털 워드(word) 신호(X 신호)와 Y위치 좌표 디지털 워드 신호(Y 신호)를 발생하는 위치 데이터 발생기(24)측에 상기 명령 데이터를 전달한다. 이들 X 및 Y 신호는 2개의 검류계 모터(도시되지 않음)중에서 서로 다른 검류계 모터측으로 전달되는 DC 전압으로 변환된 디지털 워드를 나타낸다. 검류계 모터는 샤프트가 피봇 측(pivot axis)을 중심으로 이동할 수 있도록 미러에 동작가능하게 결합되어 있는 DC 모터이다. 검류계 비임 위치 결정기(12)는 직교적으로 배열된 피봇 축을 중심으로 행해지는 피봇 가능 이동을 위해 상기 검류계 모터에 동작가능하게 결합되어 있는 브래킷(bracket)에 장착되어 있는 한 쌍의 별개의 미러(26,28)를 사용한다. 미러(26,28)는 상기 입사 레이저 비임(14)를 수신하고, 그리고 이 비임(14)을 타켓면(18)상의 원하는 위치로 방향 조절하기 위해서 상기 X 및 Y 신호에 응답하여 각각의 피봇 축을 중심으로 피봇가능하게 이동한다. 검류계 비임 위치 결정기(12)는 또한 비임(14)을 포커싱(focusing)하기 위한 F-Θ형 렌즈, 및 타켓면(18)쪽으로 비임(14)을 방향 조절하기 위한 미러(32)를 포함하고 있다. 미러(26,28)의 피봇 가능 이동은 타켓면(18)상에 전반적으로 원형인 어드레스 가능 이미징 영역(33)을 형성한다.
광 비임 위치 결정 시스템(10)과 관련된 한가지 문제점은, 상기 시스템 광학 소자가 상기 검류계 미러를 피봇 가능하게 단위 이동시켜서 타켓면(18)상에서 레이저 비임(14)이 직선 이동하도록 해 주지 못한다는 것이다. 이러한 비직선 비임 이동의 주된 원인은 상기 시스템 광학 소자가 피봇 가능 운동을 직선 운동으로 부정확하게 전환할 때마다 생기는 비직선 왜곡이다. 예컨대, 검류계 미러(26)가 광학 축으로부터 멀어 질 때마다 광 비임이 검류계 미러(28)와 렌즈(30)쪽으로 전달되면서 상기 검류계 미러(26)는 비임(14)의 방향을 정확하게 조절하지 못한다. 이러한 검류계 위치 결정 에러는 검류계 미러(26,28)의 대응하는 단위 각(unit angular) 변위에 응답하여 비림(14)이 이동함에 따라 타켓면(18)의 주변의 인접 위치들간에 등거리가 아닌 간격을 나타내는 핀큐션(pincushion) 왜곡을 일으킨다.
제2도는 명령 데이터 위치값의 단위 변화에 응답하여 검류계 미러(26,28)의 단위 각 변위에 의해 타켓면(18)상에 그려진 광 비임 격자 패턴을 보여 주는 예시적인 어드레스 가능 필드(34)의 맵을 나타낸 도면이다. 다음의 설명을 위해서, 검류계 미러(26,28)가 각각 X축 및 Y축을 중심으로 해서 피봇가능하게 이동한다고 하자. 제2도는 타켓면(18)의 어드레스 가능 필트(34)가 상기 타켓면의 중앙(36)의 부근의 인접 위치들간에 2.5㎜의 등거리 간격을 가지고 있는 핀큐션 형상임을 보여 주고 있는데, 즉, X 방향의 둘레 부분(40)에서 키스톤(keystone) 형상으로 외형이 바깥쪽으로 향하고 있고, Y 방향의 둘레 부분(38)에서는 외형이 안쪽을 향하고 있다. 일반적으로, 결과적으로 얻어진 비임 위치 결정의 비직선성은 상기 타켓면의 둘레 가까이에 존재한다.
상기 검류계 비림 위치 결정기의 광학 소자에 의해 도입된 상기 비직선성의 비임 위치 결정을 처리하고자 하는 시도에 이용되는 여러 가지 기술이 존재한다. 한가지 기술은 상기 문제를 간단히 무시하고 결과적으로 얻어진 핀쿠션 왜곡에 내성을 갖는 것이다. 두 번째 기술은 원하는 시작 위치에 레이저 비임을 위치시키기 위해서 조작자가 조이스틱을 수동적으로 사용하는 비쥬얼 피드백(visual feedback)을 수반한다. 이 기술은 많은 작업을 필요로 하는 단점을 가지고 있고, 레이저 비임이 상기 타켓면의 둘레 가까이의 시작 위치에서부터 이동함에 따라 발생되는 위치 결정 비직선성의 문제점을 보정해 주지 않는다. 그러므로, 정확한 시작 위치에서 상기 레이저 비임을 방향 조절하기 위해서 비쥬얼 피드백을 사용하면 상기 타켓면을 따라서 행해지는 직선 비임 위치 결정을 행할 수 없다.
비임 위치 결정 에러를 보정하기 위한 세 번째 기술은 시스템 제어 컴퓨터(22)에 의해 처리된 명령 데이터를 보정하는 작업을 포함하고 있다. 이 작업은 명령 데이터와 대응하는, 원하는 타켓면 위치에 대응하는 보정 데이터를 가지고 있는 룩업 테이블의 형태로 상기 시스템 제어 컴퓨터(22)에 교정 맵(calibration map)을 제공함으로써 달성된다. 시스템 제어 컴퓨터(22)는 비임 위치 에러를 제거하기 위해 상기 명령 데이터를 수정하는데에 상기 보정 데이터를 사용한다. 이 에러 보정 기술은 상이한 비임 위치 결정기(12)가 시스템 제어 컴퓨터(22)와 함께 사용될 때마다 시스템 제어 컴퓨터(22)에 위치되어 있는 소프트웨어 파일이 변화되어야 하기 때문에 단점이 있다. 다른 단점은, 명령 데이터의 변화에 대한 상기 시스템 제어 컴퓨터 응답 시간이 시스템 제어 컴퓨터(22)가 우선 순위를 할당받은 기타 다른 많은 관련되지 않은 작업을 수행하기 때문에 본질적으로 길다는 것이다. 그러므로, 비임 위치의 원하는 변화는 명령 데이터를 수신한 때부터 상당한 시간이 경과된 후에 일어날 수 있다.
[발명의 개요]
그러므로, 본 발명의 목적은 비임 위치 에러를 보정하는 광 비임 위치 결정 시스템을 제공하는 것이다.
본 발명의 다른 목적은 비임 위치 에러 보정을 실시간으로 수행하는 그러한 시스템을 제공하는 것이다.
본 발명의 또 다른 목적은 상이한 광 비임 위치 결정기의 사용으로 시스템 제어 컴퓨터 소프트웨어 파일의 변화를 필요로 하지 않는 그러한 시스템을 제공하는 것이다.
본 발명의 또 다른 목적은 타켓면의 전체적인 어드레스 가능 이미징 영역에서 양호한 비임 위치 결정 직선 특성을 가지고 있는 컴퓨터 제어 광 비임 위치 결정 시스템을 제공하는 것이다.
본 발명의 또 다른 목적은 검류계 광 비임 위치 결정기를 사용하는 그러한 시스템을 제공하는 것이다.
본 발명은 검류계 레어저 비임 위치 결정기를 사용하는 레이저 기초 레지스터 트리머 시스템을 참조한 예에 의해서만 설명된다. 본 발명은 검류계 레어저 비임 위치 결정기의 위치 결정 에러를 실시간으로 보정하며, 따라서 타켓면상의 어떤 2개의 지점사이에 프로그래밍된 속도로 정확하게 위치된 직선을 생성할 수 있는 능력을 가지고 있다.
본 발명은 상기 검류계 비임 위치 결정기에의 전달을 위해, 종래 위치 데이터 발생기에 의해서 생성된 상기 X 신호 및 상기 Y 신호를 수신하고, 보상된 X 디지털 워드 신호(Xc 신호) 및 보상된 Y 디지털 워드 신호(Yc 신호)를 각각 발생하는 에러 보정 처리기를 이용한다. 상기 위치 데이터 발생기 및 상기 검류계 비임 위치 결정기와 함께 상기 에러 보정 처리기를 사용하면, 상이한 광 비임 위치 결정기를 사용할 수 있는 시스템에서 상기 시스템 제어 컴퓨터에서 공통적인 트림(trim) 위치 데이터 파일을 사용할 수 있다. 그러므로, 본 발명에 따라 구현된 복수의 컴퓨터 제어 비임 위치 결정 시스템을 가지고 있는 설비는 상기 시스템 제어 컴퓨터에서 동일한 명령 데이터를 가지고 있는 상이한 비임 위치 결정 시스템상에서 동일한 레지스터 회로망 워크피스를 처리할 수 있다.
