KR0118112B1 - Process for producing thermoplastic polyester resin foam - Google Patents

Process for producing thermoplastic polyester resin foam

Info

Publication number
KR0118112B1
KR0118112B1 KR1019890017952A KR890017952A KR0118112B1 KR 0118112 B1 KR0118112 B1 KR 0118112B1 KR 1019890017952 A KR1019890017952 A KR 1019890017952A KR 890017952 A KR890017952 A KR 890017952A KR 0118112 B1 KR0118112 B1 KR 0118112B1
Authority
KR
South Korea
Prior art keywords
foam
polyester resin
thermoplastic polyester
producing
resin
Prior art date
Application number
KR1019890017952A
Other languages
Korean (ko)
Other versions
KR900009810A (en
Inventor
모또시게 하야시
노리오 아마노
다께시 다끼
다까아끼 히라이
Original Assignee
마쓰다 쇼헤이
세끼스이 가세이힌 고오교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27547787&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR0118112(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP63302233A external-priority patent/JPH02150434A/en
Priority claimed from JP366989A external-priority patent/JPH02251543A/en
Priority claimed from JP1088633A external-priority patent/JP2528514B2/en
Priority claimed from JP1088300A external-priority patent/JPH0688301B2/en
Priority claimed from JP25004989A external-priority patent/JPH0698982B2/en
Priority claimed from JP27304989A external-priority patent/JPH03134037A/en
Application filed by 마쓰다 쇼헤이, 세끼스이 가세이힌 고오교 가부시키가이샤 filed Critical 마쓰다 쇼헤이
Publication of KR900009810A publication Critical patent/KR900009810A/en
Priority to KR1019960046182A priority Critical patent/KR0118102B1/en
Priority to KR1019960046183A priority patent/KR0118103B1/en
Publication of KR0118112B1 publication Critical patent/KR0118112B1/en
Application granted granted Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0012Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/22Boxes or like containers with side walls of substantial depth for enclosing contents
    • B65D1/26Thin-walled containers, e.g. formed by deep-drawing operations
    • B65D1/28Thin-walled containers, e.g. formed by deep-drawing operations formed of laminated material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/20Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1535Five-membered rings
    • C08K5/1539Cyclic anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0264Polyester
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1376Foam or porous material containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition
    • Y10T428/249991Synthetic resin or natural rubbers
    • Y10T428/249992Linear or thermoplastic

Abstract

내용 없음.No content.

Description

열가소성 폴리에스테르계 수지 발포체의 제조방법Manufacturing method of thermoplastic polyester resin foam

제1도-제3도는 본 발명의 재가열 조작에 필요한 장치의 단면도.1 to 3 are cross-sectional views of the apparatus required for the reheating operation of the present invention.

제4도는 본 발명에 따른 재가열 조작을 연속적으로 수행하는데 필요한 장치의 1예에 대한 개략도.4 is a schematic diagram of one example of an apparatus required for continuously performing a reheating operation according to the present invention.

제5도는 본 발명의 시험에 2의 결과를 나타낸 그래프.5 is a graph showing the results of 2 in the test of the present invention.

제6도는 본 발명에 따른 식품 용기의 정면도.6 is a front view of a food container according to the present invention.

제7도는 본 발명에 따른 식품 용기의 평면도.7 is a plan view of a food container according to the present invention.

제8도, 제9도 및 제10도는 각 실시예 9,12 및 17에서 제조된 발포체의 셀 모양을 보여주는 전자 현미경 사진.8, 9 and 10 are electron micrographs showing the cell shape of the foams prepared in Examples 9, 12 and 17, respectively.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 발포체 2 : 열수1: foam 2: hydrothermal

3 : 금속 게이지 4 : 스팀3: metal gauge 4: steam

5 : 압출기 6 : 스팀 탱크5: extruder 6: steam tank

8 : 버어너 9 : 용기8: burner 9: container

10 : 권취기10: winder

[산업상의 이용분야][Industrial use]

본 발명은 열가소성 폴리에스테르계 수지 발포체 압출에 의한 제조방법 및 열가소성 폴리에스테르계 수지 발포체의 생성물에 관한 것이다.The present invention relates to a production method by extrusion of thermoplastic polyester resin foam and to a product of thermoplastic polyester resin foam.

본 발명의 제조방법에서는 고팽창율로 균일하게 성형된 미세한 셀을 제공하며, 연속압출공정에서도 발포체에 착색된 오염을 야기시키지 않는다.The manufacturing method of the present invention provides a fine cell molded uniformly with high expansion rate, and does not cause colored contamination on the foam even in a continuous extrusion process.

본 발명은 또한 열성형성이 우수한 열가소성 폴리에스테르 수지 발포 시이트에 관한 것이다.The present invention also relates to a thermoplastic polyester resin foam sheet having excellent thermoforming.

본 발명의 폴리에스테르계 수지 발포체는, 밀도가 낮고, 무게가 가벼움에도 불구하고 강도가 강하다.The polyester resin foam of the present invention is low in density and strong in spite of light weight.

또한 본 발명의 발포체는 내열성, 내화학성, 열적연성 및 충격 흡수성이 뛰어나 폭넓게 사용될 수 있다.In addition, the foam of the present invention can be widely used because it is excellent in heat resistance, chemical resistance, thermal ductility and impact absorption.

특히, 폴리에스테르 수지계 발포체는, 내열성 식품 용기로의 열성형이 가능한 재료로 사용하는데 적합하다.In particular, the polyester resin foam is suitable for use as a material capable of thermoforming into a heat resistant food container.

[종래의 기술][Prior art]

폴리에틸렌 테레프탈레이트와 폴리부틸렌 테레프탈레이트 등의 열가소성 폴리에스테르계 수지는 기계적 성질, 내열성, 내화학적 및 치수 안정성이 우수해서, 사출성형품, 성유 및 필름 분야에 광범위하게 사용되고 있다.Thermoplastic polyester-based resins such as polyethylene terephthalate and polybutylene terephthalate have excellent mechanical properties, heat resistance, chemical resistance and dimensional stability, and thus are widely used in injection molded products, oils, and films.

그러나, 용융하는 동안 열가소성 폴리에스테르계 수지는 발포성을 얻을 수 있도록 점탄성 성질을 가져오기가 어렵기 때문에 발포 압출 중에 발포제가 쉽게 빠져나와 조밀한 미세셀이 균일하게 성형된 우수한 발포체를 얻기가 어렵다.However, during melting, the thermoplastic polyester-based resin is difficult to obtain viscoelastic properties so that foaming properties can be obtained, and thus it is difficult to obtain an excellent foam in which a foaming agent easily escapes during foam extrusion and uniformly molded dense microcells.

본 문제를 해결하기 위하여 방향족 폴리에스테르계의 발포압출에 있어서, 디글리시딜 에스테르를 방향족 폴리에스테르에 첨가하는 방법이 제안되었다.In order to solve this problem, in the foam extrusion of an aromatic polyester type, the method of adding diglycidyl ester to an aromatic polyester was proposed.

(JP-B-61-4849(여기서 “JP-B”는 심사된 일본특허공보를 의미함))(JP-B-61-4849, where "JP-B" means Japanese Patent Publication)

열가소성 폴리에스테르계의 발포 압출에 있어서, 열가소성 폴리에스테르계의 용융 점도를 개성하기 위해서 열가소성 폴리에스테르계에 디글리시딜 에스테르와 다가 카르복시산 무수물을 첨가하는 방법이 제안되었다.In the foam extrusion of the thermoplastic polyester system, a method of adding a diglycidyl ester and a polyhydric carboxylic anhydride to the thermoplastic polyester system has been proposed in order to personalize the melt viscosity of the thermoplastic polyester system.

(JP-A-59-210955(여기서 JP-A는 미심사 공보된 일본특허출원을 의미함))(JP-A-59-210955, where JP-A refers to an unexamined Japanese patent application)

본 발명자는 발포 압출의 생산 및 연구에 다년간 종사해 오면서 디글리시딜 에스테르 화합물이 혼합된 열가소성 폴리에스테르의 발포 압출물질이 연속공정에서는 탈색된다는 사실을 경험하였다.The inventors have been engaged in the production and research of foam extrusion for many years and have experienced the fact that the foamed extrusion material of thermoplastic polyester mixed with diglycidyl ester compound is discolored in a continuous process.

또한 본 발명자들은 2무수피로멜리트산(Pryomellitic Diangydride)에 어떤 디글리시딜 에스테르 화합물을 사용하지 않고, 열가소성 폴리에스테르를 혼합하는 경우, 장시간에 걸쳐 발포 압출을 연속적으로한 경우에도 발포체가 착색되지 않으며 불연속으로 되는 것을 알아냈다. 더욱이 본 발명자들은 주기율표 상의 제I족, II족, III족 금속의 화합물과 2무수피로멜리트산 등의 분자당 2이상의 산무수물기를 함유하는 화합무을 열가소성 폴리에스테르 수지에 첨가할 때, 용융 불질의 너만성의 향상과 더불어 고인장연성과 더 미세한 셀을 지닌 발포체가 형성된다는 것을 발견하였다.In addition, the present inventors do not use any diglycidyl ester compound with 2 pyromellitic diangydride, and when the thermoplastic polyester is mixed, the foam is not colored even if the foam extrusion is continuously performed for a long time. I found it to be discontinuous. Furthermore, the inventors of the present invention have found that when adding a compounding compound containing two or more acid anhydride groups per molecule, such as a compound of Group I, Group II, or Group III metals on the periodic table, to the thermoplastic polyester resin, With the improvement of chronicity, it has been found that foams with high tensile ductility and finer cells are formed.

JP-A59-135237(미합중국 특허 제4,462,947호 및 제4,466,843호, 유럽 특허 제0115162A호)에서는 2중 오븐에 적용될 수 있는 내열성 식품용기로 폴리에스테르계 수지 발포체를 열성형할 수 있는것이 개시되어 있다.JP-A59-135237 (US Pat. Nos. 4,462,947 and 4,466,843, European Patent 0151162A) discloses that a polyester resin foam can be thermoformed with a heat resistant food container that can be applied to a double oven.

그러나 폴리카보네이트만을 혼합하였을 때, 용융 점도가 낮을 뿐만안니라 폴리카보네이트에서 유리된 이산화탄소를 발포제로 사용되며, 팽창률이 낮고, 내열성이 불량하여서 초단파 오븐에서 이 가열 또는 식품의 요리용 용기로서 사용할 때, 가열된 용기를 맨손으로 잡을 수 없다.However, when only polycarbonate is mixed, carbon dioxide liberated in polycarbonate as well as low melt viscosity is used as a blowing agent, and when used as a cooking vessel of this heating or food in a microwave oven due to its low expansion rate and poor heat resistance, You cannot hold a heated container with your bare hands.

[발명이 해결하고자 하는 문제점][Problem to Solve Invention]

본 발명자들은 상기 연구에서 그 팽창률, 우수한 열절연성 및 아주 우수한 열성형성을 지닌 열가소성 폴리에스테르계 수지 발포 사이트를 발견하였다.The inventors found thermoplastic polyester-based resin foaming sites with their expansion rate, good thermal insulation and very good thermoforming in this study.

따라서, 열가소성 폴리에스테르계 수지의 압출 팽창 성형체의 용융중에 점탄성을 조정하여 높게 팽창된 열가소성 폴리에스테르계 수지 발포체의 제조 방법을 제공하는 것이 본 발명의 제1목적이다.Accordingly, it is a first object of the present invention to provide a method for producing a highly expanded thermoplastic polyester resin foam by adjusting viscoelasticity during melting of an extrusion expanded molded body of thermoplastic polyester resin.

본 발명의 제2의 목적은 열가소성 폴리에스테르계 수지의 압출 팽창 성형체를 연속적으로 장기 조작을 수행할 때에도 그에 다를 착색된 오염을 야기시키지 않는 열가소성 폴리에스테르계 수지 발포체의 제조 방법을 제공하는데 있다.It is a second object of the present invention to provide a method for producing a thermoplastic polyester resin foam which does not cause colored contamination even when continuously performing long-term operation of the extrusion expanded molded article of the thermoplastic polyester resin.

본 발명의 제3의 목적은 열가소성 폴리에스테르계 수지의 압출 성형에 있어서, 균일한 미세 셀을 갖는 열가소성 폴리에스테르계 수지 발포체의 제조 방법을 제공하는데 있다.A third object of the present invention is to provide a method for producing a thermoplastic polyester resin foam having a uniform fine cell in extrusion molding of a thermoplastic polyester resin.

본 발명의 제4의 목적은 압출 성형에 있어서, 무수한 인장강도 및 인장신장성을 지닌 열가소성 폴리에스테르계 수지 발포체를 제공하는데 있다.A fourth object of the present invention is to provide a thermoplastic polyester resin foam having numerous tensile strengths and elongation in extrusion molding.

본 발명의 제5의 목적은, 압출 팽창된 열가소성 폴리에스테르계수지 발포체를 재가열함으로써 후(post)팽창처리로 높은 팽창성 및 우수한 내열성을 지닌 열가소성 폴리에스테르계 수지 발포체를 제조하는 방법을 제공하는데 있다.It is a fifth object of the present invention to provide a method for producing a thermoplastic polyester resin foam having high expandability and excellent heat resistance by post-expansion treatment by reheating an extruded expanded thermoplastic polyester resin foam.

본 발명의 제6의 목적은 열가소성 폴리에스테르계 수지의 열성형 등의 성형성이 우수한 압출 발포 시이트의 제조 방법을 제공하는데 있다.A sixth object of the present invention is to provide a method for producing an extruded foam sheet having excellent moldability such as thermoforming of a thermoplastic polyester resin.

본 발명의 제7의 목적은 열가소성 폴리에스테르계 수지의 압출된 발포 시이트를 열 성형을 통해서 얻고, 그 중 오븐에 적용할 수 있는 내열성 식품용기를 제공하는데 있다.A seventh object of the present invention is to obtain an extruded foam sheet of thermoplastic polyester resin through thermoforming, and to provide a heat resistant food container which can be applied to an oven.

본 발명은 상기 목적을 달성하기 위한 것이며, 그 요점은 다음과 같다.The present invention is to achieve the above object, the point is as follows.

(1)분자당 2이상의 산무수물기를 함유한 화합물을 열가소성 폴리에스테르 수지에 첨가된 것을 특징으로 하며, 열가소성 폴리에스테를 수지를 용융하고 용융 수지에 발포제를 혼합한 혼합물을 저압지대로 압출하여 성형을 수행하는 것을 포함한 열사소성 폴리에스테르계 수지 발포체의 제조 방법.(1) A compound containing at least two acid anhydride groups per molecule is added to the thermoplastic polyester resin, and the thermoplastic polyester resin is melted and the mixture of the blowing agent mixed with the molten resin is extruded to a low pressure paper to form. A method for producing a thermoplastic thermoplastic resin foam comprising performing.

(2)분자당, 2이상의 산무수물기 및 주기율표상의 제 I,II,III족 금속의 화합물을 열가소성 폴리에스테르수지에 첨가하는 것을 특징으로 하며, 열가소성 폴리에스테르 수지를 용융하고, 용융 수지에 발포제를 혼합한 혼합물을 저압지대로 압출하여 성형을 수행하는 열가소성 폴리에스테르계 수지 발포체의 제조 방법.(2) Molecules, two or more acid anhydride groups and compounds of Group I, II, III metals on the periodic table are added to the thermoplastic polyester resin, and the thermoplastic polyester resin is melted, and a blowing agent is added to the molten resin. A method for producing a thermoplastic polyester resin foam in which a mixture is extruded to a low pressure paper to perform molding.

(3)팽창 직후에 수지의 유리 전이점보다 낮은 온도까지 고온 열가소성 폴리에스테르 수지 발포체를 냉각시켜 결정도가 30% 이내가 되도록 한 다음, 60℃ 이상에서 그 폴리에스테르수지 발포체를 가열하는 열가소성 폴리에스테르계 수지 발포체의 제조 방법.(3) A thermoplastic polyester system which cools the high temperature thermoplastic polyester resin foam to a temperature lower than the glass transition point of the resin immediately after expansion so that the crystallinity is within 30%, and then heats the polyester resin foam at 60 ° C or higher. Method for producing a resin foam.

(4)열가소성 폴리에스테르 수지의 압출 발포 시이트이며, 발포 시이트 면에서 볼때 분자 배향율이 4.5이하, 그리로 결정도가 20% 이내인 열가소성 폴리에스테르 수지 발포 시이트.(4) A thermoplastic polyester resin foam sheet which is an extrusion foam sheet of a thermoplastic polyester resin and has a molecular orientation ratio of 4.5 or less and a crystallinity of less than 20% in terms of foam sheet.

(5)적어도 열가소성 폴리에스테르 수지 발포 시이트의 한 면에 열가소성 수지의 비발포 필름을 결합시켜 적층실이트를 얻고, 비발포 필름이 안쪽에 위치하게 그 시이트를 용기로 열성형하여 제조된 식품 용기.(5) A food container manufactured by bonding a non-foamed film of thermoplastic resin to at least one side of the thermoplastic polyester resin foam sheet to obtain a laminated seal, and thermoforming the sheet into a container so that the non-foamed film is located inside. .

[문제점을 해결하고자 하는 수단][Means to solve the problem]

본 발명의 폴리에스테르 수지 발포체의 제조에 있어서, 압출기가 사용되었다.In the production of the polyester resin foam of the present invention, an extruder was used.

열가소성 폴리에스테르 수지를 압출기 내부에서 가압하여 용융시켜 저압지지대로 다이를 통해서 압출하여 발포체를 제조하였다.The thermoplastic polyester resin was pressurized inside the extruder to melt and extruded through a die with a low pressure support to produce a foam.

본 발명의 폴리에스테르 수지 발포체의 제조에 있어서는, 분자당 2이상의 산무수물기를 함유한 화합물을 열가소성 폴리에스테르 수지에 첨가하였다.In the production of the polyester resin foam of the present invention, a compound containing two or more acid anhydride groups per molecule was added to the thermoplastic polyester resin.

분자당 2이상의 산무수물기를 함유하는 화합물의 첨가로 인해서, 압출하는 중에 열가소성 폴리에스테르 수지의 점탄성이 개선됨으로써 기화된 발포체를 조밀한 셀의 내부에 유지할 수 있으며, 균일하게 분포된 미세한 셀이 성형될 수 있다.Due to the addition of compounds containing two or more acid anhydride groups per molecule, the viscoelasticity of the thermoplastic polyester resin is improved during extrusion, so that the vaporized foam can be maintained inside the dense cell, and evenly distributed fine cells are formed. Can be.

분자당 2이상의 산무수물기를 함유하는 화합물을 열가소성 폴리에스테르 수지의 분자 사슬의 수산기에 결합하여서 자연스럽게 가교화 결합이 일어남에 따라서, 압출중에 열가소성 폴리에스테르의 점탄성이 향상될 수 있다.As the compound containing two or more acid anhydride groups per molecule is bonded to the hydroxyl group of the molecular chain of the thermoplastic polyester resin so that a crosslinking bond occurs naturally, the viscoelasticity of the thermoplastic polyester can be improved during extrusion.

용융중의 점탄성이라 말은 용융수지가 다이를 통해 압출될 때 다이의 출구로부터 부풀거나 오므라드는 현상으로써 확인될 수 있으며, 일반적으로 다이팽창율로써 나타낼 수 있다.The term viscoelasticity during melting can be identified by the phenomenon of swelling or retraction from the exit of the die when the melt is extruded through the die, and can generally be expressed as a die expansion rate.

다이 팽창률은 용융 수지가 원형부를 포함하는 둥근 오리피스 다이를 통해서 압출될 때에 측정되며, 다이 팽창률은 아래 방정식으로써 계산하였다.Die expansion rate is measured when the molten resin is extruded through a round orifice die containing circular portions, and the die expansion rate was calculated by the following equation.

Figure kpo00001
Figure kpo00001

다이 팽창율은 압출 성형에 있어서, 중요한 인자이다.Die expansion rate is an important factor in extrusion molding.

커다란 크기의 단면적을 지닌 성형물 및 특히, 미세셀이 균일하게 분포된 발표에를 얻기 위해서는 다이 팽창율이 2-5가 바람직하다.A die expansion ratio of 2-5 is preferred in order to obtain moldings with large cross-sectional areas and, in particular, microcells with uniform distribution.

본 발명에 있어서, 열가소성 폴리에스테르 수지와 2이상의 산무수물기를 함유하는 화합물을 혼합해서 압출기 내부에서 용융한 다음, 발포제를 용융혼합물에 접차적으로 분사하여 용융 혼합물을 성형용 압출기의 다이를 통해서 감압지대로 압출시켜 발포제를 제조하였다.In the present invention, a thermoplastic polyester resin and a compound containing two or more acid anhydride groups are mixed and melted in an extruder, and then a blowing agent is sprayed in contact with the molten mixture by injecting the molten mixture through the die of the molding extruder. Extruded to prepare a blowing agent.

본 발명의 다른 실시예에 있어서는, 분자당 2이상의 산무수물기를 함유하는 화합물과 주기율표상의 제I,II,III족 금속 화합물을 열가소성 폴리에스테르 수지에 첨가하였다.In another embodiment of the present invention, a compound containing two or more acid anhydride groups per molecule and a Group I, II, III metal compound on the periodic table were added to the thermoplastic polyester resin.

상기 설명된 방식과 같은 방식으로 혼합 첨가된 물질을 압출기에 공급하여 발포체를 제조하였다.The foam was prepared by feeding the mixed material to the extruder in the same manner as described above.

주기율표한의 제 I,II,III족 금속 화합물을 첨가함으로써 균일한 분포를 한 미세한 셀을 구성한 열가소성 폴리에스테르 수지 발포체를 얻을 수 있다.By adding the periodic table of Group I, II, III metal compounds, a thermoplastic polyester resin foam having a fine cell with uniform distribution can be obtained.

본 발명에 사용된 열가소성 폴리에스테르 수지는 방향족 디카르복시산 성분과 디올 성분의 다가 축합물의 선형 폴리에스테르이다. 본 발명에 사용된 디카르복시산 성분의 예는, 테레프탈산, 이소프탈산, 나프탈렌 디카르복시산, 디페닐에테르 카르복시산, 디페닐 술폰디카르복시산 및 디페녹시 에탄디카르복시산을 들 수 있다.The thermoplastic polyester resins used in the present invention are linear polyesters of polyvalent condensates of aromatic dicarboxylic acid components and diol components. Examples of the dicarboxylic acid component used in the present invention include terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphenyl ether carboxylic acid, diphenyl sulfone dicarboxylic acid and diphenoxy ethanedicarboxylic acid.

본 발명에 사용된 디올 성분의 예에는 에틸렌 글리콜, 트리메틸렌 글리콜, 테트라 메틸렌 글리콜, 네오펜틸 글리콜, 헥사메틸렌 글리콜, 시클로 헥산 디메탄을, 트리시클로데칸 디메탄을, 2,2-비스(4-β-히드록시에톡시페닐)프로판, 4,4-비스(β-히드록시에톡시)디페닐술폰, 디에틸렌 글리콜 및 1,4-부탄디올 등이 있다.Examples of the diol component used in the present invention include ethylene glycol, trimethylene glycol, tetramethylene glycol, neopentyl glycol, hexamethylene glycol, cyclohexane dimethane, tricyclodecane dimethane, and 2,2-bis (4- β-hydroxyethoxyphenyl) propane, 4,4-bis (β-hydroxyethoxy) diphenylsulfone, diethylene glycol and 1,4-butanediol.

폴리에틸렌 테레프탈레이트, 폴리부틸렌 테레프탈레이트, 폴리부틸렌 테레프탈레이트 탄성 중합체, 비결정 폴리에틴렌 나프탈레이트 폴리에스테르, 폴리시클로헥산 테레프탈레이트 및 이들의 혼합물을 디카르복시산 성분과 디올 성분을 함유한 폴리에스테르로서 사용하는 것이 바람직하다.Polyethylene terephthalate, polybutylene terephthalate, polybutylene terephthalate elastomer, amorphous polyethylene naphthalate polyester, polycyclohexane terephthalate and mixtures thereof are used as polyesters containing dicarboxylic acid and diol components. It is desirable to.

