KR0118112B1 - 열가소성 폴리에스테르계 수지 발포체의 제조방법 - Google Patents

열가소성 폴리에스테르계 수지 발포체의 제조방법

Info

Publication number
KR0118112B1
KR0118112B1 KR1019890017952A KR890017952A KR0118112B1 KR 0118112 B1 KR0118112 B1 KR 0118112B1 KR 1019890017952 A KR1019890017952 A KR 1019890017952A KR 890017952 A KR890017952 A KR 890017952A KR 0118112 B1 KR0118112 B1 KR 0118112B1
Authority
KR
South Korea
Prior art keywords
foam
polyester resin
thermoplastic polyester
producing
resin
Prior art date
Application number
KR1019890017952A
Other languages
English (en)
Other versions
KR900009810A (ko
Inventor
모또시게 하야시
노리오 아마노
다께시 다끼
다까아끼 히라이
Original Assignee
마쓰다 쇼헤이
세끼스이 가세이힌 고오교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27547787&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR0118112(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP63302233A external-priority patent/JPH02150434A/ja
Priority claimed from JP366989A external-priority patent/JPH02251543A/ja
Priority claimed from JP1088633A external-priority patent/JP2528514B2/ja
Priority claimed from JP1088300A external-priority patent/JPH0688301B2/ja
Priority claimed from JP25004989A external-priority patent/JPH0698982B2/ja
Priority claimed from JP27304989A external-priority patent/JPH03134037A/ja
Application filed by 마쓰다 쇼헤이, 세끼스이 가세이힌 고오교 가부시키가이샤 filed Critical 마쓰다 쇼헤이
Publication of KR900009810A publication Critical patent/KR900009810A/ko
Priority to KR1019960046182A priority Critical patent/KR0118102B1/ko
Priority to KR1019960046183A priority patent/KR0118103B1/ko
Publication of KR0118112B1 publication Critical patent/KR0118112B1/ko
Application granted granted Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0012Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/22Boxes or like containers with side walls of substantial depth for enclosing contents
    • B65D1/26Thin-walled containers, e.g. formed by deep-drawing operations
    • B65D1/28Thin-walled containers, e.g. formed by deep-drawing operations formed of laminated material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/20Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1535Five-membered rings
    • C08K5/1539Cyclic anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0264Polyester
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1376Foam or porous material containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition
    • Y10T428/249991Synthetic resin or natural rubbers
    • Y10T428/249992Linear or thermoplastic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Emergency Medicine (AREA)
  • Ceramic Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Table Devices Or Equipment (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

내용 없음.