상기 에러 보정 처리기는 실시간으로 보정 단계들을 수행하며, 따라서 상기 광 비임 위치 결정기의 피봇 가능 검류계 미러의 응답 시간보다 짧은 시간에 상기 Xc 및 Yc 신호를 제공할 수 있다. 상기 에러 보정 처리기는 사용 중에 특정 광 비임 위치 결정기에 적절한 보정 인자를 상기 에러 보정 처리기에 간단히 로딩함으로써 동일한 모델 형태의 상이한 레이저 트리밍 시스템에 사용할 수 있도록 되어 있다. 이러한 융통성은 상기 시스템 제어 컴퓨터의 소프트웨어 파일에 대해서 아무런 변화 없이 달성될 수 있다.
본 발명의 추가적인 목적 및 이점은 첨부된 도면을 참조하여 진행되는 바람직한 실시예의 상세한 설명으로부터 명백해진다.
[바람직한 실시예]
제3도는 본 발명에 따른 비임 위치 에러 보정 기능을 가지고 있는 컴퓨터 제어 광 비임 위치 결정 시스템(50)의 블록도이다. 레지스터 트리밍 시스템에 일반적으로 사용되는 형태의 검류계 레이저 비임 위치 결정기(12)를 가지고 있는 비임 위치 결정 시스템(50)은 단지 예로서 여기에 설명되어 있다. 비임 위치 시스템(50)은 동일한 모델 형태의 다른 검류계 레이저 비임 위치 결정기(12)에 의해서 도입된 레이저 비임 위치 결정 에러를 보정할 수 있다. 이 보정은 비임 위치 결정 시스템에서 사용된 특정한 검류계 비임 위치 결정기의 광 방향 조절 특성을 특징지우는 한 세트의 보정 계수를 에러 보정 처리기(52)에 제공함으로써 달성될 수 있다. 비임 위치 결정 시스템(50)은, (1)미러 피봇가능 이동 및 렌즈 특성에 의해서 생긴 비직선 왜곡, (2)X-Y 좌표 축의 직교 관계로부터의 이탈에 의해서 생긴 정렬 에러, (3)X축 및 Y축에 대한 스케일 인자와 원래의 이탈 에러, (4)타켓면(18)에 대한 이미징 필드의 회전 정렬 불량을 보정할 수 있다. 바람직한 실시예에서, 타켓면(18)은 평면이며, 그리고 어떤 레이저 기초 마이크로 기계 장치의 작업 면을 나타낸다.
제3도를 참조하면, 비임 위치 결정 시스템(50)은 위치 데이터 발생기(24)와 검류계 비임 위치 결정기(12)사이에 위치되어 있는 에러 보정 처리기(52)를 포함하고 있다는 점에서 종래 비임 위치 결정 시스템(10)과는 부분적으로 다르다. 에러 보정 처리기(52)는 보정식을 실행하며, 그 결과는 검류계 비임 위치 결정기(12)에 전달할 목적으로 Xc 및 Yc 신호를 계산히기 위해서 메모리에 저장된다. 상기 에러 보정 처리기(52)는 레이저 트리밍 작업 동안에 상기 보정을 실시간으로 수행한다. 에러 보정 처리는 적어도, 구동된 검류계 미러의 응답 시간만큼 고속으로 수행된다.
상기 명령 데이터에 대한 보정은 소프트웨어로 구현되며, 이 소프트웨어의 처리 단게는 Xc 및 Yc 신호를 나타내는 소정의 방정식의 항들을 처리한다. 이들 방정식은 각각의 명령 데이터 지점에 대한 각각의 X축 및 Y축에서 위치 에러를 보정한다. 상기 방정식은 이 방정식의 항들의 특정 세트의 필드 보정 계수(계수)를 발생하는 교정 처리에 의해서 특정한 비임 위치 결정기(12)와 매칭된다.
계수를 발생하는 상기 교정 처리는 조절 또는 복구로부터 생긴 장기간의 시스템 드리프트(drift) 또는 변화를 보상하는 경우에만 필요하다. 상기 계수는 시스템 제어 컴퓨터(22)와 데이터 통신을 할 수 있는 교정 데이터 파일(54)에 저장되어 있고, 비임 위치 결정 시스템(50)에 전력이 공급될 때마다 데이터 버스(56)를 통해 에러 보정 처리기(52)측으로 전달된다. 교정 데이터 파일(54)의 내용은 특정 비임 위치 결정 시스템(50)의 일련 번호에 의해서 식별되며, 따라서 보정된 세트의 계수들이 상기 시스템에서 사용되는 검류계 비임 위치 결정기(12)에 제공되는 것이 보장된다. 상기 계수는 에러 보정 처리기(52)와의 직접 데이터 통신으로 비휘발성 메모리에 저장될 수도 있음을 알 수 있다.
에러 보정 처리기는(52)는 명령 데이터 지점을 나타내는 X 신호 및 Y 신호를 수신하여, Xc 신호 및 Yc 신호를 계산하기 위한 적절한 수학적 동작을 아래의 식에 따라 수행한다.
Xc = A1+ B1X + C1X2+ D1X3+ E1Y + F1Y2+ G1XY + H1XY2
Yc = A2+ B2Y + C2Y2+ D2Y3+ E2X + F2X2+ G2YX + H2YX2
여기서, A1,B1, C1, D1, E1, F1,G1, H1, A2,B2, C2, D2, E2, F2,G2, H2는 계수를 나타낸다. 이들 계수는 직사각형내의 어드레스 가능 필드의 13개의 소정의 위치에서 행해진 워크피스의 스캐닝으로부터 얻어진 한 세트의 측정된 데이터로부터 도출된다.
제4도는 Xc 신호 및 Yc 신호의 계수를 도출하기 위한 측정 처리 단계를 보인 흐름도이다. 상기 측정 처리는, 1)상기 어드레스 가능 필드의 중심에 있는 13개의 교정점으로 된 규칙적인 어레이를 선택하는 단게와, 2)13개의 선택된 교정점중 각각의 교정점에 상기 레이저 비임을 정확히 위치시키는데에 필요한 명령 데이터를 결정하는 단계와, 3)각각의 변환식 Xc 및 Yc의 16개의 필요한 계수(A1-H1, A2-H2)를 구하는 단계와, 4)에러 보정 처리기(52)에 의해서 수행되는 16비트 정수의 수학적 연산으로 수치적 오버플로우를 방지하기 위해서 앞서 구한 계수를 표준화하고 스케일링하는 단계와, 5)곱셈 연산이 수행될 때마다 수행된 원래의 2로 나누는 연산을 보상하기 위해서 상기 계수중 특정 계수를 조절하는 단계와, 6)상기 계수를 소수 2진 포맷으로 변환하는 단계의 6개의 주요 처리 단계를 포함하고 있다. 이러한 6개의 단계 각각에 대한 이하의 상세한 설명은 제4도를 참조하여 제공된다.
처리 블록(60)은 13개의 교정점의 선택을 나타낸다. 각각의 상기 교정점은 직사각형내에 존재하며, 이때 이 직사각형의 경계는 상기 어드레스 가능 필드의 한계치내의 대략 5 퍼센트 정도이며, 따라서, 핀큐션 왜곡에 의해 생긴 센터링(centering) 에러와 변형은 상기 어드레스 가능 필드의 외부에 어떠한 교정점도 제공하지 않는다. 상기 교정점은 여기에서 Xc 및 Yc 방정식으로의 치환을 위한 독립 변수라고 하며, 그리고 (IX1, IY1) 내지 (IX13, IY13)라고 하는 13개의 순서쌍으로 배열되어 있다. 예컨대 IX1및 XY1은 교정점(1)의 각각의 X좌표 및 Y좌표를 나타낸다.
제5도는 위에서 설명한 표기에 따라 인식된 13개의 필드 교정점의 위치들을 보인 도면이다. 검류계 미러(26,28)용의 검류계 모터의 각각의 증분은 예컨대, 상기 타켓면의 X축 또는 Y축을 따라 상기 레이저 비임의 0.0025 밀리미터 이동을 나타낸다. 증분 이동의 크기는 검류계 비임 위치 결정기(12)의 특정한 구현에 좌우된다. 상기 검류계 모터 카운트는 상기 어드레스 가능 필드의 중앙점(IX7, IY7)을 참조하여 산출된다.