적어도 50%의 열가소성 폴리에스테르 수지로 구성된 변성 수지를 사용할 수 있다.Modified resins composed of at least 50% of thermoplastic polyester resins can be used.

분자당 산무수물기를 적어도 2개 이상 갖는 방향족 산무수물, 할로겐이 치환된 산무수물 등을 분자당 2이상의 산무수물기를 함유한 성분으로서 사용할 수 있다. 또한 상기 조건을 갖춘 변성 화합물의 혼합물이 사용될 수 있다.Aromatic acid anhydrides having at least two or more acid anhydride groups per molecule, acid anhydrides substituted with halogens, and the like can be used as components containing two or more acid anhydride groups per molecule. Also mixtures of modified compounds with the above conditions can be used.

2부수 피로멜리트산, 벤조페놀 테트라 카르복시산 2무수물, 시클로 펜탄테트라 카르복시산 2무수물, 디페닐 술폰 테트라카르복시산 2무수물 및 5-(2,5-디옥소테트라하이드로-3-푸라닐)-3-메틸-3-시클로헥센-1,2-디카르복시산 2무수물 등이 바람직하다.2-part pyromellitic acid, benzophenol tetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, diphenyl sulfone tetracarboxylic dianhydride and 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl- 3-cyclohexene-1,2-dicarboxylic dianhydride etc. are preferable.

이들 중에 특히 2무수 피로멜리트산이 바람직하다.Among these, especially anhydrous pyromellitic acid is preferable.

분자당 2이상의 산무수물을 함유하는 화합물을 발포체 폴리에스테르 수지의 100중량부에 대하여 0.05중량부-5.0-중량부의 량을 사용하는 것이 바람직하다.It is preferable to use the amount of 0.05 parts by weight to 5.0 parts by weight based on 100 parts by weight of the foam polyester resin as a compound containing two or more acid anhydrides per molecule.

분자당 2이상의 산무수물기를 갖는 화합물의 량이 열가소성 폴리에스테르 수지의 100중량부에 대하여 0.05중량부 미만이 되면 압출중에 열가소성 폴리에스테르 수지의 점탄성을 개선하는데 불충분하며 우수한 발포제를 성형할 수 없다.When the amount of the compound having two or more acid anhydride groups per molecule is less than 0.05 part by weight relative to 100 parts by weight of the thermoplastic polyester resin, it is insufficient to improve the viscoelasticity of the thermoplastic polyester resin during extrusion and an excellent foaming agent cannot be formed.

반면에 5.0중량부를 초과하면 열가소성 폴리에스테르 수지의 용융 물질을 겔화를 진행시켜서 압축성형에 비효과적이다. 구성 원자로서 금속을 갖는 한 무기 및 유기화합물 중에서 어느 한가지를 주기율표상의 제I,II,III족의 금속화합물로 사용할 수 있다.On the other hand, when it exceeds 5.0 parts by weight, the molten material of the thermoplastic polyester resin is advanced to be ineffective in compression molding. Any one of inorganic and organic compounds having a metal as a constituent atom may be used as a metal compound of Groups I, II, and III on the periodic table.

무기 화합물의 예로서는 염화 칼륨, 염화 나트륨, 탄산수소 나트륨, 탄산나트륨, 탄산칼륨, 탄산 아연, 탄산마그네슘, 탄산칼슘, 탄산 알루미늄, 산화나트륨, 산화 칼륨, 산화 아연, 산화 마그네슘, 산화 칼슘, 산화 알루미늄 및 이들 금속의 수산화물을 포함한다.Examples of inorganic compounds include potassium chloride, sodium chloride, sodium bicarbonate, sodium carbonate, potassium carbonate, zinc carbonate, magnesium carbonate, calcium carbonate, aluminum carbonate, sodium oxide, potassium oxide, zinc oxide, magnesium oxide, calcium oxide, aluminum oxide, and these And hydroxides of metals.

유기화합물의 예로서는 스테아르산 나트륨, 스테아르산 칼륨, 스테아르산 알루미늄, 몬탄산 나트륨, 몬탄산 칼슘, 아세트산 리튬, 아세트산 아연, 아세트산 나트륨, 아세트산 마그네슘, 아세트산 칼슘, 카프릴산 나트륨, 카프릴산 아연, 카프릴산 마그네슘, 카프릴산 칼슘, 카프릴산 나트륨, 미리스트산 칼슘, 미리스트산 알루미늄, 벤조산 칼슘, 테레프탈산 칼륨, 테레프탈산 나트륨, 에톡시화 나트륨 및 페녹시화 칼륨 등을 들 수 있다. 이 가운데 주기율표상의 제I족 또는 제II족의 금속 화합물이 바람직하며, 특히, 제I족 금속 화합물이 바람직하다.Examples of the organic compounds include sodium stearate, potassium stearate, aluminum stearate, sodium montanate, calcium montanate, lithium acetate, zinc acetate, sodium acetate, magnesium acetate, calcium acetate, sodium caprylate, zinc caprylate, ka Magnesium phthalate, calcium caprylate, sodium caprylate, calcium myristic acid, aluminum myristic acid, calcium benzoate, potassium terephthalate, sodium terephthalate, sodium ethoxylated, potassium phenoxylate and the like. Among these, metal compounds of group I or group II on the periodic table are preferable, and group I metal compounds are particularly preferable.

제 I,II 또는 III족 금속의 화합물을 사용함으로써 더 미세한 열가소성 폴리에스테르 수지발포체의 셀 제조와 더불어 분자당 2이상의 산무수물기를 갖는 화합물로서 점탄성 효과를 증가시킬 수 있다.By using a compound of a Group I, II or III metal, it is possible to increase the viscoelastic effect as a compound having two or more acid anhydride groups per molecule as well as cell production of finer thermoplastic polyester resin foams.

주기율표상의 제I,II 또는 III족 금속의 화합물은, 열가소성 폴리에스테르 수지의 100중량부당 0.05~5.0중량부의 양이 된다.The compound of the Group I, II or III metal on the periodic table is an amount of 0.05 to 5.0 parts by weight per 100 parts by weight of the thermoplastic polyester resin.

0.05중량부 미만의 화합물을 상용할 때는 생성된 발포체의 셀을 미세하게 하는 효과 및 2이상의 산무수물기를 함유하는 화합물로 점탄성 증강효과는 충분하게 되지 못하는 반면에 5중량부를 초과한 량을 사용할 때 발포체가 착색되어, 용융열가소성 폴리에스테르 수지의 점도가 충분히 높지 않게 된다.When less than 0.05 parts by weight of the compound is used, the effect of making the cell of the resulting foam fine and the compound containing two or more acid anhydride groups may not be sufficient to enhance the viscoelasticity, while the foam is used when the amount is more than 5 parts by weight. Is colored, and the viscosity of a fused thermoplastic polyester resin does not become high enough.

본 발명의 열가소성 폴리에스테르 수지 발포체 제조 방법에 있어서, 쉽게 증발할 수 있는 어떤 발포제도 사용할 수 있다.In the thermoplastic polyester resin foam production method of the present invention, any blowing agent which can be easily evaporated may be used.

불활성 기체, 포화 지방산 탄화수소, 포화 지방족 고리 탄화수소, 방향족 탄화수소, 할로겐화 탄화수소, 에테르 및 케톤 등의 증발하기 쉬운 발포제가 바람직하다.Preference is given to foaming agents which are prone to evaporation, such as inert gases, saturated fatty acid hydrocarbons, saturated aliphatic ring hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, ethers and ketones.

쉽게 증발되는 발포제의 예에는 이산화탄소, 질소, 메탄, 에탄, 프로판, 부탄, 펜탄, 헥산, 메틸펜탄, 디메틸부탄, 메틸시클로 프로판, 시클로펜탄, 시클로 헥산, 메틸시클로 펜탄, 에틸시클로부탄, 1,1,2-트리메틸 시클로 프로판, 트리클로로 모노플루오로메탄, 디클로로디플루오로 메탄, 트리클로로 트리플루오로 에탄, 디클로로 테트라플루오로 에탄, 디클로로 트리플루오로 에탄, 모노클로로디플루오로 에탄, 테트라플루오로 에탄, 디메틸에틸-2-에톡시에탄, 아세톤, 메틸에틸케톤, 아세틸 아세톤, 디클로로 테트라플루오로 에탄, 모노 클로로테트라플루오로 에탄, 디클로로모노 플루오로에탄, 디플루오노 에탄 등을 들 수 있다.Examples of easily evaporating blowing agents include carbon dioxide, nitrogen, methane, ethane, propane, butane, pentane, hexane, methylpentane, dimethylbutane, methylcyclopropane, cyclopentane, cyclohexane, methylcyclopentane, ethylcyclobutane, 1,1 , 2-trimethyl cyclopropane, trichloro monofluoromethane, dichlorodifluoro methane, trichloro trifluoro ethane, dichloro tetrafluoro ethane, dichloro trifluoro ethane, monochlorodifluoro ethane, tetrafluoro ethane , Dimethylethyl-2-ethoxyethane, acetone, methyl ethyl ketone, acetyl acetone, dichloro tetrafluoro ethane, monochlorotetrafluoro ethane, dichloromono fluoroethane, difluoronoethane and the like.

대체적으로, 발포제는 열가소성 폴리에스테르 수지의 용융 혼합물에 분사하고, 분자당 2이상의 산무수물기를 갖는 화합물과 첨가제를 압출 과정에 분사한다.Typically, the blowing agent is sprayed onto a molten mixture of thermoplastic polyester resins, and the compound and additives having two or more acid anhydride groups per molecule are sprayed into the extrusion process.

분사되는 발포제의 량은 용융 혼합물의 량에 기준하여 0.05~50중량%이다.The amount of blowing agent to be sprayed is 0.05 to 50% by weight based on the amount of the molten mixture.

발포제의 량이 0.05중량% 미만일 경우는 생성되는 발포체가 충분히 팽창되지 않고, 반면에 50중량% 이상일 때는 발포제의 기체가 형성에 의해 조화되지 않고, 날아가 버려서 바람직한 크기의 발포체 형성이 이루어지지 않는다.When the amount of the blowing agent is less than 0.05% by weight, the resulting foam is not sufficiently expanded, whereas when the amount of the blowing agent is 50% by weight or more, the gas of the blowing agent is not harmonized by the formation, and it is blown away to form the foam of the desired size.

발포제의 바람직한 량은 용융 혼합물의 양을 기준하여 0.01~30중량%가 좋다.The preferred amount of blowing agent is preferably 0.01 to 30% by weight based on the amount of the molten mixture.

본 발명의 열가소성 폴리에스테르계 수지 발표체의 제조 방법에 있어서, 안정제, 팽창핵제, 안료, 충전제, 연소 지속제 및 정전기 방지제를 열가소성 폴리에스테르 수지 발포체의 물리적 성질을 향상시키기 위하여 수지 혼합물에 선택적으로 첨가하여 성형할 수 있다.In the method for producing a thermoplastic polyester resin presenter of the present invention, a stabilizer, an expansion nucleating agent, a pigment, a filler, a combustion sustaining agent, and an antistatic agent are optionally added to the resin mixture in order to improve the physical properties of the thermoplastic polyester resin foam. Can be molded.

본 발명의 열가소성 폴리에스테르계 수지 발포체의 제조 방법에 있어서, 성형을 단일 스크루우 압출기(single screw extruder) 다중 스크루우 압출기 및 탠뎀압출기를 사용한 어떤 블로우 성형 공정 및 압출 공정으로도 수행할 수 있다.In the method for producing the thermoplastic polyester resin foam of the present invention, molding may be performed by any blow molding process and extrusion process using a single screw extruder multiple screw extruder and a tandem extruder.

압출 공정 또는 블로우 공정에 사용되는 다이는 원하는 발포체의 형태에 따라 평면 다이, 회전 다이 및 노즐 다이이다.Dies used in the extrusion process or blow process are planar dies, rotary dies and nozzle dies, depending on the shape of the desired foam.

본 발명의 폴리에스테르 수지에 분자당 2이상의 산무수물기를 함유하는 화합물 및 다른 첨가제를 다음의 방법에 의하여 혼합한다.In the polyester resin of the present invention, a compound containing two or more acid anhydride groups per molecule and other additives are mixed by the following method.

(A)열가소성 폴리에스테르 수지에 분자당 2이상의 산무수물기를 함유하는 화합물을 저온(예를 들면 150이하)에서 화합한다(예를 들어 분자당 2이상의 산무수물기를 함유하는 화합물의 분말을 열가소성 폴리에스테르 수지의 펠릿 표면에 고착시킨다).(A) Compounds containing at least two acid anhydride groups per molecule in the thermoplastic polyester resin are compounded at low temperature (e.g., 150 or less) (e.g., powders of compounds containing at least two acid anhydride groups per molecule are thermoplastic polyester) Stick to the pellet surface of the resin).

(B)분자당 2이상의 산무수물기를 함유하는 화합물이 열가소성 수지를 사전에 용융 혼합한 혼합물을 펠릿화하여, 그 펠릿을 열가소성 폴리에스테르 수지와 혼합한다.(B) The compound containing two or more acid anhydride groups per molecule pelletizes the mixture which melt-mixed a thermoplastic resin previously, and mixes the pellet with a thermoplastic polyester resin.

(여기서, 열가소성 수지는 열가소성 폴리에스테르계 수지와 같거나, 다를 수도 있지만, 열가소성 폴리에스테르계 수지와 양립할 수 있는 화합물이 적절하다.)(The thermoplastic resin may be the same as or different from the thermoplastic polyester resin, but a compound compatible with the thermoplastic polyester resin is suitable.)

(C)압출기 호퍼(hopper)에 열가소성 폴리에스테르 수지를 미리 공급하여 용융하고, 분자당 2이상의 산무수물기를 함유하는 화합물을 압출기의 실린더에 설치된 주 입구를 통해서 공급하여 혼합효과를 나타낸다.(C) A thermoplastic polyester resin is supplied to the extruder hopper in advance and melted, and a compound containing two or more acid anhydride groups per molecule is supplied through a main inlet installed in the cylinder of the extruder to exhibit a mixing effect.

상기한 어느 혼합방법에서도, 수지 혼합물의 수분 함유량은 가능하면 적을수록 좋으며, 200PPM 이하로 줄이는 것이 바람직하다.In any of the above-described mixing methods, the smaller the water content of the resin mixture is, the better it is, and it is preferable to reduce it to 200 PPM or less.

열가소성 폴리에스테르계 수지를 -20℃ 이하의 이슬점을 가진 더운 공기를 사용하여 제습 더운 공기건조기에서 60-180℃로 4시간 건조하는 것이 바람직하다.It is preferable to dry the thermoplastic polyester-based resin at 60-180 ° C. for 4 hours in a dehumidifying hot air dryer using hot air having a dew point of -20 ° C. or lower.

본 발명은 또한 열가소성 폴리에스테르 수지 발포체 제조 방법에 관한 것으로서, 팽창 직후에 고온 열가소성 폴리에스테르 수지 발포체를 수지의 유리 전이점 이하의 온도까지 냉각하여 결정도를 30% 이하로 한 다음 발포체를 60℃ 이상 가열하는 공정으로 되어 있다. 압출기를 통해 압출된 전 팽창(1차 팽창) 발포체는 낮은 팽창률과 고밀도를 가졌다.The present invention also relates to a method for producing a thermoplastic polyester resin foam, wherein immediately after expansion, the high temperature thermoplastic polyester resin foam is cooled to a temperature below the glass transition point of the resin to bring the crystallinity to 30% or less, and then the foam is heated to 60 ° C. or more. It is made to process. The preexpanded (primary expanded) foam extruded through the extruder had a low expansion rate and high density.

팽창률은 발포체의 형태에 따라 달라지지만, 압출된 발포체가 시이트일 경우에는 약 5배이다.The expansion rate depends on the shape of the foam, but is about five times when the extruded foam is a sheet.

본 발명에 있어서 상기 제조 방법으로 얻어진 전 팽창된 발포체는 압출 후에 온도가 높은데, 폴리에스테르 수지의 유리점 이하의 온도까지만 냉각한다.In the present invention, the pre-expanded foam obtained by the above production method has a high temperature after extrusion, but is cooled only to a temperature below the free point of the polyester resin.

폴리에스테르 수지의 유리 전이점은 폴리에스테르를 구성하느 카르복시산과 알코올의 종류에 따라 다양하지만, 대체로 30-90℃ 범위이다.The glass transition point of the polyester resin varies depending on the kind of carboxylic acid and alcohol constituting the polyester, but is generally in the range of 30-90 ° C.

따라서, 발포체는 일반적으로 60℃ 이하의 온도까지 냉각한다. 전 팽창된 발포체가 냉각될 때, 결정화가 이루어질 시간이 없이 굳어지기 때문에 결정도가 낮다.Thus, the foams are generally cooled to temperatures up to 60 ° C. When the pre-expanded foam cools, its crystallinity is low because it hardens without time for crystallization to take place.

결정도는 냉각의 정도에 따라 변한다.The crystallinity changes with the degree of cooling.

예를 들어, 결정도는 종류, 냉각매체와 온도 및 냉각 매체와 발포체의 접촉 조건에 따라 다르다.For example, the crystallinity depends on the type, the cooling medium and the temperature, and the contact conditions of the cooling medium and the foam.

압출기에 의해 제조된 전 팽창된 발포체를 실온에서 직접 물과 접촉했을때는 결정도는 수 %-십여 %내 이며, 일반적으로 30% 이내이다. 그러자, 압출에 의해 제조된 전 팽창된 발포체를 성형할 때, 결정도는 30% 이상이 되는데 그 이유는 성형기를 강제로 냉각하지 않으면 발포체가 냉각되지 않기 때문이다.When the pre-expanded foam produced by the extruder is in direct contact with water at room temperature, the crystallinity is within a few%-about 10%, and generally within 30%. Then, when forming the pre-expanded foam produced by extrusion, the crystallinity becomes 30% or more because the foam is not cooled unless the molding machine is forcibly cooled.

특히, 전 팽창된 발포체의 두꺼운 막결정화도가 30% 이상이 됨에 따라서, 전 팽창된 발포체가 압출기에 의해 제조될 발포체에 냉각이 부여된다.In particular, as the thick film crystallinity of the pre-expanded foam becomes 30% or more, cooling is given to the foam in which the pre-expanded foam is to be produced by the extruder.

전 팽창된 발포체의 냉각을 효과적으로 수행하기 위해서는 발포체는 자체부피와 비료하여 표면적이 넓은 것이 바람직하다.In order to effectively perform cooling of the pre-expanded foam, the foam is preferably fertilized with its own volume to have a large surface area.

즉, 발포체는 가능하면 시이트형이 바람직하며, 그 두께는 10mm 이내이어야 하며, 3mm 이내가 바람직하다.That is, the foam is preferably in the form of a sheet, the thickness of which should be within 10 mm, and preferably within 3 mm.

시이트가 실린더형일 때에는 맨드릴(mandrel)이 실린더 안에 설치되고, 시이트는 물로 냉각된 맨드릴 방향으로 진행되며 맨드릴의 길이는 가능하면 길 필요가 없다.When the sheet is cylindrical, a mandrel is installed in the cylinder, the sheet runs in the direction of the water cooled mandrel and the length of the mandrel need not be as long as possible.

한편, 시이트가 납작할 때는 시이트를 한쌍의 로울러사이에 끼우고, 냉각시키면서 진행함과 동시에 로울러의 직경을 되도록 길게 할 필요가 있다.On the other hand, when the sheet is flat, it is necessary to sandwich the sheet between a pair of rollers, and while advancing while cooling, make the diameter of the rollers as long as possible.

이렇게 하여, 전 팽창된 발포체의 결정도는 30%이내가 된다.In this way, the crystallinity of the pre-expanded foam is within 30%.

그 다음 발포체를 재가열하여 후팽창(2차 팽창)을 수행한다. 발포체의 후 팽창 온도는 60℃ 이상이며, 가열수단이 사용될 수 있는데, 예를 들어 가열판과 접촉시켜 가열을 수행한다.The foam is then reheated to effect post expansion (secondary expansion). The post expansion temperature of the foam is at least 60 ° C., and heating means can be used, for example in contact with a heating plate to carry out the heating.

이때 가열은 방사선, 환류, 또는 고주파력 중에서 택일하여 시행할 수 있는데, 채택된 가열 매체는 어느 것이건 폴리에스테르 수지를 매체로 하는 한 변성은 없다.At this time, the heating may alternatively be carried out from radiation, reflux, or high frequency force, and any heating medium adopted is not modified as long as the polyester resin is used as the medium.

적절한 가열 방법은 전 팽창된 발포체를 가열판이나 공기와 접촉시키거나 또는 스팀이나 열수와 접촉시키는 방법이다.Suitable heating methods are those in which the pre-expanded foam is brought into contact with a heating plate or air or with steam or hot water.

후팽창에 대한 가열시간은 수지의 성질, 형태, 종류 및 가열 매체의 온도에 따라서 결정된다.The heating time for post-expansion depends on the nature, form, type of resin and the temperature of the heating medium.

일반적으로, 가열매체의 온도가 낮을 때는 가열 시간을 연장하고, 반면에 온도가 높을 때는 가열시간을 짧게 한다. 다시 말하면, 발포체의 두꺼운 막 가열시간은 연장하고 발포체의 박막가열시간은 짧게 한다. 발포체를 금속 안에 공급 가열할때는 금속판을 60-200℃로 가열하여 전 팽창된 발포체를 공급하여 5분여동안 금속판에 접촉하는 것이 바람직하다.In general, the heating time is extended when the temperature of the heating medium is low, while the heating time is shortened when the temperature is high. In other words, the thick film heating time of the foam is extended and the thin film heating time of the foam is shortened. When feeding the foam into the metal, it is preferable to heat the metal plate to 60-200 ° C. to supply the pre-expanded foam and to contact the metal plate for about 5 minutes.

전 팽창된 발포체를 더운 공기에 공급 접촉시켜 가열할 때는 발포체를 오븐상에 놓고, 오븐의 온도를 100-230℃로 높힌다음, 발포체를 10초에서 5분간 가열한다.When heating the pre-expanded foam by supplying contact with hot air, the foam is placed on an oven, the temperature of the oven is raised to 100-230 ° C., and the foam is heated for 10 seconds to 5 minutes.

발포체가 금속판 또는 더운 공기에 의해 가열될때는 발포체를 적어도 24시간 동안 방치하는데, 대체적으로 전 팽창후 3일간이며, 전팽창 이후 즉시 후팽창이 이루어지지 않는다.When the foam is heated by a metal plate or hot air, the foam is left for at least 24 hours, usually three days after pre-expansion and no post-expansion immediately after pre-expansion.

한편, 전팽창 발포체를 스팀 또는 열수에 공급, 가열 할 때는 전 팽창이후 후팽창이 즉시 이루어지며, 이러한 경우는 스팀 또는 물의 온도는 60-125℃이고, 접촉시간은 10초-5분이다. 폴리에스테르 수지 발포체를 다양한 방법에 의해서 스팀 또는 열수에 공급할 수 있다.On the other hand, when the pre-expanded foam is supplied to steam or hot water, the post-expansion is immediately performed after the pre-expansion, in this case the temperature of the steam or water is 60-125 ℃, the contact time is 10 seconds-5 minutes. Polyester resin foams can be supplied to steam or hot water by a variety of methods.

예를 들어, 제1도에 나타낸 바와 같이발수제(1)를 열수(2)에 담근다. 제1도에 있어서, (8)은 버어너를 뜻하고, 다른 실시예에서는 제2도에서 보는 바와 같이 금속 게이지(3)를 열수면에 놓고, 열수(2)에 증발한 스팀(4)과 접촉시킨다.For example, as shown in FIG. 1, the water repellent 1 is soaked in the hot water 2. In FIG. 1, reference numeral 8 denotes a burner, and in another embodiment, as shown in FIG. 2, the metal gauge 3 is placed on a hot water surface, and steam 4 vaporized in hot water 2 and Contact.