Description

열가소성 폴리에스테르계 수지 발포체의 제조방법
제1도-제3도는 본 발명의 재가열 조작에 필요한 장치의 단면도.
제4도는 본 발명에 따른 재가열 조작을 연속적으로 수행하는데 필요한 장치의 1예에 대한 개략도.
제5도는 본 발명의 시험에 2의 결과를 나타낸 그래프.
제6도는 본 발명에 따른 식품 용기의 정면도.
제7도는 본 발명에 따른 식품 용기의 평면도.
제8도, 제9도 및 제10도는 각 실시예 9,12 및 17에서 제조된 발포체의 셀 모양을 보여주는 전자 현미경 사진.
* 도면의 주요부분에 대한 부호의 설명
1 : 발포체 2 : 열수
3 : 금속 게이지 4 : 스팀
5 : 압출기 6 : 스팀 탱크
8 : 버어너 9 : 용기
10 : 권취기
[산업상의 이용분야]
본 발명은 열가소성 폴리에스테르계 수지 발포체 압출에 의한 제조방법 및 열가소성 폴리에스테르계 수지 발포체의 생성물에 관한 것이다.
본 발명의 제조방법에서는 고팽창율로 균일하게 성형된 미세한 셀을 제공하며, 연속압출공정에서도 발포체에 착색된 오염을 야기시키지 않는다.
본 발명은 또한 열성형성이 우수한 열가소성 폴리에스테르 수지 발포 시이트에 관한 것이다.
본 발명의 폴리에스테르계 수지 발포체는, 밀도가 낮고, 무게가 가벼움에도 불구하고 강도가 강하다.
또한 본 발명의 발포체는 내열성, 내화학성, 열적연성 및 충격 흡수성이 뛰어나 폭넓게 사용될 수 있다.
특히, 폴리에스테르 수지계 발포체는, 내열성 식품 용기로의 열성형이 가능한 재료로 사용하는데 적합하다.
[종래의 기술]
폴리에틸렌 테레프탈레이트와 폴리부틸렌 테레프탈레이트 등의 열가소성 폴리에스테르계 수지는 기계적 성질, 내열성, 내화학적 및 치수 안정성이 우수해서, 사출성형품, 성유 및 필름 분야에 광범위하게 사용되고 있다.
그러나, 용융하는 동안 열가소성 폴리에스테르계 수지는 발포성을 얻을 수 있도록 점탄성 성질을 가져오기가 어렵기 때문에 발포 압출 중에 발포제가 쉽게 빠져나와 조밀한 미세셀이 균일하게 성형된 우수한 발포체를 얻기가 어렵다.
본 문제를 해결하기 위하여 방향족 폴리에스테르계의 발포압출에 있어서, 디글리시딜 에스테르를 방향족 폴리에스테르에 첨가하는 방법이 제안되었다.
(JP-B-61-4849(여기서 “JP-B”는 심사된 일본특허공보를 의미함))
열가소성 폴리에스테르계의 발포 압출에 있어서, 열가소성 폴리에스테르계의 용융 점도를 개성하기 위해서 열가소성 폴리에스테르계에 디글리시딜 에스테르와 다가 카르복시산 무수물을 첨가하는 방법이 제안되었다.
(JP-A-59-210955(여기서 JP-A는 미심사 공보된 일본특허출원을 의미함))
본 발명자는 발포 압출의 생산 및 연구에 다년간 종사해 오면서 디글리시딜 에스테르 화합물이 혼합된 열가소성 폴리에스테르의 발포 압출물질이 연속공정에서는 탈색된다는 사실을 경험하였다.
또한 본 발명자들은 2무수피로멜리트산(Pryomellitic Diangydride)에 어떤 디글리시딜 에스테르 화합물을 사용하지 않고, 열가소성 폴리에스테르를 혼합하는 경우, 장시간에 걸쳐 발포 압출을 연속적으로한 경우에도 발포체가 착색되지 않으며 불연속으로 되는 것을 알아냈다. 더욱이 본 발명자들은 주기율표 상의 제I족, II족, III족 금속의 화합물과 2무수피로멜리트산 등의 분자당 2이상의 산무수물기를 함유하는 화합무을 열가소성 폴리에스테르 수지에 첨가할 때, 용융 불질의 너만성의 향상과 더불어 고인장연성과 더 미세한 셀을 지닌 발포체가 형성된다는 것을 발견하였다.
JP-A59-135237(미합중국 특허 제4,462,947호 및 제4,466,843호, 유럽 특허 제0115162A호)에서는 2중 오븐에 적용될 수 있는 내열성 식품용기로 폴리에스테르계 수지 발포체를 열성형할 수 있는것이 개시되어 있다.
그러나 폴리카보네이트만을 혼합하였을 때, 용융 점도가 낮을 뿐만안니라 폴리카보네이트에서 유리된 이산화탄소를 발포제로 사용되며, 팽창률이 낮고, 내열성이 불량하여서 초단파 오븐에서 이 가열 또는 식품의 요리용 용기로서 사용할 때, 가열된 용기를 맨손으로 잡을 수 없다.
[발명이 해결하고자 하는 문제점]
본 발명자들은 상기 연구에서 그 팽창률, 우수한 열절연성 및 아주 우수한 열성형성을 지닌 열가소성 폴리에스테르계 수지 발포 사이트를 발견하였다.
따라서, 열가소성 폴리에스테르계 수지의 압출 팽창 성형체의 용융중에 점탄성을 조정하여 높게 팽창된 열가소성 폴리에스테르계 수지 발포체의 제조 방법을 제공하는 것이 본 발명의 제1목적이다.
본 발명의 제2의 목적은 열가소성 폴리에스테르계 수지의 압출 팽창 성형체를 연속적으로 장기 조작을 수행할 때에도 그에 다를 착색된 오염을 야기시키지 않는 열가소성 폴리에스테르계 수지 발포체의 제조 방법을 제공하는데 있다.
본 발명의 제3의 목적은 열가소성 폴리에스테르계 수지의 압출 성형에 있어서, 균일한 미세 셀을 갖는 열가소성 폴리에스테르계 수지 발포체의 제조 방법을 제공하는데 있다.
본 발명의 제4의 목적은 압출 성형에 있어서, 무수한 인장강도 및 인장신장성을 지닌 열가소성 폴리에스테르계 수지 발포체를 제공하는데 있다.
본 발명의 제5의 목적은, 압출 팽창된 열가소성 폴리에스테르계수지 발포체를 재가열함으로써 후(post)팽창처리로 높은 팽창성 및 우수한 내열성을 지닌 열가소성 폴리에스테르계 수지 발포체를 제조하는 방법을 제공하는데 있다.
본 발명의 제6의 목적은 열가소성 폴리에스테르계 수지의 열성형 등의 성형성이 우수한 압출 발포 시이트의 제조 방법을 제공하는데 있다.
본 발명의 제7의 목적은 열가소성 폴리에스테르계 수지의 압출된 발포 시이트를 열 성형을 통해서 얻고, 그 중 오븐에 적용할 수 있는 내열성 식품용기를 제공하는데 있다.
본 발명은 상기 목적을 달성하기 위한 것이며, 그 요점은 다음과 같다.
(1)분자당 2이상의 산무수물기를 함유한 화합물을 열가소성 폴리에스테르 수지에 첨가된 것을 특징으로 하며, 열가소성 폴리에스테를 수지를 용융하고 용융 수지에 발포제를 혼합한 혼합물을 저압지대로 압출하여 성형을 수행하는 것을 포함한 열사소성 폴리에스테르계 수지 발포체의 제조 방법.
(2)분자당, 2이상의 산무수물기 및 주기율표상의 제 I,II,III족 금속의 화합물을 열가소성 폴리에스테르수지에 첨가하는 것을 특징으로 하며, 열가소성 폴리에스테르 수지를 용융하고, 용융 수지에 발포제를 혼합한 혼합물을 저압지대로 압출하여 성형을 수행하는 열가소성 폴리에스테르계 수지 발포체의 제조 방법.
(3)팽창 직후에 수지의 유리 전이점보다 낮은 온도까지 고온 열가소성 폴리에스테르 수지 발포체를 냉각시켜 결정도가 30% 이내가 되도록 한 다음, 60℃ 이상에서 그 폴리에스테르수지 발포체를 가열하는 열가소성 폴리에스테르계 수지 발포체의 제조 방법.
(4)열가소성 폴리에스테르 수지의 압출 발포 시이트이며, 발포 시이트 면에서 볼때 분자 배향율이 4.5이하, 그리로 결정도가 20% 이내인 열가소성 폴리에스테르 수지 발포 시이트.
(5)적어도 열가소성 폴리에스테르 수지 발포 시이트의 한 면에 열가소성 수지의 비발포 필름을 결합시켜 적층실이트를 얻고, 비발포 필름이 안쪽에 위치하게 그 시이트를 용기로 열성형하여 제조된 식품 용기.
[문제점을 해결하고자 하는 수단]
본 발명의 폴리에스테르 수지 발포체의 제조에 있어서, 압출기가 사용되었다.
열가소성 폴리에스테르 수지를 압출기 내부에서 가압하여 용융시켜 저압지지대로 다이를 통해서 압출하여 발포체를 제조하였다.
본 발명의 폴리에스테르 수지 발포체의 제조에 있어서는, 분자당 2이상의 산무수물기를 함유한 화합물을 열가소성 폴리에스테르 수지에 첨가하였다.
분자당 2이상의 산무수물기를 함유하는 화합물의 첨가로 인해서, 압출하는 중에 열가소성 폴리에스테르 수지의 점탄성이 개선됨으로써 기화된 발포체를 조밀한 셀의 내부에 유지할 수 있으며, 균일하게 분포된 미세한 셀이 성형될 수 있다.
분자당 2이상의 산무수물기를 함유하는 화합물을 열가소성 폴리에스테르 수지의 분자 사슬의 수산기에 결합하여서 자연스럽게 가교화 결합이 일어남에 따라서, 압출중에 열가소성 폴리에스테르의 점탄성이 향상될 수 있다.
용융중의 점탄성이라 말은 용융수지가 다이를 통해 압출될 때 다이의 출구로부터 부풀거나 오므라드는 현상으로써 확인될 수 있으며, 일반적으로 다이팽창율로써 나타낼 수 있다.
다이 팽창률은 용융 수지가 원형부를 포함하는 둥근 오리피스 다이를 통해서 압출될 때에 측정되며, 다이 팽창률은 아래 방정식으로써 계산하였다.
Figure kpo00001
다이 팽창율은 압출 성형에 있어서, 중요한 인자이다.
커다란 크기의 단면적을 지닌 성형물 및 특히, 미세셀이 균일하게 분포된 발표에를 얻기 위해서는 다이 팽창율이 2-5가 바람직하다.
본 발명에 있어서, 열가소성 폴리에스테르 수지와 2이상의 산무수물기를 함유하는 화합물을 혼합해서 압출기 내부에서 용융한 다음, 발포제를 용융혼합물에 접차적으로 분사하여 용융 혼합물을 성형용 압출기의 다이를 통해서 감압지대로 압출시켜 발포제를 제조하였다.
본 발명의 다른 실시예에 있어서는, 분자당 2이상의 산무수물기를 함유하는 화합물과 주기율표상의 제I,II,III족 금속 화합물을 열가소성 폴리에스테르 수지에 첨가하였다.
상기 설명된 방식과 같은 방식으로 혼합 첨가된 물질을 압출기에 공급하여 발포체를 제조하였다.
주기율표한의 제 I,II,III족 금속 화합물을 첨가함으로써 균일한 분포를 한 미세한 셀을 구성한 열가소성 폴리에스테르 수지 발포체를 얻을 수 있다.
본 발명에 사용된 열가소성 폴리에스테르 수지는 방향족 디카르복시산 성분과 디올 성분의 다가 축합물의 선형 폴리에스테르이다. 본 발명에 사용된 디카르복시산 성분의 예는, 테레프탈산, 이소프탈산, 나프탈렌 디카르복시산, 디페닐에테르 카르복시산, 디페닐 술폰디카르복시산 및 디페녹시 에탄디카르복시산을 들 수 있다.
본 발명에 사용된 디올 성분의 예에는 에틸렌 글리콜, 트리메틸렌 글리콜, 테트라 메틸렌 글리콜, 네오펜틸 글리콜, 헥사메틸렌 글리콜, 시클로 헥산 디메탄을, 트리시클로데칸 디메탄을, 2,2-비스(4-β-히드록시에톡시페닐)프로판, 4,4-비스(β-히드록시에톡시)디페닐술폰, 디에틸렌 글리콜 및 1,4-부탄디올 등이 있다.
폴리에틸렌 테레프탈레이트, 폴리부틸렌 테레프탈레이트, 폴리부틸렌 테레프탈레이트 탄성 중합체, 비결정 폴리에틴렌 나프탈레이트 폴리에스테르, 폴리시클로헥산 테레프탈레이트 및 이들의 혼합물을 디카르복시산 성분과 디올 성분을 함유한 폴리에스테르로서 사용하는 것이 바람직하다.
적어도 50%의 열가소성 폴리에스테르 수지로 구성된 변성 수지를 사용할 수 있다.
분자당 산무수물기를 적어도 2개 이상 갖는 방향족 산무수물, 할로겐이 치환된 산무수물 등을 분자당 2이상의 산무수물기를 함유한 성분으로서 사용할 수 있다. 또한 상기 조건을 갖춘 변성 화합물의 혼합물이 사용될 수 있다.
2부수 피로멜리트산, 벤조페놀 테트라 카르복시산 2무수물, 시클로 펜탄테트라 카르복시산 2무수물, 디페닐 술폰 테트라카르복시산 2무수물 및 5-(2,5-디옥소테트라하이드로-3-푸라닐)-3-메틸-3-시클로헥센-1,2-디카르복시산 2무수물 등이 바람직하다.
이들 중에 특히 2무수 피로멜리트산이 바람직하다.
분자당 2이상의 산무수물을 함유하는 화합물을 발포체 폴리에스테르 수지의 100중량부에 대하여 0.05중량부-5.0-중량부의 량을 사용하는 것이 바람직하다.
분자당 2이상의 산무수물기를 갖는 화합물의 량이 열가소성 폴리에스테르 수지의 100중량부에 대하여 0.05중량부 미만이 되면 압출중에 열가소성 폴리에스테르 수지의 점탄성을 개선하는데 불충분하며 우수한 발포제를 성형할 수 없다.
반면에 5.0중량부를 초과하면 열가소성 폴리에스테르 수지의 용융 물질을 겔화를 진행시켜서 압축성형에 비효과적이다. 구성 원자로서 금속을 갖는 한 무기 및 유기화합물 중에서 어느 한가지를 주기율표상의 제I,II,III족의 금속화합물로 사용할 수 있다.
무기 화합물의 예로서는 염화 칼륨, 염화 나트륨, 탄산수소 나트륨, 탄산나트륨, 탄산칼륨, 탄산 아연, 탄산마그네슘, 탄산칼슘, 탄산 알루미늄, 산화나트륨, 산화 칼륨, 산화 아연, 산화 마그네슘, 산화 칼슘, 산화 알루미늄 및 이들 금속의 수산화물을 포함한다.
유기화합물의 예로서는 스테아르산 나트륨, 스테아르산 칼륨, 스테아르산 알루미늄, 몬탄산 나트륨, 몬탄산 칼슘, 아세트산 리튬, 아세트산 아연, 아세트산 나트륨, 아세트산 마그네슘, 아세트산 칼슘, 카프릴산 나트륨, 카프릴산 아연, 카프릴산 마그네슘, 카프릴산 칼슘, 카프릴산 나트륨, 미리스트산 칼슘, 미리스트산 알루미늄, 벤조산 칼슘, 테레프탈산 칼륨, 테레프탈산 나트륨, 에톡시화 나트륨 및 페녹시화 칼륨 등을 들 수 있다. 이 가운데 주기율표상의 제I족 또는 제II족의 금속 화합물이 바람직하며, 특히, 제I족 금속 화합물이 바람직하다.
제 I,II 또는 III족 금속의 화합물을 사용함으로써 더 미세한 열가소성 폴리에스테르 수지발포체의 셀 제조와 더불어 분자당 2이상의 산무수물기를 갖는 화합물로서 점탄성 효과를 증가시킬 수 있다.
주기율표상의 제I,II 또는 III족 금속의 화합물은, 열가소성 폴리에스테르 수지의 100중량부당 0.05~5.0중량부의 양이 된다.
0.05중량부 미만의 화합물을 상용할 때는 생성된 발포체의 셀을 미세하게 하는 효과 및 2이상의 산무수물기를 함유하는 화합물로 점탄성 증강효과는 충분하게 되지 못하는 반면에 5중량부를 초과한 량을 사용할 때 발포체가 착색되어, 용융열가소성 폴리에스테르 수지의 점도가 충분히 높지 않게 된다.
본 발명의 열가소성 폴리에스테르 수지 발포체 제조 방법에 있어서, 쉽게 증발할 수 있는 어떤 발포제도 사용할 수 있다.
불활성 기체, 포화 지방산 탄화수소, 포화 지방족 고리 탄화수소, 방향족 탄화수소, 할로겐화 탄화수소, 에테르 및 케톤 등의 증발하기 쉬운 발포제가 바람직하다.
쉽게 증발되는 발포제의 예에는 이산화탄소, 질소, 메탄, 에탄, 프로판, 부탄, 펜탄, 헥산, 메틸펜탄, 디메틸부탄, 메틸시클로 프로판, 시클로펜탄, 시클로 헥산, 메틸시클로 펜탄, 에틸시클로부탄, 1,1,2-트리메틸 시클로 프로판, 트리클로로 모노플루오로메탄, 디클로로디플루오로 메탄, 트리클로로 트리플루오로 에탄, 디클로로 테트라플루오로 에탄, 디클로로 트리플루오로 에탄, 모노클로로디플루오로 에탄, 테트라플루오로 에탄, 디메틸에틸-2-에톡시에탄, 아세톤, 메틸에틸케톤, 아세틸 아세톤, 디클로로 테트라플루오로 에탄, 모노 클로로테트라플루오로 에탄, 디클로로모노 플루오로에탄, 디플루오노 에탄 등을 들 수 있다.
대체적으로, 발포제는 열가소성 폴리에스테르 수지의 용융 혼합물에 분사하고, 분자당 2이상의 산무수물기를 갖는 화합물과 첨가제를 압출 과정에 분사한다.
분사되는 발포제의 량은 용융 혼합물의 량에 기준하여 0.05~50중량%이다.
발포제의 량이 0.05중량% 미만일 경우는 생성되는 발포체가 충분히 팽창되지 않고, 반면에 50중량% 이상일 때는 발포제의 기체가 형성에 의해 조화되지 않고, 날아가 버려서 바람직한 크기의 발포체 형성이 이루어지지 않는다.
발포제의 바람직한 량은 용융 혼합물의 양을 기준하여 0.01~30중량%가 좋다.
본 발명의 열가소성 폴리에스테르계 수지 발표체의 제조 방법에 있어서, 안정제, 팽창핵제, 안료, 충전제, 연소 지속제 및 정전기 방지제를 열가소성 폴리에스테르 수지 발포체의 물리적 성질을 향상시키기 위하여 수지 혼합물에 선택적으로 첨가하여 성형할 수 있다.
본 발명의 열가소성 폴리에스테르계 수지 발포체의 제조 방법에 있어서, 성형을 단일 스크루우 압출기(single screw extruder) 다중 스크루우 압출기 및 탠뎀압출기를 사용한 어떤 블로우 성형 공정 및 압출 공정으로도 수행할 수 있다.
압출 공정 또는 블로우 공정에 사용되는 다이는 원하는 발포체의 형태에 따라 평면 다이, 회전 다이 및 노즐 다이이다.
본 발명의 폴리에스테르 수지에 분자당 2이상의 산무수물기를 함유하는 화합물 및 다른 첨가제를 다음의 방법에 의하여 혼합한다.
(A)열가소성 폴리에스테르 수지에 분자당 2이상의 산무수물기를 함유하는 화합물을 저온(예를 들면 150이하)에서 화합한다(예를 들어 분자당 2이상의 산무수물기를 함유하는 화합물의 분말을 열가소성 폴리에스테르 수지의 펠릿 표면에 고착시킨다).
(B)분자당 2이상의 산무수물기를 함유하는 화합물이 열가소성 수지를 사전에 용융 혼합한 혼합물을 펠릿화하여, 그 펠릿을 열가소성 폴리에스테르 수지와 혼합한다.
(여기서, 열가소성 수지는 열가소성 폴리에스테르계 수지와 같거나, 다를 수도 있지만, 열가소성 폴리에스테르계 수지와 양립할 수 있는 화합물이 적절하다.)
(C)압출기 호퍼(hopper)에 열가소성 폴리에스테르 수지를 미리 공급하여 용융하고, 분자당 2이상의 산무수물기를 함유하는 화합물을 압출기의 실린더에 설치된 주 입구를 통해서 공급하여 혼합효과를 나타낸다.
상기한 어느 혼합방법에서도, 수지 혼합물의 수분 함유량은 가능하면 적을수록 좋으며, 200PPM 이하로 줄이는 것이 바람직하다.
열가소성 폴리에스테르계 수지를 -20℃ 이하의 이슬점을 가진 더운 공기를 사용하여 제습 더운 공기건조기에서 60-180℃로 4시간 건조하는 것이 바람직하다.
본 발명은 또한 열가소성 폴리에스테르 수지 발포체 제조 방법에 관한 것으로서, 팽창 직후에 고온 열가소성 폴리에스테르 수지 발포체를 수지의 유리 전이점 이하의 온도까지 냉각하여 결정도를 30% 이하로 한 다음 발포체를 60℃ 이상 가열하는 공정으로 되어 있다. 압출기를 통해 압출된 전 팽창(1차 팽창) 발포체는 낮은 팽창률과 고밀도를 가졌다.