상기 13개의 교정점은, 수평(Y=0)축을 따라 위치되어 있고 X=0을 중심으로 하며 그리고 대략 -10, -6, 0, 6, 10의 비율에 따라 간격을 두고 있는 5개의 점; 수직(X=0)축을 따라 위치되어 있고 Y=0을 중심으로 하며 그리고 대략 -10, -6, 0, 6, 10의 비율에 따라 간격을 두고 있는 5개의 점; 및 바람직한 실시예에서는 정사각형인 직사각형의 4개의 코너(corner)점을 포함하고 있다. 특히, 수평축에 따라 위치된 5개의 점은 순서쌍, 즉 (IX5, IY5), (IX6, IY6), (IX7, IY7), (IX8, IY8), 및 (IX9, IY9)를 포함하고 있다. 수직축을 따라 위치된 5개의 점은 순서쌍, 즉 (IX2, IY2), (IX4, IY4), (IX7, IY7), (IX10, IY10) 및 (IX12, IY12)을 포함하고 있다. 상기 정사각형의 4개의 코너 점은 순서쌍, 즉 (IX1, IY1), (IX3, IY3), (IX11, IY11), 및 (IX13, IY13)을 포함하고 있다. 상기 중앙점 (IX7, IY7)은 수직축과 수평축을 따라 위치된 5개의 점으로 된 2세트에 공통임을 알 수 있다.
처리 블록(62)은 처리 블록(60)을 참조하여 설명된 방법으로 설정된 13개의 교정점중 각각의 교정점에 레이저 비임을 정확히 위치시키는데 필요한 X 신호 및 Y 신호를 결정하는 것을 나타낸다. 상기 측정은 예컨대 13개의 교정점중 어느 하나의 교정점을 나타내는 타켓을 위치시키는 스캐닝 루틴에 의해 달성될 수 있다.상기 타켓은 고정된 교정 판상의 13개의 타켓 위치, 또는 단계 및 반복 메카니즘(step-and-repeat mechanism)에 의해서 13개의 상이한 위치로 이동 가능한 판상의 단일의 타켓 위치일 수 있다. 상기 13개의 측정된 위치는 여기에서 Xc 및 Yc 변환식으로의 치환을 위한 독립 변수라고 하고 (DX1, DY1) 내지(DX13, DY13)으로 표기된다. 예컨대, DX1, 및 DY1은 (IX1, IY1)에 위치된 타켓(1)의 중앙에 비임을 위치시키기 위해서 보정 에러 보정 처리기(52)측으로 전달되어야 하는 각각의 X 및 Y 신호를 나타낸다.
처리 블록(64)은 독립 변수(IX, IY)와 종속 변수(DX, DY)로부터 상기 계수를 도출하는 것을 나타낸다. 상기 독립 변수와 종속 변수로부터 상기 계수를 모두 구하는 처리는 6개의 보조 단계를 포함하고 있으며, 이들 중 일부 보조 단계는 종래의 최소 제곱 곡선 맞춤 알고리즘(least-squares curve fitting algorithm)의 사용을 필요로 한다. 상기 알고리즘은 1)1×10-12만큼 작은 부동 소숫점 수에 대해 적어도 6개의 유효 숫자의 분해능을 유지할 수 있도록 총분히 정확하고, 2)5개의 교정점에 2차 또는 3차 곡선을 선택적으로 맞출 수 있는 것을 요건으로 하며, 그리고 원하는 계수 및 얻어진 맞춤(fit)의 질을 나타내는 성능 지수를 발생한다. 성능 지수는 에러 검사용으로 유용하다.
보조 단계(64a)는 상기 A1,B1, C1, D1계수를 구하는 것을 나타낸다. 이들 계수는 X의 함수인 Xc 변환식을 풀어서 구한다. 상기 A1,B1, C1, D1계수는 수평축, 즉 Y=0 축을 따라 위치된 상기 상기 5개의 교정점으로부터 구해지고 그리고 상기 변수(IX5와 DX5, IX6과 DX6, IX7과 DX7, IX8과 DX8, IX9와 DX9)에 대해 3차 다항식 최소 제곱 곡선 맞춤을 수행함으로써 얻어진다. 상기 최소 제곱 곡선 맞춤으로부터 구해진 상기 계수는 0차 계수가 X축 오프셋과 동일한 A1이 되고, 1차 계수는 X축 스케일 인자와 동일한 B1이 되며, 2차 계수는 C1이 되고, 3차 계수는 D1이 되도록 되어 있다. X축 오프셋을 나타내는 0차 계수는 종족 변수(DX7)와 동일해야 함을 알 수 있다. 대략 5개보다 많은 검류계 모터 증분의 A1과 DX7간의 차는 문제가 되는 (questionable) 데이터를 나타낼 수 있다.
보조 단계(64b)는 상기 E1계수와 F1계수를 구하는 것을 나타낸다. 이들 계수는 Y의 함수인 Xc 변환식을 풀어서 구한다. 상기 E1및 F1계수는 상기 변수(IY12와 DY12, IY10과 DY10, IY7과 DY7, IY4과 DY4, IY2와 DY2)에 대해 2차 다항식 최소 제곱 맞춤을 수행함으로써 수직축, 즉 X=0축을 따라 위치된 5개의 교정점으로부터 구해진다. 2차 다항식 최소 제곱 곡선 맞춤으로부터 구해진 계수는, 0차 계수는 에러 검사를 제외하고는 사용되지 않으며, 1차 계수는 E1이 되고, 그리고 2차 계수는 F1이 되도록 되어 있다. 상기 0차 계수는 DX7과 그리고 A1계수와 대략 동일해야 함을 알 수 있다. 달리 사용되지 않는 0차 계수와 대략 5개보다 많은 검류계 모터증분의 A1(또는 DX7)간의 차는 문제가 되는 데이터를 나타낼 수 있다.
보조 단계(64c)는 G1계수와 H1계수를 산출하는 것을 나타낸다. G1계수와 H1계수는 아래 식에 따라 상기 측정된 6개의 값으로부터 직접 구해진다:
Px = DX3- DX1
Qx = DX13- DX11
Rx = DX9- DX5'
여기서, Px, Qx 및 Rx는 데이터 필드의 수평 폭과 대략 동일한 양수이다. 상기 G1계수 및 H1계수는 Px, Qx 및 Rx의 상기 식으로부터 다음과 같이 산출될 수 있다:
G1= (Px - Qx)/(4 × IX3×IY3)
H1= (Px + Qx - 2 ×Rx)/(4 × IX3×IY3× IY3)
상기 G1계수는 양의 값 또는 음의 값일 수 있으며, 그리고 G1의 크기는 일반적으로 1×10-8보다 작아진다. 상기 계수 H1은 항상 양의 값이며, 그리고 H1의 크기는 일반적으로 5×10-11정도가 된다.
상기 계수 G1및 H1에 대한 상기 식은 핀쿠션 왜곡을 가지고 있는 어드레스 가능 필드 패턴으로부터 경험적으로 구해진다. 제6a도는 제2도에 도시된 캐릭터의 보정되지 않은 어드레스 가능 필드 패턴의 확대된 부분을 나타낸다. 제6a도에는 X방향에서의 핀쿠션 왜곡만이 도시되어 있다. 상기 에러 보정 변환식을 만드는 동안에, 본원의 발명자는, 제6a도의 패턴은 제6b도에 도시된 웨지(wedge) 형상 성분과 제6c도에 도시된 포물선 형상 성분의 중첩으로서 표현될 수 있음을 결정하였다. 제6b도는 상기 웨지가 상기 Y축으로부터의 거리의 함수로서 각 변위로 증가됨을 나타내며, 제6c도는 포물선 곡률이 상기 Y축으로부터의 거리의 함수로서 증가됨을 나타낸다.
상기 Xc 변환식의 항(G1XY)은 제6b도에 도시된 웨지 형상에 맞게 보정된다. 상기 계수 G1의 항(Px-Qx)은 상기 X축에서부터 점(DX1, DY1), (DX3, DY3), (DX11, DY11) 및 (DX13, DY13)까지 뻗어 있는 라인의 평균 X축 성분의 4배임을 나타낸다. 그러므로, 상기 G1식에서 4로 나누는 연산이 G1을 계산하는데 필요하다. 상기 계수(G1)는 어드레스 가능 필드의 제1사분면에 존재하기 때문에 상기 점(IX3, IY3)에서 계산되지만, 상기 점(IX1, IY1)도 사용될 수 있다.
상기 Xc 변환식의 H1XY2항은 포물형에 맞게 보정되며, 상기 계수 (H1)의 항(Px + Qx - 2 ×Rx)은 상기 점(DX1, DY1), (DX3, DY3), (DX11, DY11) 및 (DX13, DY13)에서 포물선의 X축 성분의 4배임을 나타낸다. 상기 포물선중의 하나의 포물선은 상기 점(DX1, DY1), (DX5, DY5), 및 (DX11, DY11)을 통과하며, 기타 다른 포물선은 점(DX3, DY3), (DX9, DY9) 및 (DX13, DY13)을 통과한다.