또 다른 실시예에 있어서는, 제3도에서 보는 바와 같이 가압된 스팀(4)을 발포체(1)를 수용한 용기(9)에 붙여 넣는다.In another embodiment, pressurized steam 4 is pasted into a container 9 containing foam 1 as shown in FIG.

발포체를 열수 또는 스팀과 접촉시켜 가열시킬 때, 성형기에 놓고 원하는 모양으로 성형하는 것이 바람직하다.When the foam is heated in contact with hot water or steam, it is preferable to place it in the molding machine and mold it in the desired shape.

성형기를 사용할 때는 열수 또는 스팀을 성형기에 유입하여, 발포체를 직접 열수 또는 스팀과 접촉시킨다.When using a molding machine, hot water or steam is introduced into the molding machine and the foam is directly contacted with hot water or steam.

상술한 조작에서, 폴리에스테르 수지 발포체를 열수 또는 스팀과 접촉시켜 60℃이상에서 가열함으로써 발포체는 저밀도를 지닌 후팽창된 발포체로 된다.In the above-described operation, the polyester resin foam is heated in contact with hot water or steam to be heated at 60 ° C. or higher, so that the foam becomes a post-expanded foam having low density.

일반적으로 후팽창이 공기보다는 열수 또는 스팀으로 가열하는 것이 더 쉽게 이루어질 수 있다.In general, post-expansion can be made easier to heat with hot water or steam than with air.

또한, 스팀이 열수보다 더 바람직하다.In addition, steam is more preferred than hot water.

가열을 열수 또는 스팀으로 시행할 때, 후팽창율은 전팽창율보다 낮을 지라도 최소한 1.3이상이며, 4이상 될 수 있다.When heating is performed with hot water or steam, the post-expansion rate is at least 1.3, but lower than the pre-expansion rate, and can be 4 or more.

상기 설명을 덧붙이면, 팽창이 균일하게 이루어짐에 따라서 후팽창된 발포체는 미세하고, 균일한 셀을 갖게 된다. 그래서 우수한 품질의 저밀도 발포체를 얻게 된다.In addition to the above description, as the expansion is made uniform, the post-expanded foam has fine, uniform cells. This results in a low density foam of good quality.

전팽창된 발포체를 가열하여 저밀도 발포체를 쉽게 얻을 수가 있으나, 후 팽창된 발포체는 15%이상의 결정도를 부여할 수 있다.The low-expansion foam can be easily obtained by heating the pre-expanded foam, but the post-expanded foam can impart a crystallinity of at least 15%.

15% 이상의 결정도를 갖는 발포체는 가열분위기내에서 내열성이 매우 우수하여 내열성 식품 용기 및 열절연 재료에 사용할 수 있다. 더욱이, 열가소성 폴리에스테르 수지의 용융점도 다이 부풀옴비를 본 발명의 공정으로 조절하여 발포 시이트를 제조한다.Foams having a crystallinity of at least 15% have excellent heat resistance in a heated atmosphere and can be used in heat resistant food containers and heat insulating materials. Furthermore, the melt viscosity die swelling ratio of the thermoplastic polyester resin is adjusted by the process of the present invention to produce a foam sheet.

열가소성 폴리에스테르계 수지의 압출 발포 시이트의 밀도는 0.7g/㎤이하, 특히 0.5g/㎤ 이하가 바람직하다. 밀도가 0.7g/㎤를 초과하면, 열절연성, 경량성, 쿠션성을 잃게 된다. 열성형면에서 볼 때, 20% 이하의 결정도 및 발포면 방향으로 4.5이하의 분자배향을 가진 압출 발포 시이트가 바람직한 것으로 밝혀졌다.The density of the extruded foam sheet of the thermoplastic polyester resin is preferably 0.7 g / cm 3 or less, particularly 0.5 g / cm 3 or less. If the density exceeds 0.7 g / cm 3, thermal insulation, light weight and cushioning properties are lost. In terms of thermoforming, an extruded foam sheet having a crystallinity of 20% or less and a molecular orientation of 4.5 or less in the foam surface direction has been found to be preferred.

압출 질후에 압출 발포 시이트는 열절연성을 갖기 때문에 두께를 통해 결정도를 낮추기가 어렵다.After extrusion, the extruded foam sheet is thermally insulated, so it is difficult to reduce the crystallinity through thickness.

그러나, 후팽창 열성형성을 소정 값이하로 분자 배향율을 낮춤으로써 개선 할 수 있다.However, post-expansion thermoforming can be improved by lowering the molecular orientation ratio below a predetermined value.

발포 시이트면 방향으로 볼 때 압출 발포 시이트의 분자배향율은, 압출방향과 압출방향을 횡단하는 방향의 팽창을 조절함으로써 4.5이하까지 조정할 수 있다.Molecular orientation of the extruded foam sheet as viewed in the foam sheet surface direction can be adjusted to 4.5 or less by controlling expansion in the extrusion direction and the direction crossing the extrusion direction.

상기와 관련한 바람직한 제조 방법으로써 회전 다이 원주형 맨드릴을 사용하는 방법을 일반적으로 사용한다. 즉, 압출 방향의 팽창은 회전 다이의 출구틈에서 압출 방향의 권취 속도까지 성형된 수지의 평균 유속비로써 조절할 수 있고, 압출방향의 횡단 방향에서의 팽창은 맨드릴의 외부직경까지 회전 다이의 출구직경비(이하, 블로우업 (blow-up)이라 함)로써 조절될 수 있다.As a preferred manufacturing method in connection with the above, a method using a rotating die columnar mandrel is generally used. That is, the expansion in the extrusion direction can be controlled by the average flow rate ratio of the molded resin from the outlet gap of the rotary die to the winding speed in the extrusion direction, and the expansion in the transverse direction in the extrusion direction is the exit straight of the rotary die up to the outer diameter of the mandrel. It can be adjusted by expense (hereinafter referred to as blow-up).

결정도는 냉각결정화의 열량과 열량 DSC(시차 주차열량계)에 의한 용융열로부터 일본공업규격(JIS)-K-71222(가소성물질의 전이열 측정법)에 따라 측정했다. 즉, 하기식으로 결정도를 측정했다.The crystallinity was measured according to Japanese Industrial Standard (JIS) -K-71222 (Method of Transition Heat Measurement of Plastic Materials) from the heat of fusion by calorimetry and calorific value DSC (differential parking calorimeter). That is, the crystallinity was measured by the following formula.

Figure kpo00002
Figure kpo00002

결정도는 세이꼬 고오교사 제품인 시차 주사 열량계 DSC 200을 사용해 측정했다. 폴리에틸렌 테레프탈레이트의 완전한 결정 용융열의 량으로는 교반시 데이터 핸드북(바이후칸 고오교사 발행)에서는 26.9KJ/mol을 사용했다.Crystallinity was measured using a differential scanning calorimeter DSC 200 manufactured by Seiko Kogyo Co., Ltd. As the amount of heat of complete crystal melting of polyethylene terephthalate, 26.9 KJ / mol was used in the data handbook (by Baifukan Kogyo Co., Ltd.) at the time of stirring.

발포체 전면 방향에서의 분자 배향율은, 발포 시이트면을 편광체판(간자끼 페이퍼사 제품)을 통해 방출된 초단파세기의 최대값 사이의 비율이다.The molecular orientation ratio in the foam front direction is a ratio between the maximum values of the microwave strengths emitted from the foam sheet surface through the polarizer plate (manufactured by Kanji Paper Co., Ltd.).

또한, 본 발명에 다른 열가소성 폴리에스테르 수지의 압출 발포 시이트의 적어도 1면에 열가소성 수지의 비발포 필름을 결합시켜 적충시이크를 얻고, 그것을 내면에 비발포 시이트가 위치하게끔 하여 식품용기로 열성형하여 식품용기를 얻을 수 있다.In addition, by bonding the non-foamed film of the thermoplastic resin to at least one side of the extruded foam sheet of the thermoplastic polyester resin according to the present invention to obtain a red-filled sike, by placing the non-foamed sheet on the inner surface and thermoforming with a food container Food containers can be obtained.

비발포막으로 구성된 열가소성 수지의 예로는 열가소성 폴리에스테르계 수지, 액정 폴리에스테르계 수지, 폴리올레핀 수지, 폴리아미드 수지, 폴리염화비닐 수지, 폴리아크릴로 니트릴 수지, 폴리염화비닐리덴 수지 및 에틸렌 비닐알코올 혼성 중합체를 들 수 있다.Examples of the thermoplastic resin composed of a non-foaming film include thermoplastic polyester resins, liquid crystal polyester resins, polyolefin resins, polyamide resins, polyvinyl chloride resins, polyacrylonitrile resins, polyvinylidene chloride resins, and ethylene vinyl alcohol hybrid polymers. Can be mentioned.

결합되는 비발포 필름은 단층 필름 또는 다층 필름으로 구성될 수 있으며, 비발포 필름은 발포 시이트의 양쪽에 결합되어도 좋다. 비발포 필름층의 두께는 10-500마이크론이고, 팽창된 폴리에스테르계 수지의 시이트 층 두께는 일반적으로 5mm 이하로 약간 두껍다.The non-foamed film to be bonded may be composed of a single layer film or a multilayer film, and the non-foamed film may be bonded to both sides of the foam sheet. The thickness of the non-foamed film layer is 10-500 microns, and the sheet layer thickness of the expanded polyester resin is generally slightly thicker than 5 mm.

발포 시이트층의 두께는 비발포 필름층보다 2-500배 정도가 바람직하다.The thickness of the foam sheet layer is preferably about 2-500 times that of the non-foamed film layer.

비발포 필름을 병렬 압출기를 통해 발포 시이트로 적층할 수 있다.The unfoamed film can be laminated to the foam sheet via a parallel extruder.

상세하게 설명하자면, 열가소성 폴리에스테르 수지를 압출기로 공급하여 팽창성 폴리에스테르 수지를 철저히 압출한다.In detail, the thermoplastic polyester resin is fed to an extruder to thoroughly extrude the expandable polyester resin.

분리하여 설명하면, 열가소성 수지를 다른 압출기로 공급하여 비팽창성 수지를 철저히 압출한다. 본 수지를 다이에 유도하여 시이트를 다이의 크기로 조합 제조하였다. 다른 예를 들자면, 각 압출기를 통해 압출된 수지를 분리된 다이에 공습하여 발포 시이트와 필름을 각각 제조한 다음, 그것을 서로 놓고 로울러로 압착하여 적층시이트를 제조한다.Separately explained, the non-expandable resin is thoroughly extruded by supplying the thermoplastic resin to another extruder. The resin was guided to the die to prepare a sheet in the size of the die. In another example, the resin extruded through each extruder is air-tossed on a separate die to prepare a foam sheet and a film, and then placed on each other and pressed with a roller to produce a laminated sheet.

또 다른 예를 들자면, 발포 시이트 및 비발포 시이트를 분리하여 제조하고, 따라 로울러에 감았다. 그것을 서로 적층시켜 감지 않고 한쌍의 로울러로 통해서 통과시켜 적층으로 만든다. 발포 시이트의 한쪽면의 로울러 온도를 낮은게 바람직한데, 예를 들자면, 상온은 폴리에스테르 수지의 결정화를 막는다.As another example, the foamed sheet and the non-foamed sheet were prepared separately, and then wound in a roller. They are stacked together by passing them through a pair of rollers without sensing them. It is preferable to lower the roller temperature on one side of the foam sheet, for example, room temperature prevents the crystallization of the polyester resin.

한편, 비발포 필름의 한쪽면상의 로울러를 필름 표면을 변화시키기 위해서는 고온을 유지하는 것이 바람직하다.On the other hand, in order to change the film surface of the roller on one side of a non-foaming film, it is preferable to maintain high temperature.

적층 시이트를 재가열하여 용기로 성형하였다. 이때, 열성형은 성형 다이를 사용하여 수행했다.The laminated sheet was reheated and formed into a container. At this time, thermoforming was performed using a molding die.

다이는 암수 성형기로 구성될 수 있지만, 기 중에 어느 하나를 선택해도 무방하다.The die may be composed of a male and female molding machine, but any one of the groups may be selected.

두 대의 성형기고 구성된 다이를 사용하여 두 대의 성형기 사이에 적층 시이트를 놓고 압착하였다.A die consisting of two molding machines was used to squeeze the laminated sheet between the two molding machines.

그러나, 두 대의 성형기중 어느 하나를 사용할 경우에는 시이트와 성형기 사이에 존재하는 공기를 제거하거나 상부로부터 시이트에 가압하여 압축하였다.However, when one of the two molding machines is used, the air existing between the sheet and the molding machine is removed or compressed by pressing the sheet from the top.

비발포 필름은, 용기안쪽에 필름이 위치하게끔 배열하였다.The non-foamed film was arranged so that the film was positioned inside the container.

발포 시이트로 구성된 열가소성 폴리에스테르계 수지와 비발포 필름으로 된 열가소성 수지에 따라 시이트가 용기로 성형되는 가열온도가 결정된다. 가열 온도에의해 발포 시이트의 팽창률이 증가되거나 감소됨에 따라서 같은 두께의 차이가 발생했다. 더욱이, 발포 시이트의 결정도를 가열 온도와 가열시간에 따라 가속화되었다.The heating temperature at which the sheet is molded into the container is determined according to the thermoplastic polyester resin composed of the foam sheet and the thermoplastic resin composed of the non-foamed film. The same thickness difference occurred as the expansion temperature of the foam sheet increased or decreased by the heating temperature. Moreover, the crystallinity of the foam sheet was accelerated with heating temperature and heating time.

열가소성 폴리에스테르 수지로 구성된 압출 발포 시이트는 15% 이상의 결정도를 보여서 골기중에서 가열할 경우 내열성에 매우 우수하다. 그러나 100℃ 이상의 열스팀에 노출하였을 경우에는, 표면상의 1창 셀의 필름벽 두께가 얇아 1층셀이 재 수축한다.Extruded foam sheets composed of thermoplastic polyester resins exhibit a crystallinity of at least 15%, which is very excellent in heat resistance when heated in bone. However, when exposed to heat steam of 100 DEG C or higher, the thickness of the film wall of the single cell on the surface is thin and the single layer cell is reshrunk.

또한, 수우프 및 그라탕요리 등의 음식을 가열하는데 필요한 음식 용기용으로 사용할 경우는 음식물의 액체가 셀을 관통할 수 있다.In addition, when used for food containers required to heat foods such as soup and gratin, food liquid may penetrate the cell.

한편, 본 발명에 있어서는 비발포 필름이 용기 안쪽에 위치하기 때문에 스팀 또는 열수에 의한 재부풀림 음식물의 액체가 셀을 관통하는 것을 방치할 수 있다.On the other hand, in the present invention, since the non-foamed film is located inside the container, it is possible to allow the liquid of the re-inflated food by steam or hot water to pass through the cell.

이하의 실시예, 비교예 및 시험예를 통해 본 발명을 좀더 상세하게 설명하겠으나, 본 발명은 여기에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, Comparative Examples, and Test Examples, but the present invention is not limited thereto.

[실시예]EXAMPLE

[시험예 1][Test Example 1]

용융중에 분자당 2이상의 산무수물기를 가진 화합물을 열가소성 폴리에스테르게 수지에 첨가하여 점탄성질의 효과를 시험하기 위하여 실시하였다.Compounds having two or more acid anhydride groups per molecule during melting were added to the thermoplastic polyester crab resin to test the effect of viscoelastic properties.

(1)시험-1(1) Test-1

폴리에틸렌 테레프탈레이트(PET9902 이스트만사 제품)을 -30℃의 이슬점을 가진 더운 공기로 제습 건조기 내에서 160℃로 4시간 동안 건조하였다. 건조된 물질의 1kg을 2무수 피로멜리트산(케미쉐 비르베휠스 AC사 제품) 5g을 혼합하고, 이 혼합물을 원주형 통로 다이(직경 5mm, L/P : 106)가 장차된 단일 스크루우압출기(스크루우 직경 : 40mm, L/D : 30, 세끼스이고끼 고오사 제품)의 호퍼에 공급하였다.Polyethylene terephthalate (PET9902 Eastman Co.) was dried at 160 ° C. for 4 hours in a dehumidifying dryer with hot air having a dew point of −30 ° C. 1 kg of dried material is mixed with 5 g of 2 anhydrous pyromellitic acid (available from Chemischer Birvewheels AC) and the mixture is equipped with a single screw extruder equipped with a cylindrical passage die (5 mm in diameter, L / P: 106). It supplied to the hopper ((Screw diameter: 40 mm, L / D: 30, Sekis Co., Ltd. make).

상기 공급된 용융 혼합물을 하기위 제조 조건하에서 7kg/Hr의 압출 속도로 원주형 통로 다이를 통해서 압출하여 성형을 시행하였다.The supplied molten mixture was extruded through a cylindrical passage die at an extrusion rate of 7 kg / Hr under the following manufacturing conditions to carry out molding.

단일 스크우우 압출기에 의한 조건Condition by Single Scout Extruder

압출기 공급지대의 온도 : 270℃Extruder Feed Zone Temperature: 270 ℃

압출기 가압지대 온도 : 280℃Extruder Press Zone Temperature: 280 ℃

압출기 용융지대의 온도 : 270℃Extruder Melting Zone Temperature: 270 ℃

다이의 온도 : 270℃Die temperature: 270 ℃

스크루우 압출기의 회전수 : 32rpmSpeed of screw extruder: 32rpm

(2)시험-(대조)(2) test-(control)

2무수 피로멜리트산 혼합을 생략한 이외는 시험-1과 같은 방법으로 폴리에틸렌 테레프탈레이트의 압출을 시행하였다.Extrusion of polyethylene terephthalate was carried out in the same manner as in Test-1, except that the anhydrous pyromellitic acid mixture was omitted.

(3)시험 결과(3) Test result

단일 스크루우 압출기에 있어서, 용융 수지의 용융 점도와 압출 물질의 다이 팽창률은 제1표에 나타내었다.In the single screw extruder, the melt viscosity of the molten resin and the die expansion rate of the extruded material are shown in the first table.

Figure kpo00003
Figure kpo00003

(1)검토(1) Review

2무수 피로멜리트산을 폴리에틸렌 테레프탈레이트에 첨가할 때에는 압출에 있어서, 압출된 물질의 다이 팽창비가 증가하고, 용융 수지의 용융 점도가 또한 증가한다는것이 제1표로부터 알수 있다.It can be seen from the first table that when dihydric anhydrous pyromellitic acid is added to polyethylene terephthalate, the die expansion ratio of the extruded material increases and the melt viscosity of the molten resin also increases in extrusion.

[실시예]EXAMPLE

[실시예 1]Example 1

폴리에틸렌 테레프탈레이트 10을 제습건조기(-30의 이슬점을 지닌 160의 더운 공기)내에서 4시간 동안 건조하고, 텀블링 믹서 내에서 2무수 피로멜리트산(케미쉐 베르베휠스 AC사 제품) 20g과 활성(팽창핵제) 60g을 혼합하였다.Polyethylene terephthalate 10 was dried in a dehumidifying dryer (160 hot air with a dew point of -30) for 4 hours, and 20 g of anhydrous pyromellitic acid (available from Chemischer Bervewheels AC) in a tumbling mixer 60 g of expanded nucleating agent) were mixed.

이 혼합물을 단일 스크루우 압출기 호퍼(스크루우 직경 : 40mm, L/D : 30, 노즐다이의 구멍 : 5mm)에 공급, 용융 혼합하고, 22중량%의 이소펜탄(발포제)를 용융혼합물에 분사했다. 용융 혼합물을 아래의 제조 조건하에서 노즐 다이를 통해서 공기로 압출하여 로드형 발포체를 제조하였다.The mixture was fed into a single screw extruder hopper (screw diameter: 40 mm, L / D: 30, hole in nozzle die: 5 mm), melt mixed, and 22% by weight of isopentane (foaming agent) was injected into the melt mixture. . The molten mixture was extruded into air through a nozzle die under the following manufacturing conditions to produce a rod-shaped foam.

단일 스크루우 압출기에 의한 제조 조건Manufacturing Conditions by Single Screw Extruder

압출기 공급지대의 온도 : 273-282℃Extruder Feed Zone Temperature: 273-282 ℃

압출기 가압지대 온도 : 280-290℃Extruder Press Zone Temperature: 280-290 ℃

압출기 용융지대의 온도 : 271-290℃Extruder Melting Zone Temperature: 271-290 ℃

압출기 헤드의 온도 : 280-290℃Temperature of extruder head: 280-290 ℃

스크루우 압출기의 회전수 : 32rpmSpeed of screw extruder: 32rpm

압출 속도 : 7-8kg/hrExtrusion Speed: 7-8kg / hr

[실시예 2]Example 2

2무수 피로멜리트산 30g을 첨가하고 2.5중량%의 이소펜탄을 용융 혼합물에 분사한 이외의 실시예 1의 공정을 반복하여 로드형 발포체를 제조했다.A rod-shaped foam was prepared by repeating the process of Example 1 except adding 30 g of anhydrous pyromellitic acid and spraying 2.5% by weight of isopentane into the melt mixture.

팽창률과 발포체의 직경이 제2표에 나타나 있다.The expansion rate and the diameter of the foams are shown in the second table.

[실시예 3]Example 3

2무수멜리트산 40g을 첨가하고, 2.6중량%의 이소펜탄을 용융 혼합물에 분사한 이외의 실시예 1의 공정을 반복하여, 로드형 발포체를 제조했다.40 g of 2Mellitic anhydride was added, and the process of Example 1 except having sprayed 2.6 weight% of isopentane to the melt mixture was repeated, and the rod-shaped foam was produced.

[비교예][Comparative Example]

[비교예 1]Comparative Example 1

2무수 피로멜리트산의 사용효과(1)2 Effect of Anhydrous Pyromellitic Acid (1)

2무수 피로멜리트산을 빼고, 2.7중량%의 이소펜탄을 용융 혼합물에 분사한 이외는 실시예 1의 공정을 반복하여 로드형 발포체를 제조하였다.A rod-shaped foam was produced by repeating the process of Example 1 except that 2 anhydrous pyromellitic acid was removed and 2.7% by weight of isopentane was injected into the molten mixture.

팽창률과 발포체의 직경을 제2표에 나타내었다.The expansion rate and the diameter of the foam are shown in Table 2.

[비교예 2]Comparative Example 2

2무수 피로멜리트산의 사용효과(2)Effect of pyromellitic anhydride (2)

2무수 피로멜리트산 2g 대신 2무수 프탈산 50을 첨가하고, 2.7중량%의 이소펜탄을 용융 혼합물에 분사한 이외는 실시예 1의 공정을 반복하여 로드형 발포체를 했다.A rod-type foam was obtained by repeating the process of Example 1 except that 50 g of phthalic anhydride was added instead of 2 g of anhydrous pyromellitic acid and 2.7 wt% of isopentane was injected into the molten mixture.

팽창률과 발포체의 직경을 제2표에 나타내었다.The expansion rate and the diameter of the foam are shown in Table 2.

Figure kpo00004
Figure kpo00004

검토Review

2무수 피로멜리트산을 사용한 실시예 1-3에 있어서, 팽창율은 4-10이고, 로드형 발포체의 직경은 노즐 다이의 크기의 4-6배까지 증가함에 따라서, 그로 인한 증가율은 분사된 이소펜탄량의 증가에 비례한다는 것을 제2표로부터 알수 있다.In Examples 1-3 using pyromellitic dianhydride, the expansion ratio is 4-10, and as the diameter of the rod-shaped foam increases to 4-6 times the size of the nozzle die, the resulting increase rate is injected isopentane. It can be seen from the second table that it is proportional to the increase in amount.