팽창률은 발포체의 형태에 따라 달라지지만, 압출된 발포체가 시이트일 경우에는 약 5배이다.
본 발명에 있어서 상기 제조 방법으로 얻어진 전 팽창된 발포체는 압출 후에 온도가 높은데, 폴리에스테르 수지의 유리점 이하의 온도까지만 냉각한다.
폴리에스테르 수지의 유리 전이점은 폴리에스테르를 구성하느 카르복시산과 알코올의 종류에 따라 다양하지만, 대체로 30-90℃ 범위이다.
따라서, 발포체는 일반적으로 60℃ 이하의 온도까지 냉각한다. 전 팽창된 발포체가 냉각될 때, 결정화가 이루어질 시간이 없이 굳어지기 때문에 결정도가 낮다.
결정도는 냉각의 정도에 따라 변한다.
예를 들어, 결정도는 종류, 냉각매체와 온도 및 냉각 매체와 발포체의 접촉 조건에 따라 다르다.
압출기에 의해 제조된 전 팽창된 발포체를 실온에서 직접 물과 접촉했을때는 결정도는 수 %-십여 %내 이며, 일반적으로 30% 이내이다. 그러자, 압출에 의해 제조된 전 팽창된 발포체를 성형할 때, 결정도는 30% 이상이 되는데 그 이유는 성형기를 강제로 냉각하지 않으면 발포체가 냉각되지 않기 때문이다.
특히, 전 팽창된 발포체의 두꺼운 막결정화도가 30% 이상이 됨에 따라서, 전 팽창된 발포체가 압출기에 의해 제조될 발포체에 냉각이 부여된다.
전 팽창된 발포체의 냉각을 효과적으로 수행하기 위해서는 발포체는 자체부피와 비료하여 표면적이 넓은 것이 바람직하다.
즉, 발포체는 가능하면 시이트형이 바람직하며, 그 두께는 10mm 이내이어야 하며, 3mm 이내가 바람직하다.
시이트가 실린더형일 때에는 맨드릴(mandrel)이 실린더 안에 설치되고, 시이트는 물로 냉각된 맨드릴 방향으로 진행되며 맨드릴의 길이는 가능하면 길 필요가 없다.
한편, 시이트가 납작할 때는 시이트를 한쌍의 로울러사이에 끼우고, 냉각시키면서 진행함과 동시에 로울러의 직경을 되도록 길게 할 필요가 있다.
이렇게 하여, 전 팽창된 발포체의 결정도는 30%이내가 된다.
그 다음 발포체를 재가열하여 후팽창(2차 팽창)을 수행한다. 발포체의 후 팽창 온도는 60℃ 이상이며, 가열수단이 사용될 수 있는데, 예를 들어 가열판과 접촉시켜 가열을 수행한다.
이때 가열은 방사선, 환류, 또는 고주파력 중에서 택일하여 시행할 수 있는데, 채택된 가열 매체는 어느 것이건 폴리에스테르 수지를 매체로 하는 한 변성은 없다.
적절한 가열 방법은 전 팽창된 발포체를 가열판이나 공기와 접촉시키거나 또는 스팀이나 열수와 접촉시키는 방법이다.
후팽창에 대한 가열시간은 수지의 성질, 형태, 종류 및 가열 매체의 온도에 따라서 결정된다.
일반적으로, 가열매체의 온도가 낮을 때는 가열 시간을 연장하고, 반면에 온도가 높을 때는 가열시간을 짧게 한다. 다시 말하면, 발포체의 두꺼운 막 가열시간은 연장하고 발포체의 박막가열시간은 짧게 한다. 발포체를 금속 안에 공급 가열할때는 금속판을 60-200℃로 가열하여 전 팽창된 발포체를 공급하여 5분여동안 금속판에 접촉하는 것이 바람직하다.
전 팽창된 발포체를 더운 공기에 공급 접촉시켜 가열할 때는 발포체를 오븐상에 놓고, 오븐의 온도를 100-230℃로 높힌다음, 발포체를 10초에서 5분간 가열한다.
발포체가 금속판 또는 더운 공기에 의해 가열될때는 발포체를 적어도 24시간 동안 방치하는데, 대체적으로 전 팽창후 3일간이며, 전팽창 이후 즉시 후팽창이 이루어지지 않는다.
한편, 전팽창 발포체를 스팀 또는 열수에 공급, 가열 할 때는 전 팽창이후 후팽창이 즉시 이루어지며, 이러한 경우는 스팀 또는 물의 온도는 60-125℃이고, 접촉시간은 10초-5분이다. 폴리에스테르 수지 발포체를 다양한 방법에 의해서 스팀 또는 열수에 공급할 수 있다.
예를 들어, 제1도에 나타낸 바와 같이발수제(1)를 열수(2)에 담근다. 제1도에 있어서, (8)은 버어너를 뜻하고, 다른 실시예에서는 제2도에서 보는 바와 같이 금속 게이지(3)를 열수면에 놓고, 열수(2)에 증발한 스팀(4)과 접촉시킨다.
또 다른 실시예에 있어서는, 제3도에서 보는 바와 같이 가압된 스팀(4)을 발포체(1)를 수용한 용기(9)에 붙여 넣는다.
발포체를 열수 또는 스팀과 접촉시켜 가열시킬 때, 성형기에 놓고 원하는 모양으로 성형하는 것이 바람직하다.
성형기를 사용할 때는 열수 또는 스팀을 성형기에 유입하여, 발포체를 직접 열수 또는 스팀과 접촉시킨다.
상술한 조작에서, 폴리에스테르 수지 발포체를 열수 또는 스팀과 접촉시켜 60℃이상에서 가열함으로써 발포체는 저밀도를 지닌 후팽창된 발포체로 된다.
일반적으로 후팽창이 공기보다는 열수 또는 스팀으로 가열하는 것이 더 쉽게 이루어질 수 있다.
또한, 스팀이 열수보다 더 바람직하다.
가열을 열수 또는 스팀으로 시행할 때, 후팽창율은 전팽창율보다 낮을 지라도 최소한 1.3이상이며, 4이상 될 수 있다.
상기 설명을 덧붙이면, 팽창이 균일하게 이루어짐에 따라서 후팽창된 발포체는 미세하고, 균일한 셀을 갖게 된다. 그래서 우수한 품질의 저밀도 발포체를 얻게 된다.
전팽창된 발포체를 가열하여 저밀도 발포체를 쉽게 얻을 수가 있으나, 후 팽창된 발포체는 15%이상의 결정도를 부여할 수 있다.
15% 이상의 결정도를 갖는 발포체는 가열분위기내에서 내열성이 매우 우수하여 내열성 식품 용기 및 열절연 재료에 사용할 수 있다. 더욱이, 열가소성 폴리에스테르 수지의 용융점도 다이 부풀옴비를 본 발명의 공정으로 조절하여 발포 시이트를 제조한다.
열가소성 폴리에스테르계 수지의 압출 발포 시이트의 밀도는 0.7g/㎤이하, 특히 0.5g/㎤ 이하가 바람직하다. 밀도가 0.7g/㎤를 초과하면, 열절연성, 경량성, 쿠션성을 잃게 된다. 열성형면에서 볼 때, 20% 이하의 결정도 및 발포면 방향으로 4.5이하의 분자배향을 가진 압출 발포 시이트가 바람직한 것으로 밝혀졌다.
압출 질후에 압출 발포 시이트는 열절연성을 갖기 때문에 두께를 통해 결정도를 낮추기가 어렵다.
그러나, 후팽창 열성형성을 소정 값이하로 분자 배향율을 낮춤으로써 개선 할 수 있다.
발포 시이트면 방향으로 볼 때 압출 발포 시이트의 분자배향율은, 압출방향과 압출방향을 횡단하는 방향의 팽창을 조절함으로써 4.5이하까지 조정할 수 있다.
상기와 관련한 바람직한 제조 방법으로써 회전 다이 원주형 맨드릴을 사용하는 방법을 일반적으로 사용한다. 즉, 압출 방향의 팽창은 회전 다이의 출구틈에서 압출 방향의 권취 속도까지 성형된 수지의 평균 유속비로써 조절할 수 있고, 압출방향의 횡단 방향에서의 팽창은 맨드릴의 외부직경까지 회전 다이의 출구직경비(이하, 블로우업 (blow-up)이라 함)로써 조절될 수 있다.
결정도는 냉각결정화의 열량과 열량 DSC(시차 주차열량계)에 의한 용융열로부터 일본공업규격(JIS)-K-71222(가소성물질의 전이열 측정법)에 따라 측정했다. 즉, 하기식으로 결정도를 측정했다.
Figure kpo00002
결정도는 세이꼬 고오교사 제품인 시차 주사 열량계 DSC 200을 사용해 측정했다. 폴리에틸렌 테레프탈레이트의 완전한 결정 용융열의 량으로는 교반시 데이터 핸드북(바이후칸 고오교사 발행)에서는 26.9KJ/mol을 사용했다.
발포체 전면 방향에서의 분자 배향율은, 발포 시이트면을 편광체판(간자끼 페이퍼사 제품)을 통해 방출된 초단파세기의 최대값 사이의 비율이다.
또한, 본 발명에 다른 열가소성 폴리에스테르 수지의 압출 발포 시이트의 적어도 1면에 열가소성 수지의 비발포 필름을 결합시켜 적충시이크를 얻고, 그것을 내면에 비발포 시이트가 위치하게끔 하여 식품용기로 열성형하여 식품용기를 얻을 수 있다.
비발포막으로 구성된 열가소성 수지의 예로는 열가소성 폴리에스테르계 수지, 액정 폴리에스테르계 수지, 폴리올레핀 수지, 폴리아미드 수지, 폴리염화비닐 수지, 폴리아크릴로 니트릴 수지, 폴리염화비닐리덴 수지 및 에틸렌 비닐알코올 혼성 중합체를 들 수 있다.
결합되는 비발포 필름은 단층 필름 또는 다층 필름으로 구성될 수 있으며, 비발포 필름은 발포 시이트의 양쪽에 결합되어도 좋다. 비발포 필름층의 두께는 10-500마이크론이고, 팽창된 폴리에스테르계 수지의 시이트 층 두께는 일반적으로 5mm 이하로 약간 두껍다.
발포 시이트층의 두께는 비발포 필름층보다 2-500배 정도가 바람직하다.
비발포 필름을 병렬 압출기를 통해 발포 시이트로 적층할 수 있다.
상세하게 설명하자면, 열가소성 폴리에스테르 수지를 압출기로 공급하여 팽창성 폴리에스테르 수지를 철저히 압출한다.
분리하여 설명하면, 열가소성 수지를 다른 압출기로 공급하여 비팽창성 수지를 철저히 압출한다. 본 수지를 다이에 유도하여 시이트를 다이의 크기로 조합 제조하였다. 다른 예를 들자면, 각 압출기를 통해 압출된 수지를 분리된 다이에 공습하여 발포 시이트와 필름을 각각 제조한 다음, 그것을 서로 놓고 로울러로 압착하여 적층시이트를 제조한다.
또 다른 예를 들자면, 발포 시이트 및 비발포 시이트를 분리하여 제조하고, 따라 로울러에 감았다. 그것을 서로 적층시켜 감지 않고 한쌍의 로울러로 통해서 통과시켜 적층으로 만든다. 발포 시이트의 한쪽면의 로울러 온도를 낮은게 바람직한데, 예를 들자면, 상온은 폴리에스테르 수지의 결정화를 막는다.
한편, 비발포 필름의 한쪽면상의 로울러를 필름 표면을 변화시키기 위해서는 고온을 유지하는 것이 바람직하다.
적층 시이트를 재가열하여 용기로 성형하였다. 이때, 열성형은 성형 다이를 사용하여 수행했다.
다이는 암수 성형기로 구성될 수 있지만, 기 중에 어느 하나를 선택해도 무방하다.
두 대의 성형기고 구성된 다이를 사용하여 두 대의 성형기 사이에 적층 시이트를 놓고 압착하였다.
그러나, 두 대의 성형기중 어느 하나를 사용할 경우에는 시이트와 성형기 사이에 존재하는 공기를 제거하거나 상부로부터 시이트에 가압하여 압축하였다.
비발포 필름은, 용기안쪽에 필름이 위치하게끔 배열하였다.
발포 시이트로 구성된 열가소성 폴리에스테르계 수지와 비발포 필름으로 된 열가소성 수지에 따라 시이트가 용기로 성형되는 가열온도가 결정된다. 가열 온도에의해 발포 시이트의 팽창률이 증가되거나 감소됨에 따라서 같은 두께의 차이가 발생했다. 더욱이, 발포 시이트의 결정도를 가열 온도와 가열시간에 따라 가속화되었다.
열가소성 폴리에스테르 수지로 구성된 압출 발포 시이트는 15% 이상의 결정도를 보여서 골기중에서 가열할 경우 내열성에 매우 우수하다. 그러나 100℃ 이상의 열스팀에 노출하였을 경우에는, 표면상의 1창 셀의 필름벽 두께가 얇아 1층셀이 재 수축한다.
또한, 수우프 및 그라탕요리 등의 음식을 가열하는데 필요한 음식 용기용으로 사용할 경우는 음식물의 액체가 셀을 관통할 수 있다.
한편, 본 발명에 있어서는 비발포 필름이 용기 안쪽에 위치하기 때문에 스팀 또는 열수에 의한 재부풀림 음식물의 액체가 셀을 관통하는 것을 방치할 수 있다.
이하의 실시예, 비교예 및 시험예를 통해 본 발명을 좀더 상세하게 설명하겠으나, 본 발명은 여기에 한정되는 것은 아니다.
[실시예]
[시험예 1]
용융중에 분자당 2이상의 산무수물기를 가진 화합물을 열가소성 폴리에스테르게 수지에 첨가하여 점탄성질의 효과를 시험하기 위하여 실시하였다.
(1)시험-1
폴리에틸렌 테레프탈레이트(PET9902 이스트만사 제품)을 -30℃의 이슬점을 가진 더운 공기로 제습 건조기 내에서 160℃로 4시간 동안 건조하였다. 건조된 물질의 1kg을 2무수 피로멜리트산(케미쉐 비르베휠스 AC사 제품) 5g을 혼합하고, 이 혼합물을 원주형 통로 다이(직경 5mm, L/P : 106)가 장차된 단일 스크루우압출기(스크루우 직경 : 40mm, L/D : 30, 세끼스이고끼 고오사 제품)의 호퍼에 공급하였다.
상기 공급된 용융 혼합물을 하기위 제조 조건하에서 7kg/Hr의 압출 속도로 원주형 통로 다이를 통해서 압출하여 성형을 시행하였다.
단일 스크우우 압출기에 의한 조건
압출기 공급지대의 온도 : 270℃
압출기 가압지대 온도 : 280℃
압출기 용융지대의 온도 : 270℃
다이의 온도 : 270℃
스크루우 압출기의 회전수 : 32rpm
(2)시험-(대조)
2무수 피로멜리트산 혼합을 생략한 이외는 시험-1과 같은 방법으로 폴리에틸렌 테레프탈레이트의 압출을 시행하였다.
(3)시험 결과
단일 스크루우 압출기에 있어서, 용융 수지의 용융 점도와 압출 물질의 다이 팽창률은 제1표에 나타내었다.
Figure kpo00003
(1)검토
2무수 피로멜리트산을 폴리에틸렌 테레프탈레이트에 첨가할 때에는 압출에 있어서, 압출된 물질의 다이 팽창비가 증가하고, 용융 수지의 용융 점도가 또한 증가한다는것이 제1표로부터 알수 있다.
[실시예]
[실시예 1]
폴리에틸렌 테레프탈레이트 10을 제습건조기(-30의 이슬점을 지닌 160의 더운 공기)내에서 4시간 동안 건조하고, 텀블링 믹서 내에서 2무수 피로멜리트산(케미쉐 베르베휠스 AC사 제품) 20g과 활성(팽창핵제) 60g을 혼합하였다.
이 혼합물을 단일 스크루우 압출기 호퍼(스크루우 직경 : 40mm, L/D : 30, 노즐다이의 구멍 : 5mm)에 공급, 용융 혼합하고, 22중량%의 이소펜탄(발포제)를 용융혼합물에 분사했다. 용융 혼합물을 아래의 제조 조건하에서 노즐 다이를 통해서 공기로 압출하여 로드형 발포체를 제조하였다.
단일 스크루우 압출기에 의한 제조 조건
압출기 공급지대의 온도 : 273-282℃
압출기 가압지대 온도 : 280-290℃
압출기 용융지대의 온도 : 271-290℃
압출기 헤드의 온도 : 280-290℃
스크루우 압출기의 회전수 : 32rpm
압출 속도 : 7-8kg/hr
[실시예 2]
2무수 피로멜리트산 30g을 첨가하고 2.5중량%의 이소펜탄을 용융 혼합물에 분사한 이외의 실시예 1의 공정을 반복하여 로드형 발포체를 제조했다.
팽창률과 발포체의 직경이 제2표에 나타나 있다.
[실시예 3]
2무수멜리트산 40g을 첨가하고, 2.6중량%의 이소펜탄을 용융 혼합물에 분사한 이외의 실시예 1의 공정을 반복하여, 로드형 발포체를 제조했다.
[비교예]
[비교예 1]
2무수 피로멜리트산의 사용효과(1)
2무수 피로멜리트산을 빼고, 2.7중량%의 이소펜탄을 용융 혼합물에 분사한 이외는 실시예 1의 공정을 반복하여 로드형 발포체를 제조하였다.
팽창률과 발포체의 직경을 제2표에 나타내었다.
[비교예 2]
2무수 피로멜리트산의 사용효과(2)
2무수 피로멜리트산 2g 대신 2무수 프탈산 50을 첨가하고, 2.7중량%의 이소펜탄을 용융 혼합물에 분사한 이외는 실시예 1의 공정을 반복하여 로드형 발포체를 했다.
팽창률과 발포체의 직경을 제2표에 나타내었다.
Figure kpo00004
검토
2무수 피로멜리트산을 사용한 실시예 1-3에 있어서, 팽창율은 4-10이고, 로드형 발포체의 직경은 노즐 다이의 크기의 4-6배까지 증가함에 따라서, 그로 인한 증가율은 분사된 이소펜탄량의 증가에 비례한다는 것을 제2표로부터 알수 있다.
2무수 피로멜리트산을 뺀 비교예 1 및 2에 있어서 팽창률은 약 2이고, 비록 이소펜탄(발포제)을 실시예 1-3에서 사용한 량보다 많을지라도, 로드형 발포체의 직경은 노즈 다이의 구멍의 크기에 약 2배이다.
따라서, 팽창률과 직경이 실시예 1-3보다 더 적다.
2무수 피로멜리트산을 사용하지 않는 경우에는 발포제인 이소펜탄이 팽창 성형중에 발포제에서 이탈되며, 반면에 2무수 피로멜리트산을 팽창성형에 사용할 경우에는 열가소성 폴리에스테르의 용융점도가 증가되어 기체의 이소펜탄이 발포체에서 이탈되는 것을 방지한다는 사실로부터 본 효과가 고려되었다.
[실시예 4]
실시예 3의 공정에서, 팽창성형 주작을 24시간동안 연속적으로 수행한 결과 로드형 발포체의 변화가 없었다는 것이 관측되었다.
[실시예 5]
실시예 3에 있어서, 팽창성형 조작을 5시간 동안 시행한 다음, 19시간 동안 방치하였다. 그후, 조작 개시로부터 30분 이내에 무색 및 고순도의 로드형 발포체를 얻을 수 있다.
[비교예 3]
실시예 3에 있어서, 2무수 피로멜리트산 대신 디글리시딜 테레프탈레이트(블레머, 일본 유시사 제품)을 사용하고, 혼합물 100g 당 4g의 이소펜탄을 응용 혼합물에 분산하였다.
실시예 5와 같은 방법으로 조작을 실시하였다.
제3공정 후 공정에서, 착색되거나 오염되지 않는 로드형 발포체가 얻어질 때까지 90분 이상 계속하였다.
제5공정에서(발표체) 재가동으로부터 4시간후 노랗게 착색되고 검은 물질이 오염되었다.
[실시예 6]
2무수 피로멜리트산 20g 대신 시클로펜탄 테트라카르복시산 2무수물 50g을 사용한 것을 제외하고는 실시예1의 공정을 반복 시행하여 로드형발포체를 제조하였다. 발포체의 팽창율은 4였으며, 직경은 20mm이었다.
[실시예 7]
2무수 피로멜리트산 20g 대신 벤조페논 테트라카르복시산 2무수물 50g을 사용한 것을 제외하고는 실시예 1의 공정을 반복 시행하여 발포체를 제조하였다. 발포체의 팽창률은 4.5였고, 직경은 20mm이었다.
[실시예 8]
실시예 6 및 7에 있어서, 조작을 실시예 5와 같이 실시하였다.
조작의 개시로부터 30분 이내에 착되거나 오염되지 않은 로드형 발포체를 얻을 수 있었다.
[실시예 9-17]
제3표에 나타내어진 폴리에틸렌 테레프탈레이트를 -30℃의 이슬점을 갖는 더운 공기고 제습 건조기 내에서 60℃에서 4시간 동안 건조하였다.
건조된 폴리에틸렌 테레프탈레이트 100중량부, 제3표에 나타내어진 2무수 피로멜리트산의 량, 제3표에 나타내어진 금속화합물 및 활석 (팽창핵제) 0.6중량부를 텀블링 믹서에서 혼합하었다. 이 혼합물을 노즐 다이(구멍 : 5mm)가 장치된 n-펜탄 2.0중량부를 용융 혼합물에 분사하였다. 용융 혼합물을 아래의 조건하에서 압출하여서 로드형 발포체를 제조하였다.
압출기 공급지대 온도 : 268-280℃
압출기 가압지대 온도 : 285-290℃