그러므로, 상기 H1식에서 4로 나누는 연산은 H1을 산출하는데 필요하다. 상기 계수 H1은 제1사분면에서 존재하기 때문에 상기 점(IX3, IY3)에서 산출되지만, 상기 점(IX1, IY1), (IX11, IY11) 및 (IX13, IY13)도 사용될 수 있다. 상기 항(G1XY, H1Xy2)은 상기 비임 위치가 상기 Y축으로부터 멀어짐에 따라 비직선적으로 증가함을 알 수 있다.
보조 단계(64d)는 계수(A2,B2,C2,D2)를 구하는 것을 나타낸다. 이들 계수는 Y항의 함수인 Yc변환식을 풀어서 구한다. 상기 계수(A2,B2,C2,D2)는 수직축, 즉 X=0축에 위치된 5개의 교정점으로부터 구해지고, 그리고 상기 변수(IY12와 DY12, IY10과 DY10, IY7과 DY7, IY4과 DY4, IY2와 DY2)에 대한 3차 다항식 최소 제곱 맞춤을 수행함으로써 얻어진다. 상기 최소 제곱 곡선 맞춤으로부터 구해진 계수는, 0차 계수는 Y축 오프셋과 동일한 A2로 되고, 1차 계수는 Y축 스케일 인자와 동일한 B2가 되며, 2차 계수는 C2가 되고, 3차 계수는 D2가 되도록 되어 있다. Y축 오프셋을 나타내는 상기 0차 계수는 종속 변수(DY7)와 동일해야 함을 알 수 있다. 대략 5개보다 많은 검류계 모터 증분의 A2와 DY7간의 차는 문제가 되는 데이터를 나타낼 수 있다.
보조 단계(64e)는 계수(E2, F2)를 구하는 것을 나타낸다. 이들 계수는 X항의 함수인 Yc 변환식을 풀어서 구한다. 상기 E2및 F2계수는 상기 변수(IX5와 DY5, IX6과 DY6, IX7과 DY7, IX8과 DY8, IX9와 DY9)에 대해 2차 다항식 최소 제곱 맞춤을 수행함으로써 수평축, 즉 Y=0축을 따라 위치된 5개의 교정점으로부터 구한다. 상기 2차 다항식 최소 제곱 곡선 맞춤으로부터 구한 상기 계수는 상기 0차 계수가 에러 검사를 제외하고는 사용되지 않도록 되어 있다. 1차 계수는 E2가 되고, 2차 계수는 F2가 된다. 상기 0차 계수는 (DY7, A2)와 대략 동일해야 함을 알 수 있다. 달리 사용되지 않는 0차 계수와 대략 5개보다 많은 검류계 모터 증분의 A2(또는 DY7)간의 차는 문제가 되는 데이터를 나타낼 수 있다.
보조 단계(64f)는 계수(G2, H2)를 산출하는 것을 나타낸다. 상기 계수(G2, H2)는 아래 식에 따라 상기 측정된 6개의 값으로부터 직접 구한다:
Py = DY3- DY13
Qy = DY1- DY11
Ry = DY2- DY12
여기서, Py, Qy 및 Ry는 상기 데이터 필드의 수직 폭과 대략 동일한 양수이다. 상기 계수(G2, H2)는 Py, Qy, Ry에 관한 상기 식으로부터 다음과 같이 계산된다.
G2= (Py - Qy)/(4 × IX3×IY3)
H2= (Py + Qy - 2 ×Ry)/(4 × IX3×IY3× IY3)
상기 G2계수는 양의 값 또는 음의 값일 수 있으며 G2의 크기는 일반적으로 1×10-8보다 작아진다. 상기 계수(H2)는 항상 음의 값이 되며, H1의 크기는 일반적으로 5×10-11정도가 된다. G2계수 및 H2계수에 관한 상기 식은 제6a도 내지 제6c도를 참조하여 위에서 설명한 것과 유사한 방법으로 핀쿠션 왜곡을 가지고 있는 어드레스 가능 필드 패턴으로부터 경험적으로 구해진다. 보조단계(64a-64c)와 보조단계(64d-64f)는 제5도의 흐름도에서 지시하는 바와 같이 병렬로 수행될 수 있다.
처리 블록(66)은 계수(A1-H1)와 계수(A2-H2)의 표준화 및 프리스케일링(prescaling)하는 것을 나타낸다. 이 동작은 상기 계수들이 1보다 훨씬 크거나 훨씬 작을 수 있기 때문에 수행된다. 광범위한 가능한 계수 값은 바람직한 에러 보정 처리기(52)가 16비트 정수 연산으로 동작하기 때문에 보다 높은 차수 항에 대해 오버플로우 상태를 일으킬 수 있다. 이러한 오버플로우 상태를 방지하기 위하여, 상기 구해진 계수에 대해, Xc 및 Yc 변환식의 각각의 항과 (32768)n/(32768)n을 곱하는 연산을 수반하는 프리스케일링 처리가 행해지며, 여기서 n은 항의 차수에서 1을 뺀 것을 나타낸다. 상기 프리스케일링 처리는, 고차항이 16비트 이상으로 되는 것을 방지해 주고, 보다 작은 계수를 16비트의 제로보다 큰 크기로 스케일링해주며, 16비트의 2의 보수 포맷으로 다수의 유효 숫자를 발생하는 크기로 중간 출력을 유지해 주기 때문에, 이점이 있다.
표 1에는 상기 계수에 따라 산출된 프리스케일링 인자가 요약되어 있다.
Figure kpo00002
상기 표 1의 맨 우측 열에 열거된 전형적인 결과는, 프리스케일링 인자가 곱해진 후에 각각의 계수가 소수 2진 표기로 처리하기 쉬운 크기를 가지게 됨을 나타낸다.
처리 블록(68)은 곱셈이 수행된 후에 원래의 2로 나누는 연산을 보상해 주기 위해 특정 계수를 조절하는 것을 나타낸다. 이 단계는 TRW, Inc.에 의해 제조되어 본 바람직한 실시예에 사용된 모델 TMC 2010 승산기/누산기 집적 회로의 구성에 문제가 존재하기 때문에 필요하다. 이 집적 회로는 2개의 별개의 16비트 워드로서 승산/누산 동작의 결과를 제공한다. 이 집적 회로는 상기 소수의 2의 보수 라운드 모드(round mode)로 동작할 수 있도록 선택되므로, 2개의 15비트와 하나의 부호 비트 수는 30비트와 부호 비트를 제공한다. 상기 하위 16비트 출력은 상기 결과의 하위 16비트를 나타내며, 상기 상위 16비트 출력은 상기 결과의 상위 14비트를 나타낸다. 상기 부호 비트는 별개의 3비트 워드의 일부로서 제공된다. 이 비트 배열의 효과는, 상위 16비트 출력이 사용될 때마다, 2개의 15비트와 하나의 부호 비트 수가 14비트와 하나의 부호 비트 출력을 제공하기 위해 곱해진다는 것이다. 이 배열의 결과는 출력이 입력측에 제공되거나 입력측으로 피드백될 때마다 하나의 유효 비트의 분해능이 손실된다는 것이다. 이 데이터 손실은 정확도 측면에서 치명적이다. 이러한 문제점은 상위 16비트로부터의 14비트와 함께 하위 16비트의 최상위 비트(MSB)를 이용할 수 있으면 회피할 수 있다. 불행하게도, 이것은 라운드 옵션이 상기 하위 16비트의 MSB에 논리1을 항상 가산해 주기 때문에 상기 승산기에 맞게 선택된다.
상기 문제점에 대한 해결책은 상위 15비트(14비트와 하나의 부호 비트)를 사용하고, 이에 의해 상기 출력에 대해 2로 나누는 연산을 행하는 것이다. 이것은 상기 항을 구하는데 필요한 각각의 곱셈 동작에 대해 한번에 상기 인자들중 2개의 인자를 사전에 승산함으로써 보상될 수 있다. 바람직한 실시예에 있어서, 이와 같은 사전 승산은 승산 후에 1보다 작아진다는 조건하에서 상기 계수에 대해서 수행된다 상기 계수(A,A,B,B)는 일반적으로 1보다 크다. 상기 계수(A,B)는 정수로서 사용되며, 따라서 1보다 작아야 한다는 요건과는 관계가 없다. 상기 계수(B,B)는 대략 1인 전형적인 크기를 가지고 있다. 상기 계수(B,B)에 대한 사전 승산인자는 2이며, 따라서 상기 계수(B,B)의 크기는 대략 2이다. 1보다 작은 값을 보장하는 것은 사전 승산된 계수(B,B)를 3으로 나누고, B×X 연산과 B×Y 연산을 각각 3회 수행함으로써 달성된다. 이 방법으로 계수(B,B)를 처리하는 연산은 최고 1.5의 그러한 계수의 스케일링되지 않은 값을 이용한다.