2무수 피로멜리트산을 뺀 비교예 1 및 2에 있어서 팽창률은 약 2이고, 비록 이소펜탄(발포제)을 실시예 1-3에서 사용한 량보다 많을지라도, 로드형 발포체의 직경은 노즈 다이의 구멍의 크기에 약 2배이다.In Comparative Examples 1 and 2 excluding pyromellitic anhydride, the expansion ratio is about 2, and although the isopentane (foaming agent) is larger than the amount used in Examples 1-3, the diameter of the rod-shaped foam is determined by the hole of the nose die. It is about twice the size.

따라서, 팽창률과 직경이 실시예 1-3보다 더 적다.Therefore, the expansion rate and diameter are smaller than those in Examples 1-3.

2무수 피로멜리트산을 사용하지 않는 경우에는 발포제인 이소펜탄이 팽창 성형중에 발포제에서 이탈되며, 반면에 2무수 피로멜리트산을 팽창성형에 사용할 경우에는 열가소성 폴리에스테르의 용융점도가 증가되어 기체의 이소펜탄이 발포체에서 이탈되는 것을 방지한다는 사실로부터 본 효과가 고려되었다.If no anhydrous pyromellitic acid is used, the blowing agent isopentane is released from the blowing agent during expansion molding, whereas when 2 anhydrous pyromellitic acid is used for expansion molding, the melt viscosity of the thermoplastic polyester is increased, resulting in the This effect has been taken into account from the fact that pentane prevents from leaving the foam.

[실시예 4]Example 4

실시예 3의 공정에서, 팽창성형 주작을 24시간동안 연속적으로 수행한 결과 로드형 발포체의 변화가 없었다는 것이 관측되었다.In the process of Example 3, it was observed that there was no change in the rod-shaped foam as a result of continuous expansion molding operation for 24 hours.

[실시예 5]Example 5

실시예 3에 있어서, 팽창성형 조작을 5시간 동안 시행한 다음, 19시간 동안 방치하였다. 그후, 조작 개시로부터 30분 이내에 무색 및 고순도의 로드형 발포체를 얻을 수 있다.In Example 3, the inflation molding operation was performed for 5 hours and then left for 19 hours. Thereafter, a rod-shaped foam of colorlessness and high purity can be obtained within 30 minutes from the start of the operation.

[비교예 3]Comparative Example 3

실시예 3에 있어서, 2무수 피로멜리트산 대신 디글리시딜 테레프탈레이트(블레머, 일본 유시사 제품)을 사용하고, 혼합물 100g 당 4g의 이소펜탄을 응용 혼합물에 분산하였다.In Example 3, diglycidyl terephthalate (Blemer, Japanese Yushi Co., Ltd.) was used instead of dihydroan pyromellitic acid, and 4 g of isopentane per 100 g of the mixture was dispersed in the application mixture.

실시예 5와 같은 방법으로 조작을 실시하였다.The operation was performed in the same manner as in Example 5.

제3공정 후 공정에서, 착색되거나 오염되지 않는 로드형 발포체가 얻어질 때까지 90분 이상 계속하였다.In the process after the third process, it continued for 90 minutes or more until a colored foam or rod-shaped foam was obtained.

제5공정에서(발표체) 재가동으로부터 4시간후 노랗게 착색되고 검은 물질이 오염되었다.In the fifth process (presentator), after 4 hours from re-starting, the yellow coloration and black material was contaminated.

[실시예 6]Example 6

2무수 피로멜리트산 20g 대신 시클로펜탄 테트라카르복시산 2무수물 50g을 사용한 것을 제외하고는 실시예1의 공정을 반복 시행하여 로드형발포체를 제조하였다. 발포체의 팽창율은 4였으며, 직경은 20mm이었다.A rod-shaped foam was prepared by repeating the process of Example 1 except that 50 g of cyclopentane tetracarboxylic dianhydride was used instead of 20 g of pyromellitic dianhydride. The expansion rate of the foam was 4 and the diameter was 20 mm.

[실시예 7]Example 7

2무수 피로멜리트산 20g 대신 벤조페논 테트라카르복시산 2무수물 50g을 사용한 것을 제외하고는 실시예 1의 공정을 반복 시행하여 발포체를 제조하였다. 발포체의 팽창률은 4.5였고, 직경은 20mm이었다.Foam was prepared by repeating the process of Example 1 except that 50 g of benzophenone tetracarboxylic dianhydride was used instead of 20 g of pyromellitic dianhydride. The expansion ratio of the foam was 4.5 and the diameter was 20 mm.

[실시예 8]Example 8

실시예 6 및 7에 있어서, 조작을 실시예 5와 같이 실시하였다.In Examples 6 and 7, the operation was carried out as in Example 5.

조작의 개시로부터 30분 이내에 착되거나 오염되지 않은 로드형 발포체를 얻을 수 있었다.Rod-like foams were obtained which did not complex or contaminate within 30 minutes from the start of the operation.

[실시예 9-17]Example 9-17

제3표에 나타내어진 폴리에틸렌 테레프탈레이트를 -30℃의 이슬점을 갖는 더운 공기고 제습 건조기 내에서 60℃에서 4시간 동안 건조하였다.The polyethylene terephthalate shown in Table 3 was dried at 60 ° C. for 4 hours in a hot air dehumidifying dryer having a dew point of −30 ° C.

건조된 폴리에틸렌 테레프탈레이트 100중량부, 제3표에 나타내어진 2무수 피로멜리트산의 량, 제3표에 나타내어진 금속화합물 및 활석 (팽창핵제) 0.6중량부를 텀블링 믹서에서 혼합하었다. 이 혼합물을 노즐 다이(구멍 : 5mm)가 장치된 n-펜탄 2.0중량부를 용융 혼합물에 분사하였다. 용융 혼합물을 아래의 조건하에서 압출하여서 로드형 발포체를 제조하였다.100 parts by weight of dried polyethylene terephthalate, the amount of dihydroan pyromellitic acid shown in Table 3, the metal compound shown in Table 3 and 0.6 parts by weight of talc (expansive nucleating agent) were mixed in a tumbling mixer. This mixture was sprayed onto the molten mixture with 2.0 parts by weight of n-pentane equipped with a nozzle die (hole: 5 mm). The molten mixture was extruded under the following conditions to prepare rod-shaped foams.

압출기 공급지대 온도 : 268-280℃Extruder Feed Zone Temperature: 268-280 ℃

압출기 가압지대 온도 : 285-290℃Extruder Press Zone Temperature: 285-290 ℃

압출기 용융지대 온도 : 275-285℃Extruder Melt Zone Temperature: 275-285 ℃

압출기 헤드 온도 : 275-285℃Extruder Head Temperature: 275-285 ℃

스크루우의 회전수 : 32rpmScrew Speed: 32rpm

발포체의 팽창률과 셀의 상태를 제3표에 나타내었다.The expansion rate of the foam and the state of the cells are shown in Table 3.

제8도는 실시예 9에서 제조한 발포체의 셀 상태를 25배 확대한 전자 현미경 사진이다.8 is an electron micrograph at 25 times magnification of the cell state of the foam prepared in Example 9. FIG.

제8도에서 보는바와 같이 셀은 작다.As shown in Figure 8, the cell is small.

또한, 제9도 및 제10도는 실시예 12-17에서 각각 제조된 발포체의 셀 상태를 25배 확대한 전자 현미경 사진이다.9 and 10 are electron micrographs at 25 times magnification of the cell state of the foams produced in Examples 12-17, respectively.

실시예 17에서 제조된 발포체의 셀은 실시예 12에서 제조된 것보다 약간 확대되었다.The cell of the foam prepared in Example 17 was slightly enlarged than that produced in Example 12.

[비교예 4][Comparative Example 4]

2무수 피로멜리트산과 금속 화합물을 뺀 것을 제외하고는, 실시예 9의 공정을 반복하여 로드형 발포체를 제조하였다.A rod-shaped foam was prepared by repeating the process of Example 9, except that 2 anhydrous pyromellitic acid and a metal compound were removed.

발포체의 팽창률과 셀 상태를 제3표에 나타내었다.The expansion rate and cell state of the foams are shown in Table 3.

[실시예 18-20]Example 18-20

제4표에 나타내어진 폴리에스테르 수지, 산무수물 및 금속 화합물을 사용한 것을 제외하고는, 실시예 9의 공정을 반복하여 발포체를 제조하였다.Except for using the polyester resin, acid anhydride and metal compound shown in Table 4, the process of Example 9 was repeated to prepare a foam.

[비교예 5][Comparative Example 5]

금속 화합물을 사용하지 않고 제4도에 나타내어진 폴리에틸렌 테레프탈레이트 및 디글리실 테레탈레이트를 사용한 것을 제외하고는, 실시예 9의 공정으로 발포체를 제조하였다.Foams were prepared in the process of Example 9, except that the polyethylene terephthalate and diglycyl terelate shown in FIG. 4 were used without using a metal compound.

발포체의 팽창률 및 셀 상태를 제4표에 나타내었다.The expansion rate and cell state of the foams are shown in Table 4.

[실시예 21]Example 21

제5표에 나타내어진 폴리에틸렌 테레프탈레이트를 -30℃의 이슬점을 가진 더운 공기로 제습기 건조기 내에서 160℃로 4시간 동안 건조하였다.The polyethylene terephthalate shown in Table 5 was dried for 4 hours at 160 ° C. in a dehumidifier dryer with hot air having a dew point of −30 ° C.

건조된 폴리에틸렌 테레프탈레이트 100중량부, 2무수 피로멜리트산 0.5중량부, 탄산나트륨 0.1중량부 및 활석(팽창핵제) 0.6중량부를 텀블링 믹서에서 혼합하였다.100 parts by weight of dried polyethylene terephthalate, 0.5 parts by weight of dihydroan pyromellitic acid, 0.1 parts by weight of sodium carbonate and 0.6 parts by weight of talc (expanded nucleating agent) were mixed in a tumbling mixer.

이 혼합물을 원주형 맨드릴(구멍 : 205mm, L/D : 35)에 공급하고, 부탄 1.7중량부를 용융 혼합물에 분사하였다.The mixture was fed into a columnar mandrel (hole: 205 mm, L / D: 35), and 1.7 parts by weight of butane was injected into the molten mixture.

용융혼합물을 아래의 조건하에서 회전 다이를 통해서 압출하였다. 압출물질을 원주형 맨드릴로 성형하였다.The melt mixture was extruded through a rotary die under the following conditions. The extrudate was molded into a cylindrical mandrel.

원주형 발포체를 잘라서 열고 생성된 발포 시이트를 감았다.The cylindrical foam was cut open and the resulting foam sheet was wound.

압출기 공급지대 온도 : 280℃Extruder Feed Zone Temperature: 280 ℃

압출기 가압지대 온도 : 290℃Extruder Press Zone Temperature: 290 ℃

압출기 용융지대 온도 : 280℃Extruder Melt Zone Temperature: 280 ℃

압출기 헤드 온도 : 280℃Extruder head temperature: 280 ℃

발포제의 분사압력 : 80kg/hrInjection pressure of blowing agent: 80kg / hr

스크루우의 회전수 : 32℃Screw Speed: 32 ℃

압출 속도 : 24kg/hrExtrusion Speed: 24kg / hr

23℃에서의 발포 시이트를 팽차률, 셀 상태, 인장강도와 23℃에서 장력을 주었을 때의 인장연산도가 제5표에 나타나 있다.Table 5 shows the tensile calculations when the foamed sheet at 23 ° C. was subjected to dissipation rate, cell state, tensile strength, and tension at 23 ° C.

[비교예 6]Comparative Example 6

제5표에 나타내어진 디글리시딜 테레프탈레이트 및 몬탄산나트륨을 사용하지 않는 것을 제외하고는 실시예 21의 공정을 반복 실시하여 제조된 발포 시이트를 감았다.The foam sheet prepared by repeating the process of Example 21 was wound except that diglycidyl terephthalate and sodium montanate shown in Table 5 were not used.

23℃에서의 발포 시이트의 팽창률, 셀 상태, 인장강도와 23℃에서 장력을 주었을때 안정 연신도가 제5표에 나타나 있다.The expansion rate, cell state, tensile strength of the foam sheet at 23 ° C., and stable elongation at tension at 23 ° C. are shown in Table 5.

[비교예 7]Comparative Example 7

제5표에 나타내어진 디글리시딜 테레프탈레이트를 가용하고, 부탄 0.9중량%를 분사한다음, 아래의 조건하에서 압출하고, 탄산나트륨을 사용않는 것을 제외하고는 실시예 21의 공정을 실시하여 생성된 발포 시이트를 감았다.The diglycidyl terephthalate shown in Table 5 was soluble, sprayed with 0.9% by weight of butane, extruded under the following conditions and produced by the process of Example 21 except that sodium carbonate was not used. The foam sheet was wound.

압출기 공급지대 온도 : 280℃Extruder Feed Zone Temperature: 280 ℃

압출기 가압지대 온도 : 290℃Extruder Press Zone Temperature: 290 ℃

압출기 용융지대 온도 : 280℃Extruder Melt Zone Temperature: 280 ℃

압출기 헤드 온도 : 285℃Extruder head temperature: 285 ℃

압출기 다이 온도 : 275℃Extruder Die Temperature: 275 ℃

발포제의 분사압력 : 40kg/㎠Injection pressure of blowing agent: 40kg / ㎠

압출압력(헤드) : 90kg/㎠Extrusion Pressure (Head): 90kg / ㎠

스크루우의 회전수 : 25rpmScrew Speed: 25rpm

압출 속도 : 24kg/hExtrusion speed: 24kg / h

23℃에서의 발포 시이트의 압출을 셀 상태, 인장강도와 23℃에서 장력을 주었을 때의 인장연신도를 제5표에 나타내었다.Table 5 shows the tensile elongation at the time of extrusion of the foam sheet at 23 ° C., the cell state, the tensile strength and the tension at 23 ° C.

Figure kpo00005
Figure kpo00005

주)PET 9902 및 PET 10388 : 이스트만 코닥사 제품PET 9902 and PET 10388: products from Eastman Kodak

TR 4550 BH 및 TR 8510 : 다이찐사 제품TR 4550 BH and TR 8510: Daichinsa Products

탄산나트륨 : 도소사 제품Sodium Carbonate: product from Tosoh Corporation

2무수 피로멜리트산 : 케미쉐베르베 휠스 AG사 제품2 Anhydrous pyromellitic acid: manufactured by Chemischerveil Wheels AG

Figure kpo00006
Figure kpo00006

주)TR 8580 : 다이찐사 제품TR 8580: Daichinsa Products

XD 478(MI : 3.0, 235℃) 폴리부틸렌 텔레프탈레이트용 : 플라스틱사 제품XD 478 (MI: 3.0, 235 ℃) For polybutylene telephthalate: Plastics

2무수 피로멜리트산 : 휄스 저팬사 제품2 anhydrous pyromellitic acid: manufactured by Hicks Japan

탄산나트륨 : 도소사 제품Sodium Carbonate: product from Tosoh Corporation

Figure kpo00007
Figure kpo00007

주)PET 9902 및 PET 10388 : 이스트만 코닥사 제품PET 9902 and PET 10388: products from Eastman Kodak

TR 8580 : 다이찐사 제품TR 8580: Daichinsa Products

2무수 피로멜리트산 : 케미쉐 베르베 휠스 AG사 제품2 Anhydrous pyromellitic acid: manufactured by Chemie Verve Wheels AG

디글리시딜 테레프탈레이트 : 블레머 DGT 니뽄유시사 제품Diglycidyl terephthalate: Blamer DGT from Nippon Yushi

탄산나트륨 : 도소사 제품Sodium Carbonate: product from Tosoh Corporation

[실험예 2]Experimental Example 2

시험시료 : 실시예 21 및 비교예 6에서 제조된 발포 시이트Test sample: Foam sheet prepared in Example 21 and Comparative Example 6

시험방법 : 다이나믹 점탄성 중합체(도요세이끼 세이 시꾸쇼사 제품)를 사용Test Method: Using a dynamic viscoelastic polymer (manufactured by Toyosei Seishi Corporation)

시험시료[5mm(폭)×21mm(길이)×1.5mm(두께)]의 복합탄성율을 아래의 조건하에서 측정하였다.The composite elastic modulus of the test sample (5 mm (width) x 21 mm (length) x 1.5 mm (thickness)) was measured under the following conditions.

측정주파수 : 10HzMeasuring frequency: 10Hz

가열속도 : 3℃/minHeating rate: 3 ℃ / min

클램프 간의 거리 : 15mmDistance between clamps: 15mm

결과는 제5도에 나타내었다.The results are shown in FIG.

실시예 21의 발포 시이트의 복합탄성율은 비교예 6의 발포 시이트 복합탄성율보다 높았다.The composite elastic modulus of the foam sheet of Example 21 was higher than that of the foam sheet of Comparative Example 6.

따라서, 2무수 피로멜리트 및 탄산나트륨 사용으로 제조된 발포 시이트의 내열성이 높다는 사실을 알 수 있다.Therefore, it can be seen that the heat resistance of the foamed sheet produced by using the anhydrous pyromellitate and sodium carbonate is high.

재가열로써 열가소성 폴리에스테르계 수지를 제조하는 방법은 다음의 실시예와 비교예의 방법으로써 설명하였다.The method of manufacturing a thermoplastic polyester resin by reheating was demonstrated by the method of the following Example and a comparative example.

특별한 언급이 없으면, 부와 %는 중량부와 중량%를 말한다.Unless otherwise specified, parts and percentages refer to parts by weight and percentages by weight.

[실시예 22]Example 22

전팽창(1차팽창) :Total expansion (primary expansion):

TR 8580(상품명, 다이찐사 제품)을 폴리에틸렌 테레프탈레이트(이하 PET로 표현)로써 사용하였다.TR 8580 (trade name, manufactured by Daichin Inc.) was used as polyethylene terephthalate (hereinafter referred to as PET).

제습건조기 내에 PET를 놓고, -30℃의 이슬점을 지닌 더운 공기를 순화시키면서 4시간 동안 160℃에서 건조하였다.The PET was placed in a dehumidifier and dried at 160 ° C. for 4 hours while circulating hot air with a dew point of −30 ° C.

PET 100부, 활석 0.6부, 2무수 피로멜리트산 0.35부 및 탄산나트륨 0.1부를 텀블링 믹서 내에서 철저히 혼합하였다.100 parts of PET, 0.6 parts of talc, 0.35 parts of 2 anhydrous pyromellitic acid and 0.1 parts of sodium carbonate were mixed thoroughly in a tumbling mixer.

이 혼합물을 압축기(스크루우직경 : 65mm, L/D : 35)에 공급하여 25rpm 스크루우 회전수와 270~290℃의 배럴(barrel) 온도에서 혼합하였다.The mixture was fed to a compressor (screw diameter: 65 mm, L / D: 35) and mixed at 25 rpm screw speed at a barrel temperature of 270-290 ° C.

혼합물 100부당 부탄 1.3부를 발포제로서 배럴실에 가압하면서 혼합물에 도입하고, 발포제를 포함한 PET를 회전 다이를 통해 공기로 압출하여 튜브를 제조하였다.1.3 parts of butane per 100 parts of the mixture were introduced into the mixture while pressurized into the barrel chamber as a blowing agent, and the PET including the blowing agent was extruded into the air through a rotary die to prepare a tube.

0.4mm의 회전 다이틈과 60mm의 구멍을 지닌 다이를 270~285℃로 유지하고, 원주형 맨드릴의 외면으로 유입, 접촉시켜 공기중으로 압출된 PET를 팽창시키고, 압출된 튜브를 꺼냈다.A die with a rotating die gap of 0.4 mm and a hole of 60 mm was maintained at 270-285 ° C., introduced into and contacted with the outer surface of the cylindrical mandrel to expand the extruded PET into the air, and the extruded tube was taken out.

205mm의 외경을 지닌 맨드릴 내부에 PET 발포체를 급냉하기 위하여 30℃의 냉각수를 순환하였다.Cooling water at 30 ° C. was circulated to quench the PET foam inside the mandrel with an outer diameter of 205 mm.

냉각된 PET 발포체를 출구에서 절단하고, 생서된 납작한 발포체시이트를 감았다.The cooled PET foam was cut at the outlet and the flat foam sheet wound up was wound up.

상기 사항은 전팽창된 발포 시이트(1차 팽창된 발포 시이트)에 관련된 것이다. 발포 시이트의 폭은 643m, 겉보기 밀도(이하, 밀도라 함) 0.26g/kg, 두께 1.5mm, 결정도는 9%이었다.The above relates to preexpanded foam sheets (primary expanded foam sheets). The foam sheet had a width of 643 m, an apparent density (hereinafter referred to as density) of 0.26 g / kg, a thickness of 1.5 mm, and a crystallinity of 9%.

후팽창(제2차 팽창)Post-expansion (secondary expansion)

상기 전팽창된 발포 시이트를 100mm×100mm의 크기로 자른 시료 한개를 후팽창에 적용하였다.One sample obtained by cutting the pre-expanded foam sheet to a size of 100 mm x 100 mm was applied to the post-expansion.

제1도에 나타낸 바와 같이 63℃의 온수에 시료를 첨지하여 5분 동안 후팽창을 실시하였다. 생성된 것의 두께는 1.5×2.1mm로 팽창되었다.As shown in FIG. 1, the sample was added to hot water at 63 ° C. and post-expansion was performed for 5 minutes. The thickness of the resulting one was expanded to 1.5 x 2.1 mm.

전팽창된 발포 시이트의 부피(V)에 대한 후팽창된 발포 시이트의 부피비 V/V은 1.37이었다.The volume ratio V / V of the post-expanded foam sheet to the volume (V) of the pre-expanded foam sheet was 1.37.

후팽창된 발포 시이트의 밀도는 0.19g/cm , 결정도는 9%이었다.The density of the post-expanded foam sheet is 0.19 g / cm The crystallinity was 9%.

후팽창된 발포 시이트는 좋은 팽창과 더불어 우수한 발포체임이 확인되었다.The post-expanded foam sheet was found to be a good foam with good expansion.

[실시예 23]Example 23

83℃의 온수에 5분 동안 침지한 것을 제외하고는, 실시예 22에서 제조된 동일한 전팽창 발포 시이트를 사용하여 실시예 22의 방법으로 후팽창을 실시하였다.Post-expansion was carried out by the method of Example 22 using the same pre-expanded foam sheet prepared in Example 22, except that it was immersed in warm water at 83 ° C for 5 minutes.

이렇게 하여, 3.02mm의 두께, 0.13g/cm 의 밀도, 10%의 결정도 및 V/V의 비가 2.00인 후팽창 발포 시이트가 얻어졌다.In this way, a thickness of 3.02 mm, 0.13 g / cm A post-expanded foam sheet having a density of 10%, a crystallinity of 10% and a V / V ratio of 2.00 was obtained.

미세하고, 균일한 팽창을 한 발포 시이트는 저밀도와 더불어 우수한 발포체임이 확인되었다.Fine, uniformly expanded foam sheets were found to be excellent foams with low density.

[실시예 24]Example 24

실시예 22에서 얻어진 것과 동일한 전팽창 발포 시이트를 스팀과 접촉시켜 후팽창을 실시한 것을 제2도에 나타내었다.FIG. 2 shows that the same pre-expanded foam sheet as obtained in Example 22 was subjected to post-expansion by contact with steam.

즉, 시이트를 62℃의 스팀과 접촉시켜 5분 동안 후팽창을 시행하였다.That is, the sheet was contacted with steam at 62 ° C. for post-expansion for 5 minutes.

이렇게 하여, 2.51mm의 두께, 0.16g/cm 의 밀도 및 V/V비가 1.63인 후팽창 발포 시이트가 얻어졌다.In this way, a thickness of 2.51 mm, 0.16 g / cm A post-expanded foam sheet having a density and a V / V ratio of 1.63 was obtained.

[실시예 25]Example 25

75℃의 스팀을 후팽창에 적용한 것을 제외하고는, 실시예 24와 같은 방법으로 실시하였다.The same procedure as in Example 24 was carried out except that steam at 75 ° C. was applied to the post-expansion.