압출기 용융지대 온도 : 275-285℃
압출기 헤드 온도 : 275-285℃
스크루우의 회전수 : 32rpm
발포체의 팽창률과 셀의 상태를 제3표에 나타내었다.
제8도는 실시예 9에서 제조한 발포체의 셀 상태를 25배 확대한 전자 현미경 사진이다.
제8도에서 보는바와 같이 셀은 작다.
또한, 제9도 및 제10도는 실시예 12-17에서 각각 제조된 발포체의 셀 상태를 25배 확대한 전자 현미경 사진이다.
실시예 17에서 제조된 발포체의 셀은 실시예 12에서 제조된 것보다 약간 확대되었다.
[비교예 4]
2무수 피로멜리트산과 금속 화합물을 뺀 것을 제외하고는, 실시예 9의 공정을 반복하여 로드형 발포체를 제조하였다.
발포체의 팽창률과 셀 상태를 제3표에 나타내었다.
[실시예 18-20]
제4표에 나타내어진 폴리에스테르 수지, 산무수물 및 금속 화합물을 사용한 것을 제외하고는, 실시예 9의 공정을 반복하여 발포체를 제조하였다.
[비교예 5]
금속 화합물을 사용하지 않고 제4도에 나타내어진 폴리에틸렌 테레프탈레이트 및 디글리실 테레탈레이트를 사용한 것을 제외하고는, 실시예 9의 공정으로 발포체를 제조하였다.
발포체의 팽창률 및 셀 상태를 제4표에 나타내었다.
[실시예 21]
제5표에 나타내어진 폴리에틸렌 테레프탈레이트를 -30℃의 이슬점을 가진 더운 공기로 제습기 건조기 내에서 160℃로 4시간 동안 건조하였다.
건조된 폴리에틸렌 테레프탈레이트 100중량부, 2무수 피로멜리트산 0.5중량부, 탄산나트륨 0.1중량부 및 활석(팽창핵제) 0.6중량부를 텀블링 믹서에서 혼합하였다.
이 혼합물을 원주형 맨드릴(구멍 : 205mm, L/D : 35)에 공급하고, 부탄 1.7중량부를 용융 혼합물에 분사하였다.
용융혼합물을 아래의 조건하에서 회전 다이를 통해서 압출하였다. 압출물질을 원주형 맨드릴로 성형하였다.
원주형 발포체를 잘라서 열고 생성된 발포 시이트를 감았다.
압출기 공급지대 온도 : 280℃
압출기 가압지대 온도 : 290℃
압출기 용융지대 온도 : 280℃
압출기 헤드 온도 : 280℃
발포제의 분사압력 : 80kg/hr
스크루우의 회전수 : 32℃
압출 속도 : 24kg/hr
23℃에서의 발포 시이트를 팽차률, 셀 상태, 인장강도와 23℃에서 장력을 주었을 때의 인장연산도가 제5표에 나타나 있다.
[비교예 6]
제5표에 나타내어진 디글리시딜 테레프탈레이트 및 몬탄산나트륨을 사용하지 않는 것을 제외하고는 실시예 21의 공정을 반복 실시하여 제조된 발포 시이트를 감았다.
23℃에서의 발포 시이트의 팽창률, 셀 상태, 인장강도와 23℃에서 장력을 주었을때 안정 연신도가 제5표에 나타나 있다.
[비교예 7]
제5표에 나타내어진 디글리시딜 테레프탈레이트를 가용하고, 부탄 0.9중량%를 분사한다음, 아래의 조건하에서 압출하고, 탄산나트륨을 사용않는 것을 제외하고는 실시예 21의 공정을 실시하여 생성된 발포 시이트를 감았다.
압출기 공급지대 온도 : 280℃
압출기 가압지대 온도 : 290℃
압출기 용융지대 온도 : 280℃
압출기 헤드 온도 : 285℃
압출기 다이 온도 : 275℃
발포제의 분사압력 : 40kg/㎠
압출압력(헤드) : 90kg/㎠
스크루우의 회전수 : 25rpm
압출 속도 : 24kg/h
23℃에서의 발포 시이트의 압출을 셀 상태, 인장강도와 23℃에서 장력을 주었을 때의 인장연신도를 제5표에 나타내었다.
Figure kpo00005
주)PET 9902 및 PET 10388 : 이스트만 코닥사 제품
TR 4550 BH 및 TR 8510 : 다이찐사 제품
탄산나트륨 : 도소사 제품
2무수 피로멜리트산 : 케미쉐베르베 휠스 AG사 제품
Figure kpo00006
주)TR 8580 : 다이찐사 제품
XD 478(MI : 3.0, 235℃) 폴리부틸렌 텔레프탈레이트용 : 플라스틱사 제품
2무수 피로멜리트산 : 휄스 저팬사 제품
탄산나트륨 : 도소사 제품
Figure kpo00007
주)PET 9902 및 PET 10388 : 이스트만 코닥사 제품
TR 8580 : 다이찐사 제품
2무수 피로멜리트산 : 케미쉐 베르베 휠스 AG사 제품
디글리시딜 테레프탈레이트 : 블레머 DGT 니뽄유시사 제품
탄산나트륨 : 도소사 제품
[실험예 2]
시험시료 : 실시예 21 및 비교예 6에서 제조된 발포 시이트
시험방법 : 다이나믹 점탄성 중합체(도요세이끼 세이 시꾸쇼사 제품)를 사용
시험시료[5mm(폭)×21mm(길이)×1.5mm(두께)]의 복합탄성율을 아래의 조건하에서 측정하였다.
측정주파수 : 10Hz
가열속도 : 3℃/min
클램프 간의 거리 : 15mm
결과는 제5도에 나타내었다.
실시예 21의 발포 시이트의 복합탄성율은 비교예 6의 발포 시이트 복합탄성율보다 높았다.
따라서, 2무수 피로멜리트 및 탄산나트륨 사용으로 제조된 발포 시이트의 내열성이 높다는 사실을 알 수 있다.
재가열로써 열가소성 폴리에스테르계 수지를 제조하는 방법은 다음의 실시예와 비교예의 방법으로써 설명하였다.
특별한 언급이 없으면, 부와 %는 중량부와 중량%를 말한다.
[실시예 22]
전팽창(1차팽창) :
TR 8580(상품명, 다이찐사 제품)을 폴리에틸렌 테레프탈레이트(이하 PET로 표현)로써 사용하였다.
제습건조기 내에 PET를 놓고, -30℃의 이슬점을 지닌 더운 공기를 순화시키면서 4시간 동안 160℃에서 건조하였다.
PET 100부, 활석 0.6부, 2무수 피로멜리트산 0.35부 및 탄산나트륨 0.1부를 텀블링 믹서 내에서 철저히 혼합하였다.
이 혼합물을 압축기(스크루우직경 : 65mm, L/D : 35)에 공급하여 25rpm 스크루우 회전수와 270~290℃의 배럴(barrel) 온도에서 혼합하였다.
혼합물 100부당 부탄 1.3부를 발포제로서 배럴실에 가압하면서 혼합물에 도입하고, 발포제를 포함한 PET를 회전 다이를 통해 공기로 압출하여 튜브를 제조하였다.
0.4mm의 회전 다이틈과 60mm의 구멍을 지닌 다이를 270~285℃로 유지하고, 원주형 맨드릴의 외면으로 유입, 접촉시켜 공기중으로 압출된 PET를 팽창시키고, 압출된 튜브를 꺼냈다.
205mm의 외경을 지닌 맨드릴 내부에 PET 발포체를 급냉하기 위하여 30℃의 냉각수를 순환하였다.
냉각된 PET 발포체를 출구에서 절단하고, 생서된 납작한 발포체시이트를 감았다.
상기 사항은 전팽창된 발포 시이트(1차 팽창된 발포 시이트)에 관련된 것이다. 발포 시이트의 폭은 643m, 겉보기 밀도(이하, 밀도라 함) 0.26g/kg, 두께 1.5mm, 결정도는 9%이었다.
후팽창(제2차 팽창)
상기 전팽창된 발포 시이트를 100mm×100mm의 크기로 자른 시료 한개를 후팽창에 적용하였다.
제1도에 나타낸 바와 같이 63℃의 온수에 시료를 첨지하여 5분 동안 후팽창을 실시하였다. 생성된 것의 두께는 1.5×2.1mm로 팽창되었다.
전팽창된 발포 시이트의 부피(V)에 대한 후팽창된 발포 시이트의 부피비 V/V은 1.37이었다.
후팽창된 발포 시이트의 밀도는 0.19g/cm , 결정도는 9%이었다.
후팽창된 발포 시이트는 좋은 팽창과 더불어 우수한 발포체임이 확인되었다.
[실시예 23]
83℃의 온수에 5분 동안 침지한 것을 제외하고는, 실시예 22에서 제조된 동일한 전팽창 발포 시이트를 사용하여 실시예 22의 방법으로 후팽창을 실시하였다.
이렇게 하여, 3.02mm의 두께, 0.13g/cm 의 밀도, 10%의 결정도 및 V/V의 비가 2.00인 후팽창 발포 시이트가 얻어졌다.
미세하고, 균일한 팽창을 한 발포 시이트는 저밀도와 더불어 우수한 발포체임이 확인되었다.
[실시예 24]
실시예 22에서 얻어진 것과 동일한 전팽창 발포 시이트를 스팀과 접촉시켜 후팽창을 실시한 것을 제2도에 나타내었다.
즉, 시이트를 62℃의 스팀과 접촉시켜 5분 동안 후팽창을 시행하였다.
이렇게 하여, 2.51mm의 두께, 0.16g/cm 의 밀도 및 V/V비가 1.63인 후팽창 발포 시이트가 얻어졌다.
[실시예 25]
75℃의 스팀을 후팽창에 적용한 것을 제외하고는, 실시예 24와 같은 방법으로 실시하였다.
이렇게 하여, 2.73mm의 두께, 0.14g/cm 의 밀도 및 V/V비가 1.86인 후팽창 발포 시이트를 얻어졌다.
[실시예 26]
100℃의 스팀 및 접촉시간을 5분으로 한 것을 제외하고는, 실시예 24와 같은 방법으로 후팽창을 실시하였다.
이렇게 하여, 2.78mm의 두께, 0.14g/cm 의 밀도, 10%의 결정도 및 V
/V비가 1.86인 후팽창 발포 시이트를 얻었다.
[실시예 27]
제2도에 나타낸 바와 같이, 시이트를 100℃의 스팀과 접촉시켜 2분 동안 후팽창을 실시한 것을 제외하고는 실시예 26과 같이 시행하였다.
이렇게 하여, 3.92mm의 두께, 0.10g/cm 의 밀도, 16%의 결정도 및 V/V비가 2.60인 후팽창 발포 시이트를 얻었다.
[실시예 28]
100℃의 스팀에 시이트를 공급, 접촉시켜 5분 동안 후팽창을 실시한 것을 제외하고는, 실시예 26과 같이 시행하였다.
이렇게 하여, 5.63mm의 두께, 0.065g/cm 의 밀도, 26%의 결정도 및 V/V비가 3.77인 후팽창 발포 시이트를 얻었다.
[실시예 29]
100℃의 스팀과 시이트를 접촉시켜 7분 동안 후팽창을 실시한 것을 제외하고는 실시예 26과 같이 하였다.
이렇게 하여, 5.96mm의 두께, 0.065g/cm 의 밀도 및 V/V비가 4.00인 후팽창 발포 시이트를 얻었다.
[실시예 30]
210mm~290mm~5의 알루미늄 성형체안에 200mm~280mm의 전팽창 발포체를 놓고, 후팽창을 시행한 것을 제외하고는 시이트를 100℃의 스팀과 접촉시켜 7분 동안 실시예 29와 동일한 방법으로 후팽창을 실시하였다.
이렇게 하여, 5.00mm의 두께, 0.078g/cm 의 밀도 및 V/V비가 3.33인 팽창 시이트를 얻었다.
시이트는 납작한 발포 시이트이다.
[실시예 31]
실시예 22에서 얻어진 시이트와 동일한 전팽창 발포 시이트를 가압 스팀을 불어넣어 제3도에 나타낸 바와 같이 후팽창을 실시하였다.
즉, 시이트를 110℃의 스팀과 접촉시켜 3분 동안 후팽창을 시행하였다.
이렇게 하여, 3.41mm의 두께, 0.11g/cm 의 밀도 및 V/V비가 2.36인 후팽창 시이트를 얻었다.
[실시예 32]
시이트를 120℃의 스팀과 접촉시켜 5분 동안 후팽창을 실시한 것을 제외하고는 실시예 31과 같이 하였다.
이렇게 하여, 3.00mm의 두께, 0.13g/㎤의 밀도 및 V/V비가 2.00인 후팽창 시이트를 얻었다.
[실시예 33]
부탄 대신 이산화 탄소량 1.1부를 발포제로 사용한 것을 제외하고는 실시예 22와 같은 방법으로 전팽창을 시행하였다.
이렇게 하여, 643mm의 폭, 0.26g/㎤의 밀도, 1.5mm의 두께 및 9%의 결정도를 갖는 전팽창 시이트를 얻었다.
실시예 28과 같은 방법으로 후팽창을 실시한 결과, 3.00mm의 두께, 0.13g/㎤의 밀도 및 V/V비가 2.60인 후팽창 시이트를 얻었다.
[실시예 34]
63℃의 온수 대신 80℃의 더운 공기와 시이트를 접촉시켜 5분 동안 후팽창을 실시한 것을 제외하고는, 실시예 22와 같이 시행한 결과, 2.1mm의 두께, 0.19g/㎤의 밀도, 10%의 결정도 및 V/V비가 1.37인 후팽창 시이트를 얻었다.
[실시예 35]
실시예 34에서, 수팽창에서의 더운 공기 온도를 100℃로 한 이외는, 실시예 34과 같이하여 후팽창된 발포 시이트를 얻었다.
이 후팽창된 발포 시이트의 두께는 2.6mm, 밀도는 0.15g/㎤의, 결정도는 10%였으며, V/V비가 1.37이었다.
[실시예 36]
실시예 34에서, 수팽창에서의 더운 공기온도를 110℃로 한 이외는 실시예 34과 같이하여 후팽창된 발포 시이트를 얻었다.
이 후팽창된 발포 시이트의 두께는 2.8mm, 밀도는 0.14g/㎤, 결정도는 12%였으며, V/V비는 1.86이었다.
[실시예 37]
실시예 34에서, 후팽창에서의 더운 공기온도를 140℃로 한 이외는 실시예 34와 같이 하여 후팽창된 발포 시이트를 얻었다.
이 후팽창된 발포 시이트의 두께는 3.01mm, 밀도는 0.13g/㎤의, 결정도는 25%였으며, V/V비가 2.00이었다.
[실시예 38]
실시예 34에서, 후팽창에서의 더운 공기온도를 23℃로 한 이외는 실시예 34와 같이하여 후팽창된 발포 시이트를 얻었다.
이 후팽창된 발포 시이트의 두께는 4.04mm, 밀도는 0.097g/㎤의, 결정도는 26%였으며, V/V비가 2.68이었다.
[실시예 39]
전팽창 :
압출기 헤드에 준비된 다이를 회전다이에서 평면 다이로 바꾸고, 맨드릴 대신에 평판을 사용한 이외는 실시예 22와같은 방법으로 전팽창을 하였다. 이 평면 다이는 폭 150mm, 폭 0.7mm의 직선형 압출구를 갖고 있었다. 평판은 30℃에서 물로 냉각된 500~500mm의 알루미늄판이었다. 알루미늄판 사이로 발포 시이트를 압출하고, 압출된 발포 시이트를 냉각시켰다. 이 방법으로 전팽창된 발포 시이트를 얻었다.
발포 시이트의 폭은200mm, 두께 5mm, 밀도 0.52g/㎤의 및 결정도는 12%이었다.
후팽창 :
상기 전팽창된 발포 시이트를 100℃에서 7분 동안 스팀과 접촉시켜, 실시예 29와 같은 방법으로 후팽창시켰다. 이렇게 하여 두께 12.5mm, 밀도 0.204g/㎤의 후팽창된 발포 시이트를 얻었으며 V/V비가 2.55이었다.
[실시예 40]
실시예 39에서, 알루미늄판의 온도를 약간 가온시키고, 발포 시이트이 냉각을 실시예 39에서 보다 약간 작게 한 이외는, 실시예 39와 같이 전팽창시켜 전팽창된 발포 시이트를 얻었다.
이 발포 시이트의 폭, 두께 및 밀도는 실시예 39의 시이트의 그것과 비슷하였다. 그러나 결정도는 25%이었다.
후팽창 :
실시예 39와 같은 조작으로 후팽창시켜, 두께 11.0mm, 밀도 0.232g/㎤인 후팽창 발포 시이트를 얻었으며, V/V비는 2.44이었다.
[비교예 8]
실시예 22에서, 63℃의 온수 대신 60℃의 더운 공기를 하용하고, 그 시이트를 5분 동안 더운 공기와 접촉시키는 이외는 실시예 22와 같이 하여 후팽창시켜 후팽창된 발포 시이트를 얻었다.
후팽창된 발포 시이트의 두께는 1.5mm, 밀도는 0.26g/㎤였으며, V/V비는 비료예 8에서와 같이 1.00이었다. 따라서, 실질적으로 후팽창은 일어나지 않았다.
[비교예 9]
실시예 22에서, 후팽창시의 수온을 53℃로 낮추는 이외는 실시예 2와 같이하여 후팽창된 발포 시이트를 얻었다.
이 후팽창된 발포 시이트의 두께는 1.5mm, 밀도는 0.26g/㎤였으며, V/V비는 비교예 8에서와 같이 1.00이었다. 따라서 실질적으로 후팽창은 일어나지 않았다.
[비교예 10]
실시예 24에서, 후팽창시의 스팀의 온도를 58℃로 낮춘 이외는 실시예 24와 같이 하여 후팽창된 발포 시이트를 얻었다.
이 후팽창된 발포 시이트의 두께는 1.5mm, 밀도는 0.26g/㎤의, V/V비가 1.00이었다. 따라서 실질적으로 후팽창은 일어나지 않았다.
[비교예 11]
알루미늄판의 온도를 실시예 40에서보다 낮추고, 압출시이트의 냉각을 실시예 40에서 보다 좁게하여 실시예 40과 같은 방법으로 후팽창시켜 후팽창된 발포 시이트를 얻었다. 이 발포 시이트의 폭, 두께 및 밀도는 실시예 40의 발포 시이트의 그것과 동일했으나, 결정도가 32%이었다.
이 후팽창된 발포 시이트를 100℃에서 7분간 스팀과 접촉시켜서 후팽창하여, 두께 5mm, 밀도는 0.52g/㎤의 후팽창된 발포 시이트를 얻었다. V/V비가 2.00이었다. 따라서 실질적으로 후팽창은 일어나지 않았다.
[실시예 41]
여기서는 제4도에 나타난 바와 같이 전팽창과 후팽창을 계속해서 실시했다. 제4도에서, 실시예 22의 후챙창에서와 같은 방법으로 압출기(5)를 작동하고, 계속적으로 후팽창된 발포 시이트를 내보냈다.
후팽창된 발포 시이트를 감지 않고, 계속해서 스팀탱크(6)내로 넣었다. 스팀탱크(6)내로 넣기 전 시이트 표면온도를 30℃로 낮추었다. 제4도에서 (10)은 권취기이다.
전팽창된 발포 시이트를 스팀탱크(6)에서 5분간 100℃로 스팀과 접촉시켜 후팽창시켰다.
그 다음 시이트를 냉각시켰다.
생성된 후팽창된 발포 시이트의 폭은 645mm이었으며, 밀도는 0.07g/㎤의, 두께는 5.5mm였으며, 고팽창율로 팽창된 저밀도 미세시이트이었으며, 미세하고 균일한 셀을 가졌다.
[실시예 42]
폴리에틸렌 테리프탈레이트 펠릿(상품명 TR 8580, 디이찐사 제품) 100부를 이슬점 -20℃를 갖는 더운 공기로 160℃에서 5시간동안 건조시켰다. 2무수 피로멜리트산 0.3부, 탄산나트륨 0.1부 및 팽창핵제로서 활석 0.6부를 텀블링 믹서에서 균일하게 펠릿과 혼합하였다.
이 혼합물을 압출기(스크루우 직경 : 65mm, L/D : 35)의 호퍼에 공급했다.
실린더 온도는 265~290℃, 압출기 헤드의 온도는 265℃, 다이 온도는 265℃, 스크루우 회전수는 25rpm이었다. 실린더실에 압력을 가하면서 발포제로서 부탄 2.4%를 혼합물을 넣었다.
사용된 다이는 직경 60mm, 다이틈 0.45mm의 회전 다이이었다. 디이부를 통해 튜브를 압출하고, 용융된 수지를 팽창함과 동시에 원주형 맨드릴 장치로 원주형태로 용융시켰다.
생성된 원주형 발포체부를 열고 얻어진 시이트를 권취시켰다. 이때, 원주형 맨드릴에서의 냉각수를 순환하면서 표면온도를 20℃로 유지했다.
생성된 발포 시이트의 밀도(D)는 1.225g/㎤, 폭은 640mm, 두께는 2.6mm이었다. 이 시이트의 결정도는 9.7%, 유리 전이온도는 75℃였다.
표면온도 160℃의 가열판을 사용하여 시이트를 30초 동안 가열 접촉시키는 것으로 재가열 처리하였다.