2로 나누는 연산을 실행하는 다른 예는 에러 보정 처리기(52)가 스크래치 패트 메모리(scratch pad memory)로부터 이전의 결과를 판독하고 상기 누산기측으로 전달하기 위해 그 결과에 1을 곱할 때마다 생긴다. 2로 나눈 효과를 보상해 주기 위해서, 스크래치 패드 메모리로부터 상기 결과를 2회 판독하고 매번 그 결과에 1을 곱하며 그 결과를 누산기 내용에 가산하는 것이 필요하다.
표 2에는 계수(A-H)와 계수(A-H)의 각각에 대해 계산된 사전 승산 인자가 도시되어 있다. 처리 블록(66,68)을 참조하여 설명된 사전 승산 처리 및 표준화 및 프리스케일링 처리는 하나의 연산에서 조합되어 수행될 수 있음을 알 수 있다.
Figure kpo00003
처리 블록(70)은 2진 소수 포맷에서 2진 정수 포맷으로의 계수의 변환을 나타낸다. 상기 처리 블록(66,68)을 참조하여 설명한 처리에 따라 생성된 계수는 상기 승산기/누산기에 의해 2진 소수로서 해석되는 수이지만, 상기 에러 보정 처리기에의 저장을 위해 2진 정수로서 제공될 필요가 있다. 하지만, 계수(A,A)의 경우에는 이들이 2의 보수인 정수로서 직접 저장되기 때문에 해당되지 않는다. B-H및 B-H계수를 2진 정수 포맷으로 변환하는 연산은 선택된 계수에 32768을 곱하는 과정과, 그 결과를 가장 가까운 전체 수로 라운딩하는 과정과, 상기 수를 16비트인 2의 보수 정수로서 저장하는 과정을 포함하고 있다.
제7도는 에러 보정 처리기(52)의 간단화된 블록도이다. 제7도를 참조하면, 에러 보정 처리기(52)는 각각 X 입력 래치(82)와 Y 입력 래치(84)에 의해 전송된 16 병렬 비트 디지털 워드의 형태로 X 및 Y 신호를 수신한다. 상기 X 신호 데이터 및 Y 신호 데이터는 순차(sequence) 제어기(88)의 출력 도선(86)상에 제공된 래치 및 출력 제어 신호에 의해 적절한 시간에 각각의 입력 래치(82,84)에 저장된다. 순차 제어기(88)는 Xc 및 Yc 변환식의 항들을 계산 및 누산하기 위해서, 처리기(52)의 각종 기능을 조절 및 제어하기에 적절한 시퀀스로 상기 클럭 및 타이밍 신호를 발생한다.
랜덤 엑세스 메모리(RAM)(90)는 시스템 제어 컴퓨터(22)(제3도)를 통해서 측정 데이터 파일(54)로부터 데이터 버스(56)에 의해서 전달되는 계수를 저장한다. 상기 계수는, 순차 제어기(88)의 출력(92)상에 생성된 판독/기록 제어 신호 및 어드레스 버스(93)에 의해 순차 제어기(88)로부터 전달되는 8병렬 비트 어드레스 워드에 응답하여 (RAM)(90)에 대해 판독 및 기록된다. RAM(90)으로부터 판독된 교정 데이터는 출력 도선상에 나타나서 내부 처리기 버스(94)를 통해 승산기/누산기(98)의 R입력측으로 전달된다. 승산기/누산기(98)는 각각의 입력 래치(82,84)의 출력측에 상이한 시간에 제공된 X 및 Y 신호 데이터를 S 입력상에서 수신한다. 승산기/누산기(98)는 상기 R 및 S입력에 제공된 데이터들을 승산하기 위해 그리고 내부 스크래치 패드 메모리에 그 결과를 저장하기 위해서 순차 제어기(88)의 출력(100)상에 제공된 산술 기능 제어 신호에 응답하여 동작한다. 승산기/누산기(98)의 산술 연산의 결과는 처리기 버스(94)에 접속되어 있는 P 출력에 나타난다. 승산기/누산기(98)의 P 출력과 R 입력은 누산기 피드백 경로를 제공하기 위해 접속되어 있다.
처리기 버스(94)와 입력 래치(82,84)의 출력은 3 상태 2 웨이(way) 스위치(102)의 상이한 입력에 접속되어 있다. 3 상태 스위치(102)는 입력 래치(82,84)로부터의 로우(raw) X 및 Y 위치 신호 데이터를 교정 동안에 각각 출력 래치(106,108)측으로 전달하기 위해서, 제어기(88)의 출력(104)상에서 생성된 2 웨이 스위치 제어 신호에 응답하여 기능한다.
순차 제어기(88)는, Xc 및 Yc 변환식을 합성하는데에 필요한 승산 및 가산기능을 수행할 수 있도록, X 및 Y 신호 데이터 및 계수를 승산기/누산기(98)측에 전달하기 위해 그리고 수학 연산을 제어하기 위해 적절한 시간 순차로 제어 신호를 출력(86,92,100,104)상에 제공한다. 예컨대, 순차 제어기(88)는 RAM(90)으로부터의 B계수 및 입력 래치(82)로부터의 X 신호 정보를 승산기/누산기(98)의 각각의 R 및 S 입력측에 전달하는데에 필요한 신호를 발생하며, 이때, 상기 승산기/누산기(98)는 승산을 행하고 그 결과를 유지한다. 다음에, 순차 제어기(88)는 승산기/누산기(98)의 R 입력측으로부터 RAM(90)으로부터의 A계수를 전달하는데에 필요한 제어 신호를 발생하며, 이때, 상기 승산기/누산기는 이전에 산출된 결과(B×X)에 A을 가산한다. 에러 보정 처리기(52)는 RAM(90)의 일부분을 형성하고 있는 스크래치 패드 메모리를 가지고 있다. 상기 변환식의 항들의 전개를 수행하는 방법 및 에러 보정 처리기(52)의 구성은, 상기 스크래치 패드 메모리가 전개 동안에 산출된 하나의 중간값만을 저장하는 것을 필요로 한다. 하지만, 에러 보정 처리기(52)가 필요한 경우에 하나 이상의 중간값을 저장할 수 있도록 구성될 수 있다.
상기 Xc 변환식의 합성은, 각각의 A-H계수가 RAM(90)으로부터 판독되고 필요한 모든 대수학 연산이 상기 Xc 변환식에 따라 수행될 때까지, 유사한 방법으로 다항식의 각각의 항에 대해 행해진다. 상기 합성 동안의 상기 항들의 처리 순서는 승산기/누산기(98)의 제한 값이 오버플로우 없이 가장 효과적이도록 정해진다. 상기 Yc변환식의 합성은 유사한 방법으로 수행된다.
승산기/누산기(98)의 P 출력상에 나타나는 계산 결과는, 순차 제어기(88)의 출력(110)상에 제공된 저장 신호에 응답하여, 상기 Xc 및 Yc 신호를 저장하는 각각의 Xc 출력 래치(108) 및 Yc 출력 래치(106)의 입력측을 전달된다. 상기 각각의 출력 래치(106,108)의 출력측에 나타나는 Xc 및 Yc 신호는 타켓면(18)상의 명령 위치로 레이저 비임(14)을 방향 조절하는 검류계 비임 위치 결정기(12)(제3도)의 입력측에 제공된다.
제8도는 명령 데이터 위치값의 단위 변화에 응답하여 검류계 미러(26,28)의 단위 각 변위에 의해 타켓면(18)상에 그려진 광 비임 격자 패턴을 보여 주는 예시적인 어드레스 가능 필드(120)의 맵을 나타낸 도면이다. 제8도에는 타켓면(18)의 어드레스 가능 필드(120)가 전체 어드레스 가능 필드상의 인접 위치들사이에서 2.5㎜의 등거리 간격을 나타냄이 도시되어 있다. 이는 종래 기술에 따라 생성된 어드레스 가능 필드(34)(제2도)와 대조적이다. 그러므로, 에러 보정 처리기(52)의 동작은 핀쿠션 왜곡을 제거하고, 따라서 종래 광 비임 위치 결정 시스템의 특성인 비임 위치 결정 비직선성을 제거한다.
본 발명의 기본적인 원리를 이탈하지 않고 본 발명의 바람직한 실시예의 위에서 설명된 상세 사항에서 다수의 수정이 행해질 수 있음은 당업자에게 명백하다. 그러므로, 본 발명의 범위는 단지 다음의 특허청구의 범위를 참조하여 결정되어야 한다.