이렇게 하여, 2.73mm의 두께, 0.14g/cm 의 밀도 및 V/V비가 1.86인 후팽창 발포 시이트를 얻어졌다.In this way, a thickness of 2.73 mm, 0.14 g / cm A post-expanded foam sheet having a density and a V / V ratio of 1.86 was obtained.

[실시예 26]Example 26

100℃의 스팀 및 접촉시간을 5분으로 한 것을 제외하고는, 실시예 24와 같은 방법으로 후팽창을 실시하였다.Post-expansion was carried out in the same manner as in Example 24, except that steam and contact time at 100 ° C. were 5 minutes.

이렇게 하여, 2.78mm의 두께, 0.14g/cm 의 밀도, 10%의 결정도 및 VIn this way, a thickness of 2.78 mm, 0.14 g / cm Density, 10% crystallinity and V

/V비가 1.86인 후팽창 발포 시이트를 얻었다.A post-expanded foam sheet having a / V ratio of 1.86 was obtained.

[실시예 27]Example 27

제2도에 나타낸 바와 같이, 시이트를 100℃의 스팀과 접촉시켜 2분 동안 후팽창을 실시한 것을 제외하고는 실시예 26과 같이 시행하였다.As shown in FIG. 2, the same procedure as in Example 26 was carried out except that the sheet was contacted with steam at 100 ° C. for post-expansion for 2 minutes.

이렇게 하여, 3.92mm의 두께, 0.10g/cm 의 밀도, 16%의 결정도 및 V/V비가 2.60인 후팽창 발포 시이트를 얻었다.In this way, a thickness of 3.92 mm, 0.10 g / cm A post expansion foam sheet having a density of 16%, a crystallinity of 16% and a V / V ratio of 2.60 was obtained.

[실시예 28]Example 28

100℃의 스팀에 시이트를 공급, 접촉시켜 5분 동안 후팽창을 실시한 것을 제외하고는, 실시예 26과 같이 시행하였다.The same procedure as in Example 26 was carried out except that the sheet was supplied to and contacted with steam at 100 ° C. and then subjected to post-expansion for 5 minutes.

이렇게 하여, 5.63mm의 두께, 0.065g/cm 의 밀도, 26%의 결정도 및 V/V비가 3.77인 후팽창 발포 시이트를 얻었다.In this way, a thickness of 5.63 mm, 0.065 g / cm A post-expanded foam sheet having a density of 26%, a crystallinity of 26% and a V / V ratio of 3.77 was obtained.

[실시예 29]Example 29

100℃의 스팀과 시이트를 접촉시켜 7분 동안 후팽창을 실시한 것을 제외하고는 실시예 26과 같이 하였다.Example 26 was carried out except that post-expansion was performed for 7 minutes by contacting the sheet with steam at 100 ° C.

이렇게 하여, 5.96mm의 두께, 0.065g/cm 의 밀도 및 V/V비가 4.00인 후팽창 발포 시이트를 얻었다.In this way, a thickness of 5.96 mm, 0.065 g / cm A post-expanded foam sheet having a density of 4 and a V / V ratio of 4.00 was obtained.

[실시예 30]Example 30

210mm~290mm~5의 알루미늄 성형체안에 200mm~280mm의 전팽창 발포체를 놓고, 후팽창을 시행한 것을 제외하고는 시이트를 100℃의 스팀과 접촉시켜 7분 동안 실시예 29와 동일한 방법으로 후팽창을 실시하였다.Post-expansion was carried out in the same manner as in Example 29 for 7 minutes by placing the sheet in contact with steam at 100 ° C. except that the pre-expanded foam of 200 mm to 280 mm was placed in a 210 mm to 290 mm to 5 aluminum molded body. Was carried out.

이렇게 하여, 5.00mm의 두께, 0.078g/cm 의 밀도 및 V/V비가 3.33인 팽창 시이트를 얻었다.In this way, a thickness of 5.00 mm, 0.078 g / cm An expanded sheet having a density and a V / V ratio of 3.33 was obtained.

시이트는 납작한 발포 시이트이다.The sheet is a flat foam sheet.

[실시예 31]Example 31

실시예 22에서 얻어진 시이트와 동일한 전팽창 발포 시이트를 가압 스팀을 불어넣어 제3도에 나타낸 바와 같이 후팽창을 실시하였다.The same pre-expanded foam sheet as in the sheet obtained in Example 22 was blown with pressurized steam to post-expand as shown in FIG.

즉, 시이트를 110℃의 스팀과 접촉시켜 3분 동안 후팽창을 시행하였다.That is, the sheet was contacted with steam at 110 ° C. for post-expansion for 3 minutes.

이렇게 하여, 3.41mm의 두께, 0.11g/cm 의 밀도 및 V/V비가 2.36인 후팽창 시이트를 얻었다.In this way, a thickness of 3.41 mm, 0.11 g / cm The post-expansion sheet whose density and V / V ratio were 2.36 was obtained.

[실시예 32]Example 32

시이트를 120℃의 스팀과 접촉시켜 5분 동안 후팽창을 실시한 것을 제외하고는 실시예 31과 같이 하였다.As in Example 31, except that the sheet was contacted with steam at 120 ° C. for post-expansion for 5 minutes.

이렇게 하여, 3.00mm의 두께, 0.13g/㎤의 밀도 및 V/V비가 2.00인 후팽창 시이트를 얻었다.In this way, a post-expansion sheet having a thickness of 3.00 mm, a density of 0.13 g / cm 3 and a V / V ratio of 2.00 was obtained.

[실시예 33]Example 33

부탄 대신 이산화 탄소량 1.1부를 발포제로 사용한 것을 제외하고는 실시예 22와 같은 방법으로 전팽창을 시행하였다.Pre-expansion was carried out in the same manner as in Example 22, except that 1.1 parts of carbon dioxide was used as a blowing agent instead of butane.

이렇게 하여, 643mm의 폭, 0.26g/㎤의 밀도, 1.5mm의 두께 및 9%의 결정도를 갖는 전팽창 시이트를 얻었다.This gave a pre-expansion sheet having a width of 643 mm, a density of 0.26 g / cm 3, a thickness of 1.5 mm and a crystallinity of 9%.

실시예 28과 같은 방법으로 후팽창을 실시한 결과, 3.00mm의 두께, 0.13g/㎤의 밀도 및 V/V비가 2.60인 후팽창 시이트를 얻었다.As a result of post-expansion in the same manner as in Example 28, a post-expansion sheet having a thickness of 3.00 mm, a density of 0.13 g / cm 3 and a V / V ratio of 2.60 was obtained.

[실시예 34]Example 34

63℃의 온수 대신 80℃의 더운 공기와 시이트를 접촉시켜 5분 동안 후팽창을 실시한 것을 제외하고는, 실시예 22와 같이 시행한 결과, 2.1mm의 두께, 0.19g/㎤의 밀도, 10%의 결정도 및 V/V비가 1.37인 후팽창 시이트를 얻었다.The same procedure as in Example 22 was carried out except that the sheet was contacted with hot air at 80 ° C. instead of 63 ° C. hot water for 5 minutes, and then expanded to a thickness of 2.1 mm, a density of 0.19 g / cm 3, and 10%. The post-expansion sheet whose crystallinity and V / V ratio were 1.37 was obtained.

[실시예 35]Example 35

실시예 34에서, 수팽창에서의 더운 공기 온도를 100℃로 한 이외는, 실시예 34과 같이하여 후팽창된 발포 시이트를 얻었다.In Example 34, the post-expanded foam sheet was obtained in the same manner as in Example 34 except that the hot air temperature in water expansion was set to 100 ° C.

이 후팽창된 발포 시이트의 두께는 2.6mm, 밀도는 0.15g/㎤의, 결정도는 10%였으며, V/V비가 1.37이었다.The post-expanded foam sheet had a thickness of 2.6 mm, a density of 0.15 g / cm 3, a crystallinity of 10%, and a V / V ratio of 1.37.

[실시예 36]Example 36

실시예 34에서, 수팽창에서의 더운 공기온도를 110℃로 한 이외는 실시예 34과 같이하여 후팽창된 발포 시이트를 얻었다.In Example 34, the post-expanded foam sheet was obtained in the same manner as in Example 34 except that the hot air temperature in water expansion was set at 110 ° C.

이 후팽창된 발포 시이트의 두께는 2.8mm, 밀도는 0.14g/㎤, 결정도는 12%였으며, V/V비는 1.86이었다.The post-expanded foam sheet had a thickness of 2.8 mm, a density of 0.14 g / cm 3, a crystallinity of 12%, and a V / V ratio of 1.86.

[실시예 37]Example 37

실시예 34에서, 후팽창에서의 더운 공기온도를 140℃로 한 이외는 실시예 34와 같이 하여 후팽창된 발포 시이트를 얻었다.In Example 34, the expanded sheet was expanded in the same manner as in Example 34 except that the hot air temperature in the post-expansion was 140 ° C.

이 후팽창된 발포 시이트의 두께는 3.01mm, 밀도는 0.13g/㎤의, 결정도는 25%였으며, V/V비가 2.00이었다.The post-expanded foam sheet had a thickness of 3.01 mm, a density of 0.13 g / cm 3, a crystallinity of 25%, and a V / V ratio of 2.00.

[실시예 38]Example 38

실시예 34에서, 후팽창에서의 더운 공기온도를 23℃로 한 이외는 실시예 34와 같이하여 후팽창된 발포 시이트를 얻었다.In Example 34, the post-expanded foam sheet was obtained in the same manner as in Example 34 except that the hot air temperature in the post-expansion was 23 ° C.

이 후팽창된 발포 시이트의 두께는 4.04mm, 밀도는 0.097g/㎤의, 결정도는 26%였으며, V/V비가 2.68이었다.The post-expanded foam sheet had a thickness of 4.04 mm, a density of 0.097 g / cm 3, a crystallinity of 26%, and a V / V ratio of 2.68.

[실시예 39]Example 39

전팽창 :Pre-expansion:

압출기 헤드에 준비된 다이를 회전다이에서 평면 다이로 바꾸고, 맨드릴 대신에 평판을 사용한 이외는 실시예 22와같은 방법으로 전팽창을 하였다. 이 평면 다이는 폭 150mm, 폭 0.7mm의 직선형 압출구를 갖고 있었다. 평판은 30℃에서 물로 냉각된 500~500mm의 알루미늄판이었다. 알루미늄판 사이로 발포 시이트를 압출하고, 압출된 발포 시이트를 냉각시켰다. 이 방법으로 전팽창된 발포 시이트를 얻었다.The die prepared in the extruder head was changed from a rotary die to a flat die, and pre-expanded in the same manner as in Example 22 except that a flat plate was used instead of a mandrel. This flat die had a linear extrusion port having a width of 150 mm and a width of 0.7 mm. The plate was an aluminum plate of 500-500 mm cooled with water at 30 ° C. The foam sheet was extruded between aluminum plates, and the extruded foam sheet was cooled. In this manner, the foam sheet was pre-expanded.

발포 시이트의 폭은200mm, 두께 5mm, 밀도 0.52g/㎤의 및 결정도는 12%이었다.The foam sheet had a width of 200 mm, a thickness of 5 mm, a density of 0.52 g / cm 3, and a crystallinity of 12%.

후팽창 :Post-expansion:

상기 전팽창된 발포 시이트를 100℃에서 7분 동안 스팀과 접촉시켜, 실시예 29와 같은 방법으로 후팽창시켰다. 이렇게 하여 두께 12.5mm, 밀도 0.204g/㎤의 후팽창된 발포 시이트를 얻었으며 V/V비가 2.55이었다.The pre-expanded foam sheet was brought into contact with steam at 100 ° C. for 7 minutes to be post-expanded in the same manner as in Example 29. This gave a post-expanded foam sheet having a thickness of 12.5 mm and a density of 0.204 g / cm 3 with a V / V ratio of 2.55.

[실시예 40]Example 40

실시예 39에서, 알루미늄판의 온도를 약간 가온시키고, 발포 시이트이 냉각을 실시예 39에서 보다 약간 작게 한 이외는, 실시예 39와 같이 전팽창시켜 전팽창된 발포 시이트를 얻었다.In Example 39, the expanded sheet was pre-expanded in the same manner as in Example 39 except that the temperature of the aluminum plate was slightly warmed, and the foam sheet was cooled slightly smaller than in Example 39.

이 발포 시이트의 폭, 두께 및 밀도는 실시예 39의 시이트의 그것과 비슷하였다. 그러나 결정도는 25%이었다.The width, thickness and density of this foam sheet were similar to that of the sheet of Example 39. However, the crystallinity was 25%.

후팽창 :Post-expansion:

실시예 39와 같은 조작으로 후팽창시켜, 두께 11.0mm, 밀도 0.232g/㎤인 후팽창 발포 시이트를 얻었으며, V/V비는 2.44이었다.Post-expansion was carried out in the same manner as in Example 39 to obtain a post-expansion foam sheet having a thickness of 11.0 mm and a density of 0.232 g / cm 3, with a V / V ratio of 2.44.

[비교예 8]Comparative Example 8

실시예 22에서, 63℃의 온수 대신 60℃의 더운 공기를 하용하고, 그 시이트를 5분 동안 더운 공기와 접촉시키는 이외는 실시예 22와 같이 하여 후팽창시켜 후팽창된 발포 시이트를 얻었다.In Example 22, 60 degreeC hot air was used instead of 63 degreeC warm water, and the sheet was post-expanded in the same manner as in Example 22 except that the sheet was brought into contact with hot air for 5 minutes to obtain a post-expanded foam sheet.

후팽창된 발포 시이트의 두께는 1.5mm, 밀도는 0.26g/㎤였으며, V/V비는 비료예 8에서와 같이 1.00이었다. 따라서, 실질적으로 후팽창은 일어나지 않았다.The post-expanded foam sheet had a thickness of 1.5 mm, a density of 0.26 g / cm 3, and a V / V ratio of 1.00 as in Fertilizer Example 8. Therefore, substantially no post-expansion occurred.

[비교예 9]Comparative Example 9

실시예 22에서, 후팽창시의 수온을 53℃로 낮추는 이외는 실시예 2와 같이하여 후팽창된 발포 시이트를 얻었다.In Example 22, the foam sheet which was post-expanded was obtained in the same manner as in Example 2 except that the water temperature at the time of post-expansion was lowered to 53 ° C.

이 후팽창된 발포 시이트의 두께는 1.5mm, 밀도는 0.26g/㎤였으며, V/V비는 비교예 8에서와 같이 1.00이었다. 따라서 실질적으로 후팽창은 일어나지 않았다.The thickness of this post-expanded foam sheet was 1.5 mm, the density was 0.26 g / cm 3, and the V / V ratio was 1.00 as in Comparative Example 8. Therefore, substantially no post-expansion occurred.

[비교예 10]Comparative Example 10

실시예 24에서, 후팽창시의 스팀의 온도를 58℃로 낮춘 이외는 실시예 24와 같이 하여 후팽창된 발포 시이트를 얻었다.In Example 24, the foam sheet which was post-expanded was obtained in the same manner as in Example 24 except that the temperature of the steam at the time of post-expansion was lowered to 58 ° C.

이 후팽창된 발포 시이트의 두께는 1.5mm, 밀도는 0.26g/㎤의, V/V비가 1.00이었다. 따라서 실질적으로 후팽창은 일어나지 않았다.The post-expanded foam sheet had a thickness of 1.5 mm and a density of 0.26 g / cm 3 with a V / V ratio of 1.00. Therefore, substantially no post-expansion occurred.

[비교예 11]Comparative Example 11

알루미늄판의 온도를 실시예 40에서보다 낮추고, 압출시이트의 냉각을 실시예 40에서 보다 좁게하여 실시예 40과 같은 방법으로 후팽창시켜 후팽창된 발포 시이트를 얻었다. 이 발포 시이트의 폭, 두께 및 밀도는 실시예 40의 발포 시이트의 그것과 동일했으나, 결정도가 32%이었다.The temperature of the aluminum plate was lowered than in Example 40, the cooling of the extruded sheet was made narrower in Example 40, and post-expanded in the same manner as in Example 40 to obtain a post-expanded foam sheet. The width, thickness and density of this foam sheet were the same as those of the foam sheet of Example 40, but the crystallinity was 32%.

이 후팽창된 발포 시이트를 100℃에서 7분간 스팀과 접촉시켜서 후팽창하여, 두께 5mm, 밀도는 0.52g/㎤의 후팽창된 발포 시이트를 얻었다. V/V비가 2.00이었다. 따라서 실질적으로 후팽창은 일어나지 않았다.The post-expanded foam sheet was post-expanded by contacting steam at 100 ° C. for 7 minutes to obtain a post-expanded foam sheet having a thickness of 5 mm and a density of 0.52 g / cm 3. The V / V ratio was 2.00. Therefore, substantially no post-expansion occurred.

[실시예 41]Example 41

여기서는 제4도에 나타난 바와 같이 전팽창과 후팽창을 계속해서 실시했다. 제4도에서, 실시예 22의 후챙창에서와 같은 방법으로 압출기(5)를 작동하고, 계속적으로 후팽창된 발포 시이트를 내보냈다.As shown in FIG. 4, pre-expansion and post-expansion were continued. In FIG. 4, the extruder 5 was operated in the same manner as in the rear window of Example 22, and the post-expanded foam sheet was continuously sent out.

후팽창된 발포 시이트를 감지 않고, 계속해서 스팀탱크(6)내로 넣었다. 스팀탱크(6)내로 넣기 전 시이트 표면온도를 30℃로 낮추었다. 제4도에서 (10)은 권취기이다.The post-expanded foam sheet was not sensed and placed in the steam tank 6 continuously. The sheet surface temperature was lowered to 30 ° C. before entering into the steam tank 6. In FIG. 4, reference numeral 10 denotes a winding machine.

전팽창된 발포 시이트를 스팀탱크(6)에서 5분간 100℃로 스팀과 접촉시켜 후팽창시켰다.The pre-expanded foam sheet was post-expanded by contacting steam at 100 ° C. for 5 minutes in the steam tank 6.

그 다음 시이트를 냉각시켰다.The sheet was then cooled.

생성된 후팽창된 발포 시이트의 폭은 645mm이었으며, 밀도는 0.07g/㎤의, 두께는 5.5mm였으며, 고팽창율로 팽창된 저밀도 미세시이트이었으며, 미세하고 균일한 셀을 가졌다.The resulting post-expanded foam sheet was 645 mm wide, density 0.07 g / cm 3, thickness 5.5 mm, low density microsheet expanded with high expansion rate and had fine and uniform cells.

[실시예 42]Example 42

폴리에틸렌 테리프탈레이트 펠릿(상품명 TR 8580, 디이찐사 제품) 100부를 이슬점 -20℃를 갖는 더운 공기로 160℃에서 5시간동안 건조시켰다. 2무수 피로멜리트산 0.3부, 탄산나트륨 0.1부 및 팽창핵제로서 활석 0.6부를 텀블링 믹서에서 균일하게 펠릿과 혼합하였다.100 parts of polyethylene terephthalate pellets (trade name TR 8580 manufactured by Dichinchin) were dried at 160 ° C. for 5 hours with hot air having a dew point of −20 ° C. 0.3 parts of anhydrous pyromellitic anhydride, 0.1 parts of sodium carbonate, and 0.6 parts of talc as expansion nucleating agent were uniformly mixed with the pellets in a tumbling mixer.

이 혼합물을 압출기(스크루우 직경 : 65mm, L/D : 35)의 호퍼에 공급했다.This mixture was fed to the hopper of an extruder (screw diameter: 65 mm, L / D: 35).

실린더 온도는 265~290℃, 압출기 헤드의 온도는 265℃, 다이 온도는 265℃, 스크루우 회전수는 25rpm이었다. 실린더실에 압력을 가하면서 발포제로서 부탄 2.4%를 혼합물을 넣었다.The cylinder temperature was 265-290 degreeC, the extruder head temperature was 265 degreeC, die temperature was 265 degreeC, and the screw speed was 25 rpm. While applying pressure to the cylinder chamber, 2.4% butane was added as a blowing agent.

사용된 다이는 직경 60mm, 다이틈 0.45mm의 회전 다이이었다. 디이부를 통해 튜브를 압출하고, 용융된 수지를 팽창함과 동시에 원주형 맨드릴 장치로 원주형태로 용융시켰다.The die used was a rotating die with a diameter of 60 mm and a die gap of 0.45 mm. The tube was extruded through the die, and the molten resin was expanded and simultaneously melted in a columnar shape with a columnar mandrel device.

생성된 원주형 발포체부를 열고 얻어진 시이트를 권취시켰다. 이때, 원주형 맨드릴에서의 냉각수를 순환하면서 표면온도를 20℃로 유지했다.The resulting columnar foam part was opened and the sheet obtained was wound up. At this time, the surface temperature was maintained at 20 ° C while circulating the cooling water in the columnar mandrel.

생성된 발포 시이트의 밀도(D)는 1.225g/㎤, 폭은 640mm, 두께는 2.6mm이었다. 이 시이트의 결정도는 9.7%, 유리 전이온도는 75℃였다.The resulting foam sheet had a density (D) of 1.225 g / cm 3, width of 640 mm and thickness of 2.6 mm. The sheet had a crystallinity of 9.7% and a glass transition temperature of 75 ° C.

표면온도 160℃의 가열판을 사용하여 시이트를 30초 동안 가열 접촉시키는 것으로 재가열 처리하였다.The sheet was reheated by heating and contacting the sheet for 30 seconds using a heating plate having a surface temperature of 160 ° C.

이렇게 하여, 밀도(D) 0.133g/㎤, 두께 2.7mm의 후팽창된 발포 시이트를 얻었다. 열처리에 의한 D/D의 비율은 1.69였다. 시이트의 결정도는 24.3%였다. 시이트로부터 100×100mm를 잘라내고,항온조에서 30분간 200℃로 가열했다. 가열전의 부피(Vb)에 대한 가열 후의 부피(Va)의 비 Va/Vb는 1.02였다.Thus, a post-expanded foam sheet having a density (D) of 0.133 g / cm 3 and a thickness of 2.7 mm was obtained. The ratio of D / D by heat treatment was 1.69. The crystallinity of the sheet was 24.3%. 100 * 100mm was cut out from the sheet | seat, and it heated at 200 degreeC for 30 minutes in the thermostat. The ratio Va / Vb of the volume Va after heating to the volume Vb before heating was 1.02.

이 시이트는 내열성이 우수한 것임을 알았다.It was found that this sheet was excellent in heat resistance.

[실시예 43]Example 43

폴리에틸렌 테레프탈레이트 펠릿(상품명 PET 10388, 이스트만 코닥사 제품) 100부를 이슬점 -20℃의 더운 공기로 160℃에서 건조시켰다.100 parts of polyethylene terephthalate pellets (trade name PET 10388, product of Eastman Kodak) were dried at 160 ° C with hot air at dew point -20 ° C.

디글리시딜 테레프탈레이트(블레머 DGT, 니뽄유시사 제품) 0.25부, 몬탄산나트륨 0.1무 및 팽창핵제로서 활석 0.6부를 텀블링 믹서내에서 균일하게 혼합했다.0.25 parts of diglycidyl terephthalate (Blemer DGT, Nippon Yushi Co., Ltd.), 0.1 moles of sodium montanate and 0.6 parts of talc as an expanding nucleating agent were mixed uniformly in a tumbling mixer.

혼합물을 실시예 42에서 사용한 것과 같은 압출기의 호퍼에 공급했다.The mixture was fed to the hopper of an extruder as used in Example 42.

실린더 온도는 28 390℃, 압출기 헤드온도는 290℃, 다이 온도는 290℃, 스크류우 회전수는 25rpm이었다. 발포제로서 펜탄 2.2%는 실린더 실의 혼합물에 가압 공급했다.The cylinder temperature was 28 390 ° C., the extruder head temperature was 290 ° C., the die temperature was 290 ° C., and the screw rotation speed was 25 rpm. 2.2% of pentane as a blowing agent was pressurized to the mixture of the cylinder chamber.

생성된 발포 시이트이 밀도(D)는 2.242g/㎤의, 폭은 640mm, 두께는 17mm였다. 시이트의 결정도는 10.6%, 유리전이온도는 76℃였다.The resulting foam sheet had a density (D) of 2.242 g / cm 3, a width of 640 mm, and a thickness of 17 mm. The crystallinity of the sheet was 10.6% and the glass transition temperature was 76 ° C.

표면 온도 160℃의 가열판을 사용하여 30초 동안 시이트를 접촉 가열하는 것으로 재가열처리했다. 생성된 시이트의 밀도(D)는 0.147g/㎤, 두께는 2.8mm였다. 열처리에 의한 D/D의 비는 1.65였다.The sheet was reheated by contact heating of the sheet for 30 seconds using a heating plate having a surface temperature of 160 ° C. The resulting sheet had a density D of 0.147 g / cm 3 and a thickness of 2.8 mm. The ratio of D / D by heat treatment was 1.65.

후팽창된 발포 시이트의 결정도는 24.4%였다.The crystallinity of the post-expanded foam sheet was 24.4%.

사이트로부터 100×100mm의 시료를 떼어내고, 항온조에서 30분간 200℃로 가열했다.A 100 × 100 mm sample was removed from the site and heated at 200 ° C. for 30 minutes in a thermostat.

V/V의 비는 1.02였다.The ratio of V / V was 1.02.

[실시예 44]Example 44

실시예 42에서 얻어진 압출된 발포 사이트를, 표면온도 170℃의 가열판을 사용하여 6초 동안 접촉 가열하여 밀도(D) 0.106g/㎤, 두께 3.4mm인 발포 시이트를 얻었다. 후팽창된 발포 시이트의 결정도는 16.7%였다.The extruded foamed site obtained in Example 42 was heated in contact with a heated plate having a surface temperature of 170 ° C. for 6 seconds to obtain a foam sheet having a density (D) of 0.106 g / cm 3 and a thickness of 3.4 mm. The crystallinity of the post-expanded foam sheet was 16.7%.

시이트로부터 시료 100×100m를 잘라 내어, 항온조에서 30분간 200℃로 가열했다.The sample 100x100m was cut out from the sheet | seat, and it heated at 200 degreeC for 30 minutes in the thermostat.

Va/Vb의 비는 1.06이었다.The ratio of Va / Vb was 1.06.

[실시예 45]Example 45

실시예 42에서 얻어진 압출된 발포 시이트를 증기압 4 기압의 스팀으로 30초 동안 가열하여, 밀도(V)0.157g/㎤, 두께 2.3mm의 발포 시이트를 얻었다.The extruded foam sheet obtained in Example 42 was heated with steam at 4 atmospheres of steam for 30 seconds to obtain a foam sheet having a density (V) of 0.157 g / cm 3 and a thickness of 2.3 mm.

이 가열에 의한 D/D의 비는 1.43이었다.The ratio of D / D by this heating was 1.43.

후팽찬된 발포 시이트의 결정도는 24.3%이었다.The crystallinity of the post-expanded foam sheet was 24.3%.

시이트로부터 시료 100×100mm를 잘라내어, 항온조에서 30분간 200℃로 가열했다.The sample 100x100 mm was cut out from the sheet | seat, and it heated at 200 degreeC for 30 minutes in the thermostat.

[비교예 12]Comparative Example 12

실시예 42에서 압출된 발포 시이트로부터 시료 100×100mm를 잘라냈다. 결정도는 9.7%였다.A sample 100 × 100 mm was cut out from the foam sheet extruded in Example 42. The crystallinity was 9.7%.

이 시료를 항온조에서 30분간 200℃로 가열했다.This sample was heated to 200 degreeC for 30 minutes in the thermostat.

Va/Vb는 1.74였다. 압출후에 열처리는 하지 않았다. 이렇게 하여 얻은 시이트는 내열성능이 빈약하고, 심하게 변형되었다.Va / Vb was 1.74. There was no heat treatment after extrusion. The sheet thus obtained was poor in heat resistance and severely deformed.

[비교예 13]Comparative Example 13

실시예 42에서 얻은 압출된 발포 시이트를 표면 온도 140℃의 가열판을 사용해 10초 동안 가열하여 후팽창된 발포 시이트를 얻었다. 결정도는 131.5였다. 시이트 밀도는 0.14g/㎤의, 두께는 3.15mm였다. 가열에 의한 D/D의 비는 1.97이었다.The extruded foam sheet obtained in Example 42 was heated for 10 seconds using a heating plate having a surface temperature of 140 ° C. to obtain a post-expanded foam sheet. The crystallinity was 131.5. The sheet density was 0.14 g / cm 3 and the thickness was 3.15 mm. The ratio of D / D by heating was 1.97.

시이트로부터 시료 100×100mm를 잘라내고, 항온조에서 30분간 200℃로 가열했다.The sample 100x100 mm was cut out from the sheet | seat, and it heated at 200 degreeC for 30 minutes in the thermostat.

Va/Vb는 1.11이었다.Va / Vb was 1.11.

실시예 42~45, 비교예 12 및 13의 결과를 제6도 및 제7도에 나타내었다.The results of Examples 42 to 45 and Comparative Examples 12 and 13 are shown in FIGS. 6 and 7.

Figure kpo00008
Figure kpo00008

Figure kpo00009
Figure kpo00009

MD : 발포 시이트의 압출방향MD: Extrusion direction of foam sheet

TD : MD에 수직방향TD: perpendicular to MD

제6표 및 제7표에 명백한 바와 같이, 열처리되지 않은 시이트의 부피가 상당히 변했고, 그 시이트의 내열성이 빈약했다.As is apparent from Tables 6 and 7, the volume of the unheated sheet changed considerably and the heat resistance of the sheet was poor.

또한, 시이트를 열처리한 경우,결정도가 15% 미만인 시이트는 내열성이 빈약했다.In addition, when the sheet was heat-treated, the sheet having a crystallinity of less than 15% had poor heat resistance.

하기의 실시예 46~49 및 비교예 14~16은, 열가소성 폴리에스테르수지의 압출 발포 시이트와 그것의 열성형을 나타내고 있다.The following Examples 46-49 and Comparative Examples 14-16 show the extrusion foam sheet of thermoplastic polyester resin and its thermoforming.

[실시예 46~49 및 비교예 14~16][Examples 46-49 and Comparative Examples 14-16]

본 실시예와 비교예에서 사용된 압출 발포 시이트의 생산장치는 단일 스크루우 압출기(스크루우 직경 : 65mm, L/D : 35)였다.The production apparatus for the extruded foam sheet used in this example and the comparative example was a single screw extruder (screw diameter: 65 mm, L / D: 35).

압출다이는 회전 다이(내경(bore) : 60mm)였으며, 압출 다이의 회전 다이틈은 제9표에서와 같이 변형시켰다.The extrusion die was a rotating die (bore: 60 mm), and the rotating die gap of the extrusion die was deformed as in the ninth table.

원주형 맨드릴은 수냉식 맨드릴(외경 : 205mm, L/D : 1.5)였다.The columnar mandrel was a water-cooled mandrel (outer diameter: 205 mm, L / D: 1.5).

본 실시예 및 비교예에서 사용된 압출 발포 시이트의 조성에 대하여는, 폴리에틸렌 테레프탈레이트(PET) 100중량부가 열가소성 폴리에스테르 수지로 사용되었다.As for the composition of the extruded foam sheet used in this example and the comparative example, 100 parts by weight of polyethylene terephthalate (PET) was used as the thermoplastic polyester resin.

그 수지 등급을 제8표에서와 같이 변화시켰다.The resin grade was changed as in Table 8.

PET 100중량부ㄱ에 대하여 활석 0.6주량부를 팽창핵제로 사용했다.0.6 parts by weight of talc was used as the expansion nucleating agent based on 100 parts by weight of PET.

발포제로서 액화부탄을 제8표에 나타난 양으로 사용했다.Liquefied butane was used as the blowing agent in the amounts shown in Table 8.

실시예 46~49 및 비교예 14~16에 사용된 압출 발포 시이트는 다음의 조작으로 제조했다.The extruded foam sheets used in Examples 46 to 49 and Comparative Examples 14 to 16 were produced by the following operations.

제습 건조기(160℃, 이슬점 -30℃)에서 폴리에틸렌 테레프탈레이트를 4시간 동안 건조했다.Polyethylene terephthalate was dried for 4 hours in a dehumidifying dryer (160 ° C, dew point -30 ° C).

이 폴리에틸렌 테레프탈레이트, 개질제, 금속 화합물 및 활석 소정량을 텀블링 믹서 내에서 혼합했다.This polyethylene terephthalate, a modifier, a metal compound, and a predetermined amount of talc were mixed in a tumbling mixer.

혼합물을 압출 호퍼에 공급하고 용융 혼합했다.The mixture was fed to an extrusion hopper and melt mixed.

발포제로서 액화 부탄을 압출실의 혼합물에 주입했다.Liquefied butane was injected into the mixture of the extrusion chamber as a blowing agent.

이 혼합물을 회전 다이의 회전경을 통해 공기로 압출하여 튜브형을 만들었다.This mixture was extruded into the air through a rotating mirror of a rotating die to create a tubular shape.

이 압출물을 용융수지를 팽창시키면서 꺼내고, 원주형 맨드릴의 외면과 접촉시켜 냉각하여 원주형으로 만들었다.The extrudate was taken out while expanding the molten resin, brought into contact with the outer surface of the columnar mandrel, and cooled to a columnar shape.

원주형 발포체를 꺼내고 그 발포 시이트를 권취시켰다.The columnar foam was taken out and the foam sheet was wound up.

본 실시예 및 비교예에서 사용된 압출 발포 시이트의 제조 조건은 다음과 같았다.The production conditions of the extruded foam sheet used in this example and the comparative example were as follows.

압출기 공급지대 온도 : 275-285℃Extruder Feed Zone Temperature: 275-285 ℃

압출기 압축지대 온도 : 285-295℃Extruder compression zone temperature: 285-295 ℃

압출기 용융지대 온도 : 265-285℃Extruder Melt Zone Temperature: 265-285 ℃

압출기 헤드 온도 : 265-285℃Extruder head temperature: 265-285 ℃

회전 다이 온도 : 260-285℃Rotary Die Temperature: 260-285 ℃

발포제의 주입압 : 40-140kg/㎠Injection pressure of blowing agent: 40-140kg / ㎠

압출압 : 50-120kg/㎠Extrusion Pressure: 50-120kg / ㎠

스크루우의 회전수와 권취속도는 제9표와 같다.The rotation speed and the winding speed of the screw are shown in Table 9.

생성된 발포 시이트는 폭이 640~643mm였다.The resulting foam sheet had a width of 640 to 643 mm.

겉보기 점도, 두께, 결정도 및 분자배향율은 제10표에 나타난 바와같다.Apparent viscosity, thickness, crystallinity and molecular orientation are as shown in Table 10.

본 발명의 실시예 및 비교예에서 측정에 사용된 압출 발포 시이트의 후(post) 열성형기 및 열성형 조건은 다음과 같았다.The post thermoforming machine and thermoforming conditions of the extruded foam sheet used for measurement in the examples and comparative examples of the present invention were as follows.

후열성형기는 팽창된 폴리스티렌용 단발성형기였으며, 적외선 복사의 가열 지대와 공기 실린더의 압축부를 갖고 있었다.The post-heat molding machine was a single-shot machine for expanded polystyrene and had a heating zone of infrared radiation and a compression section of an air cylinder.

성형기구는 용기 성형용 플랙-보조 압착기구(plag-assist press tool, 내경 : 180mm×155, 깊이 : 95mm였다.The molding apparatus was a flag-assist press tool (inner diameter: 180 mm x 155, depth: 95 mm) for container molding.

성형조건은 360×360mm 발포 시이트를 가열지대에서 175℃로 15초간 가열한 직후에, 그 성형기에 25초간 접촉시켜 성형의 효과를 얻는 것이었다.The molding conditions were that the 360 x 360 mm foam sheet was heated at 175 ° C for 15 seconds in a heating zone, and then contacted with the molding machine for 25 seconds to obtain the effect of molding.

생성된 성형물에 대하여 다음과 같은 항목을 측정했다.The following items were measured about the produced molding.

(외관)(Exterior)

○ : 시이트 전체가 균일하게 신장되고, 압착기구와 동일한 모양으로 성형되고 파손되지 않았음.(Circle): The whole sheet was extended uniformly, was formed in the same shape as a crimping | compression-bonding mechanism, and was not damaged.

△ : 압착기구와 동일한 모양으로 성형되었으나, 표면 부분이 파손되고 균일 발생.(Triangle | delta): Although it shape | molded in the same shape as a crimping mechanism, a surface part is damaged and it generate | occur | produces uniformly.

× : 시이트가 심하게 파손되어 성형 불능.X: The sheet was badly damaged and molding was impossible.

(두께비)(Thickness ratio)

성형물의 측벽에 대한 바닥의 두께의 비를 말한다.Refers to the ratio of the thickness of the bottom to the sidewall of the molding.

-표시는 성형물이 심하게 파손되어 측정불능을 의미함.The-mark means that the molding is badly damaged and cannot be measured.

(표면도)(Surface)

○ : 성형물의 표면이 매끄러움.(Circle): The surface of a molded object is smooth.

△ : 성형물의 표면이 부분적으로 고르지 못함.(Triangle | delta): The surface of a molding is partially uneven.

× : 성형물의 표면이 매우 고르지 못함.X: The surface of the molding is very uneven.

(총평)(General comment)

압출 발포 시이트의 표면도와 후열성형물이 외관과 두께 모두를 고려하여 총평하였다.The surface and post-heat moldings of the extruded foam sheet were generally considered in consideration of both appearance and thickness.

◎ : 매우 우수◎: very good

○ : 우수○: excellent

× : 열등×: inferior

결과를 제11표에 나타낸다.The results are shown in Table 11.

Figure kpo00010
Figure kpo00010

Figure kpo00011
Figure kpo00011

Figure kpo00012
Figure kpo00012

Figure kpo00013
Figure kpo00013

분자배향율은 군취속도와 블로우업비(blow-up ratio)로 조절될 수 있는데, 그 이유는 권취속도가 증가할때 시이트는 MD방향으로 배향되는 한편, 블로우업비가 증가할 때(냉각 맨드릴 직경이 증가할때), 시이트는 TD 방향으로 배향되기 때문이다.Molecular orientation can be controlled by group speed and blow-up ratio, because the sheet is oriented in the MD direction when the winding speed is increased, while the blow-up ratio is increased (the cooling mandrel diameter is Increasing), the sheet is oriented in the TD direction.

그러나, 시이트의 폭과 두께, 팽창률이 고정될 때는, 분자 배향율은 권취속도와 블로우업비를 조절하는 것만으로는 조절될 수 없다.However, when the width, thickness, and expansion rate of the sheet are fixed, the molecular orientation rate cannot be adjusted only by adjusting the winding speed and blow up ratio.

이 경우에, 다이온도가 증가한다.(실시예 47, 비교예 15).In this case, the die temperature increases (Example 47, Comparative Example 15).

용융성 개질제의 량을 감소시킴으로서 분자배향율을 낮출 수 있다.(실시예 47, 비교예 14).The molecular orientation can be lowered by reducing the amount of melt modifier (Example 47, Comparative Example 14).

원주형 맨드릴에의 냉각수 온도를 낮춤으로서 결정도를 낮출 수 있다.The crystallinity can be lowered by lowering the cooling water temperature to the columnar mandrel.

또한, 본 발명의 식품용기는 하기의 실시예 및 비교예에 예시되겠다.In addition, the food container of the present invention will be illustrated in the following Examples and Comparative Examples.

특별한 언급이 없는 한 부의 중량비를 의미한다.Unless otherwise specified, it means parts by weight.

[실시예 50]Example 50

여기서는, 발포 시이트와 비발포 시이트에 동일한 열가소성 폴리에스테르수지가 사용되었다.Here, the same thermoplastic polyester resin was used for the foamed sheet and the non-foamed sheet.

폴리에스테르 수지로서 폴리에틸렌 테레프탈레이트 펠릿(상품명 :TR 8580, 다이찐사 제품) 100부를 사용하여, 이슬점 -20℃의 더운 공기로 160℃에서 5시간동안 건조시켰다.100 parts of polyethylene terephthalate pellets (trade name: TR 8580, manufactured by Daichin Corporation) were used as the polyester resin, and dried at 160 ° C for 5 hours with hot air at a dew point of -20 ° C.

2무수 멜리트산 0.3부, 탄산나트륨 0.1부 및 활석 0.6부를 거기에 첨가했다.0.3 part of 2 anhydrous melic acid, 0.1 part of sodium carbonate, and 0.6 part of talc were added there.

이 혼합물을 텀블링 믹서내에서 균일하게 혼합한 다음, 압출기에 공급했다.This mixture was mixed uniformly in a tumbling mixer and then fed to the extruder.

압출기의 실린더 온도는 274~287℃, 디이온도는 277℃로 조작했다.The cylinder temperature of the extruder was operated at 274-287 degreeC, and die temperature was 277 degreeC.

실린더 실의 화합물에 발포제로서 부탄 1.0중량% 정도를 가압 공급하였다.About 1.0 weight% of butane was pressurized and supplied to the compound of the cylinder seal as a blowing agent.

회전통을 갖는 다이를 압출기헤드에 장치했다.A die having a rotating cylinder was installed in the extruder head.

부탄을 함유한 폴리에스테르 수지를 회전틈을 통해 원주형으로 압출했다.The polyester resin containing butane was extruded cylindrically through a rotary gap.

수지를 팽창시키면서 압출물을 원주형 맨드릴에 적용하여 발포 시이트를 얻었다. 원주형 발포 시이트를 개방시키고, 생성된 평면 시이트를 틀에 감았다. 생성된 발포 시이트의 밀도는 0.262g/㎤, 두께는 1.45mm, 폭은 640mm였다.The extrudate was applied to a cylindrical mandrel while expanding the resin to obtain a foam sheet. The columnar foam sheet was opened and the resulting flat sheet was rolled into the mold. The resulting foam sheet had a density of 0.262 g / cm 3, a thickness of 1.45 mm, and a width of 640 mm.

두께가 50μ인 폴리에틸렌 테레프탈레이트 수지 필름(FFL 다이찐사 제품)을 비발포 열가소성 수지 필름으로 사용했다. 이 필름과 상술한 시이트를 한 쌍의 로울러 사이에 놓고 서로 적층시켰다. 발포 시이트 폭의 로울러 온도는 실온인 반면, 비발포 시이트 폭의 로울러 온도는 135℃로 조작했다. 이렇게 하여, 비발포 시이트가 발포 시이트 한쪽에만 결합된 적층사이트를 얻었다.A polyethylene terephthalate resin film (FFL Daichin Corporation) having a thickness of 50 µ was used as the non-foamed thermoplastic resin film. The film and the sheet described above were sandwiched between a pair of rollers. The roller temperature of the foam sheet width was room temperature, while the roller temperature of the non-foamed sheet width was operated at 135 ° C. In this way, the laminated site in which the non-foamed sheet was bonded only to one side of the foam sheet was obtained.

이 적층시이트로 부터 250×250mm의 크기의 시료를 잘라내어, 표면 온도 140℃의 가열판과 6초간 접촉시키는 것으로 예열처리했다. 계속해서, 이 예열된 시료를 180℃로 예열된 수다이와 180℃로 예열된 암다이 사이에서 6초간 방치하여, 용기로 성형함과 동시에 결정도를 가속시켰다. 그런 직후에, 이 성형물을 실온에서 6초동안 수다이와 암다이 사이에 놓아 냉각시켰는데, 이들 다이도 180℃로 예열 흰 다이의 것들과 동일한 모양을 가졌다. 비발포필름층을 용기내부에 위치하는 방식으로 성형했다. 얻어진 용기의 모양은 제6도 및 제7도에서 보는 바와 같다.The sample of 250x250 mm was cut out from this laminated sheet, and it preheated by making it contact with the heating plate of surface temperature 140 degreeC for 6 second. Subsequently, the preheated sample was left for 6 seconds between the preheated at 180 ° C. and the female preheated at 180 ° C. to form a container and to accelerate the crystallinity. Immediately thereafter, the moldings were cooled by placing them between the sudie and the arm die for 6 seconds at room temperature, which also had the same shape as those of the white die preheated to 180 ° C. The non-foamed film layer was molded in such a manner as to be located inside the container. The shape of the obtained container is as shown in FIG. 6 and FIG.

제6도는 얻어진 용기(7)의 측면되며, 제7도는 용기(7)의 평면도이다. 이성형에서, 복합시이트는 팽창률이 증가했고, 용기(7)의 바닥두께는 3.80mm로 되었다.FIG. 6 is a side view of the container 7 obtained, and FIG. 7 is a plan view of the container 7. In the isoform, the composite sheet had an increased expansion ratio, and the bottom thickness of the container 7 was 3.80 mm.

용기(7)내에 물 150ml를 넣고 뚜껑을 닫았다. 물이 세나가지 않도록 용기를 밀봉했다. 500W 초단파 오븐에 용기를 놓고 3분 동안 가열시켜 물을 끓였다. 가열 직후 초단파 오븐에서 그 용기를 맨손으로 꺼냈다. 용기는 가열에 의해 어떤 변화도 없었다. 확인해 보기 위해서 용기 바닥두께를 측정한 결과 3.95mm였다. 초단파 오븐내에서 열을 받은 용기는 두께가 단지 4% 증가했다. 따라서, 실질적으로 변형이 야기되지 않았다고 볼 수 있었다.150 ml of water was put into the container 7, and the lid was closed. The container was sealed so that no water leaked out. The vessel was placed in a 500 W microwave oven and heated for 3 minutes to boil water. Immediately after heating, the vessel was taken out of the microwave oven with bare hands. The vessel did not change by heating. In order to confirm, the bottom thickness of the container was measured and found to be 3.95 mm. Heated vessels in microwave ovens increased only 4% in thickness. Therefore, it could be seen that substantially no deformation was caused.

[실시예 51]Example 51

실시예 50에서 얻은 발포 시이트를 사용하고, 비발포 필름으로서 두께 100μ의 폴리프로필렌 수지 필름을 사용하고, 접착제로서 에틸렌-비닐 아세테이트 혼성 중합체를 사용하여 필름들을 적층시켰다.Films were laminated using the foam sheet obtained in Example 50, using a polypropylene resin film having a thickness of 100 mu as a non-foaming film, and using an ethylene-vinyl acetate interpolymer as the adhesive.

폴리에스테르 수지 필름 한쪽면을 에틸렌-비닐 아세테이트 혼성 중합체 수지로 도포시켰다. 필름의 도포된 면을 실시예 50에서 얻어진 폴리에스테르 수지 발포 시이트 위에 놓았다.One side of the polyester resin film was applied with an ethylene-vinyl acetate hybrid polymer resin. The coated side of the film was placed on the polyester resin foam sheet obtained in Example 50.

한쌍의 로울러를 통해 그들을 통과시켜 적층시켰다.They were laminated by passing them through a pair of rollers.

발포 시이트 폭의 로울러 온도는 실온인 반면, 비발포필름 폭의 로울러 온도는 125℃였다.The roller temperature of the foam sheet width was room temperature, while the roller temperature of the non-foam film width was 125 ° C.

상기에서 얻어진 적층시이트에 시료 250×250mm를 잘라내어, 그 발포 시이트면을 표면온도 140℃의 가열판과 접촉시킴과 동시에 비발포필름면을 표면 온도 100℃의 가열판과 6초 동안 접촉시키는 것으로 예열처리했다. 계속해서, 발포 시이트면을 140℃로 예열된 암다이와 접촉시키고, 비발포필름면을 100℃로 가열된 수다이와 8초 동안 방치하여, 복합시이트를 실시예 50에서와 동일한 용기로 성형할 수 있었음과 동시에 결정도를 가속시켰다. 그런 직후, 예열된 다이와 동일한 모양의 2개의 다이 사이에 용기를 놓고 실온에서 6초간 냉각시켰다. 비발포필름이 용기 안쪽에 위치하는 방식으로 성형을 했다. 이 성형으로 발포 시이트가 부풀어 올랐으며 용기 바닥두께는 2.94mm였다.250 x 250 mm of the sample was cut out to the laminated sheet obtained above, and the foamed sheet surface was brought into contact with a heating plate having a surface temperature of 140 ° C, and the non-foamed film surface was brought into contact with a heating plate having a surface temperature of 100 ° C for 6 seconds. . Subsequently, the foam sheet surface was brought into contact with a female die preheated to 140 ° C., and the non-foamed film surface was allowed to stand for 8 seconds with a male die heated to 100 ° C., whereby the composite sheet could be molded into the same container as in Example 50. And at the same time accelerated the crystallinity. Immediately thereafter, the vessel was placed between two dies of the same shape as the preheated die and cooled for 6 seconds at room temperature. The non-foamed film was molded in such a manner that it was placed inside the container. The molding swelled the foam sheet and the bottom thickness of the vessel was 2.94 mm.

실시예 50에서와 동일한 방법으로 생성된 용기내에 물을 넣었다. 용기를 초단과 오븐에서 가열한 직후에, 용기를 맨손으로 꺼낼 수 있었다. 가열 후에 변형은 없었다. 확인해 보기 위해서, 용기 바닥 두께를 측정한 결과 3.05mm였다. 두께 증가는 단지 4%였다. 따라서 이 용기는 초단파 오븐의 열에 대한 저항성이 크다고 할 수 있었다.Water was placed in the resulting vessel in the same manner as in Example 50. Immediately after the vessel was heated in the first stage and in the oven, the vessel could be taken out with bare hands. There was no deformation after heating. In order to confirm, it was 3.05 mm when the container bottom thickness was measured. The thickness increase was only 4%. Therefore, this vessel was said to be very resistant to heat in microwave ovens.

[실시예 52]Example 52

실시예 50에서 얻어진 발포 시이트를 사용하고, 두께 150μ의 폴리에틸렌 테레프탈레이트 필름을 비발포필름을 사용했다. 어떤 접착체도 사용하지 않고 이들을 서로 적층시켜 복합 시이트를 얻었다. 필름의 적층은 발포 시이트폭의 로울러 온도가 실온이며 비발포 필름폭의 로울러 온도가 155℃인 한쌍의 로울러를 사용하여 수행했다.The foamed sheet obtained in Example 50 was used, and a non-foaming film was used for the polyethylene terephthalate film of thickness 150 micrometers. The composite sheets were obtained by laminating them together without using any adhesives. Lamination of the film was performed using a pair of rollers in which the roller temperature of the foam sheet width was room temperature and the roller temperature of the non-foamed film width was 155 ° C.

적층시이트로부터 250×250mm를 절단했다. 실시예 50에서와 동일한 방법으로 시료로부터 용기를 제조했다.250 x 250 mm was cut from the laminated sheet. A container was prepared from the sample in the same manner as in Example 50.

그 용기의 바닥두께는 4.39mm로 팽창했다.The bottom thickness of the vessel expanded to 4.39 mm.

용기내에 물을 넣었다. 실시예 50에서와 같은 방법으로 초단파 오븐에서 돋기를 가열했다. 가열 직후, 오븐으로부터 맨손으로 용기를 꺼낼 수 있었다. 용기는 어떤 변형도 관찰할 수 없었다. 확인하기 위하여, 용기 바닥의 두께를 측정한 결과 4.44mm였다. 변형률은 1%로 매우 적었다.Water was put in the container. The sprouts were heated in a microwave oven in the same manner as in Example 50. Immediately after heating, the container was taken out from the oven with bare hands. The vessel could not observe any deformation. In order to confirm, the thickness of the bottom of the container was measured and found to be 4.44 mm. The strain was very small at 1%.

[실시예 53]Example 53

폴리에틸렌 테레프탈레이트 수지 필름 대신에 두께 30μ인 폴리부틸렌 테레프탈레이트 수지 필름을 사용한 것을 제외하고는, 실시예 52의 공정을 반복했다. 성형된 용기 바닥의 두게는 4.02mm였다.The procedure of Example 52 was repeated except that a polybutylene terephthalate resin film having a thickness of 30 µ was used instead of the polyethylene terephthalate resin film. The thickness of the bottom of the molded container was 4.02 mm.

가열한 후에, 초단파 오븐으로부터 용기를 맨손으로 꺼낼 수 있었다. 가열사기전에 비해 용기는 전혀 변형되지 않았다.After heating, the container could be taken out with bare hands from a microwave oven. The container was not deformed at all compared to before the heat.

가열후의 용기 바닥의 두께는 측정한 결과, 4.34mm였다. 두께 변형률은 3%뿐이었다.The thickness of the bottom of the container after heating was 4.34 mm as a result of measurement. The thickness strain was only 3%.

비교예 17 발포 시이트 상에 비발포필름을 적층하지 않고 실시예 50에서 얻어진 폴리에스테르 수지 발포 시이트로 부터만 용기를 얻었다. 즉, 실시예 50에서 얻은 폴리에스테르 수지 발포 시이트를 140℃로 가열된 가열판과6초간 접촉 시이트는 것으로 예열시켰다. 이어서, 180℃로 가열된 수다이와 180℃로 가열된 암다이 사이에 8포동안 방치하여, 성형함과 동시에 결정도를 가속시켰다. 그런 직후에, 실온에서 180℃로 가열된 다이와 동일한 모양의 수다이와 암다이 사이에 성형물을 놓고 6초 동안 방냉시켰다. 이렇게 하여 실시예 50에서와 동일한 용기를 얻었으며 그 바닥 두께는 3.39mm였다. 실시예 50에서와 동일한 방법으로 용기내의 물을 넣고 초단파 오븐에서 가열했다. 가열 직후에 초단파 오븐으로부터 맨손으로 용기를 꺼낼 수 있었다. 꺼낸 용기는 팽창이 컸으며 그 내면이 울퉁불퉁했다. 가열 후의 용기 바닥 두께는 측정한 결과과 4.04mm였다. 즉, 두께가 19%만큼 크게 증가하였음을 보여주고 있다. 따라서 면형이 커서 그 용기는 초단파 오븐의 열에 견딜 수 없었음을 알았다.Comparative Example 17 A container was obtained only from the polyester resin foam sheet obtained in Example 50 without laminating a non-foaming film on the foam sheet. That is, the polyester resin foam sheet obtained in Example 50 was preheated to the contact sheet for 6 seconds with the heating plate heated to 140 ° C. Subsequently, it was left to stand for 8 bags between a sudie heated to 180 ° C. and an arm die heated to 180 ° C. to accelerate molding and crystallization. Immediately thereafter, the molding was placed between a male die and a female die of the same shape as the die heated to 180 ° C. at room temperature and allowed to cool for 6 seconds. This gave the same container as in Example 50 with a bottom thickness of 3.39 mm. Water in the vessel was added in the same manner as in Example 50 and heated in a microwave oven. Immediately after heating, the container was taken out of the microwave oven with bare hands. The removed container had a great expansion and was rugged inside. The bottom thickness of the container after heating was 4.04 mm as a result of the measurement. In other words, the thickness increased by 19%. Therefore, it was found that the large shape of the container could not withstand the heat of the microwave oven.

[비교예 18][Comparative Example 18]

여기서는 폴리스티렌의 발포 시이트와 열가소성 폴리에스테르 수지의 비발포필름을 사용했다. 에틸렌-비닐 아세테이트 혼성중합체 수지를 사용하여 그들을 서로 적층시켜 JP-A-62-70037에 서술된 것에 상응하는 적층시이트를 얻었다.Here, the foam sheet of polystyrene and the non-foaming film of thermoplastic polyester resin were used. The ethylene-vinyl acetate interpolymer resins were used to laminate them together to obtain a laminate sheet corresponding to that described in JP-A-62-70037.

즉, 두께 50μ의 비발포 폴리에틸렌 테레프탈레이트 필름 한 면을 혼성중합체 수지로 피복했다. 두께가 2.4mm, 기준 중량이 200g/cm 인 팽창된 폴리에틸렌 시이트상에 이 필름의 피복된 면을 놓고 적층시켰다.That is, one side of a 50 micron-thick non-foamable polyethylene terephthalate film was coat | covered with interpolymer resin. Thickness 2.4mm, reference weight 200g / cm The coated side of the film was placed on a phosphorus expanded polyethylene sheet and laminated.

적층은 150℃로 가열된 한 쌍의 로울러를 사용하여 수행했다.Lamination was carried out using a pair of rollers heated to 150 ° C.

이 적층시이트로부터 시료 250×250mm를 잘라내어 그것을 140℃로 가열된 가열판과 8초 동안 접촉시키는 것으로 예열시켰다. 그런 직후 실온에서 수다이와 암다이 사이에 6초 동안 놓고 방냉시켰다. 실시예 50의 용기와 동일한 모양의 용기를 얻었다. 용기는 비발포필름이 그 용기 내면에 위치하는 형태로 제조했다. 용기의 바닥두께는 4.2mm까지 증가했다.250 x 250 mm of sample was cut out from this laminated sheet, and it was preheated by contacting it with the heating plate heated at 140 degreeC for 8 second. Immediately thereafter, it was allowed to stand for 6 seconds at room temperature between the sudai and the amdai, followed by cooling. A container of the same shape as the container of Example 50 was obtained. The container was made in such a way that the non-foaming film was located on the inner surface of the container. The bottom thickness of the vessel increased to 4.2 mm.

실시예 50에서와 같은 방법으로 용기내에 물을 넣고 초단파 오븐에서 용기를 가열시켰다. 가열 직후 맨손으로 초단파 오븐에서 용기를 꺼내긴 했으나 가열에 의한 변형이 심했다.Water was placed in the vessel in the same manner as in Example 50 and the vessel was heated in a microwave oven. Immediately after heating, the container was taken out of the microwave oven with bare hands, but was severely deformed by heating.

특히, 용기면의 팽창된 폴리스티렌 층이 팽창에 의해 변형되었다. 그 결과 용기 내면의 비발포 필름상이 울퉁불퉁했다.In particular, the expanded polystyrene layer on the container surface was modified by expansion. As a result, the non-foamed film image on the inner surface of the container was bumpy.

가열 후의 용기의 바닥두께를 측정한 결과 4.88mm였다. 이것은 두께가 16% 증가했음을 보여주었다. 따라서, 이 용기는 초단파 오븐에서 사용하기는 부적당하다는 것을 감지하였다.It was 4.88 mm when the bottom thickness of the container after heating was measured. This showed a 16% increase in thickness. Thus, the vessel was found to be unsuitable for use in microwave ovens.

[발명의 효과][Effects of the Invention]

상술한 바와 같이 본 발명은 다음과 같은 효과를 갖는다.As described above, the present invention has the following effects.

열가소성 폴리에스테르 수지 발포체는 거기에 균일하게 분산된 미세 셀을 갖는 것이다.The thermoplastic polyester resin foam has a fine cell uniformly dispersed therein.

본 발명의 발포체는 무게가 가벼우면서 강도와 내열성이 우수하며, 또한, 인장강도와 인장연신도가 높은 발포체는 재가열했을때 거기에 매우 미세한 셀이 분산되고 팽창률이 높은 성형발포체를 낸다.The foam of the present invention is light in weight, excellent in strength and heat resistance, and, when the foam is high in re-heating, very fine cells are dispersed therein and give a high foaming foam.

본 발명의 압출 발포 시이트는 열성형성이 우수하다. 열성형된 식품용기는 오븐에 사용할 수 있다.The extruded foam sheet of the present invention is excellent in thermoforming. Thermoformed food containers can be used in ovens.

전술한 바와 같이 본 발명을 실시예 및 참고예를 들어 상세하게 설명하였으나, 본 발명의 목적을 벗어나지 않는 범위내에서 각종 변형과 개조가 가능하다.As described above, the present invention has been described in detail with reference to Examples and Reference Examples, but various modifications and adaptations can be made without departing from the object of the present invention.

Claims (24)

열가소성 폴리에스테르 수지를 용융하고, 그 용융된 수지를 발포체와 혼합한 다음 저압지대로 혼합물을 압출성형하는 열가소성 폴리에스테르 수지 발포체의 제조방법에 있어서, 상기 압출성형된 발포체를 냉각하여 결정도 7% 이상으로 하고, 분자당 2개 이상의 산무수물기를 갖는 화합물을 열가소성 폴리에스테르 수지에 첨가하는 것을 특징으로 하는 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.A method for producing a thermoplastic polyester resin foam in which a thermoplastic polyester resin is melted, the melted resin is mixed with a foam, and the mixture is extruded with a low pressure paper, wherein the extruded foam is cooled to have a crystallinity of at least 7%. A method of producing a thermoplastic polyester resin crystalline foam, wherein the compound having two or more acid anhydride groups per molecule is added to the thermoplastic polyester resin. 제1항에 있어서, 분자당 2개 이상의 산 무수물기를 갖는 화합물을, 열가소성 폴리에스텔수지 100중량부에 대하여 0.05~5중량부에 비율로 첨가하는 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.The method for producing a thermoplastic polyester resin crystalline foam according to claim 1, wherein the compound having two or more acid anhydride groups per molecule is added at a ratio of 0.05 to 5 parts by weight based on 100 parts by weight of the thermoplastic polyester resin. 제1항에 있어서, 분자당 2개 이상의 산 무수물기를 갖는 화합물이 2무수 피로멜리트산, 2무수 벤조페논테트라카르복시산, 2무수 시클로펜탄-테트라카르복시산, 2무수디페닐 설폰 테트라카르복시산, 또는 2무수 5-(2,5-디옥소테트라하이드로-3-퓨릴)-3-메틸-3-시클로헥실-1,2-디카르복시산인 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.The compound of claim 1, wherein the compound having at least two acid anhydride groups per molecule is divalent anhydrous pyromellitic acid, dibenzoic benzophenonetetracarboxylic acid, dihydrocyclopentane-tetracarboxylic acid, dianhydrous diphenyl sulfone tetracarboxylic acid, or dianhydride 5 A method for producing a thermoplastic polyester resin crystalline foam which is-(2,5-dioxotetrahydro-3-furyl) -3-methyl-3-cyclohexyl-1,2-dicarboxylic acid. 제1항에 있어서, 발포체의 밀도가 0.7g/㎤ 이하인 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.The method for producing a thermoplastic polyester resin crystalline foam according to claim 1, wherein the foam has a density of 0.7 g / cm 3 or less. 제1항에 있어서, 발포체가 밀도 0.5g/㎤ 이하의 압출 발포 시이트인 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.The method for producing a thermoplastic polyester resin crystalline foam according to claim 1, wherein the foam is an extruded foam sheet having a density of 0.5 g / cm 3 or less. 제1항에 있어서, 열가소성 폴리에스테르계 수지가 폴리에틸렌 테레프탈레이트, 폴리부틸렌 테레프탈레이트, 폴리부틸렌 테레프탈레이트 탄성중합체, 비결정성 폴리에스테르, 폴리시클로헥산 테레프탈레이트, 폴리에틸렌 테레프탈레이트 또는 이들의 혼합물인 열가소성 폴리에스테르계 결정성 수지 발포체의 제조방법.The thermoplastic polyester resin of claim 1 wherein the thermoplastic polyester resin is polyethylene terephthalate, polybutylene terephthalate, polybutylene terephthalate elastomer, amorphous polyester, polycyclohexane terephthalate, polyethylene terephthalate or mixtures thereof. Method for producing a polyester crystalline resin foam. 열가소성 폴리에스테르 수지를 용융하고, 그 용융된 수지를 발포제와 혼합한 다음 저압지대로 혼합물을 압출하여 성형하는 열가소성 폴리에스테르 수지 발포체의 제조방법에 있어서, 분자당 2개 이상의 산 무수물기를 갖는 화합물과 주기율표상의 제I족, 제II족, 또는 제III족 금속의 화합물을 상기 열가소성 폴리에스테르 수지에 첨가하는 것을 특징으로 하는 열가소성 폴리에스테르계 수지 발포체의 제조방법.A method for producing a thermoplastic polyester resin foam in which a thermoplastic polyester resin is melted, the melted resin is mixed with a blowing agent, and then the mixture is extruded and molded into a low pressure paper, wherein the compound and the periodic table have two or more acid anhydride groups per molecule. A method for producing a thermoplastic polyester resin foam, wherein a compound of a Group I, Group II, or Group III metal of the phase is added to the thermoplastic polyester resin. 제7항에 있어서, 분자당 2개 이상의 산 무수물기를 갖는 화합물을 열가소성 폴리에스테르 수지 100중량부에 대해 0.05~5중량부 사용하고, 주기율표상의 제I족, 제II족, 또는 제III족 금속의 화합물을 열가소성 폴리에스테르 수지 100중량부에 대해 0.05~5중량부 사용하는 열가소성 폴리에스테르계 수지 발포체의 제조방법.8. The compound according to claim 7, wherein the compound having two or more acid anhydride groups per molecule is used in an amount of 0.05 to 5 parts by weight based on 100 parts by weight of the thermoplastic polyester resin, and the metals of Group I, Group II, or Group III on the periodic table The manufacturing method of the thermoplastic polyester resin foam which uses 0.05-5 weight part of compounds with respect to 100 weight part of thermoplastic polyester resins. 제7항에 있어서, 금속화합물이 주기율표상의 제I족의 금속화합물인 열가소성 폴리에스테르계 수지 발포체의 제조방법.The method for producing a thermoplastic polyester resin foam according to claim 7, wherein the metal compound is a metal compound of Group I on the periodic table. 제7항에 있어서, 발포체의 밀도가 0.5g/㎤ 이하인 열가소성 폴리에스테르계 수지 발포체의 제조방법.The method for producing a thermoplastic polyester resin foam according to claim 7, wherein the foam has a density of 0.5 g / cm 3 or less. 제1항에 있어서, 용융수지가 상기 발포체와 팽창핵제의 혼합물인 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.The method for producing a thermoplastic polyester resin crystalline foam according to claim 1, wherein the molten resin is a mixture of the foam and the expansion nucleating agent. 제1항에 있어서, 열가소성 수지의 틀팽창(die swell)율이 2~5인 열가소성 수지 결정성 발포체의 제조방법.The method for producing a thermoplastic resin crystalline foam according to claim 1, wherein the die swell ratio of the thermoplastic resin is 2 to 5. 제1항에 있어서, 분자당 2개 이상의 산 무수물를 갖는 화합물을 열가소성 수지와 사전에 용융혼합한 혼합물을 펠릿화(pelletize)하여, 그 펠릿을 상기 열가소성 폴리에스테르 수지와 혼합하는 열가소성 수지 결정성 발포체의 제조방법.The thermoplastic resin crystalline foam according to claim 1, wherein the thermoplastic resin crystalline foam which pelletizes the mixture which melt-mixed the compound which has two or more acid anhydrides per molecule with a thermoplastic resin previously, mixes the pellet with the said thermoplastic polyester resin. Manufacturing method. 제7항에 있어서, 분자당 2개 이상의 산 무수물기를 갖는 상기 화합물을 주기율표상의 제I족, 제II족, 또는 제III족의 금속화합물을 열가소성 수지와 사전에 용융 혼합한 혼합물을 펠릿화하여, 그 펠릿을 열가소성 폴리에스테르 수지와 혼합하는 열가소성 수지 결정성 폴리에스테르 발포제의 제조방법.8. A mixture according to claim 7, wherein the compound having at least two acid anhydride groups per molecule is pelletized by a mixture of a metal compound of Group I, Group II, or Group III on the periodic table previously melt mixed with a thermoplastic resin, The manufacturing method of the thermoplastic resin crystalline polyester foaming agent which mixes this pellet with thermoplastic polyester resin. 제1항에 있어서, 냉각 발포체가 60℃이상으로 가열되어 후팽창하는 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.The method for producing a thermoplastic polyester resin crystalline foam according to claim 1, wherein the cooling foam is heated to 60 ° C. or higher and then expanded. 제15항에 있어서, 그 수지의 유리전이 온도 이하로 냉각된 상기 발포체의 밀도가 0.5g/㎤ 이하인 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.The method for producing a thermoplastic polyester resin crystalline foam according to claim 15, wherein a density of the foam cooled below the glass transition temperature of the resin is 0.5 g / cm 3 or less. 제15항에 있어서, 폴리에스테르 수지 발포체를 스팀이나 온수와 접촉하여 가열조작하는 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.The method for producing a thermoplastic polyester resin crystalline foam according to claim 15, wherein the polyester resin foam is heated in contact with steam or hot water. 제15항에 있어서, 폴리에스테르 수지 발포체를 가열판과 접촉하여 가열조작하는 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.The method for producing a thermoplastic polyester resin crystalline foam according to claim 15, wherein the polyester resin foam is heated in contact with a heating plate. 제15항에 있어서, 상기 발포체를 가열조작에 의해 1.3배 이상 저팽창시키는 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.The method for producing a thermoplastic polyester resin crystalline foam according to claim 15, wherein the foam is expanded at least 1.3 times by heating. 제7항에 있어서, 압출 발포체를 냉각하여, 그 냉각 발포체를 60℃이상으로 재가열팽창하는 열가소성 폴리에스테르계 수지 결정성 발포체의 제조방법.The method for producing a thermoplastic polyester resin crystalline foam according to claim 7, wherein the extruded foam is cooled, and the cooled foam is reheated to 60 ° C or more. 제20항에 있어서, 그 수지의 유리전이 온도 이하의 온도로 냉각된 상기 발포체의 밀도가 0.5g/㎤이하인 열가소성 폴리에스테르계 수지 발포체의 제조방법.The method for producing a thermoplastic polyester resin foam according to claim 20, wherein a density of the foam cooled to a temperature below the glass transition temperature of the resin is 0.5 g / cm 3 or less. 제20항에 있어서, 폴리에스테르 수지 발포체를 스팀이나 온수와 접촉시키는 것으로 가열조작을 수행하는 열가소성 폴리에스테르계 수지 발포체의 제조방법.21. The method for producing a thermoplastic polyester resin foam according to claim 20, wherein the polyester resin foam is heated in contact with steam or hot water. 제20항에 있어서, 폴리에스테르 수지 발포체를 가열판과 접촉시키는 것으로 가열 조작을 수행하는 열가소성 폴리에스테르계 수지 발포체의 제조방법.The method for producing a thermoplastic polyester resin foam according to claim 20, wherein the heating operation is carried out by bringing the polyester resin foam into contact with a heating plate. 제20항에 있어서, 상기 발포체를 가열조작하여 1.3배 이상 재팽창시키는 열가소성 폴리에스테르계 수지 발포체의 제조방법.21. The method for producing a thermoplastic polyester resin foam according to claim 20, wherein the foam is heated and re-expanded by 1.3 times or more.
KR1019890017952A 1988-12-01 1989-12-01 Process for producing thermoplastic polyester resin foam KR0118112B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019960046183A KR0118103B1 (en) 1988-12-01 1996-10-16 Food container
KR1019960046182A KR0118102B1 (en) 1988-12-01 1996-10-16 Thermoplastic polyester resin foam sheet

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP302233/1988 1988-12-01
JP63302233A JPH02150434A (en) 1988-12-01 1988-12-01 Production of polyester-based rein foam
JP3669/1989 1989-01-12
JP366989A JPH02251543A (en) 1989-01-12 1989-01-12 Production of foamed polyester resin
JP1088633A JP2528514B2 (en) 1989-04-06 1989-04-06 Thermoplastic polyester resin foam sheet
JP88633/1989 1989-04-06
JP88300/1989 1989-04-07
JP1088300A JPH0688301B2 (en) 1989-04-07 1989-04-07 Method for producing heat-resistant thermoplastic polyester resin foam
JP25004989A JPH0698982B2 (en) 1989-09-25 1989-09-25 Food container
JP250049/1989 1989-09-25
JP273049/1989 1989-10-20
JP27304989A JPH03134037A (en) 1989-10-20 1989-10-20 Production of thermoplastic polyester resin foam

Related Child Applications (3)

Application Number Title Priority Date Filing Date
KR1019960046181A Division KR19980027409A (en) 1988-12-01 1996-10-16 Manufacturing method of thermoplastic polyester resin foam
KR1019960046183A Division KR0118103B1 (en) 1988-12-01 1996-10-16 Food container
KR1019960046182A Division KR0118102B1 (en) 1988-12-01 1996-10-16 Thermoplastic polyester resin foam sheet

Publications (2)

Publication Number Publication Date
KR900009810A KR900009810A (en) 1990-07-05
KR0118112B1 true KR0118112B1 (en) 1997-09-30

Family

ID=27547787

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1019890017952A KR0118112B1 (en) 1988-12-01 1989-12-01 Process for producing thermoplastic polyester resin foam
KR1019960046181A KR19980027409A (en) 1988-12-01 1996-10-16 Manufacturing method of thermoplastic polyester resin foam

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1019960046181A KR19980027409A (en) 1988-12-01 1996-10-16 Manufacturing method of thermoplastic polyester resin foam

Country Status (9)

Country Link
US (1) US5000991B2 (en)
EP (4) EP0552813B1 (en)
KR (2) KR0118112B1 (en)
AT (4) ATE163442T1 (en)
AU (2) AU635230B2 (en)
CA (1) CA2004300C (en)
DE (4) DE68928205T2 (en)
ES (4) ES2112344T5 (en)
SG (1) SG46581A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101723815B1 (en) * 2015-10-30 2017-04-10 주식회사 휴비스 Heat resisting material having gas barrier layer, manufacturing method of the same and packaging container comprising the same
WO2020218684A1 (en) * 2019-04-25 2020-10-29 주식회사 휴비스 Foam sheet comprising inorganic particles, and manufacturing method therefor

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2004300C (en) * 1988-12-01 1999-05-11 Motoshige Hayashi Process for producing polyester resin foam and polyester resin foam sheet
AU650812B2 (en) * 1988-12-01 1994-06-30 Sekisui Kaseihin Kogyo Kabushiki Kaisha Process for producing polyester resin foam sheet
CA2042340A1 (en) * 1991-05-10 1992-11-11 Motoshige Hayashi Leather-like thermoplastic polyester series resin sheet and process for production of the same
EP0536517A3 (en) * 1991-10-07 1993-06-02 Staeger & Co. Ag Plastic container produced by deep drawing
IT1252223B (en) * 1991-12-16 1995-06-05 M & G Ricerche Spa CELLULAR POLYESTER RESINS AND THEIR PREPARATION PROCEDURE
IT1258965B (en) * 1992-06-10 1996-03-11 PROCEDURE FOR THE PRODUCTION OF POLYESTER RESINS FOR FIBERS
US5229432A (en) * 1992-11-24 1993-07-20 E. I. Du Pont De Nemours And Company High melt strength pet polymers for foam applications and methods relating thereto
US5348984A (en) * 1993-01-28 1994-09-20 Sealed Air Corporation Expandable composition and process for extruded thermoplastic foams
US5288764A (en) * 1993-01-29 1994-02-22 Amoco Corporation Increased throughput in foaming and other melt fabrication of polyester
US5536793A (en) * 1993-01-29 1996-07-16 Amoco Corporation Concentrate for use in the melt fabrication of polyester
JP3015628B2 (en) * 1993-06-30 2000-03-06 日本プレストン株式会社 Transfer type decorative sheet and manufacturing method thereof
IL110514A0 (en) * 1993-10-04 1994-10-21 Eastman Chem Co Concentrates for improving polyester compositions and a method for preparing such compositions
SE502080C2 (en) * 1993-11-30 1995-08-07 Plm Ab Packaging material, method of making it, containers consisting of such material and use of the material for the manufacture of containers
JPH07179736A (en) * 1993-12-24 1995-07-18 Kanegafuchi Chem Ind Co Ltd Resin composition having property manifesting high melt viscoelasticity and aromatic polyester-based resin foam using the same
US5391582A (en) * 1994-04-19 1995-02-21 E. I. Du Pont De Nemours And Company Poly(ethylene terephthalate) foams comprising recycled plastic and methods relating thereto
DE4440837A1 (en) 1994-11-15 1996-05-23 Basf Ag Biodegradable polymers, processes for their production and their use for the production of biodegradable moldings
KR100363291B1 (en) 1994-12-27 2003-05-09 세키스이가세이힝코교가부시키가이샤 Continuous manufacturing method and apparatus for thermoplastic polyester resin foam
DE19500755A1 (en) * 1995-01-13 1996-07-18 Basf Ag Biodegradable polymers, processes for their production and their use for the production of biodegradable moldings
DE19500756A1 (en) * 1995-01-13 1996-07-18 Basf Ag Biodegradable polymers, processes for their production and their use for the production of biodegradable moldings
DE19500757A1 (en) 1995-01-13 1996-07-18 Basf Ag Biodegradable polymers, processes for their production and their use for the production of biodegradable moldings
DE19505185A1 (en) * 1995-02-16 1996-10-24 Basf Ag Biodegradable polymers, processes for their production and their use for the production of biodegradable moldings
US5482977A (en) * 1995-05-08 1996-01-09 Eastman Chemical Company Foamable branched polyesters
US5618486A (en) * 1995-05-16 1997-04-08 Sekisui Plastics Co., Ltd. Process for manufacturing a heat-resistant molded foam product
US5696176A (en) * 1995-09-22 1997-12-09 Eastman Chemical Company Foamable polyester compositions having a low level of unreacted branching agent
GB9522006D0 (en) * 1995-10-27 1996-01-03 Borden Uk Ltd Plastics articles
US5661193A (en) * 1996-05-10 1997-08-26 Eastman Chemical Company Biodegradable foamable co-polyester compositions
US5679295A (en) * 1996-07-11 1997-10-21 Genpak Corporation Method for producing polyester foam using a blowing agent combination
US6342173B1 (en) 1996-07-11 2002-01-29 Genpak, L.L.C. Method for producing polymer foam using a blowing agent combination
US6063316A (en) * 1996-07-11 2000-05-16 Genpak, L.L.C. Method for producing polymer foam using a blowing agent combination
US6099924A (en) * 1996-07-22 2000-08-08 Toyo Seikan Daisha, Ltd. Laminate and container made of the same
FI109286B (en) * 1996-10-17 2002-06-28 Wihuri Oy Plastic laminate, its method of manufacture and its use
US5681865A (en) * 1996-11-05 1997-10-28 Genpak Corporation Method for producing polyester foam
IT1291706B1 (en) * 1997-05-09 1999-01-21 L M P Impianti S R L POLYESTER PRODUCTION PROCESS, IN PARTICULAR PET, EXPANDED.
AU8803798A (en) 1997-07-11 1999-02-08 Akzo Nobel N.V. Process for the preparation of foamed articles
US5922782A (en) * 1997-07-23 1999-07-13 Eastman Chemical Company Foamable copolyesters prepared from divalent metal containing co-ionomers
IT1296878B1 (en) * 1997-12-17 1999-08-02 Sinco Ricerche Spa FLEXIBLE POLYESTER FOAMS
US5985190A (en) * 1998-04-28 1999-11-16 Genpak, L.L.C. Method and system for forming low-density polymer foam article
IL139579A0 (en) 1998-05-27 2002-02-10 Dow Chemical Co Vehicle headliner comprised of thermoformable thermoplastic foam sheet
TW499363B (en) * 1998-06-26 2002-08-21 Sinco Ricerche Spa Recyclable multi-layer material in polyester resin
DE69924063T2 (en) * 1998-09-25 2006-04-13 Cobarr S.P.A., Anagni Polyester resin foam sheets
US6503549B1 (en) * 1998-09-30 2003-01-07 Cryovac, Inc. Polyester tray package with lidding film having glycol-modified copolyester sealant layer
EP1160274B1 (en) * 1998-12-11 2005-10-05 Sekisui Plastics Co., Ltd. Pre-expanded particles of crystalline aromatic polyester-based resin, and in-mold expanded product and expanded laminate using the same
ITMI991139A1 (en) * 1999-05-24 2000-11-24 Sinco Ricerche Spa BI-ORIENTED EXPANDED FILM IN POLYESTER RESIN
US7182985B1 (en) * 1999-06-17 2007-02-27 Cobarr, S.P.A. Recyclable multi-layer material of polyester resin
US20030186045A1 (en) * 2001-05-31 2003-10-02 Trevor Wardle Built-up roof system
US20040096640A1 (en) * 2002-01-30 2004-05-20 M & G Usa Corporation Method for conditioning polyester and controlling expansion of polyester during thermoforming
AU2003218066A1 (en) * 2002-03-14 2003-09-29 Dow Global Technologies, Inc. Application of a membrane roof cover system having a polyester foam layer
AU2003228227A1 (en) * 2002-05-03 2003-11-17 Dow Global Technologies Inc. Improved built-up roof system
US7951449B2 (en) * 2002-06-27 2011-05-31 Wenguang Ma Polyester core materials and structural sandwich composites thereof
US20040024102A1 (en) * 2002-07-30 2004-02-05 Hayes Richard Allen Sulfonated aliphatic-aromatic polyetherester films, coatings, and laminates
US7625994B2 (en) 2002-07-30 2009-12-01 E.I. Du Pont De Nemours And Company Sulfonated aliphatic-aromatic copolyetheresters
US7888405B2 (en) 2004-01-30 2011-02-15 E. I. Du Pont De Nemours And Company Aliphatic-aromatic polyesters, and articles made therefrom
US20070059511A1 (en) * 2004-03-31 2007-03-15 Edwards Walter L Low density foamed polymers
TW200621862A (en) * 2004-12-24 2006-07-01 Furukawa Electric Co Ltd Thermoplastic resin foam
US20060287494A1 (en) 2005-06-17 2006-12-21 Crawford Emmett D Polyester compositions containing high amounts of cyclobutanediol and articles made therefrom
EP1870431B1 (en) * 2005-03-25 2011-06-01 Kaneka Corporation Method of producing polyhydroxyalkanoate resin foamed particles
WO2006106776A1 (en) * 2005-03-30 2006-10-12 Asahi Kasei Chemicals Corporation Foamed polyester sheet
JP4878869B2 (en) * 2005-04-08 2012-02-15 日東電工株式会社 Foamed members, foamed member laminates, and electrical / electronic devices using the foamed members
US7704605B2 (en) 2006-03-28 2010-04-27 Eastman Chemical Company Thermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
US8193302B2 (en) 2005-10-28 2012-06-05 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain phosphate thermal stabilizers, and/or reaction products thereof
CN103351583B (en) 2005-10-28 2018-08-28 伊士曼化工公司 The polymer blend and its product for including cyclobutanediol with certain of logarithmic viscosity number and medium glass transition temperature combination
US9598533B2 (en) 2005-11-22 2017-03-21 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
US7737246B2 (en) 2005-12-15 2010-06-15 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol, cyclohexanedimethanol, and ethylene glycol and manufacturing processes therefor
US9169388B2 (en) 2006-03-28 2015-10-27 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain thermal stabilizers, and/or reaction products thereof
ES2429421T3 (en) * 2006-10-13 2013-11-14 Cryovac, Inc. Molded foam articles heat resistant and manufacturing process
US8080191B2 (en) * 2006-10-20 2011-12-20 Pepsico, Inc. Extrudable polyethylene terephthalate blend
DE102007026719B4 (en) 2007-06-06 2014-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Shaped body produced by blown film extrusion of a biodegradable polymeric composition, use of the molding and method for producing the molding
WO2009070238A2 (en) 2007-11-21 2009-06-04 Eastman Chemical Company Plastic baby bottles, other blow molded articles, and processes for their manufacture
US8501287B2 (en) 2007-11-21 2013-08-06 Eastman Chemical Company Plastic baby bottles, other blow molded articles, and processes for their manufacture
DK2072563T4 (en) 2007-12-19 2015-08-10 Armacell Entpr Gmbh & Co Kg Polymer blend for thermoplastic cellular materials
JP4421654B2 (en) * 2008-01-16 2010-02-24 日東電工株式会社 Manufacturing method of heated foam sheet
US8404755B2 (en) 2008-04-18 2013-03-26 Pepsico, Inc. Polyester composition and method for preparing articles by extrusion blow molding
PT2288643E (en) * 2008-06-12 2014-01-03 3A Technology & Man Ag Foamed polyesters and methods for their production
WO2010008445A2 (en) 2008-06-25 2010-01-21 Metabolix, Inc. Branched pha compositions, methods for their production, and use in applications
US8198371B2 (en) 2008-06-27 2012-06-12 Eastman Chemical Company Blends of polyesters and ABS copolymers
EP2324101A1 (en) * 2008-07-10 2011-05-25 The Lubrizol Corporation Carboxylic acid derivatives as friction modifiers in fuels
PL2163577T3 (en) 2008-09-15 2013-01-31 Armacell Entpr Gmbh & Co Kg Chain-extenders and foamed thermoplastic cellular materials obtained by reactive extrusion process and with help of said chain-extenders
US8895654B2 (en) 2008-12-18 2014-11-25 Eastman Chemical Company Polyester compositions which comprise spiro-glycol, cyclohexanedimethanol, and terephthalic acid
ES2484367T3 (en) * 2010-01-13 2014-08-11 Armacell Enterprise Gmbh & Co. Kg Fire protection method and modification of expanded polyester properties
HUE031448T2 (en) 2010-04-29 2017-07-28 Armacell Entpr Gmbh & Co Kg Cellular polyester made of post-consumer flakes and the use of products made thereof
US8529808B2 (en) * 2010-05-21 2013-09-10 Basf Se Nanoporous polymer foams
US8636929B2 (en) * 2010-05-21 2014-01-28 Basf Se Nanoporous foamed active compound-containing preparations based on pharmaceutically acceptable thermoplastically workable polymers
US8420869B2 (en) 2010-12-09 2013-04-16 Eastman Chemical Company Process for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US8394997B2 (en) 2010-12-09 2013-03-12 Eastman Chemical Company Process for the isomerization of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US8420868B2 (en) 2010-12-09 2013-04-16 Eastman Chemical Company Process for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US20120232175A1 (en) * 2011-03-11 2012-09-13 Mucell Extrusion, Llc Pet foam articles and related methods
JP2015505751A (en) * 2011-12-06 2015-02-26 スリーエム イノベイティブ プロパティズ カンパニー Monolithic multilayer article
US20130217830A1 (en) 2012-02-16 2013-08-22 Eastman Chemical Company Clear Semi-Crystalline Articles with Improved Heat Resistance
ES2610928T3 (en) 2012-06-05 2017-05-04 Armacell Enterprise Gmbh & Co. Kg Foam material with very low thermal conductivity and process for its production
CN109054254B (en) 2012-08-17 2021-02-02 Cj第一制糖株式会社 Bio-based rubber modifiers for polymer blends
US10669417B2 (en) 2013-05-30 2020-06-02 Cj Cheiljedang Corporation Recyclate blends
WO2015149029A1 (en) 2014-03-27 2015-10-01 Metabolix, Inc. Highly filled polymer systems
KR20170024178A (en) 2015-08-13 2017-03-07 주식회사 휴비스 Formed resin assembly containing additive dispersed area
WO2017026716A1 (en) * 2015-08-13 2017-02-16 주식회사 휴비스 Composite of multilayer structure comprising polyester foam and polyester resin layer, and use thereof
KR20170024177A (en) 2015-08-13 2017-03-07 주식회사 휴비스 In plan laminat containing functional additive dispersed area
KR20170025983A (en) 2015-08-31 2017-03-08 주식회사 휴비스 Sandwich Panel Containing Polyester Resin Foam
CN108290508B (en) 2015-09-30 2021-04-27 株式会社Huvis Automobile interior and exterior material comprising polyester resin foam layer and fiber layer
KR101855858B1 (en) 2015-12-31 2018-06-12 주식회사 휴비스 Polyester Resin having High Viscosity for Foaming, and Preparation Method of Polyester Resin Foam Using the Same
CN109195882B (en) * 2016-09-30 2021-04-27 株式会社 Huvis Food container with reduced elution of harmful substances
KR101880904B1 (en) 2017-04-17 2018-07-23 주식회사 휴비스 In plan laminat containing functional additive dispersed area
ES2887267T3 (en) 2017-06-29 2021-12-22 Cryovac Llc Use of dual ovenable polyester films in vacuum skin packaging applications and skin packaging made from them
AU2018292028A1 (en) 2017-06-29 2019-12-05 Cryovac, Llc Use of dual ovenable polyester films in thermoforming packaging applications and dual ovenable thermoformed packages obtained therefrom
CN111094414B (en) * 2018-06-29 2023-05-12 株式会社Huvis Foamed sheet comprising calcium carbonate, method for producing the same, and food container comprising the same
KR102165608B1 (en) * 2018-12-27 2020-10-14 주식회사 휴비스 Manufacturing device for polyethylene terephthalate foam sheets
TWI705094B (en) 2019-04-25 2020-09-21 南亞塑膠工業股份有限公司 Recycle pet foaming material and method for manufacturing the same
CN110712823A (en) * 2019-10-18 2020-01-21 合肥美的电冰箱有限公司 Packaging and reinforcement process
WO2021207951A1 (en) * 2020-04-15 2021-10-21 南京越升挤出机械有限公司 Chain extender masterbatch for pet extrusion foaming, preparation method therefor, and use thereof
CN111559101A (en) * 2020-05-15 2020-08-21 东莞中和生物材料科技有限公司 Process for producing drinking container made of biodegradable material

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL281286A (en) * 1954-07-08 1900-01-01
US3822332A (en) * 1970-08-07 1974-07-02 Ciba Geigy Ag Process for the production of amorphous transparent polyethylene mouldings by the combined injection and blow moulding technique
US4119583A (en) * 1975-11-13 1978-10-10 Klf Inventions And Patent Development And Marketing Corporation Ltd. Foamed articles and methods for making same
US4145466A (en) * 1977-09-02 1979-03-20 Rohm And Haas Company Melt strength improvement of PET
US4224264A (en) * 1979-01-18 1980-09-23 Monsanto Company Foam crystallization of condensation polymers
JPS5645928A (en) * 1979-09-21 1981-04-25 Teijin Ltd Production of polyester extruded expanded article
US4466933A (en) * 1982-12-28 1984-08-21 Mobil Oil Corporation Heat-resistant foamed plastic materials
US4462947A (en) * 1982-12-28 1984-07-31 Mobil Oil Corporation Heat-resistant foamed polyesters
US4533578A (en) * 1983-08-30 1985-08-06 Mobil Oil Corporation Sandwich foam coextrusion for high performance polyolefin trash bags
EP0220751A3 (en) * 1985-09-26 1988-08-17 Pennwalt Corporation Foamable and cross-linkable unsaturated polyester composition
GB8603341D0 (en) * 1986-02-11 1986-03-19 Portapax Ltd Foam sheet
JPH0210955A (en) * 1988-06-28 1990-01-16 Ricoh Co Ltd Direct outward dialling system
CA2004300C (en) * 1988-12-01 1999-05-11 Motoshige Hayashi Process for producing polyester resin foam and polyester resin foam sheet
US4981631A (en) * 1989-03-31 1991-01-01 The Goodyear Tire & Rubber Company Process for making lightweight polyester articles
US4988740A (en) * 1989-06-15 1991-01-29 E. I. Du Pont De Nemours And Company Low density foamed thermoplastic elastomers
ATE121986T1 (en) * 1989-12-27 1995-05-15 Sekisui Plastics THERMOPLASTIC POLYESTER RESIN FOAM AND PRODUCTION METHOD.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101723815B1 (en) * 2015-10-30 2017-04-10 주식회사 휴비스 Heat resisting material having gas barrier layer, manufacturing method of the same and packaging container comprising the same
WO2020218684A1 (en) * 2019-04-25 2020-10-29 주식회사 휴비스 Foam sheet comprising inorganic particles, and manufacturing method therefor

Also Published As

Publication number Publication date
EP0552813A2 (en) 1993-07-28
KR900009810A (en) 1990-07-05
ES2112344T5 (en) 2004-04-16
CA2004300C (en) 1999-05-11
ATE163442T1 (en) 1998-03-15
DE68926219D1 (en) 1996-05-15
CA2004300A1 (en) 1990-06-01
EP0372846A2 (en) 1990-06-13
AU643402B2 (en) 1993-11-11
ES2104973T3 (en) 1997-10-16
ES2086320T3 (en) 1996-07-01
EP0547032B1 (en) 1998-02-25
US5000991A (en) 1991-03-19
EP0547033A2 (en) 1993-06-16
EP0547032B2 (en) 2003-08-27
DE68928588T3 (en) 2004-02-26
SG46581A1 (en) 1998-02-20
DE68928205T2 (en) 1998-01-29
ATE165611T1 (en) 1998-05-15
EP0547032A2 (en) 1993-06-16
ATE136562T1 (en) 1996-04-15
EP0372846A3 (en) 1991-07-10
DE68928659D1 (en) 1998-06-04
AU3546993A (en) 1993-06-17
DE68928659T2 (en) 1998-10-15
AU4579789A (en) 1990-06-07
DE68926219T2 (en) 1996-11-14
EP0552813A3 (en) 1993-08-11
EP0547032A3 (en) 1993-08-11
ES2118150T3 (en) 1998-09-16
DE68928588T2 (en) 1998-08-13
EP0547033B1 (en) 1997-07-23
EP0547033A3 (en) 1993-08-11
AU635230B2 (en) 1993-03-18
US5000991B2 (en) 2000-07-11
DE68928588D1 (en) 1998-04-02
EP0372846B1 (en) 1996-04-10
ATE155757T1 (en) 1997-08-15
US5000991B1 (en) 1997-09-16
DE68928205D1 (en) 1997-08-28
ES2112344T3 (en) 1998-04-01
EP0552813B1 (en) 1998-04-29
KR19980027409A (en) 1998-07-15

Similar Documents

Publication Publication Date Title
KR0118112B1 (en) Process for producing thermoplastic polyester resin foam
JP4794335B2 (en) Method for producing foamed sheet container made of polylactic acid resin
EP1166990B1 (en) Method for producing foamed-in-mold product of aromatic polyester based resin
EP1160274B1 (en) Pre-expanded particles of crystalline aromatic polyester-based resin, and in-mold expanded product and expanded laminate using the same
KR0118102B1 (en) Thermoplastic polyester resin foam sheet
JP2528514B2 (en) Thermoplastic polyester resin foam sheet
CA2214570C (en) Food container produced from polyester resin foam sheet
JP2001269960A (en) Method for manufacturing in-mold foam molding made from aromatic polyester-based resin
JP3704047B2 (en) Pre-expanded particles of thermoplastic polyester resin and method for producing the same
AU652512B2 (en) Process for producing polyester resin foam
KR20230078138A (en) Foam sheet having improved contraction percentage
JP2000037805A (en) Foamed laminated sheet and molded container using the same
JPH11130897A (en) Polycarbonate resin foam
TW212806B (en)
JPH05320402A (en) Foamed polyester sheet and its production
JPH0547575B2 (en)
JP2666235B2 (en) Foamed polyester sheet and method for producing the same
JPH07179642A (en) Foamed polyester sheet and its production
JP2001026217A (en) Sun visor
JPH03200843A (en) Foamed sheet of thermoplastic polyester resin
JPH10138319A (en) Production of thermoplastic polyester resin foamed sheet
JPH09183860A (en) Production of polyester-based resin foam
JPH09174665A (en) Manufacture of polyester resin foamed sheet of superior moldability
JPH0673223A (en) Foamed polyester sheet and its production
JPH06207039A (en) Foamed polyester sheet and its production

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110617

Year of fee payment: 15

EXPY Expiration of term