이렇게 하여, 밀도(D) 0.133g/㎤, 두께 2.7mm의 후팽창된 발포 시이트를 얻었다. 열처리에 의한 D/D의 비율은 1.69였다. 시이트의 결정도는 24.3%였다. 시이트로부터 100×100mm를 잘라내고,항온조에서 30분간 200℃로 가열했다. 가열전의 부피(Vb)에 대한 가열 후의 부피(Va)의 비 Va/Vb는 1.02였다.
이 시이트는 내열성이 우수한 것임을 알았다.
[실시예 43]
폴리에틸렌 테레프탈레이트 펠릿(상품명 PET 10388, 이스트만 코닥사 제품) 100부를 이슬점 -20℃의 더운 공기로 160℃에서 건조시켰다.
디글리시딜 테레프탈레이트(블레머 DGT, 니뽄유시사 제품) 0.25부, 몬탄산나트륨 0.1무 및 팽창핵제로서 활석 0.6부를 텀블링 믹서내에서 균일하게 혼합했다.
혼합물을 실시예 42에서 사용한 것과 같은 압출기의 호퍼에 공급했다.
실린더 온도는 28 390℃, 압출기 헤드온도는 290℃, 다이 온도는 290℃, 스크류우 회전수는 25rpm이었다. 발포제로서 펜탄 2.2%는 실린더 실의 혼합물에 가압 공급했다.
생성된 발포 시이트이 밀도(D)는 2.242g/㎤의, 폭은 640mm, 두께는 17mm였다. 시이트의 결정도는 10.6%, 유리전이온도는 76℃였다.
표면 온도 160℃의 가열판을 사용하여 30초 동안 시이트를 접촉 가열하는 것으로 재가열처리했다. 생성된 시이트의 밀도(D)는 0.147g/㎤, 두께는 2.8mm였다. 열처리에 의한 D/D의 비는 1.65였다.
후팽창된 발포 시이트의 결정도는 24.4%였다.
사이트로부터 100×100mm의 시료를 떼어내고, 항온조에서 30분간 200℃로 가열했다.
V/V의 비는 1.02였다.
[실시예 44]
실시예 42에서 얻어진 압출된 발포 사이트를, 표면온도 170℃의 가열판을 사용하여 6초 동안 접촉 가열하여 밀도(D) 0.106g/㎤, 두께 3.4mm인 발포 시이트를 얻었다. 후팽창된 발포 시이트의 결정도는 16.7%였다.
시이트로부터 시료 100×100m를 잘라 내어, 항온조에서 30분간 200℃로 가열했다.
Va/Vb의 비는 1.06이었다.
[실시예 45]
실시예 42에서 얻어진 압출된 발포 시이트를 증기압 4 기압의 스팀으로 30초 동안 가열하여, 밀도(V)0.157g/㎤, 두께 2.3mm의 발포 시이트를 얻었다.
이 가열에 의한 D/D의 비는 1.43이었다.
후팽찬된 발포 시이트의 결정도는 24.3%이었다.
시이트로부터 시료 100×100mm를 잘라내어, 항온조에서 30분간 200℃로 가열했다.
[비교예 12]
실시예 42에서 압출된 발포 시이트로부터 시료 100×100mm를 잘라냈다. 결정도는 9.7%였다.
이 시료를 항온조에서 30분간 200℃로 가열했다.
Va/Vb는 1.74였다. 압출후에 열처리는 하지 않았다. 이렇게 하여 얻은 시이트는 내열성능이 빈약하고, 심하게 변형되었다.
[비교예 13]
실시예 42에서 얻은 압출된 발포 시이트를 표면 온도 140℃의 가열판을 사용해 10초 동안 가열하여 후팽창된 발포 시이트를 얻었다. 결정도는 131.5였다. 시이트 밀도는 0.14g/㎤의, 두께는 3.15mm였다. 가열에 의한 D/D의 비는 1.97이었다.
시이트로부터 시료 100×100mm를 잘라내고, 항온조에서 30분간 200℃로 가열했다.
Va/Vb는 1.11이었다.
실시예 42~45, 비교예 12 및 13의 결과를 제6도 및 제7도에 나타내었다.
Figure kpo00008
Figure kpo00009
MD : 발포 시이트의 압출방향
TD : MD에 수직방향
제6표 및 제7표에 명백한 바와 같이, 열처리되지 않은 시이트의 부피가 상당히 변했고, 그 시이트의 내열성이 빈약했다.
또한, 시이트를 열처리한 경우,결정도가 15% 미만인 시이트는 내열성이 빈약했다.
하기의 실시예 46~49 및 비교예 14~16은, 열가소성 폴리에스테르수지의 압출 발포 시이트와 그것의 열성형을 나타내고 있다.
[실시예 46~49 및 비교예 14~16]
본 실시예와 비교예에서 사용된 압출 발포 시이트의 생산장치는 단일 스크루우 압출기(스크루우 직경 : 65mm, L/D : 35)였다.
압출다이는 회전 다이(내경(bore) : 60mm)였으며, 압출 다이의 회전 다이틈은 제9표에서와 같이 변형시켰다.
원주형 맨드릴은 수냉식 맨드릴(외경 : 205mm, L/D : 1.5)였다.
본 실시예 및 비교예에서 사용된 압출 발포 시이트의 조성에 대하여는, 폴리에틸렌 테레프탈레이트(PET) 100중량부가 열가소성 폴리에스테르 수지로 사용되었다.
그 수지 등급을 제8표에서와 같이 변화시켰다.
PET 100중량부ㄱ에 대하여 활석 0.6주량부를 팽창핵제로 사용했다.
발포제로서 액화부탄을 제8표에 나타난 양으로 사용했다.
실시예 46~49 및 비교예 14~16에 사용된 압출 발포 시이트는 다음의 조작으로 제조했다.
제습 건조기(160℃, 이슬점 -30℃)에서 폴리에틸렌 테레프탈레이트를 4시간 동안 건조했다.
이 폴리에틸렌 테레프탈레이트, 개질제, 금속 화합물 및 활석 소정량을 텀블링 믹서 내에서 혼합했다.
혼합물을 압출 호퍼에 공급하고 용융 혼합했다.
발포제로서 액화 부탄을 압출실의 혼합물에 주입했다.
이 혼합물을 회전 다이의 회전경을 통해 공기로 압출하여 튜브형을 만들었다.
이 압출물을 용융수지를 팽창시키면서 꺼내고, 원주형 맨드릴의 외면과 접촉시켜 냉각하여 원주형으로 만들었다.
원주형 발포체를 꺼내고 그 발포 시이트를 권취시켰다.
본 실시예 및 비교예에서 사용된 압출 발포 시이트의 제조 조건은 다음과 같았다.
압출기 공급지대 온도 : 275-285℃
압출기 압축지대 온도 : 285-295℃
압출기 용융지대 온도 : 265-285℃
압출기 헤드 온도 : 265-285℃
회전 다이 온도 : 260-285℃
발포제의 주입압 : 40-140kg/㎠
압출압 : 50-120kg/㎠
스크루우의 회전수와 권취속도는 제9표와 같다.
생성된 발포 시이트는 폭이 640~643mm였다.
겉보기 점도, 두께, 결정도 및 분자배향율은 제10표에 나타난 바와같다.
본 발명의 실시예 및 비교예에서 측정에 사용된 압출 발포 시이트의 후(post) 열성형기 및 열성형 조건은 다음과 같았다.
후열성형기는 팽창된 폴리스티렌용 단발성형기였으며, 적외선 복사의 가열 지대와 공기 실린더의 압축부를 갖고 있었다.
성형기구는 용기 성형용 플랙-보조 압착기구(plag-assist press tool, 내경 : 180mm×155, 깊이 : 95mm였다.
성형조건은 360×360mm 발포 시이트를 가열지대에서 175℃로 15초간 가열한 직후에, 그 성형기에 25초간 접촉시켜 성형의 효과를 얻는 것이었다.
생성된 성형물에 대하여 다음과 같은 항목을 측정했다.
(외관)
○ : 시이트 전체가 균일하게 신장되고, 압착기구와 동일한 모양으로 성형되고 파손되지 않았음.
△ : 압착기구와 동일한 모양으로 성형되었으나, 표면 부분이 파손되고 균일 발생.
× : 시이트가 심하게 파손되어 성형 불능.
(두께비)
성형물의 측벽에 대한 바닥의 두께의 비를 말한다.
-표시는 성형물이 심하게 파손되어 측정불능을 의미함.
(표면도)
○ : 성형물의 표면이 매끄러움.
△ : 성형물의 표면이 부분적으로 고르지 못함.
× : 성형물의 표면이 매우 고르지 못함.
(총평)
압출 발포 시이트의 표면도와 후열성형물이 외관과 두께 모두를 고려하여 총평하였다.
◎ : 매우 우수
○ : 우수
× : 열등
결과를 제11표에 나타낸다.
Figure kpo00010
Figure kpo00011
Figure kpo00012
Figure kpo00013
분자배향율은 군취속도와 블로우업비(blow-up ratio)로 조절될 수 있는데, 그 이유는 권취속도가 증가할때 시이트는 MD방향으로 배향되는 한편, 블로우업비가 증가할 때(냉각 맨드릴 직경이 증가할때), 시이트는 TD 방향으로 배향되기 때문이다.
그러나, 시이트의 폭과 두께, 팽창률이 고정될 때는, 분자 배향율은 권취속도와 블로우업비를 조절하는 것만으로는 조절될 수 없다.
이 경우에, 다이온도가 증가한다.(실시예 47, 비교예 15).
용융성 개질제의 량을 감소시킴으로서 분자배향율을 낮출 수 있다.(실시예 47, 비교예 14).
원주형 맨드릴에의 냉각수 온도를 낮춤으로서 결정도를 낮출 수 있다.
또한, 본 발명의 식품용기는 하기의 실시예 및 비교예에 예시되겠다.
특별한 언급이 없는 한 부의 중량비를 의미한다.
[실시예 50]
여기서는, 발포 시이트와 비발포 시이트에 동일한 열가소성 폴리에스테르수지가 사용되었다.
폴리에스테르 수지로서 폴리에틸렌 테레프탈레이트 펠릿(상품명 :TR 8580, 다이찐사 제품) 100부를 사용하여, 이슬점 -20℃의 더운 공기로 160℃에서 5시간동안 건조시켰다.
2무수 멜리트산 0.3부, 탄산나트륨 0.1부 및 활석 0.6부를 거기에 첨가했다.
이 혼합물을 텀블링 믹서내에서 균일하게 혼합한 다음, 압출기에 공급했다.
압출기의 실린더 온도는 274~287℃, 디이온도는 277℃로 조작했다.
실린더 실의 화합물에 발포제로서 부탄 1.0중량% 정도를 가압 공급하였다.
회전통을 갖는 다이를 압출기헤드에 장치했다.
부탄을 함유한 폴리에스테르 수지를 회전틈을 통해 원주형으로 압출했다.
수지를 팽창시키면서 압출물을 원주형 맨드릴에 적용하여 발포 시이트를 얻었다. 원주형 발포 시이트를 개방시키고, 생성된 평면 시이트를 틀에 감았다. 생성된 발포 시이트의 밀도는 0.262g/㎤, 두께는 1.45mm, 폭은 640mm였다.
두께가 50μ인 폴리에틸렌 테레프탈레이트 수지 필름(FFL 다이찐사 제품)을 비발포 열가소성 수지 필름으로 사용했다. 이 필름과 상술한 시이트를 한 쌍의 로울러 사이에 놓고 서로 적층시켰다. 발포 시이트 폭의 로울러 온도는 실온인 반면, 비발포 시이트 폭의 로울러 온도는 135℃로 조작했다. 이렇게 하여, 비발포 시이트가 발포 시이트 한쪽에만 결합된 적층사이트를 얻었다.
이 적층시이트로 부터 250×250mm의 크기의 시료를 잘라내어, 표면 온도 140℃의 가열판과 6초간 접촉시키는 것으로 예열처리했다. 계속해서, 이 예열된 시료를 180℃로 예열된 수다이와 180℃로 예열된 암다이 사이에서 6초간 방치하여, 용기로 성형함과 동시에 결정도를 가속시켰다. 그런 직후에, 이 성형물을 실온에서 6초동안 수다이와 암다이 사이에 놓아 냉각시켰는데, 이들 다이도 180℃로 예열 흰 다이의 것들과 동일한 모양을 가졌다. 비발포필름층을 용기내부에 위치하는 방식으로 성형했다. 얻어진 용기의 모양은 제6도 및 제7도에서 보는 바와 같다.
제6도는 얻어진 용기(7)의 측면되며, 제7도는 용기(7)의 평면도이다. 이성형에서, 복합시이트는 팽창률이 증가했고, 용기(7)의 바닥두께는 3.80mm로 되었다.
용기(7)내에 물 150ml를 넣고 뚜껑을 닫았다. 물이 세나가지 않도록 용기를 밀봉했다. 500W 초단파 오븐에 용기를 놓고 3분 동안 가열시켜 물을 끓였다. 가열 직후 초단파 오븐에서 그 용기를 맨손으로 꺼냈다. 용기는 가열에 의해 어떤 변화도 없었다. 확인해 보기 위해서 용기 바닥두께를 측정한 결과 3.95mm였다. 초단파 오븐내에서 열을 받은 용기는 두께가 단지 4% 증가했다. 따라서, 실질적으로 변형이 야기되지 않았다고 볼 수 있었다.
[실시예 51]
실시예 50에서 얻은 발포 시이트를 사용하고, 비발포 필름으로서 두께 100μ의 폴리프로필렌 수지 필름을 사용하고, 접착제로서 에틸렌-비닐 아세테이트 혼성 중합체를 사용하여 필름들을 적층시켰다.
폴리에스테르 수지 필름 한쪽면을 에틸렌-비닐 아세테이트 혼성 중합체 수지로 도포시켰다. 필름의 도포된 면을 실시예 50에서 얻어진 폴리에스테르 수지 발포 시이트 위에 놓았다.
한쌍의 로울러를 통해 그들을 통과시켜 적층시켰다.
발포 시이트 폭의 로울러 온도는 실온인 반면, 비발포필름 폭의 로울러 온도는 125℃였다.
상기에서 얻어진 적층시이트에 시료 250×250mm를 잘라내어, 그 발포 시이트면을 표면온도 140℃의 가열판과 접촉시킴과 동시에 비발포필름면을 표면 온도 100℃의 가열판과 6초 동안 접촉시키는 것으로 예열처리했다. 계속해서, 발포 시이트면을 140℃로 예열된 암다이와 접촉시키고, 비발포필름면을 100℃로 가열된 수다이와 8초 동안 방치하여, 복합시이트를 실시예 50에서와 동일한 용기로 성형할 수 있었음과 동시에 결정도를 가속시켰다. 그런 직후, 예열된 다이와 동일한 모양의 2개의 다이 사이에 용기를 놓고 실온에서 6초간 냉각시켰다. 비발포필름이 용기 안쪽에 위치하는 방식으로 성형을 했다. 이 성형으로 발포 시이트가 부풀어 올랐으며 용기 바닥두께는 2.94mm였다.
실시예 50에서와 동일한 방법으로 생성된 용기내에 물을 넣었다. 용기를 초단과 오븐에서 가열한 직후에, 용기를 맨손으로 꺼낼 수 있었다. 가열 후에 변형은 없었다. 확인해 보기 위해서, 용기 바닥 두께를 측정한 결과 3.05mm였다. 두께 증가는 단지 4%였다. 따라서 이 용기는 초단파 오븐의 열에 대한 저항성이 크다고 할 수 있었다.
[실시예 52]
실시예 50에서 얻어진 발포 시이트를 사용하고, 두께 150μ의 폴리에틸렌 테레프탈레이트 필름을 비발포필름을 사용했다. 어떤 접착체도 사용하지 않고 이들을 서로 적층시켜 복합 시이트를 얻었다. 필름의 적층은 발포 시이트폭의 로울러 온도가 실온이며 비발포 필름폭의 로울러 온도가 155℃인 한쌍의 로울러를 사용하여 수행했다.
적층시이트로부터 250×250mm를 절단했다. 실시예 50에서와 동일한 방법으로 시료로부터 용기를 제조했다.
그 용기의 바닥두께는 4.39mm로 팽창했다.
용기내에 물을 넣었다. 실시예 50에서와 같은 방법으로 초단파 오븐에서 돋기를 가열했다. 가열 직후, 오븐으로부터 맨손으로 용기를 꺼낼 수 있었다. 용기는 어떤 변형도 관찰할 수 없었다. 확인하기 위하여, 용기 바닥의 두께를 측정한 결과 4.44mm였다. 변형률은 1%로 매우 적었다.
[실시예 53]
폴리에틸렌 테레프탈레이트 수지 필름 대신에 두께 30μ인 폴리부틸렌 테레프탈레이트 수지 필름을 사용한 것을 제외하고는, 실시예 52의 공정을 반복했다. 성형된 용기 바닥의 두게는 4.02mm였다.
가열한 후에, 초단파 오븐으로부터 용기를 맨손으로 꺼낼 수 있었다. 가열사기전에 비해 용기는 전혀 변형되지 않았다.
가열후의 용기 바닥의 두께는 측정한 결과, 4.34mm였다. 두께 변형률은 3%뿐이었다.
비교예 17 발포 시이트 상에 비발포필름을 적층하지 않고 실시예 50에서 얻어진 폴리에스테르 수지 발포 시이트로 부터만 용기를 얻었다. 즉, 실시예 50에서 얻은 폴리에스테르 수지 발포 시이트를 140℃로 가열된 가열판과6초간 접촉 시이트는 것으로 예열시켰다. 이어서, 180℃로 가열된 수다이와 180℃로 가열된 암다이 사이에 8포동안 방치하여, 성형함과 동시에 결정도를 가속시켰다. 그런 직후에, 실온에서 180℃로 가열된 다이와 동일한 모양의 수다이와 암다이 사이에 성형물을 놓고 6초 동안 방냉시켰다. 이렇게 하여 실시예 50에서와 동일한 용기를 얻었으며 그 바닥 두께는 3.39mm였다. 실시예 50에서와 동일한 방법으로 용기내의 물을 넣고 초단파 오븐에서 가열했다. 가열 직후에 초단파 오븐으로부터 맨손으로 용기를 꺼낼 수 있었다. 꺼낸 용기는 팽창이 컸으며 그 내면이 울퉁불퉁했다. 가열 후의 용기 바닥 두께는 측정한 결과과 4.04mm였다. 즉, 두께가 19%만큼 크게 증가하였음을 보여주고 있다. 따라서 면형이 커서 그 용기는 초단파 오븐의 열에 견딜 수 없었음을 알았다.
[비교예 18]
여기서는 폴리스티렌의 발포 시이트와 열가소성 폴리에스테르 수지의 비발포필름을 사용했다. 에틸렌-비닐 아세테이트 혼성중합체 수지를 사용하여 그들을 서로 적층시켜 JP-A-62-70037에 서술된 것에 상응하는 적층시이트를 얻었다.
즉, 두께 50μ의 비발포 폴리에틸렌 테레프탈레이트 필름 한 면을 혼성중합체 수지로 피복했다. 두께가 2.4mm, 기준 중량이 200g/cm 인 팽창된 폴리에틸렌 시이트상에 이 필름의 피복된 면을 놓고 적층시켰다.
적층은 150℃로 가열된 한 쌍의 로울러를 사용하여 수행했다.
이 적층시이트로부터 시료 250×250mm를 잘라내어 그것을 140℃로 가열된 가열판과 8초 동안 접촉시키는 것으로 예열시켰다. 그런 직후 실온에서 수다이와 암다이 사이에 6초 동안 놓고 방냉시켰다. 실시예 50의 용기와 동일한 모양의 용기를 얻었다. 용기는 비발포필름이 그 용기 내면에 위치하는 형태로 제조했다. 용기의 바닥두께는 4.2mm까지 증가했다.
실시예 50에서와 같은 방법으로 용기내에 물을 넣고 초단파 오븐에서 용기를 가열시켰다. 가열 직후 맨손으로 초단파 오븐에서 용기를 꺼내긴 했으나 가열에 의한 변형이 심했다.
특히, 용기면의 팽창된 폴리스티렌 층이 팽창에 의해 변형되었다. 그 결과 용기 내면의 비발포 필름상이 울퉁불퉁했다.
가열 후의 용기의 바닥두께를 측정한 결과 4.88mm였다. 이것은 두께가 16% 증가했음을 보여주었다. 따라서, 이 용기는 초단파 오븐에서 사용하기는 부적당하다는 것을 감지하였다.
[발명의 효과]
상술한 바와 같이 본 발명은 다음과 같은 효과를 갖는다.
열가소성 폴리에스테르 수지 발포체는 거기에 균일하게 분산된 미세 셀을 갖는 것이다.
본 발명의 발포체는 무게가 가벼우면서 강도와 내열성이 우수하며, 또한, 인장강도와 인장연신도가 높은 발포체는 재가열했을때 거기에 매우 미세한 셀이 분산되고 팽창률이 높은 성형발포체를 낸다.
본 발명의 압출 발포 시이트는 열성형성이 우수하다. 열성형된 식품용기는 오븐에 사용할 수 있다.
전술한 바와 같이 본 발명을 실시예 및 참고예를 들어 상세하게 설명하였으나, 본 발명의 목적을 벗어나지 않는 범위내에서 각종 변형과 개조가 가능하다.