Claims (15)

  1. 비임 위치 명령 데이터에 응답하여 광 비임의 전달 경로를 방향 조절하기 위해 복수의 광학 소자를 사용하는 광 비임 위치 에러 보정 시스템에 있어서, 비임 경로를 따라 전달되는 광 비임을 생성하기 위한 광 소스 수단과, 타켓면상의 위치쪽으로 전달 경로를 방향 조절하기 위해 상기 비임을 수신하는 비임 위치 결정 수단과, 상기 타켓면상의 미리 선택된 위치에 대응하는 위치 좌표 신호를 발생하기 위해 비임 위치 명령 데이터를 수신하는 위치 데이터 발생 수단과, 상기 비임 위치 결정 수단에의 전달을 위해 보상된 위치 좌표 신호를 발생하기 위하여 상기 위치 좌표 신호를 수신하는 에러 보정 처리 수단을 구비하고 있으며, 상기 보상된 위치 좌표 신호는 상기 비임 위치 결정 수단이 상기 타켓면상의 상기 미리 선택된 위치로 상기 광 비임을 방향 조절할 수 있도록 시스템 광학 소자에 의해 도입된 광 비임 위치 결정 에러를 보정하기 위해 상기 위치 좌표 신호를 수정하고, 상기 위치 좌표 신호는 상기 광 비임의 순간적인 명령 위치를 지시하는 X 신호와 Y 신호를 가지고 있으며, 상기 보상된 위치 좌표 신호는 Xc 신호와 Yc 신호를 포함하고 있고, 상기 Xc 신호는 다항식, B1X + C1X2+ D1X3+ E1Y + F1Y2+ G1XY + H1XY2의 함수이고, Yc 위치 신호는 다항식, B2Y + C2Y2+ D2Y3+ E2X + F2X2+ G2YX + H2YX2의 함수이며, 여기서, B1, C1, D1, E1, F1, G1, H1,B2, C2, D2, E2, F2,G2, H2는 상기 시스템 광학 소자의 광 방향 조절 광학 특성과 대응하는 상수값의 필드 보정 계수를 나타내는 광 비임 위치 에러 보정 시스템.
  2. 제1항에 있어서, 항 A1이 함수인 Xc을 가지고 있는 다항식에 추가되고, 항 A2이 함수인 Yc를 가지고 있는 다항식에 추가되며, 상기 A1및 A2항은 X-Y 좌표 시스템에서의 각각의 X 및 Y 축 오프셋을 나타내는 광 비임 위치 에러 보정 시스템.
  3. 제1항에 있어서, 특정 시스템의 특정 광 방향 조절 특성을 특징지우는 필드 보정 계수를 선택적으로 저장하기 위해 상기 에러 보정 처리 수단과 데이터 통신을 행하는 교정 데이터 파일 수단을 더 구비하고 있는 광 비임 위치 에러 보정 시스템.
  4. 비임 위치 명령 데이터에 응답하여 광 비임의 전달 경로를 방향 조절하기 위해 복수의 광학 소자를 사용하는 광 비임 위치 에러 보정 시스템에 있어서, 비임 경로를 따라 전달되는 광 비임을 생성하기 위한 광 소스 수단과, 타켓면상의 위치쪽으로 전달 경로를 방향 조절하기 위해 상기 비임을 수신하는 비임 위치 결정 수단과, 상기 타켓면상의 미리 선택된 위치에 대응하는 위치 좌표 신호를 발생하기 위해 비임 위치 명령 데이터를 수신하는 위치 데이터 발생 수단과, 상기 비임 위치 결정 수단에의 전달을 위해 보상된 위치 좌표 신호를 생성할 수 있도록 상기 위치 좌표 신호를 수신하는 에러 보정 처리 수단을 구비하고 있으며, 상기 보상된 위치 좌표 신호는 상기 비임 위치 결정 수단이 상기 타켓면상의 상기 미리 선택된 위치로 상기 광 비임을 방향 조절할 수 있도록 시스템 광학 소자에 의해 도입된 비임 위치 결정 에러를 보정하기 위해 상기 위치 좌표 신호를 수정하고, 상기 위치 좌표 신호는 상기 광 비임의 순간적인 명령 위치를 지시하는 X 신호 및 Y 신호를 가지고 있으며, 상기 보상된 위치 좌표 신호는 Xc 신호와 Yc 신호를 포함하고 있고, 상기 Xc 및 Yc 신호는 웨지 각 왜곡으로부터 생긴 위치 에러를 보정하기 위한 각각의 항 G1XY 및 G2YX과 포물선 곡률 왜곡으로부터 생긴 위치 에러를 보정하기 위한 각각의 항 H1XY2및 H2X2Y를 포함하고 있는 다항식에 비례하는 광 비임 위치 에러 보정 시스템.
  5. 제1항에 있어서, 상기 보정 계수는 최소 제곱 알고리즘에 따라 결정되는 광 비임 위치 에러 보정 시스템.
  6. 비임 위치 결정 명령 데이터에 응답하여 광 비임의 전달 경로를 방향 조절하기 위해 복수의 광학 소자를 사용하는 광 비임 위치 에러 보정 시스템에 있어서, 비임 경로를 따라 전달되는 광 비임을 생성하기 위한 광 소스 수단과, 타켓면상의 위치쪽으로 전달 경로를 방향 조절하기 위해 상기 비임을 수신하는 비임 위치 결정 수단과, 비임 위치 명령 데이터를 제공하기 위해 제1세트의 명령에 응답하는 시스템 제어 컴퓨터 수단과, 상기 타켓면상의 미리 선택된 위치에 대응하는 위치 좌표 신호를 발생하기 위해 상기 비임 위치 명령 데이타를 수신하는 위치 데이터 발생 수단과, 상기 시스템에 도입된 광 비임 위치 결정 에러를 보정하기 위해 이전에 취득한 보정 데이터를 제공하는 교정 데이터 소스 수단과, 2세트의 명령에 응답하여, 위치 좌표 신호와 상기 교정 데이터를 수신하고, 상기 시스템에 도입된 광 비임 위치 결정 에러를 보정하기 위해 상기 위치 좌표 신호를 보상된 위치 좌표 신호로 변환하기 위한 교정 데이터를 공급하며, 상기 비임 위치 결정 수단이 상기 타켓면상의 상기 미리 선택된 위치로 상기 광 비임을 방향 조절할 수 있도록 상기 보상된 위치 좌표 신호를 상기 비임 위치 결정 수단에 제공하는 에러 보정 처리 수단을 구비하고 있는 광 비임 위치 에러 보정 시스템.
  7. 교정 데이터의 취득이 타켓면의 어드레스 가능한 필드의 교정점의 어레이 선택하고, 광 비임이 상기 교정점중의 각각의 교정점중에 충돌할 때까지 상기 필드를 스캐닝하며, 상기 교정점에 상기 광 비임을 위치시키는데에 필요한 위치 좌표 신호를 결정할 수 있도록, 광 비임 위치 결정 시스템의 광학 특성을 특징지우는 교정 데이터를 취득 및 저장하는 단계; 광 비임이 향해야 하는 타켓면상의 의도된 위치에 대응하는, 시스템 컴퓨터로부터의 비임 위치 명령 데이터를 제공하는 단계; 상기 비임 위치 명령 데이터를, 비임 위치 결정기에 의해 사용될 수 있도록 상기 타켓면상의 의도된 위치에 대응하는 위치 좌표 신호로 변환하는 단계; 상기 비임 위치 명령 데이터를 보상된 위치 좌표 신호로 변환하기 위해 상기 저장된 교정 데이터를 사용하는 단계; 및 상기 광 비임을 상기 타켓면상의 상기 의도된 위치로 방향 조절하기 위해 상기 보상된 위치 좌표 신호를 비임 위치 결정기측에 제공하는 단계를 포함하고 있는 광 비임 위치 결정 방법.
  8. 제6항에 있어서, 상기 보상된 위치 좌표 신호는 Xc 신호와 Yc 신호를 포함하고 있고, 상기 비임 위치 결정 수단은 상기 광 비임을 수신하는, 독립적으로 이동 가능한 한 쌍의 제1 및 제2광 반사면을 구비하고 있으며, 상기 제1 및 제2광 반사면은 상기 미리 선택된 위치에 상기 광 비임이 위치되도록 상기 타켓면을 따라 각각의 제1 및 제2직교 방향으로 상기 광 비임을 이동시키기 위해 상기 Xc 및 Yc 신호를 수신하는 광 비임 위치 에러 보정 시스템.
  9. 제8항에 있어서, 상기 비임 위치 결정 수단은 렌즈를 더 구비하고 있는 광 비임 위치 에러 보정 시스템.
  10. 제9항에 있어서, 상기 렌즈는 F-θ형 광 비임 위치 에러 보정 시스템.
  11. 제6항에 있어서, 상기 광 소스 수단은 레이저를 구비하고 있는 광 비임 위치 에러 보정 시스템.
  12. 제6항에 있어서, 상기 타켓면상의 실제 비임 위치 및 대응하는 위치 좌표 신호를 결정함으로써 시스템 초기화시에 이전에 취득된 교정 데이터를 생성하기 위한 교정 데이터 발생 수단을 더 구비하고 있는 광 비임 위치 에러 보정 시스템.
  13. 제6항에 있어서, 상기 교정 데이터 소스 수단은 비휘발성 메모리를 구비하고 있는 광 비임 위치 에러 보정 시스템.
  14. 제7항에 있어서, 상기 보상된 위치 좌표 신호는 Xc 신호와 Yc 신호를 포함하고 있고, 상기 비임 위치 결정기는 상기 광 비임을 수신하는, 독립적으로 이동 가능한 한 쌍의 제1 및 제2광 반사면을 구비하고 있으며, 상기 제1 및 제2광 반사면은 의도된 위치에 상기 광 비임이 위치되도록 상기 타켓면을 따라 각각의 제1 및 제2직교 방향으로 상기 광 비임을 이동시키기 위해 상기 Xc 및 Yc 신호를 수신하는 광 비임 위치 결정 방법.
  15. 제7항에 있어서, 상기 광 비임은 레이저 소스로부터 발생되고, 상기 교정 데이터는 비휘발성 메모리로부터 얻어지는 광 비임 위치 결정 방법.
KR1019890005256A 1988-04-25 1989-04-21 광 비임 위치 에러 보정 시스템 KR0156563B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US185,414 1988-04-25
US185414 1988-04-25
US07/185,414 US4941082A (en) 1988-04-25 1988-04-25 Light beam positioning system

Publications (2)

Publication Number Publication Date
KR890016408A KR890016408A (ko) 1989-11-29
KR0156563B1 true KR0156563B1 (ko) 1998-12-15

Family

ID=22680870

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890005256A KR0156563B1 (ko) 1988-04-25 1989-04-21 광 비임 위치 에러 보정 시스템

Country Status (7)

Country Link
US (1) US4941082A (ko)
EP (1) EP0339402B1 (ko)
JP (1) JP2616990B2 (ko)
KR (1) KR0156563B1 (ko)
AT (1) ATE91031T1 (ko)
DE (1) DE68907260T2 (ko)
HK (1) HK1000354A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100866393B1 (ko) * 2006-12-15 2008-11-03 경상대학교산학협력단 평면 스캔 입자화상속도계 기법

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992012820A1 (en) * 1991-01-17 1992-08-06 United Distillers Plc Dynamic laser marking
JPH04283792A (ja) * 1991-03-13 1992-10-08 Pioneer Electron Corp 2次元情報表示装置
DE4200632C2 (de) * 1992-01-13 1995-09-21 Maho Ag Verfahren und Vorrichtung zum Bearbeiten von Werkstücken mittels der von einem Laser emittierten Laserstrahlung
US5737122A (en) * 1992-05-01 1998-04-07 Electro Scientific Industries, Inc. Illumination system for OCR of indicia on a substrate
US5231536A (en) * 1992-05-01 1993-07-27 Xrl, Inc. Robust, LED illumination system for OCR of indicia on a substrate
US5519809A (en) * 1992-10-27 1996-05-21 Technology International Incorporated System and method for displaying geographical information
US5945985A (en) * 1992-10-27 1999-08-31 Technology International, Inc. Information system for interactive access to geographic information
US5430666A (en) * 1992-12-18 1995-07-04 Dtm Corporation Automated method and apparatus for calibration of laser scanning in a selective laser sintering apparatus
US5400132A (en) * 1993-10-12 1995-03-21 General Scanning Rectification of a laser pointing device
JP3077539B2 (ja) * 1994-12-22 2000-08-14 松下電器産業株式会社 レーザ加工方法
US5751585A (en) * 1995-03-20 1998-05-12 Electro Scientific Industries, Inc. High speed, high accuracy multi-stage tool positioning system
US5847960A (en) * 1995-03-20 1998-12-08 Electro Scientific Industries, Inc. Multi-tool positioning system
US6190376B1 (en) 1996-12-10 2001-02-20 Asah Medico A/S Apparatus for tissue treatment
US6025256A (en) * 1997-01-06 2000-02-15 Electro Scientific Industries, Inc. Laser based method and system for integrated circuit repair or reconfiguration
US5938657A (en) * 1997-02-05 1999-08-17 Sahar Technologies, Inc. Apparatus for delivering energy within continuous outline
US6000801A (en) * 1997-05-02 1999-12-14 General Scanning, Inc. Multi-color laser projector for optical layup template and the like
JP4298835B2 (ja) 1999-01-22 2009-07-22 本田技研工業株式会社 自動二輪車の排気装置
KR100755335B1 (ko) 2000-01-11 2007-09-05 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 아베 에러 정정 시스템 및 방법
US6791592B2 (en) * 2000-04-18 2004-09-14 Laserink Printing a code on a product
WO2002025640A2 (en) 2000-09-21 2002-03-28 Gsi Lumonics Corporation Digital control servo system
US6768100B1 (en) 2000-10-27 2004-07-27 Gsi Lumonics Corporation Continuous position calibration for servo controlled rotary system
US7062091B2 (en) * 2001-01-16 2006-06-13 Applied Precision, Llc Coordinate calibration for scanning systems
US6816294B2 (en) 2001-02-16 2004-11-09 Electro Scientific Industries, Inc. On-the-fly beam path error correction for memory link processing
US8497450B2 (en) 2001-02-16 2013-07-30 Electro Scientific Industries, Inc. On-the fly laser beam path dithering for enhancing throughput
US7245412B2 (en) * 2001-02-16 2007-07-17 Electro Scientific Industries, Inc. On-the-fly laser beam path error correction for specimen target location processing
US7160432B2 (en) 2001-03-14 2007-01-09 Applied Materials, Inc. Method and composition for polishing a substrate
JP2002321072A (ja) * 2001-04-27 2002-11-05 Sunx Ltd レーザマーキング装置
US6892337B1 (en) * 2001-08-22 2005-05-10 Cypress Semiconductor Corp. Circuit and method for testing physical layer functions of a communication network
US6706998B2 (en) 2002-01-11 2004-03-16 Electro Scientific Industries, Inc. Simulated laser spot enlargement
KR100540541B1 (ko) * 2002-03-26 2006-01-12 미쓰비시덴키 가부시키가이샤 레이저 가공 장치의 레이저 빔 위치 결정 장치
KR100491308B1 (ko) * 2002-07-27 2005-05-24 주식회사 이오테크닉스 레이저 장치의 갈바노 스캐너의 드리프트 및 왜곡 보정방법
US6816535B2 (en) * 2002-09-17 2004-11-09 Northrop Grumman Corporation Co-alignment of time-multiplexed pulsed laser beams to a single reference point
US20050088510A1 (en) * 2003-10-24 2005-04-28 Shlomo Assa Low angle optics and reversed optics
US7046267B2 (en) * 2003-12-19 2006-05-16 Markem Corporation Striping and clipping correction
DE602005011248D1 (de) * 2004-01-23 2009-01-08 Gsi Group Corp System und verfahren zum optimieren der zeichenmarkierungsleistung
US7241981B2 (en) * 2004-03-05 2007-07-10 Lap Laser Llc Systems and methods for displaying images and processing work pieces
US7363180B2 (en) * 2005-02-15 2008-04-22 Electro Scientific Industries, Inc. Method for correcting systematic errors in a laser processing system
US7394479B2 (en) 2005-03-02 2008-07-01 Marken Corporation Pulsed laser printing
US7297972B2 (en) * 2005-08-26 2007-11-20 Electro Scientific Industries, Inc. Methods and systems for positioning a laser beam spot relative to a semiconductor integrated circuit using a processing target as a metrology target
US7315038B2 (en) * 2005-08-26 2008-01-01 Electro Scientific Industries, Inc. Methods and systems for positioning a laser beam spot relative to a semiconductor integrated circuit using a processing target as an alignment target
DE102005047217A1 (de) * 2005-10-01 2007-04-05 Carl Zeiss Jena Gmbh Verfahren zur Steuerung eines optischen Scanners und Steuereinrichtung für einen optischen Scanner
US8057463B2 (en) * 2006-04-07 2011-11-15 Amo Development, Llc. Adaptive pattern correction for laser scanners
US8233207B2 (en) 2007-08-06 2012-07-31 Abariscan Gmbh Method and apparatus for reactive optical correction of galvano motor scanning heads
JP5247095B2 (ja) * 2007-09-18 2013-07-24 株式会社村田製作所 レーザ加工におけるレーザ照射位置の補正方法
US8426768B2 (en) 2008-02-20 2013-04-23 Aerotech, Inc. Position-based laser triggering for scanner
US20110210105A1 (en) * 2009-12-30 2011-09-01 Gsi Group Corporation Link processing with high speed beam deflection
US20120132629A1 (en) * 2010-11-30 2012-05-31 Electro Scientific Industries, Inc. Method and apparatus for reducing taper of laser scribes
US10037346B1 (en) 2012-07-25 2018-07-31 Google Llc Time reservations for ensuring consistent reads in a distributed database without logging
CN103008878B (zh) * 2012-12-13 2015-06-17 苏州天弘激光股份有限公司 振镜加工的四坐标系校正方法
US9718146B2 (en) * 2013-06-03 2017-08-01 Mitsubishi Electric Research Laboratories, Inc. System and method for calibrating laser processing machines
CA3171484A1 (en) 2014-12-05 2016-06-09 Convergent Dental, Inc. Systems and methods for alignment of a laser beam
CN105252911B (zh) * 2015-09-22 2017-04-12 深圳市创鑫激光股份有限公司 一种激光打标的校正方法和装置
US10583668B2 (en) 2018-08-07 2020-03-10 Markem-Imaje Corporation Symbol grouping and striping for wide field matrix laser marking