Claims (24)

  1. 열가소성 폴리에스테르 수지를 용융하고, 그 용융된 수지를 발포체와 혼합한 다음 저압지대로 혼합물을 압출성형하는 열가소성 폴리에스테르 수지 발포체의 제조방법에 있어서, 상기 압출성형된 발포체를 냉각하여 결정도 7% 이상으로 하고, 분자당 2개 이상의 산무수물기를 갖는 화합물을 열가소성 폴리에스테르 수지에 첨가하는 것을 특징으로 하는 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.
  2. 제1항에 있어서, 분자당 2개 이상의 산 무수물기를 갖는 화합물을, 열가소성 폴리에스텔수지 100중량부에 대하여 0.05~5중량부에 비율로 첨가하는 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.
  3. 제1항에 있어서, 분자당 2개 이상의 산 무수물기를 갖는 화합물이 2무수 피로멜리트산, 2무수 벤조페논테트라카르복시산, 2무수 시클로펜탄-테트라카르복시산, 2무수디페닐 설폰 테트라카르복시산, 또는 2무수 5-(2,5-디옥소테트라하이드로-3-퓨릴)-3-메틸-3-시클로헥실-1,2-디카르복시산인 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.
  4. 제1항에 있어서, 발포체의 밀도가 0.7g/㎤ 이하인 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.
  5. 제1항에 있어서, 발포체가 밀도 0.5g/㎤ 이하의 압출 발포 시이트인 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.
  6. 제1항에 있어서, 열가소성 폴리에스테르계 수지가 폴리에틸렌 테레프탈레이트, 폴리부틸렌 테레프탈레이트, 폴리부틸렌 테레프탈레이트 탄성중합체, 비결정성 폴리에스테르, 폴리시클로헥산 테레프탈레이트, 폴리에틸렌 테레프탈레이트 또는 이들의 혼합물인 열가소성 폴리에스테르계 결정성 수지 발포체의 제조방법.
  7. 열가소성 폴리에스테르 수지를 용융하고, 그 용융된 수지를 발포제와 혼합한 다음 저압지대로 혼합물을 압출하여 성형하는 열가소성 폴리에스테르 수지 발포체의 제조방법에 있어서, 분자당 2개 이상의 산 무수물기를 갖는 화합물과 주기율표상의 제I족, 제II족, 또는 제III족 금속의 화합물을 상기 열가소성 폴리에스테르 수지에 첨가하는 것을 특징으로 하는 열가소성 폴리에스테르계 수지 발포체의 제조방법.
  8. 제7항에 있어서, 분자당 2개 이상의 산 무수물기를 갖는 화합물을 열가소성 폴리에스테르 수지 100중량부에 대해 0.05~5중량부 사용하고, 주기율표상의 제I족, 제II족, 또는 제III족 금속의 화합물을 열가소성 폴리에스테르 수지 100중량부에 대해 0.05~5중량부 사용하는 열가소성 폴리에스테르계 수지 발포체의 제조방법.
  9. 제7항에 있어서, 금속화합물이 주기율표상의 제I족의 금속화합물인 열가소성 폴리에스테르계 수지 발포체의 제조방법.
  10. 제7항에 있어서, 발포체의 밀도가 0.5g/㎤ 이하인 열가소성 폴리에스테르계 수지 발포체의 제조방법.
  11. 제1항에 있어서, 용융수지가 상기 발포체와 팽창핵제의 혼합물인 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.
  12. 제1항에 있어서, 열가소성 수지의 틀팽창(die swell)율이 2~5인 열가소성 수지 결정성 발포체의 제조방법.
  13. 제1항에 있어서, 분자당 2개 이상의 산 무수물를 갖는 화합물을 열가소성 수지와 사전에 용융혼합한 혼합물을 펠릿화(pelletize)하여, 그 펠릿을 상기 열가소성 폴리에스테르 수지와 혼합하는 열가소성 수지 결정성 발포체의 제조방법.
  14. 제7항에 있어서, 분자당 2개 이상의 산 무수물기를 갖는 상기 화합물을 주기율표상의 제I족, 제II족, 또는 제III족의 금속화합물을 열가소성 수지와 사전에 용융 혼합한 혼합물을 펠릿화하여, 그 펠릿을 열가소성 폴리에스테르 수지와 혼합하는 열가소성 수지 결정성 폴리에스테르 발포제의 제조방법.
  15. 제1항에 있어서, 냉각 발포체가 60℃이상으로 가열되어 후팽창하는 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.
  16. 제15항에 있어서, 그 수지의 유리전이 온도 이하로 냉각된 상기 발포체의 밀도가 0.5g/㎤ 이하인 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.
  17. 제15항에 있어서, 폴리에스테르 수지 발포체를 스팀이나 온수와 접촉하여 가열조작하는 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.
  18. 제15항에 있어서, 폴리에스테르 수지 발포체를 가열판과 접촉하여 가열조작하는 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.
  19. 제15항에 있어서, 상기 발포체를 가열조작에 의해 1.3배 이상 저팽창시키는 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.
  20. 제7항에 있어서, 압출 발포체를 냉각하여, 그 냉각 발포체를 60℃이상으로 재가열팽창하는 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.
  21. 제20항에 있어서, 그 수지의 유리전이 온도 이하의 온도로 냉각된 상기 발포체의 밀도가 0.5g/㎤이하인 열가소성 폴리에스테르계 수지 발포체의 제조방법.
  22. 제20항에 있어서, 폴리에스테르 수지 발포체를 스팀이나 온수와 접촉시키는 것으로 가열조작을 수행하는 열가소성 폴리에스테르계 수지 발포체의 제조방법.
  23. 제20항에 있어서, 폴리에스테르 수지 발포체를 가열판과 접촉시키는 것으로 가열 조작을 수행하는 열가소성 폴리에스테르계 수지 발포체의 제조방법.
  24. 제20항에 있어서, 상기 발포체를 가열조작하여 1.3배 이상 재팽창시키는 열가소성 폴리에스테르계 수지 발포체의 제조방법.
KR1019890017952A 1988-12-01 1989-12-01 열가소성 폴리에스테르계 수지 발포체의 제조방법 KR0118112B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019960046183A KR0118103B1 (ko) 1988-12-01 1996-10-16 식품용기
KR1019960046182A KR0118102B1 (ko) 1988-12-01 1996-10-16 열가소성 폴리에스테르계 수지 시이트

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP302233/1988 1988-12-01
JP63302233A JPH02150434A (ja) 1988-12-01 1988-12-01 ポリエステル系樹脂発泡体の製造法
JP366989A JPH02251543A (ja) 1989-01-12 1989-01-12 ポリエステル系樹脂発泡体の製造法
JP3669/1989 1989-01-12
JP88633/1989 1989-04-06
JP1088633A JP2528514B2 (ja) 1989-04-06 1989-04-06 熱可塑性ポリエステル系樹脂発泡シ―ト
JP1088300A JPH0688301B2 (ja) 1989-04-07 1989-04-07 耐熱性熱可塑性ポリエステル系樹脂発泡体の製造法
JP88300/1989 1989-04-07
JP25004989A JPH0698982B2 (ja) 1989-09-25 1989-09-25 食品容器
JP250049/1989 1989-09-25
JP27304989A JPH03134037A (ja) 1989-10-20 1989-10-20 熱可塑性ポリエステル系樹脂発泡体の製造方法
JP273049/1989 1989-10-20

Related Child Applications (3)

Application Number Title Priority Date Filing Date
KR1019960046181A Division KR19980027409A (ko) 1988-12-01 1996-10-16 열가소성 폴리에스테르계 수지 발포체의 제조방법
KR1019960046183A Division KR0118103B1 (ko) 1988-12-01 1996-10-16 식품용기
KR1019960046182A Division KR0118102B1 (ko) 1988-12-01 1996-10-16 열가소성 폴리에스테르계 수지 시이트

Publications (2)

Publication Number Publication Date
KR900009810A KR900009810A (ko) 1990-07-05
KR0118112B1 true KR0118112B1 (ko) 1997-09-30

Family

ID=27547787

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1019890017952A KR0118112B1 (ko) 1988-12-01 1989-12-01 열가소성 폴리에스테르계 수지 발포체의 제조방법
KR1019960046181A KR19980027409A (ko) 1988-12-01 1996-10-16 열가소성 폴리에스테르계 수지 발포체의 제조방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1019960046181A KR19980027409A (ko) 1988-12-01 1996-10-16 열가소성 폴리에스테르계 수지 발포체의 제조방법

Country Status (9)

Country Link
US (1) US5000991B2 (ko)
EP (4) EP0547033B1 (ko)
KR (2) KR0118112B1 (ko)
AT (4) ATE155757T1 (ko)
AU (2) AU635230B2 (ko)
CA (1) CA2004300C (ko)
DE (4) DE68928205T2 (ko)
ES (4) ES2104973T3 (ko)
SG (1) SG46581A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101723815B1 (ko) * 2015-10-30 2017-04-10 주식회사 휴비스 가스 베리어층이 형성된 내열재, 이의 제조방법 및 이를 포함하는 포장 용기
WO2020218684A1 (ko) * 2019-04-25 2020-10-29 주식회사 휴비스 무기입자를 포함하는 발포시트 및 이의 제조방법

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU652512B2 (en) * 1988-12-01 1994-08-25 Sekisui Kaseihin Kogyo Kabushiki Kaisha Process for producing polyester resin foam
CA2004300C (en) * 1988-12-01 1999-05-11 Motoshige Hayashi Process for producing polyester resin foam and polyester resin foam sheet
CA2042340A1 (en) * 1991-05-10 1992-11-11 Motoshige Hayashi Leather-like thermoplastic polyester series resin sheet and process for production of the same
EP0536517A3 (en) * 1991-10-07 1993-06-02 Staeger & Co. Ag Plastic container produced by deep drawing
IT1252223B (it) * 1991-12-16 1995-06-05 M & G Ricerche Spa Resine poliestere cellulari e loro procedimento di preparazione
IT1258965B (it) * 1992-06-10 1996-03-11 Procedimento per la produzione di resine poliestere per fibre
US5229432A (en) * 1992-11-24 1993-07-20 E. I. Du Pont De Nemours And Company High melt strength pet polymers for foam applications and methods relating thereto
US5348984A (en) * 1993-01-28 1994-09-20 Sealed Air Corporation Expandable composition and process for extruded thermoplastic foams
US5288764A (en) * 1993-01-29 1994-02-22 Amoco Corporation Increased throughput in foaming and other melt fabrication of polyester
US5536793A (en) * 1993-01-29 1996-07-16 Amoco Corporation Concentrate for use in the melt fabrication of polyester
JP3015628B2 (ja) * 1993-06-30 2000-03-06 日本プレストン株式会社 転写型化粧シートとその製造方法
IL110514A0 (en) * 1993-10-04 1994-10-21 Eastman Chem Co Concentrates for improving polyester compositions and a method for preparing such compositions
SE502080C2 (sv) * 1993-11-30 1995-08-07 Plm Ab Förpackningsmaterial, sätt att framställa detta, behållare bestående av sådant material samt användning av materialet för framställning av behållare
JPH07179736A (ja) * 1993-12-24 1995-07-18 Kanegafuchi Chem Ind Co Ltd 高溶融粘弾性発現性樹脂組成物およびそれを用いた芳香族ポリエステル系樹脂発泡体の製造法
US5391582A (en) * 1994-04-19 1995-02-21 E. I. Du Pont De Nemours And Company Poly(ethylene terephthalate) foams comprising recycled plastic and methods relating thereto
DE4440837A1 (de) 1994-11-15 1996-05-23 Basf Ag Biologisch abbaubare Polymere, Verfahren zu deren Herstellung sowie deren Verwendung zur Herstellung bioabbaubarer Formkörper
KR100363291B1 (ko) 1994-12-27 2003-05-09 세키스이가세이힝코교가부시키가이샤 열가소성폴리에스테르계수지발포체의연속적제조방법및제조장치
DE19500755A1 (de) * 1995-01-13 1996-07-18 Basf Ag Biologisch abbaubare Polymere, Verfahren zu deren Herstellung sowie deren Verwendung zur Herstellung bioabbaubarer Formkörper
DE19500757A1 (de) 1995-01-13 1996-07-18 Basf Ag Biologisch abbaubare Polymere, Verfahren zu deren Herstellung sowie deren Verwendung zur Herstellung bioabbaubarer Formkörper
DE19500756A1 (de) * 1995-01-13 1996-07-18 Basf Ag Biologisch abbaubare Polymere, Verfahren zu deren Herstellung sowie deren Verwendung zur Herstellung bioabbaubarer Formkörper
DE19505186A1 (de) * 1995-02-16 1996-10-31 Basf Ag Biologisch abbaubare Polymere, Verfahren zu deren Herstellung sowie deren Verwendung zur Herstellung bioabbaubarer Formkörper
US5482977A (en) * 1995-05-08 1996-01-09 Eastman Chemical Company Foamable branched polyesters
US5618486A (en) * 1995-05-16 1997-04-08 Sekisui Plastics Co., Ltd. Process for manufacturing a heat-resistant molded foam product
US5696176A (en) * 1995-09-22 1997-12-09 Eastman Chemical Company Foamable polyester compositions having a low level of unreacted branching agent
GB9522006D0 (en) * 1995-10-27 1996-01-03 Borden Uk Ltd Plastics articles
US5661193A (en) * 1996-05-10 1997-08-26 Eastman Chemical Company Biodegradable foamable co-polyester compositions
US6342173B1 (en) 1996-07-11 2002-01-29 Genpak, L.L.C. Method for producing polymer foam using a blowing agent combination
US6063316A (en) * 1996-07-11 2000-05-16 Genpak, L.L.C. Method for producing polymer foam using a blowing agent combination
US5679295A (en) * 1996-07-11 1997-10-21 Genpak Corporation Method for producing polyester foam using a blowing agent combination
US6099924A (en) * 1996-07-22 2000-08-08 Toyo Seikan Daisha, Ltd. Laminate and container made of the same
FI109286B (fi) * 1996-10-17 2002-06-28 Wihuri Oy Muovilaminaatti, menetelmä sen valmistamiseksi ja sen käyttö
US5681865A (en) * 1996-11-05 1997-10-28 Genpak Corporation Method for producing polyester foam
IT1291706B1 (it) * 1997-05-09 1999-01-21 L M P Impianti S R L Procedimento di produzione di poliestere, in particolare pet, espanso.
WO1999002588A1 (en) 1997-07-11 1999-01-21 Akzo Nobel N.V. Process for the preparation of foamed articles
US5922782A (en) * 1997-07-23 1999-07-13 Eastman Chemical Company Foamable copolyesters prepared from divalent metal containing co-ionomers
IT1296878B1 (it) * 1997-12-17 1999-08-02 Sinco Ricerche Spa Schiume di poliestere flessibili
US5985190A (en) 1998-04-28 1999-11-16 Genpak, L.L.C. Method and system for forming low-density polymer foam article
CA2328974A1 (en) 1998-05-27 1999-12-02 The Dow Chemical Company Vehicle headliner comprised of a thermoformable thermoplastic foam sheet
TW499363B (en) * 1998-06-26 2002-08-21 Sinco Ricerche Spa Recyclable multi-layer material in polyester resin
DE69924063T2 (de) * 1998-09-25 2006-04-13 Cobarr S.P.A., Anagni Polyesterharzschaumstoffblätter
US6503549B1 (en) * 1998-09-30 2003-01-07 Cryovac, Inc. Polyester tray package with lidding film having glycol-modified copolyester sealant layer
EP1160274B1 (en) * 1998-12-11 2005-10-05 Sekisui Plastics Co., Ltd. Pre-expanded particles of crystalline aromatic polyester-based resin, and in-mold expanded product and expanded laminate using the same
ITMI991139A1 (it) 1999-05-24 2000-11-24 Sinco Ricerche Spa Film espansi biorientati in resina poliestere
US7182985B1 (en) * 1999-06-17 2007-02-27 Cobarr, S.P.A. Recyclable multi-layer material of polyester resin
US20030186045A1 (en) * 2001-05-31 2003-10-02 Trevor Wardle Built-up roof system
US20040096640A1 (en) * 2002-01-30 2004-05-20 M & G Usa Corporation Method for conditioning polyester and controlling expansion of polyester during thermoforming
AU2003218066A1 (en) 2002-03-14 2003-09-29 Dow Global Technologies, Inc. Application of a membrane roof cover system having a polyester foam layer
WO2003093603A1 (en) * 2002-05-03 2003-11-13 Dow Global Technologies Inc. Improved built-up roof system
US7951449B2 (en) * 2002-06-27 2011-05-31 Wenguang Ma Polyester core materials and structural sandwich composites thereof
US20040024102A1 (en) * 2002-07-30 2004-02-05 Hayes Richard Allen Sulfonated aliphatic-aromatic polyetherester films, coatings, and laminates
US7625994B2 (en) 2002-07-30 2009-12-01 E.I. Du Pont De Nemours And Company Sulfonated aliphatic-aromatic copolyetheresters
US7888405B2 (en) 2004-01-30 2011-02-15 E. I. Du Pont De Nemours And Company Aliphatic-aromatic polyesters, and articles made therefrom
US20070059511A1 (en) * 2004-03-31 2007-03-15 Edwards Walter L Low density foamed polymers
TW200621862A (en) * 2004-12-24 2006-07-01 Furukawa Electric Co Ltd Thermoplastic resin foam
US7951900B2 (en) 2005-06-17 2011-05-31 Eastman Chemical Company Dialysis filter housings comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
JP5121446B2 (ja) * 2005-03-25 2013-01-16 株式会社カネカ ポリヒドロキシアルカノエート樹脂発泡粒子の製造方法
WO2006106776A1 (ja) * 2005-03-30 2006-10-12 Asahi Kasei Chemicals Corporation ポリエステル発泡シート
JP4878869B2 (ja) * 2005-04-08 2012-02-15 日東電工株式会社 発泡部材、発泡部材積層体及び発泡部材が用いられた電気・電子機器類
US7704605B2 (en) 2006-03-28 2010-04-27 Eastman Chemical Company Thermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
US8193302B2 (en) 2005-10-28 2012-06-05 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain phosphate thermal stabilizers, and/or reaction products thereof
CA2625842A1 (en) 2005-10-28 2007-05-10 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain thermal stabilizers, and/or reaction products thereof
US9598533B2 (en) 2005-11-22 2017-03-21 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
US7737246B2 (en) 2005-12-15 2010-06-15 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol, cyclohexanedimethanol, and ethylene glycol and manufacturing processes therefor
US9169388B2 (en) 2006-03-28 2015-10-27 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain thermal stabilizers, and/or reaction products thereof
ES2429421T3 (es) * 2006-10-13 2013-11-14 Cryovac, Inc. Artículos de espuma moldeados resistentes al calor y procedimiento para su fabricación
US8080191B2 (en) * 2006-10-20 2011-12-20 Pepsico, Inc. Extrudable polyethylene terephthalate blend
DE102007026719B4 (de) 2007-06-06 2014-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Formkörper hergerstellt durch Blasfolienextrusion aus einer biologisch abbaubaren polymeren Zusammensetzung, Verwendung des Formkörpers sowie Verfahren zur Herstellung des Formkörpers
US8501287B2 (en) 2007-11-21 2013-08-06 Eastman Chemical Company Plastic baby bottles, other blow molded articles, and processes for their manufacture
KR101790591B1 (ko) 2007-11-21 2017-10-26 이스트만 케미칼 컴파니 플라스틱 젖병, 다른 취입 성형된 제품, 및 이들의 제조 방법
EP2072563B2 (en) 2007-12-19 2015-07-29 Armacell Enterprise GmbH & Co. KG Polymer blend for thermoplastic cellular materials
JP4421654B2 (ja) * 2008-01-16 2010-02-24 日東電工株式会社 加熱発泡シートの製造方法
EP2268737B1 (en) 2008-04-18 2019-01-16 PepsiCo, Inc. Polyester compositions and method for preparing articles by extrusion blow molding
JP5670321B2 (ja) * 2008-06-12 2015-02-18 3A テヒノロギー ウント メーニッジメント リミテッド 発泡ポリエステル類及びその製造方法
EP2291430A1 (en) 2008-06-25 2011-03-09 Metabolix, Inc. Methods for branching pha using thermolysis
US8198371B2 (en) 2008-06-27 2012-06-12 Eastman Chemical Company Blends of polyesters and ABS copolymers
BRPI0915504A2 (pt) * 2008-07-10 2019-08-27 Lubrizol Corp composição de combustível, de aditivos e método de operar um motor de combustão interna
DK2163577T3 (da) 2008-09-15 2012-10-15 Armacell Enterprise Gmbh Kædeforlængere og opskummede termoplastiske cellulære materialer opnået ved en reaktiv ekstrusionsfremgangsmåde og ved hjælp af disse kædeforlængere
US8895654B2 (en) 2008-12-18 2014-11-25 Eastman Chemical Company Polyester compositions which comprise spiro-glycol, cyclohexanedimethanol, and terephthalic acid
PL2345538T3 (pl) * 2010-01-13 2014-10-31 Armacell Entpr Gmbh & Co Kg Sposób ochrony przeciwpalnej i modyfikacji właściwości ekspandowanych poliestrów
PL2383309T5 (pl) 2010-04-29 2020-08-10 Armacell Enterprise Gmbh & Co. Kg Poliester komórkowy wykonany z płatków poużytkowych i zastosowanie wykonanych z niego produktów
US8636929B2 (en) * 2010-05-21 2014-01-28 Basf Se Nanoporous foamed active compound-containing preparations based on pharmaceutically acceptable thermoplastically workable polymers
US8529808B2 (en) * 2010-05-21 2013-09-10 Basf Se Nanoporous polymer foams
US8394997B2 (en) 2010-12-09 2013-03-12 Eastman Chemical Company Process for the isomerization of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US8420869B2 (en) 2010-12-09 2013-04-16 Eastman Chemical Company Process for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US8420868B2 (en) 2010-12-09 2013-04-16 Eastman Chemical Company Process for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US20120232175A1 (en) * 2011-03-11 2012-09-13 Mucell Extrusion, Llc Pet foam articles and related methods
US20140349094A1 (en) * 2011-12-06 2014-11-27 3M Innovative Properties Company Monolithic multilayer article
US20130217830A1 (en) 2012-02-16 2013-08-22 Eastman Chemical Company Clear Semi-Crystalline Articles with Improved Heat Resistance
EP2671911B1 (en) 2012-06-05 2016-10-12 Armacell Enterprise GmbH & Co. KG A foam material with very low thermal conductivity and a process for manufacturing the foam material
US9475930B2 (en) 2012-08-17 2016-10-25 Metabolix, Inc. Biobased rubber modifiers for polymer blends
EP3004225A1 (en) 2013-05-30 2016-04-13 Metabolix, Inc. Recyclate blends
CN106459544B (zh) 2014-03-27 2021-10-01 Cj 第一制糖株式会社 高度填充的聚合物体系
KR20170024178A (ko) 2015-08-13 2017-03-07 주식회사 휴비스 기능성 첨가제가 분산된 영역을 포함하는 발포수지 접합체
KR20170024177A (ko) 2015-08-13 2017-03-07 주식회사 휴비스 기능성 첨가제가 분산된 영역을 포함하는 면상 적층체
EP3335875B1 (en) 2015-08-13 2022-07-06 Huvis Corporation Composite of multilayer structure comprising polyester foam and polyester resin layer, and use thereof
KR20170025983A (ko) 2015-08-31 2017-03-08 주식회사 휴비스 폴리에스테르 수지 발포체를 포함하는 샌드위치 판넬
US11192342B2 (en) 2015-09-30 2021-12-07 Huvis Corporation Interior and exterior materials for automobile comprising polyester resin foam layer and fiber layer
KR101855858B1 (ko) 2015-12-31 2018-06-12 주식회사 휴비스 발포용 고점도 폴리에스테르 수지, 및 이를 이용한 폴리에스테르 수지 발포체의 제조방법
US11230418B2 (en) 2016-09-30 2022-01-25 Huvis Corporation Food container with reduced elution of hazardous substances
KR101880904B1 (ko) 2017-04-17 2018-07-23 주식회사 휴비스 기능성 첨가제가 분산된 영역을 포함하는 면상 적층체
EP3645419A1 (en) 2017-06-29 2020-05-06 Cryovac, LLC Use of dual ovenable polyester films in thermoforming packaging applications and dual ovenable thermoformed packages obtained therefrom
CN110770024A (zh) 2017-06-29 2020-02-07 克里奥瓦克公司 可双法烘烤的聚酯膜在真空贴体包装应用中的用途和由其获得的贴体包装
JP6901553B2 (ja) * 2018-06-29 2021-07-14 フュービス・コーポレイションHuvis Corporation 炭酸カルシウムを含む発泡シート、その製造方法およびこれを含む食品容器
KR102165608B1 (ko) * 2018-12-27 2020-10-14 주식회사 휴비스 Pet 발포시트 제조장치
TWI705094B (zh) 2019-04-25 2020-09-21 南亞塑膠工業股份有限公司 一種回收pet發泡材料及其製造方法
CN110712823A (zh) * 2019-10-18 2020-01-21 合肥美的电冰箱有限公司 包装件和强化工艺
WO2021207951A1 (zh) * 2020-04-15 2021-10-21 南京越升挤出机械有限公司 一种用于pet挤出发泡的扩链剂母粒及其制备方法和应用
CN111559101A (zh) * 2020-05-15 2020-08-21 东莞中和生物材料科技有限公司 一种由可生物降解材料制成的饮用容器的生产工艺

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL281286A (ko) * 1954-07-08 1900-01-01
US3822332A (en) * 1970-08-07 1974-07-02 Ciba Geigy Ag Process for the production of amorphous transparent polyethylene mouldings by the combined injection and blow moulding technique
US4119583A (en) * 1975-11-13 1978-10-10 Klf Inventions And Patent Development And Marketing Corporation Ltd. Foamed articles and methods for making same
US4145466A (en) * 1977-09-02 1979-03-20 Rohm And Haas Company Melt strength improvement of PET
US4224264A (en) * 1979-01-18 1980-09-23 Monsanto Company Foam crystallization of condensation polymers
JPS5645928A (en) * 1979-09-21 1981-04-25 Teijin Ltd Production of polyester extruded expanded article
US4462947A (en) * 1982-12-28 1984-07-31 Mobil Oil Corporation Heat-resistant foamed polyesters
US4466933A (en) * 1982-12-28 1984-08-21 Mobil Oil Corporation Heat-resistant foamed plastic materials
US4533578A (en) * 1983-08-30 1985-08-06 Mobil Oil Corporation Sandwich foam coextrusion for high performance polyolefin trash bags
EP0220751A3 (en) * 1985-09-26 1988-08-17 Pennwalt Corporation Foamable and cross-linkable unsaturated polyester composition
GB8603341D0 (en) * 1986-02-11 1986-03-19 Portapax Ltd Foam sheet
JPH0210955A (ja) * 1988-06-28 1990-01-16 Ricoh Co Ltd ダイヤル発信装置
CA2004300C (en) * 1988-12-01 1999-05-11 Motoshige Hayashi Process for producing polyester resin foam and polyester resin foam sheet
US4981631A (en) * 1989-03-31 1991-01-01 The Goodyear Tire & Rubber Company Process for making lightweight polyester articles
US4988740A (en) * 1989-06-15 1991-01-29 E. I. Du Pont De Nemours And Company Low density foamed thermoplastic elastomers
DE69019135T2 (de) * 1989-12-27 1995-11-30 Sekisui Plastics Thermoplastischer Polyesterharzschaumstoff und Herstellungsverfahren.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101723815B1 (ko) * 2015-10-30 2017-04-10 주식회사 휴비스 가스 베리어층이 형성된 내열재, 이의 제조방법 및 이를 포함하는 포장 용기
WO2020218684A1 (ko) * 2019-04-25 2020-10-29 주식회사 휴비스 무기입자를 포함하는 발포시트 및 이의 제조방법

Also Published As

Publication number Publication date
DE68928205D1 (de) 1997-08-28
ATE163442T1 (de) 1998-03-15
EP0372846B1 (en) 1996-04-10
DE68926219T2 (de) 1996-11-14
EP0372846A3 (en) 1991-07-10
DE68928659D1 (de) 1998-06-04
EP0547033A2 (en) 1993-06-16
SG46581A1 (en) 1998-02-20
CA2004300C (en) 1999-05-11
EP0552813A2 (en) 1993-07-28
DE68928205T2 (de) 1998-01-29
EP0552813A3 (en) 1993-08-11
DE68928588T3 (de) 2004-02-26
US5000991A (en) 1991-03-19
US5000991B2 (en) 2000-07-11
ES2104973T3 (es) 1997-10-16
CA2004300A1 (en) 1990-06-01
DE68926219D1 (de) 1996-05-15
KR900009810A (ko) 1990-07-05
US5000991B1 (en) 1997-09-16
ES2118150T3 (es) 1998-09-16
ES2086320T3 (es) 1996-07-01
KR19980027409A (ko) 1998-07-15
EP0547032B1 (en) 1998-02-25
EP0547032A3 (en) 1993-08-11
ES2112344T3 (es) 1998-04-01
ATE155757T1 (de) 1997-08-15
EP0547033A3 (en) 1993-08-11
EP0372846A2 (en) 1990-06-13
DE68928588D1 (de) 1998-04-02
EP0547032A2 (en) 1993-06-16
EP0552813B1 (en) 1998-04-29
EP0547033B1 (en) 1997-07-23
ES2112344T5 (es) 2004-04-16
AU4579789A (en) 1990-06-07
ATE136562T1 (de) 1996-04-15
AU635230B2 (en) 1993-03-18
EP0547032B2 (en) 2003-08-27
DE68928659T2 (de) 1998-10-15
AU3546993A (en) 1993-06-17
DE68928588T2 (de) 1998-08-13
ATE165611T1 (de) 1998-05-15
AU643402B2 (en) 1993-11-11

Similar Documents

Publication Publication Date Title
KR0118112B1 (ko) 열가소성 폴리에스테르계 수지 발포체의 제조방법
JP4794335B2 (ja) ポリ乳酸系樹脂製発泡シート製容器の製造方法
EP1166990B1 (en) Method for producing foamed-in-mold product of aromatic polyester based resin
EP1160274B1 (en) Pre-expanded particles of crystalline aromatic polyester-based resin, and in-mold expanded product and expanded laminate using the same
KR0118102B1 (ko) 열가소성 폴리에스테르계 수지 시이트
JP2528514B2 (ja) 熱可塑性ポリエステル系樹脂発泡シ―ト
CA2214570C (en) Food container produced from polyester resin foam sheet
JP2001269960A (ja) 芳香族ポリエステル系樹脂による型内発泡成形体の製造方法
JP3704047B2 (ja) 熱可塑性ポリエステル系樹脂の予備発泡粒子及びその製造方法
AU652512B2 (en) Process for producing polyester resin foam
JP2000037805A (ja) 発泡積層シートおよびそれを用いた成形容器
KR20230078138A (ko) 수축률을 개선한 발포시트
JPH11130897A (ja) ポリカーボネート系樹脂発泡体
TW212806B (ko)
JPH05320402A (ja) 発泡ポリエステルシート及びその製造方法
JPH0547575B2 (ko)
JP2666235B2 (ja) 発泡ポリエステルシートおよびその製造方法
CN118562264A (zh) 泡沫片材和模制产品
JPH07179642A (ja) 発泡ポリエステルシートおよびその製造方法
JP2001026217A (ja) サンバイザー
JPH03200843A (ja) 熱可塑性ポリエステル系樹脂の発泡シート
JPH10138319A (ja) 熱可塑性ポリエステル系樹脂発泡シートの製造方法
JPH09183860A (ja) ポリエステル系樹脂発泡成形体の製造法
JPH09174665A (ja) 成形性に優れたポリエステル系樹脂発泡シートの製造方法
JPH0673223A (ja) 発泡ポリエステルシート及びその製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110617

Year of fee payment: 15

EXPY Expiration of term