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813916B2 (ja) * 1978-11-20 1983-03-16 日本電信電話株式会社 円弧信号発生方式
DE3046584C2 (de) * 1980-12-11 1984-03-15 Dr.-Ing. Rudolf Hell Gmbh, 2300 Kiel Optisch-mechanischer Abtaster
JPS58224088A (ja) * 1982-06-22 1983-12-26 Nec Corp レ−ザ加工装置
JPS5935892A (ja) * 1982-08-20 1984-02-27 Nec Corp レ−ザ加工装置
JPS59124318A (ja) * 1982-12-30 1984-07-18 Fujitsu Ltd 走査方式
US4711573A (en) * 1983-03-07 1987-12-08 Beckman Instruments, Inc. Dynamic mirror alignment control
FR2553910B1 (fr) * 1983-10-24 1986-03-21 Commissariat Energie Atomique Detecteur thermoelectrique d'alignement d'un faisceau laser et dispositif d'asservissement utilisant ce detecteur, pour l'alignement automatique d'un faisceau laser
DE3339318C2 (de) * 1983-10-29 1995-05-24 Trumpf Gmbh & Co Laser-Bearbeitungsmaschine
JPS61117517A (ja) * 1984-11-13 1986-06-04 Fuji Photo Film Co Ltd ガルバノメ−タの走査速度の補正方法
JPS61123492A (ja) * 1984-11-19 1986-06-11 Toshiba Corp レ−ザ加工装置
FR2580870B1 (fr) * 1985-04-23 1987-09-25 Arnaud Jean Appareil de regulation de caracteristiques d'un faisceau lumineux, notamment d'un laser de puissance
LU86037A1 (fr) * 1985-08-09 1987-03-06 Metallurg Ct Voor De Research Procede de mise en oeuvre d'un faisceau laser et dispositifs y relatife
US4641071A (en) * 1985-09-25 1987-02-03 Canon Kabushiki Kaisha System for controlling drive of a wafer stage
NL194811C (nl) * 1986-01-16 2003-03-04 Mitsubishi Electric Corp Servoschakeling.
JPS62298806A (ja) * 1986-06-18 1987-12-25 Tokico Ltd 工業用ロボツトの教示デ−タ変換方法
JPS6341025A (ja) * 1986-08-06 1988-02-22 Jeol Ltd 電子線描画装置の描画方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100866393B1 (ko) * 2006-12-15 2008-11-03 경상대학교산학협력단 평면 스캔 입자화상속도계 기법

Also Published As

Publication number Publication date
JP2616990B2 (ja) 1997-06-04
EP0339402B1 (en) 1993-06-23
DE68907260T2 (de) 1994-02-17
US4941082A (en) 1990-07-10
EP0339402A1 (en) 1989-11-02
JPH0222617A (ja) 1990-01-25
HK1000354A1 (en) 1998-03-06
KR890016408A (ko) 1989-11-29
ATE91031T1 (de) 1993-07-15
DE68907260D1 (de) 1993-07-29

Similar Documents

Publication Publication Date Title
KR0156563B1 (ko) 광 비임 위치 에러 보정 시스템
US4063103A (en) Electron beam exposure apparatus
US4442361A (en) System and method for calibrating electron beam systems
US4722063A (en) Method of calculating actual arm lengths and compensating for angular errors
EP0212992A2 (en) Method for measuring a three-dimensional position of an object
JP2601611B2 (ja) スキャナ・システムの精度を向上させる方法および装置
US20210158551A1 (en) Three-dimensional measurement method using feature amounts and device using the method
US6100915A (en) Laser drawing apparatus
WO2020202440A1 (ja) レーザ加工装置、レーザ加工方法、および誤差調整方法
JP4749092B2 (ja) レーザ加工方法、並びにレーザ加工装置
GB2259361A (en) Picture processing method in optical measuring apparatus
US6813022B2 (en) Interferometer system
JPH07325623A (ja) Xyステージの制御方法および装置
US6519043B1 (en) Vector measurement for coordinate measuring machine
US10297044B2 (en) Method for calibrating an optical scanner and devices thereof
US3289298A (en) Calibration apparatus for surface plates
CN101526736A (zh) 激光直接绘制装置
JPH0926319A (ja) アライメント測定における基準セオドライトの設定方法
CN214684758U (zh) 可校正振镜打标偏移的雷射打标系统
US5434795A (en) Method of forming pattern having optical angle in charged particle exposure system
JP2019152685A (ja) 露光装置、露光方法、および物品製造方法
JP2823750B2 (ja) レーザマーキング装置
JPH01270784A (ja) モータの制御装置
SU1193644A2 (ru) Двухкоординатное устройство дл программного управлени
KR20210059664A (ko) 3차원 스캐너를 이용한 로봇의 위치 보정 방법 및 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070702

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee