JP2001269960A - Method for manufacturing in-mold foam molding made from aromatic polyester-based resin - Google Patents

Method for manufacturing in-mold foam molding made from aromatic polyester-based resin

Info

Publication number
JP2001269960A
JP2001269960A JP2000086940A JP2000086940A JP2001269960A JP 2001269960 A JP2001269960 A JP 2001269960A JP 2000086940 A JP2000086940 A JP 2000086940A JP 2000086940 A JP2000086940 A JP 2000086940A JP 2001269960 A JP2001269960 A JP 2001269960A
Authority
JP
Japan
Prior art keywords
heating
mold
steam
temperature
aromatic polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000086940A
Other languages
Japanese (ja)
Inventor
Akira Araki
晃 荒木
Tatsuya Eguchi
達也 江口
Hiroshi Hasegawa
浩 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2000086940A priority Critical patent/JP2001269960A/en
Publication of JP2001269960A publication Critical patent/JP2001269960A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an in-mold foam molding manufactured from aromatic polyester-based resin, satisfying both internal fusing and appearance. SOLUTION: In the method in which prefoaming particles of the aromatic polyester-based resin are filled into a mold, heated, cooled and so on for an in-mold foam molding having a specified shape to be manufactured. Substantial heating is performed by the steam with 0.03 to 0.1 MPa in pressure after the preheating by a heating medium with temperatures of 90 to 105 deg.C. The temperature of the heating medium is adjusted to the range from 90 to 105 deg.C according to the mixing ratio of air to the steam. In this case, the temperature adjustment by the heating medium of 90-105 deg.C is carried out at first by either unidirectional or reverse-unidirectional heating or carried out by both of them.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、芳香族ポリエステ
ル系樹脂による型内発泡成形体の製造方法に関するもの
であり、さらに詳しくは、工業部品、緩衝材等に使用で
きる低密度でかつ強度物性などの諸特性に優れた型内発
泡成形体の製造方法に関し、特にその成形体肉厚の比較
的厚いものを成形するのに好適な製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an in-mold foam molded article made of an aromatic polyester resin, and more particularly, to a low-density and strength physical property which can be used for industrial parts and cushioning materials. The present invention relates to a method for producing an in-mold foam molded article having excellent characteristics, and more particularly to a production method suitable for molding a molded article having a relatively large thickness.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】ポリ
エチレンテレフタレート樹脂に代表される芳香族ポリエ
ステル系樹脂は比較的安価で耐薬品性、耐溶剤性、耐候
性等の化学的性質、耐熱性、剛性、ガスバリヤー性等の
物理的性質に優れることが評価されて、電気・電子部
品、自動車用部材、工業用部材、フィルム、ボトル容器
等の包装分野に広く用いられている。このような発泡成
形体として、本出願人は、ポリエステル系樹脂の予備発
泡粒子の結晶化度を25%以下に制御し、この予備発泡
粒子を型内発泡成形すると粒子同士は互いに融着して目
的の型内発泡成形体が得られることを知見した(特開平
8−174590号公報)。
2. Description of the Related Art Aromatic polyester resins represented by polyethylene terephthalate resin are relatively inexpensive and have chemical properties such as chemical resistance, solvent resistance and weather resistance, heat resistance and rigidity. It has been evaluated for its excellent physical properties such as gas barrier properties, and is widely used in the field of packaging of electric / electronic parts, automotive parts, industrial parts, films, bottle containers and the like. As such a foamed molded article, the present applicant controls the crystallinity of the pre-expanded particles of the polyester resin to 25% or less, and when the pre-expanded particles are subjected to in-mold foam molding, the particles are fused to each other. It has been found that a desired in-mold foam molded product can be obtained (Japanese Patent Application Laid-Open No. 8-174590).

【0003】また、この成形体は粒子間に空隙がみられ
ないもので、耐熱性にも優れた成形体である。しかしな
がら、現在の型内発泡成形を行う成形機および成形方法
で嵩密度0.07〜0.04g/cm3以下の芳香族ポ
リエステル系樹脂の型内発泡成形品を成形すると、肉厚
が約25mm程度が限界となり、それ以上の肉厚による
成形品は内部融着不良か外観不良のどちらかが生じ、内
部融着と外観双方について満足できる成形品が得られな
い現象を生じた。
[0003] Further, this molded article has no voids between particles and is excellent in heat resistance. However, when an in-mold foam molded article of an aromatic polyester resin having a bulk density of 0.07 to 0.04 g / cm 3 or less is molded by a molding machine and a molding method for performing in-mold foam molding, the wall thickness is about 25 mm. The degree was limited, and a molded product having a larger thickness caused either poor internal fusion or poor appearance, and a phenomenon occurred in which a molded product satisfactory in both internal fusion and appearance was not obtained.

【0004】その主な理由は、上記した芳香族ポリエス
テル系樹脂の発泡粒子は温度に敏感であって、従来の成
形条件では蒸気が出た瞬間に成形品の表面だけが発泡融
着してしまい、成形品中に蒸気が入れなくなり、結果的
に融着不良を起し易いことが判った。ところで、成形品
の内部融着を大きく支配するのは、本加熱を行う前の一
方加熱工程で、従来の発泡成形方法ではボイラーで作っ
た蒸気を或る一定圧力に減圧して成形品の片側から反対
側に適して内部融着を促進させていたが、前記した芳香
族ポリエステル系樹脂は温度に敏感なので蒸気の温度を
下げて一方加熱する必要が生じたが、蒸気の温度は圧力
に依存し、105℃以下に下げようとすると、圧力が低
くなりすぎて、蒸気が得られなくなり、結果的に融着不
良を生じていた。
[0004] The main reason is that the above-mentioned foamed particles of the aromatic polyester resin are sensitive to temperature, and under the conventional molding conditions, only the surface of the molded article is foamed and fused at the moment when steam is emitted. It was found that steam could not enter into the molded product, resulting in poor fusion. By the way, it is one heating step before performing the main heating that largely controls the internal fusion of the molded article. In the conventional foam molding method, the steam produced by the boiler is reduced to a certain pressure and one side of the molded article is reduced. From the opposite side to promote internal fusion, but the above-mentioned aromatic polyester resin is sensitive to temperature, so it was necessary to lower the temperature of steam and heat it on the other hand, but the temperature of steam depends on pressure. However, if the temperature is lowered to 105 ° C. or lower, the pressure becomes too low, so that steam cannot be obtained, and as a result, poor fusion occurs.

【0005】そこで、本発明では芳香族ポリエステル系
樹脂による型内発泡成形体として内部融着および外観の
双方の点から満足できるものを提供できるよう鋭意研究
の末、発明をするに至ったものである。
In view of the above, the present invention has been intensively researched to provide an in-mold foamed molded article made of an aromatic polyester resin, which is satisfactory in terms of both internal fusion and appearance. is there.

【0006】[0006]

【課題を解決するための手段】本発明の芳香族ポリエス
テル系樹脂による型内発泡成形体の製造方法について
は、請求項1に記載したように芳香族ポリエステル系樹
脂の予備発泡粒子を成形型に充填し、加熱、冷却等を行
い、所定の形状の型内発泡成形体を製造する方法におい
て、本加熱の前に先ず90〜105℃の加熱媒体によっ
て加熱し、その後0.03〜0.1MPaの蒸気により
本加熱を行うことを特徴としているものであり、先ず9
0〜105℃の加熱媒体により加熱し、その後に本加熱
をするものゆえ、上記した樹脂の予備発泡粒子が発泡し
て成形品内部まで融着するに足る温度条件を充足し、内
部融着と外観の両立した発泡成形品が提供できることに
なる。
According to the method of the present invention for producing an in-mold foam molded article using an aromatic polyester resin, the pre-expanded particles of the aromatic polyester resin are molded into a mold as described in claim 1. In the method of filling, heating, cooling and the like to produce an in-mold foam molded article having a predetermined shape, first, before main heating, first heating with a heating medium at 90 to 105 ° C., and then 0.03 to 0.1 MPa The main heating is carried out by using steam.
Heating with a heating medium at 0 to 105 ° C., and then main heating, satisfying the temperature conditions sufficient for the pre-expanded particles of the resin to expand and fuse to the inside of the molded article, It is possible to provide a foam molded article having a compatible appearance.

【0007】また、90〜105℃に温度を調整する方
法としては、請求項2に記載したように蒸気にエアーを
混合させ、その比率により温度を調整することを特徴と
するものである。このエアー混合蒸気の使用により90
〜105℃の範囲内に温度調整がし易いという大きな利
点が生じる。さらに90〜105℃の温度調整を請求項
3に記載したように、一方加熱と逆一方加熱のうち先に
行う一方加熱によって行うか、または一方加熱と逆一方
加熱の両方によって行うことを特徴としており、成形品
として内部融着が良く80%以上の融着度が確保でき、
外観上も良好な成形品を提供できる。
The method for adjusting the temperature to 90 to 105 ° C. is characterized in that air is mixed with steam and the temperature is adjusted according to the ratio. By using this air-mixed steam, 90
There is a great advantage that the temperature can be easily adjusted within the range of -105 ° C. Further, as described in claim 3, the temperature adjustment of 90 to 105 ° C. is performed by performing one of the one-side heating and the one-side reverse heating, or by performing both the one-side heating and the reverse one-side heating. As a molded product, internal fusion is good and a fusion degree of 80% or more can be secured.
A molded article having good appearance can be provided.

【0008】[0008]

【発明の実施の形態】次いで、本発明の実施形態につい
て順次説明する。芳香族ポリエステル系樹脂による予備
発泡粒子を用いて成形金型への充填工程、一方加熱工
程、逆一方加熱工程および本加熱となる両面加熱工程を
行うものであって、90〜105℃、好ましくは95〜
100℃の加熱媒体による加熱は、一方加熱工程および
逆一方加熱うち先に行う一方加熱によって行うか、また
は一方加熱と逆一方加熱の両方の工程で行うものであ
り、エアー混合蒸気(エアーレーション)による加熱で
あって、蒸気設定圧力は0.02〜0.1MPa好まし
くは0.04〜0.06MPaの範囲内で上記した蒸気
温度を実現できるようエアーを混合使用するものであ
る。
Next, embodiments of the present invention will be sequentially described. Using a pre-expanded particles of an aromatic polyester-based resin, a filling step into a molding die, a one-side heating step, a reverse one-sided heating step and a double-sided heating step of main heating are performed, preferably at 90 to 105 ° C., preferably 95-
The heating by the heating medium at 100 ° C. is performed by one heating performed first in the one-side heating step and the reverse one-side heating, or is performed in both the one-side heating and the reverse one-side heating, and is a mixed air (aeration). The air is mixed and used so that the above-mentioned steam temperature can be realized within a set steam pressure of 0.02 to 0.1 MPa, preferably 0.04 to 0.06 MPa.

【0009】次いで、0.03〜0.1MPaの蒸気に
よる両面加熱による本加熱を行い、その後冷却を行い離
型して成形品を得るものである。上記本発明の実施形態
の詳細は図1の雄型10と雌型20による成形装置にお
ける符号101〜118を用い、これに名称を付した以
下のタイムチャートから明らかである。なお、図1にお
ける符号119,120は測温センサ等による温度測定
手段を示している。
Next, main heating is performed by heating both sides with steam of 0.03 to 0.1 MPa, and thereafter, cooling is performed and the mold is released to obtain a molded product. The details of the embodiment of the present invention will be apparent from the following time charts in which the reference numerals 101 to 118 in the molding apparatus using the male mold 10 and the female mold 20 in FIG. Note that reference numerals 119 and 120 in FIG. 1 indicate a temperature measuring means using a temperature measuring sensor or the like.

【0010】なお、95〜100℃の加熱媒体による加
熱を、一方加熱工程のみで行う場合は、雌型側からまた
は雄型側からの何れの型からの一方加熱であってもよ
い。
When heating with a heating medium at 95 to 100 ° C. is performed only in one heating step, one heating may be performed from either the female side or the male side.

【0011】[0011]

【表1】 [Table 1]

【0012】本発明の実施に用いる成形装置としては、
従来の発泡成形装置と異なる点は、低圧(0.01〜
0.02MPa)まで調整できる蒸気弁115と、エア
ーレーション用エアー弁116を雌型20側に設置し、
蒸気弁117とエアーレーション用エアー弁118を雄
型10側に設置し、90〜105℃、好ましくは95〜
100℃のエアー混合蒸気を雌型20側からか雄型10
側からの一方加熱工程で加熱媒体として用いる点にあ
り、上記タイムチャートでは雌型20側から行う一方加
熱工程に蒸気弁115とエアーレーション用エアー弁1
16とによってエアー混合蒸気を供給するようになって
いるが、一方加熱工程を雄型10側の蒸気弁117とエ
アーレーション用エアー弁118とによってエアー混合
蒸気を供給して実施してもよく、さらに一方加熱工程と
逆一方加熱工程の双方でエアー混合蒸気を供給して実施
してもよいものである。
[0012] The molding apparatus used for carrying out the present invention includes:
The difference from the conventional foam molding equipment is that low pressure (0.01 to
A steam valve 115 that can be adjusted to 0.02 MPa) and an aeration air valve 116 are installed on the female mold 20 side,
The steam valve 117 and the air valve 118 for aeration are installed on the male mold 10 side, and 90 to 105 ° C., preferably 95 to 105 ° C.
100 ° C air mixed steam from female side 20 or male side 10
In the above timing chart, the steam valve 115 and the aeration air valve 1 are used in the heating step performed from the female mold 20 side.
16, the heating step may be performed by supplying the air-mixed steam by the steam valve 117 and the aeration air valve 118 on the male mold 10 side. Further, the air-mixed steam may be supplied in both the one-side heating step and the reverse-side heating step to be performed.

【0013】上記タイムチャート中の保熱工程は省略し
て実施する場合もある。上記タイムチャートから明らか
なように、一方加熱工程と逆一方加熱工程は本発明にと
って必須であって、例えばエアーレーションを用いる以
下のA(例えば実施例1),B(例えば実施例2)のケ
ースがある。
[0013] In some cases, the heat retention step in the above time chart is omitted. As is clear from the above time chart, the one-side heating step and the reverse one-side heating step are indispensable for the present invention, for example, the following cases A (for example, Example 1) and B (for example, Example 2) using aeration. There is.

【0014】[0014]

【表2】 [Table 2]

【0015】なお、一方加熱工程と逆一方加熱工程との
エアーレーションとしてはあまり温度差をつけない方が
安定上好ましく、温度が低い場合時間をかけた方がよ
く、厚肉製品の場合、圧力を高くしてエアーレーション
の供給量を高めてやると、加熱時間が短くてよくなり、
サイクルアップにつながる。次に本発明の実施に用いる
予備発泡粒子となる予備発泡粒子について説明する。 <予備発泡粒子>本発明の製造方法に使用される芳香族
ポリエステル系樹脂の予備発泡粒子としては、従来から
使用されている汎用PET樹脂はもちろん、特にその結
晶化ピーク温度が120〜180℃、さらに好ましくは
130〜160℃であるものが好適である。
As for the aeration between the one heating step and the reverse one heating step, it is preferable that a small temperature difference is not obtained for stability. It is better to take a long time when the temperature is low. If you increase the supply rate of aeration by increasing the heating time, the heating time can be shortened,
It leads to cycle up. Next, the pre-expanded particles to be used in the practice of the present invention will be described. <Pre-expanded Particles> As the pre-expanded particles of the aromatic polyester resin used in the production method of the present invention, not only general-purpose PET resins conventionally used but also particularly those having a crystallization peak temperature of 120 to 180 ° C. More preferably, the temperature is 130 to 160 ° C.

【0016】結晶化ピーク温度は、加熱により結晶化速
度が最大となる温度を示すことから結晶化ピーク温度が
高いほど、結晶化速度が遅いといえる。汎用PET樹脂
からなる予備発泡粒子は結晶化ピーク温度が120℃よ
り低く、結晶化するスピードが非常に速い。これに対し
結晶化ピーク温度が120℃以上である予備発泡粒子は
結晶化の速度が遅いために、その結晶化度を、これまで
よりもさらに低い範囲に制限することが可能となるの
で、型内発泡成形工程における結晶化の進行を抑制する
ことが可能となるので好ましい。
Since the crystallization peak temperature indicates the temperature at which the crystallization rate is maximized by heating, it can be said that the higher the crystallization peak temperature, the lower the crystallization rate. The pre-expanded particles made of a general-purpose PET resin have a crystallization peak temperature lower than 120 ° C., and the crystallization speed is very fast. On the other hand, since the pre-expanded particles having a crystallization peak temperature of 120 ° C. or higher have a low crystallization speed, the degree of crystallization can be limited to a lower range than before. This is preferable because it is possible to suppress the progress of crystallization in the inner foam molding step.

【0017】上記結晶化ピーク温度は、示差走査熱量計
(DSC:Differential Scannin
g Calorimetry)を使用して、日本工業規
格JIS K7121所載の測定方法に準じて測定し
た。具体的には、まず測定試料としての所定量の予備発
泡粒子をDSCの測定容器にセットし、10℃/分の昇
温速度で280℃まで昇温し、そのままの温度(280
℃)で10分間保持した後室温(23℃)まで放冷し、
そのあと再び10℃/分の昇温速度で昇温しながら、上
記結晶化ピーク温度を測定する。
The crystallization peak temperature is determined by a differential scanning calorimeter (DSC).
g Calorimetry) according to the measurement method described in Japanese Industrial Standards JIS K7121. Specifically, first, a predetermined amount of pre-expanded particles as a measurement sample is set in a DSC measurement container, and the temperature is raised to 280 ° C. at a rate of 10 ° C./min.
℃) for 10 minutes, then allowed to cool to room temperature (23 ℃),
Then, the crystallization peak temperature is measured while raising the temperature again at a rate of 10 ° C./min.

【0018】予備発泡粒子の結晶化ピーク温度を上記の
範囲内とするためには、当該予備発泡粒子を形成する芳
香族ポリエステル系樹脂を構成するジカルボン酸成分、
およびジオール成分の組成を変更して樹脂の分子構造を
モディファイすればよい。具体的にはたとえば、ジカル
ボン酸として式(1):
In order to keep the crystallization peak temperature of the pre-expanded particles within the above range, a dicarboxylic acid component constituting the aromatic polyester resin forming the pre-expanded particles,
The molecular structure of the resin may be modified by changing the composition of the diol component. Specifically, for example, a dicarboxylic acid represented by the formula (1):

【0019】[0019]

【化1】 Embedded image

【0020】で表されるイソフタル酸を使用するか、あ
るいはジオールとして式(2):
Either using isophthalic acid represented by the following formula or as a diol of the formula (2):

【0021】[0021]

【化2】 Embedded image

【0022】で表される1,4−ジクロヘキサンジメタ
ノールを使用するか、またはこの両者を併用するととも
に、上記イソフタル酸から誘導されるユニット(以下、
IPAユニットと称する)および/または1,4−シク
ロヘキサンジメタノールから誘導されるユニット(以
下、CHDMユニットと称する)の、芳香族ポリエステ
ル系樹脂中での含有割合(いずれか一方を単独で使用す
る場合はその単独での含有割合、両者を併用する場合は
その合計の含有割合)を0.5〜10重量%の範囲に調
製する。
The 1,4-dichlorohexanedimethanol represented by the formula (1) or a combination of the two, and a unit derived from the above-mentioned isophthalic acid (hereinafter, referred to as
The content ratio of a unit derived from 1,4-cyclohexanedimethanol (hereinafter referred to as a CHDM unit) and / or a unit derived from 1,4-cyclohexanedimethanol in an aromatic polyester-based resin (when either one is used alone) Is used alone, or when both are used together, the total content is adjusted to a range of 0.5 to 10% by weight.

【0023】なお、IPAユニットおよび/またはCH
DMユニットの含有割合は、粒子同士の融着率を顕著に
改善するためには、上記の範囲内でも特に0.6〜9.
0重量%程度であるのが好ましく、0.7〜8.0重量
%程度であるのがさらに好ましい。イソフタル酸、およ
び1,4―シクロヘキサンジメタノールとともに芳香族
ポリエステル系樹脂を構成する他の成分のうちジカルボ
ン酸としては、たとえばテレフタル酸やフタル酸などが
挙げられる。
The IPA unit and / or CH
In order to remarkably improve the fusion ratio between particles, the content ratio of the DM unit is particularly preferably 0.6 to 9.
It is preferably about 0% by weight, and more preferably about 0.7 to 8.0% by weight. Among the other components constituting the aromatic polyester resin together with isophthalic acid and 1,4-cyclohexanedimethanol, examples of the dicarboxylic acid include terephthalic acid and phthalic acid.

【0024】またジオール成分としては、たとえばエチ
レングリコール、α―ブチレングリコール(1,2―ブ
タンジオール)、β―ブチレングリコール(1,3−ブ
タンジオール)、テトラメチレングリコール(1,4−
ブタンジオール)、2,3−ブチレングリコール(2,
3−ブタンジオール)、ネオペンチルグリコールなどが
挙げられる。また、芳香族ポリエステル系樹脂の原料に
は、上記の各成分に加えて、たとえば酸成分として、ト
リメリット酸などのトリカルボン酸、ピロメリット酸な
どのテトラカルボン酸などの三価以上の多価カルボン酸
やその無水物、あるいはアルコール成分として、グリセ
リンなどのトリオール、ペンタエリスリトールなどのテ
トラオールなどの、三価以上の多価アルコールなどを少
量、含有させてもよい。
Examples of the diol component include ethylene glycol, α-butylene glycol (1,2-butanediol), β-butylene glycol (1,3-butanediol), and tetramethylene glycol (1,4-butanediol).
Butanediol), 2,3-butylene glycol (2,
3-butanediol), neopentyl glycol and the like. In addition, the raw material of the aromatic polyester resin may include, in addition to the above components, for example, as an acid component, a trivalent or higher polyvalent carboxylic acid such as a tricarboxylic acid such as trimellitic acid or a tetracarboxylic acid such as pyromellitic acid. A small amount of a trihydric or higher polyhydric alcohol such as a triol such as glycerin and a tetraol such as pentaerythritol may be contained as an acid, an anhydride thereof, or an alcohol component.

【0025】また本発明では、芳香族ポリエステル系樹
脂に、つぎのような添加物を添加することができる。添
加剤としては、発泡剤の他に、たとえば難燃剤、帯電防
止剤、着色剤、気泡調製剤、溶融張力改質剤、酸化防止
剤などが挙げられる。発泡剤としては、化学発泡剤、物
理発泡剤のいずれも使用することができる。化学発泡剤
としては、たとえばアゾジカルボンアミド、ジニトロソ
ペンタメチレンテトラミン、ヒドラゾルジカルボンアミ
ド、重炭酸ナトリウムなどが挙げられる。
In the present invention, the following additives can be added to the aromatic polyester resin. Examples of the additives include a flame retardant, an antistatic agent, a coloring agent, a foam regulator, a melt tension modifier, an antioxidant, and the like, in addition to the foaming agent. As the foaming agent, any of a chemical foaming agent and a physical foaming agent can be used. Examples of the chemical blowing agent include azodicarbonamide, dinitrosopentamethylenetetramine, hydrazoldicarbonamide, and sodium bicarbonate.

【0026】また物理発泡剤としては、たとえばプロパ
ン、n−ブタン、イソブタン、n−ペンタン、イソペン
タン、シクロペンタン、ヘキサンのような飽和炭化水素
や、塩化メチル、フレオン(登録商標)のようなハロゲ
ン化炭化水素、ジメチルエーテル、メチル−tert−
ブチルエーテルのようなエーテル化合物などが挙げられ
る。さらに二酸化炭素、窒素などの不活性ガスを発泡剤
として使用することもできる。
Examples of the physical blowing agent include saturated hydrocarbons such as propane, n-butane, isobutane, n-pentane, isopentane, cyclopentane and hexane, and halogenated compounds such as methyl chloride and Freon (registered trademark). Hydrocarbon, dimethyl ether, methyl-tert-
Examples include ether compounds such as butyl ether. Further, an inert gas such as carbon dioxide and nitrogen can be used as a blowing agent.

【0027】気泡調製剤としては、ポリ四フッ化エチレ
ン樹脂が好適である。また本発明において芳香族ポリエ
ステル系樹脂には、その結晶性や結晶化の速度に大きな
影響を及ぼさない範囲で、たとえばポリプロピレン系樹
脂などのポリオレフィン系樹脂、ポリエステル系などの
熱可塑性エラストマー樹脂、ポリカーボーネート樹脂、
アイオノマー樹脂などを添加してもよい。溶融張力改質
剤としては、グリシジルフタレートのようなエポキシ化
合物、ピロメリット酸二無水物のような酸無水物、炭酸
ナトリウムのようなIa、IIa族の金属化合物などを単
体で、もしくは二種以上混合して使用することができ
る。
[0027] Polytetrafluoroethylene resin is preferred as the foam control agent. In the present invention, the aromatic polyester-based resin includes, for example, a polyolefin-based resin such as a polypropylene-based resin, a thermoplastic elastomer resin such as a polyester-based resin, and a polycarbonate resin within a range that does not significantly affect the crystallinity and the rate of crystallization. Nate resin,
An ionomer resin or the like may be added. As the melt tension modifier, an epoxy compound such as glycidyl phthalate, an acid anhydride such as pyromellitic dianhydride, an Ia or IIa group metal compound such as sodium carbonate alone, or two or more kinds It can be mixed and used.

【0028】予備発泡粒子は、芳香族ポリエステル系樹
脂を押出発泡させた押出発泡体を粒子状に切断して製造
できる。上記によれば、芳香族ポリエステル系樹脂に発
泡剤を含浸させる工程を省略して時間、コストおよび手
間を省くとともに、予備発泡粒子の結晶化度をより低く
して、型内発泡成形時の粒子同士の融着性を改善するこ
とができる。かくして製造される予備発泡粒子の大きさ
は、平均粒径で表しておよそ0.5〜5mm程度が好ま
しい。
The pre-expanded particles can be produced by cutting an extruded foam obtained by extruding an aromatic polyester resin into particles. According to the above, the step of impregnating the aromatic polyester-based resin with a blowing agent is omitted to save time, cost and labor, and to further reduce the crystallinity of the pre-expanded particles, thereby reducing the particle size during in-mold foam molding. It is possible to improve the fusibility of each other. The size of the pre-expanded particles thus produced is preferably about 0.5 to 5 mm as an average particle diameter.

【0029】結晶化度(%)は、先に述べた結晶化ピー
ク温度の測定と同じように、示差走査熱量計(DSC)
を使用して、日本工業規格JIS K7121所載の測
定方法に準じて測定した冷結晶化熱量と融解熱量とか
ら、次式によって求めた。
The degree of crystallinity (%) is measured by a differential scanning calorimeter (DSC) in the same manner as in the measurement of the crystallization peak temperature described above.
And the heat of cold crystallization and the heat of fusion measured according to the measurement method described in Japanese Industrial Standards JIS K7121 using the following equation.

【0030】[0030]

【数1】 (Equation 1)

【0031】なお式中の、完全結晶PETのモルあたり
の融解熱量は、高分子データハンドブック〔培風館発
行〕の記載から26.9kJとした。具体的には、測定
試料としての所定量の予備発泡粒子をDSCの測定容器
にセットして、10℃/分の昇温速度で昇温しながら冷
結晶化熱量と融解熱量とを測定し、その測定結果から、
上記式に基づいて予備発泡粒子の結晶化度を求めた。予
備発泡粒子の嵩密度は、軽量で、しかも機械的強度、耐
熱性、断熱性、緩衝性、耐薬品性などに優れた型内発泡
成形体を得るために、本発明では、0.01〜1.0g
/cm3の範囲が好ましい。
In the formula, the heat of fusion per mole of the perfectly crystalline PET was 26.9 kJ from the description in the Polymer Data Handbook [published by Baifukan]. Specifically, a predetermined amount of pre-expanded particles as a measurement sample is set in a DSC measurement container, and the heat of cold crystallization and the heat of fusion are measured while heating at a heating rate of 10 ° C./min, From the measurement results,
The crystallinity of the pre-expanded particles was determined based on the above equation. The bulk density of the pre-expanded particles is, in the present invention, 0.01 to less weight, in order to obtain a light-weight, mechanical strength, heat resistance, heat insulation, buffering properties, excellent in chemical resistance and the like in the mold. 1.0g
/ Cm 3 is preferred.

【0032】なお予備発泡粒子の嵩密度は、通常は、上
記範囲内でも特に0.03〜0.8g/cm3程度であ
るのが好ましく、0.04〜0.6g/cm3程度であ
るのがさらに好ましい。ただしより軽量の型内発泡成形
体を製造するためには、予備発泡粒子の嵩密度は、前記
0.01〜1.0g/cm3の範囲内でも特に0.1g
/cm3以下であるのが好ましい。
The bulk density of [0032] Note that pre-expanded particles are usually is preferably in particular 0.03 to 0.8 g / cm 3 approximately even within the above range, on the order 0.04~0.6g / cm 3 Is more preferred. However, in order to produce a lighter in-mold foam molded product, the bulk density of the pre-expanded particles is preferably 0.1 g even in the range of 0.01 to 1.0 g / cm 3.
/ Cm 3 or less.

【0033】0.1g/cm3以下という比較的小さな
嵩密度の予備発泡粒子を製造する場合は、既述の方法に
よって製造した予備発泡粒子に加圧状態でガスを気相含
浸した後、加熱して再発泡して、嵩密度をより小さく調
製する工程を採用することができる。再発泡工程は2回
以上、繰り返し行っても構わない。上記再発泡工程にお
いて予備発泡粒子に含浸させるガスとしては、窒素、空
気、炭酸ガス、ヘリウム、メタン、エタン、プロパン、
ブタンなどが挙げられる。
When pre-expanded particles having a relatively small bulk density of 0.1 g / cm 3 or less are to be produced, the pre-expanded particles produced by the above-described method are gas-phase impregnated under pressure and then heated. And then re-foaming to reduce the bulk density. The re-foaming step may be repeated twice or more. As the gas to be impregnated in the pre-expanded particles in the re-expanding step, nitrogen, air, carbon dioxide, helium, methane, ethane, propane,
Butane and the like.

【0034】[0034]

【実施例】<実施例1>予備発泡粒子を雄型10と雌型
20を閉鎖して形成された、金型キャビティ内に充填し
た後、まず雌型側の蒸気弁115とエアーレーション用
エアー弁116を開き、かつ雄型側のドレン弁107を
開いて雌型側からゲージ圧0.04MPaの蒸気および
調圧されたエアーレーション用エアー(蒸気投入側チャ
ンバー内温度で100℃になるように調圧する)を40
秒間導入し(一方加熱)、次いで雄型側からゲージ圧
0.04MPaの蒸気を15秒間導入して(逆一方加
熱)、それぞれ金型キャビティ内に導入して空気を除去
し、かつ予備発泡粒子を融着した。
<Example 1> After filling the pre-expanded particles into a mold cavity formed by closing the male mold 10 and the female mold 20, first, the steam valve 115 on the female mold side and air for aeration are provided. The valve 116 is opened, and the male side drain valve 107 is opened. From the female side, steam having a gauge pressure of 0.04 MPa and regulated aeration air (so that the temperature in the chamber on the steam inlet side is 100 ° C.) 40)
For 2 seconds (one-side heating), and then steam with a gauge pressure of 0.04 MPa was introduced from the male side for 15 seconds (one-side heating) to introduce air into the mold cavities to remove air, and pre-expanded particles. Was fused.

【0035】次いで雄型雌型両方の蒸気弁104、10
5を開き、かつドレン弁を閉じて、金型キャビティ内
に、ゲージ圧0.04MPaの蒸気を30秒間、導入し
て(本加熱)型内発泡成形(発泡と融着)した。この時
のチャンバー内温は110℃であった。次いで蒸気弁、
ドレン弁をすべて閉じて、金型キャビティ内の型内発泡
成形体を120秒間放置した。
Next, both male and female steam valves 104, 10
5 was opened and the drain valve was closed, and steam at a gauge pressure of 0.04 MPa was introduced into the mold cavity for 30 seconds (main heating) to perform in-mold foam molding (foaming and fusion). At this time, the temperature in the chamber was 110 ° C. Then a steam valve,
The drain valves were all closed, and the in-mold foam molded product in the mold cavity was left for 120 seconds.

【0036】最後に雄型雌型両方の冷却水ノズルから注
水して型内発泡成形体を冷却し、金型表面温度が50℃
にまで低下したことを確認した時点で金型を開いて、型
内発泡成形体を取り出した。得られた型内発泡成形体
(タテ400×ヨコ300×肉厚100mm)は融着率
90%(目視による判断)と高い融着性を示し、外観
(表面のびおよび型の出具合で目視)良好であった。 <実施例2>予備発泡粒子を雄型10と雌型20を閉鎖
して形成された、金型キャビティ内に充填した後、まず
雌型側の蒸気弁115とエアーレーション用エアー弁1
16を開き、かつ雄型側のドレン弁107を開いて雌型
側からゲージ圧0.04MPaの蒸気および調圧された
エアーレーション用エアー(蒸気投入側チャンバー内温
度で100℃になるように調圧する)を40秒間導入し
(一方加熱)、次いで雄型側の蒸気弁117とエアーレ
ーション用エアー弁118を開き、かつ雌型側のドレン
弁106を開いて雄型側からゲージ圧0.04MPaの
蒸気および調圧されたエアーレーション用エアー(蒸気
投入側チャンバー内温度で100℃になるように調圧す
る)を40秒間導入し(逆一方加熱)、それぞれ金型キ
ャビティ内に導入して空気を除去し、かつ予備発泡粒子
を融着した。
Finally, water was injected from both the male and female cooling water nozzles to cool the in-mold foam molded product.
When it was confirmed that the temperature had dropped to, the mold was opened, and the in-mold foam molded product was taken out. The obtained in-mold foam molded article (vertical 400 × width 300 × wall thickness 100 mm) shows a high fusibility of a fusion rate of 90% (visual judgment), and has an external appearance (visuality by surface extension and appearance of the mold). It was good. <Example 2> After filling the pre-expanded particles into a mold cavity formed by closing the male mold 10 and the female mold 20, first, the steam valve 115 on the female mold side and the air valve 1 for aeration are provided.
16 and the drain valve 107 on the male side is opened, and steam with a gauge pressure of 0.04 MPa and regulated aeration air (adjusted to 100 ° C. in the steam inlet side chamber) from the female side. ) For 40 seconds (while heating), then open the male side steam valve 117 and the aeration air valve 118 and open the female side drain valve 106 to open a gauge pressure of 0.04 MPa from the male side. And the adjusted aeration air (adjusted so that the temperature in the chamber on the steam input side becomes 100 ° C.) for 40 seconds (reverse one-side heating), and then introduced into the mold cavity to release the air. It was removed and the pre-expanded particles were fused.

【0037】次いで雄型雌型両方の蒸気弁104、10
5を開き、かつドレン弁を閉じて、金型キャビティ内
に、ゲージ圧0.04MPaの蒸気を30秒間、導入し
て(本加熱)型内発泡成形(発泡と融着)した。この時
のチャンバー内温は110℃であった。次いで蒸気弁、
ドレン弁をすべて閉じて、金型キャビティ内の型内発泡
成形体を120秒間放置した。
Next, both male and female steam valves 104, 10
5 was opened and the drain valve was closed, and steam at a gauge pressure of 0.04 MPa was introduced into the mold cavity for 30 seconds (main heating) to perform in-mold foam molding (foaming and fusion). At this time, the temperature in the chamber was 110 ° C. Then a steam valve,
The drain valves were all closed, and the in-mold foam molded product in the mold cavity was left for 120 seconds.

【0038】最後に雄型雌型両方の冷却水ノズルから注
水して型内発泡成形体を冷却し、金型表面温度が50℃
にまで低下したことを確認した時点で金型を開いて、型
内発泡成形体を取り出した。得られた型内発泡成形体
(タテ400×ヨコ300×肉厚100mm)は融着率
90%(目視による判断)と高い融着性を示し、外観
(表面のびおよび型の出具合で目視)良好であった。 <比較例1> (エアーレーションなし=通常のEPS―発泡ポリスチ
レン成形方法)予備発泡粒子を、雄型10と雌型20と
を閉鎖して形成された、金型キャビティ内に充填した
後、まず雌型側の蒸気弁104を開き、かつ雄型側のド
レン弁107を開いて、雌型側からゲージ圧0.04M
Paの蒸気を15秒間導入し(一方加熱)、次いで雄型
側からゲージ圧0.04MPaの蒸気を15秒間導入し
て(逆一方加熱)、それぞれ金型キャビティ内に導入し
て空気を除去し、かつ予備発泡粒子を融着した。
Finally, water was injected from both male and female cooling water nozzles to cool the in-mold foam molded product.
When it was confirmed that the temperature had dropped to, the mold was opened, and the in-mold foam molded product was taken out. The obtained in-mold foam molded article (vertical 400 × width 300 × wall thickness 100 mm) shows a high fusibility of a fusion rate of 90% (visual judgment), and has an external appearance (visuality by surface extension and appearance of the mold). It was good. <Comparative Example 1> (No aeration = ordinary EPS-expanded polystyrene molding method) After filling the pre-expanded particles into the mold cavity formed by closing the male mold 10 and the female mold 20, first, The female side steam valve 104 is opened, and the male side drain valve 107 is opened.
Steam of Pa was introduced for 15 seconds (one-side heating), and then steam of 0.04 MPa gauge pressure was introduced from the male mold side for 15 seconds (one-side heating), and introduced into the mold cavity to remove air. And the pre-expanded particles were fused.

【0039】次いで雄型雌型両方の蒸気弁104、10
5を開き、かつドレン弁を閉じて、金型キャビティ内
に、ゲージ圧0.07MPaの蒸気を15秒間、導入し
て(本加熱)型内発泡成形(発泡と融着)した。次いで
蒸気弁、ドレン弁をすべて閉じて、金型キャビティ内の
型内発泡成形体を120秒間放置した。最後に雄型雌型
両方の冷却水ノズルから注水して型内発泡成形体を冷却
し、金型表面温度が50℃にまで低下したことを確認し
た時点で金型を開いて、型内発泡成形体を取り出した。
Next, both male and female steam valves 104, 10
5 was opened and the drain valve was closed, and steam at a gauge pressure of 0.07 MPa was introduced into the mold cavity for 15 seconds (main heating) to perform in-mold foam molding (foaming and fusion). Next, the steam valve and the drain valve were all closed, and the in-mold foam molded product in the mold cavity was left for 120 seconds. Finally, water was injected from both the male and female cooling water nozzles to cool the in-mold foam molded product. When it was confirmed that the mold surface temperature had dropped to 50 ° C., the mold was opened and the in-mold foaming was performed. The molded body was taken out.

【0040】得られた型内発泡成形体(タテ400×ヨ
コ300×肉厚30mm)は、融着率も20%と非常に
悪く、表面状態は収縮して良好な物は得られなかった。 <比較例2> (エアーレーション成形でチャンバー内温度が低い場
合)予備発泡粒子を、雄型10と雌型20とを閉鎖して
形成された、金型キャビティ内に充填した後、まず雌型
側の蒸気弁(図面内バルブ115)とエアーレーション
弁(図面内バルブ116)を開き、かつ雄型側のドレン
弁107を開いて雌型側からゲージ圧0.04MPaの
蒸気および調圧されたエアーレーション用エアー(蒸気
投入側チャンバー内温度で80℃になるように調圧す
る)を40秒間導入し(一方加熱)、次いで雄型側から
ゲージ圧0.04MPaの蒸気を15秒間導入して(逆
一方加熱)、それぞれ金型キャビティ内に導入して空気
を除去し、かつ予備発泡粒子と融着した。
The obtained in-mold foam molded article (vertical 400.times.horizontal 300.times.thickness 30 mm) also had a very poor fusion ratio of 20%, and the surface condition was shrunk, so that a good product could not be obtained. <Comparative Example 2> (When the temperature in the chamber is low by aeration molding) After filling the pre-expanded particles into a mold cavity formed by closing the male mold 10 and the female mold 20, first, the female mold The steam valve (valve 115 in the drawing) and the aeration valve (valve 116 in the drawing) are opened, and the drain valve 107 on the male side is opened, and steam with a gauge pressure of 0.04 MPa and pressure regulation are performed from the female side. Aeration air (pressure adjusted to 80 ° C. in the chamber on the steam input side) is introduced for 40 seconds (while heating), and steam with a gauge pressure of 0.04 MPa is introduced from the male side for 15 seconds ( (Reverse heating)), each was introduced into a mold cavity to remove air, and fused with the pre-expanded particles.

【0041】次いで雄型雌型両方の蒸気弁104、10
5を開き、かつドレン弁を閉じて、金型キャビティ内に
ゲージ圧0.04MPaの蒸気を30秒間、導入して
(本加熱)型内発泡成形(発泡と融着)した。このとき
のチャンバー内温は110℃であった。次いで蒸気弁、
ドレン弁をすべて閉じて、金型キャビティ内の型内発泡
成形体を120秒間放置した。
Next, both the male and female steam valves 104, 10
5 was opened, the drain valve was closed, and steam at a gauge pressure of 0.04 MPa was introduced into the mold cavity for 30 seconds (main heating) to perform in-mold foam molding (foaming and fusion). At this time, the temperature in the chamber was 110 ° C. Then a steam valve,
The drain valves were all closed, and the in-mold foam molded product in the mold cavity was left for 120 seconds.

【0042】最後に雄型雌型両方の冷却水ノズルから注
水して型内発泡成形体を冷却し、金型表面温度が50℃
にまで低下したことを確認した時点で金型を開いて、型
内発泡成形体を取り出した。得られた型内発泡成形体
(タテ400×ヨコ300×肉厚100mm)は融着率
は20%と非常に低く良好な成形品は得られなかった。 <比較例3> (エアーレーション成形でチャンバー内温度が高い場
合)予備発泡粒子を、雄型10と雌型20とを閉鎖して
形成された、金型キャビティ内に充填した後、まず雌型
側の蒸気弁115とエアーレーション用エアー弁116
を開き、かつ雄型側のドレン弁107を開いて雌型側か
らゲージ圧0.04MPaの蒸気および調圧されたエア
ーレーション用エアー(蒸気投入側チャンバー内温度で
110℃になるように調圧する)を40秒間導入し(一
方加熱)、次いで雄型側からゲージ圧0.04MPaの
蒸気を15秒間導入して(逆一方加熱)、それぞれ金型
キャビティ内に導入して空気を除去し、かつ予備発泡粒
子を融着した。
Finally, water was injected from both the male and female cooling water nozzles to cool the in-mold foam molded product.
When it was confirmed that the temperature had dropped to, the mold was opened, and the in-mold foam molded product was taken out. The obtained in-mold foam molded article (vertical 400 × horizontal 300 × wall thickness 100 mm) had a very low fusion rate of 20%, and a good molded product could not be obtained. <Comparative Example 3> (When the temperature in the chamber is high by aeration molding) After filling the pre-expanded particles into a mold cavity formed by closing the male mold 10 and the female mold 20, first, the female mold Side steam valve 115 and aeration air valve 116
And the drain valve 107 on the male side is opened, and steam with a gauge pressure of 0.04 MPa and regulated aeration air (regulated so that the temperature in the chamber on the steam input side becomes 110 ° C.) from the female side. ) Was introduced for 40 seconds (one-side heating), then steam with a gauge pressure of 0.04 MPa was introduced from the male mold side for 15 seconds (one-side heating), and introduced into each mold cavity to remove air, and The pre-expanded particles were fused.

【0043】次いで雄型雌型両方の蒸気弁104、10
5を開き、かつドレン弁を閉じて、金型キャビティ内
に、ゲージ圧0.04MPaの蒸気を30秒間導入して
(本加熱)型内発泡成形(発泡と融着)した。このとき
のチャンバー内温は110℃であった。次いで蒸気弁、
ドレン弁をすべて閉じて、金型キャビティ内の型内発泡
成形体を120秒間放置した。
Next, both male and female steam valves 104, 10
5 was opened, the drain valve was closed, and steam at a gauge pressure of 0.04 MPa was introduced into the mold cavity for 30 seconds (main heating) to perform in-mold foam molding (foaming and fusion). At this time, the temperature in the chamber was 110 ° C. Then a steam valve,
The drain valves were all closed, and the in-mold foam molded product in the mold cavity was left for 120 seconds.

【0044】最後に雄型雌型両方の冷却水ノズルから注
水して型内発泡成形体を冷却し、金型表面温度が50℃
にまで低下したことを確認した時点で金型を開いて、型
内発泡成形体を取り出した。得られた型内発泡成形体
(タテ400×ヨコ300×肉厚100mm)は融着率
20%と非常に低く良好な成形品は得られなかった。上
記実施例および比較例1〜3で使用した予備発泡粒子と
しては以下のFPETと称するものを使用した。
Finally, water was injected from the cooling water nozzles of both the male and female molds to cool the foamed molded article in the mold.
When it was confirmed that the temperature had dropped to, the mold was opened, and the in-mold foam molded product was taken out. The obtained in-mold foam molded product (vertical 400 × width 300 × wall thickness 100 mm) had a very low fusion rate of 20%, and a good molded product was not obtained. As the pre-expanded particles used in the above Examples and Comparative Examples 1 to 3, the following FPET was used.

【0045】エチレングリコールとテレフタル酸を重縮
合反応させて合成された芳香族ポリエステル系樹脂(T
g:68℃)100重量部と、改質剤としてのピロメリ
ット酸二無水物0.03重量部と、改質助剤としての炭
酸ナトリウム0.03重量部とを押し出し機(口径:6
5mm、L/D比:35)に投入し、スクリューの回転
数50rpm、バレル温度270〜290℃の条件で溶
融、混練しながら、バレルの途中から、発泡剤としての
ブタン(n−ブタン/イソブタン=7/3)を混合物に
対して1重量%の割合で注入した。
An aromatic polyester resin (T) synthesized by polycondensation reaction of ethylene glycol and terephthalic acid
g: 68 ° C.) 100 parts by weight, 0.03 parts by weight of pyromellitic dianhydride as a modifier, and 0.03 parts by weight of sodium carbonate as a modifying aid were extruded (caliber: 6).
5 mm, L / D ratio: 35), melted and kneaded under the conditions of a screw rotation speed of 50 rpm and a barrel temperature of 270 to 290 ° C., butane butane (n-butane / isobutane) as a foaming agent was fed from the middle of the barrel. = 7/3) was injected at a rate of 1% by weight with respect to the mixture.

【0046】次に、押出機のバレルの先端に接続したマ
ルチノズル金型(直線上に、直径0.8mmのノズルが
15個、配置されたもの)の各ノズルを通して押出発泡
させた後、冷却水槽で冷却した。そして冷却されたスト
ランド状の押出発泡体を十分に水切りした後、ペレタイ
ザーを用いて略円柱状に切断して予備発泡粒子とした。
予備発泡粒子の嵩密度は0.13g/cm3、粒径は
1.4〜2.5mm結晶化度は9.0%、結晶化ピーク
温度は126.0℃であった。
Next, the mixture was extruded and foamed through each nozzle of a multi-nozzle mold (15 nozzles having a diameter of 0.8 mm arranged on a straight line) connected to the tip of the barrel of the extruder, and then cooled. Cooled in a water bath. Then, after the cooled strand-shaped extruded foam was sufficiently drained, it was cut into a substantially columnar shape using a pelletizer to obtain pre-expanded particles.
The bulk density of the pre-expanded particles was 0.13 g / cm 3 , the particle size was 1.4 to 2.5 mm, the crystallinity was 9.0%, and the crystallization peak temperature was 126.0 ° C.

【0047】本発明の製造方法による使用原料と成形可
能肉厚の範囲は以下のように確認された。 <使用原料> <成形可能肉厚> FPET予備発泡粒子(嵩密度0.045g/cm3) 100mm FPET予備発泡粒子(嵩密度0.068g/cm3) 100mm FPET予備発泡粒子(嵩密度0.135g/cm3) 50mm
The raw materials used and the range of the moldable wall thickness according to the production method of the present invention were confirmed as follows. <Raw materials><Moldable wall thickness> FPET pre-expanded particles (bulk density 0.045 g / cm 3 ) 100 mm FPET pre-expanded particles (bulk density 0.068 g / cm 3 ) 100 mm FPET pre-expanded particles (bulk density 0.135 g) / Cm 3 ) 50mm

【0048】[0048]

【発明の効果】以上のような本発明による芳香族ポリエ
ステル系樹脂による型内発泡成形体の製造方法の採用に
て、成形品としては内部融着と外観の両方から満足でき
るものが提供できた。
As described above, by adopting the above-mentioned method for producing an in-mold foam molded article using an aromatic polyester resin according to the present invention, a molded article which is satisfactory from both the internal fusion and the appearance can be provided. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に用いる発泡成形装置の一例を
示した断面図である。
FIG. 1 is a sectional view showing an example of a foam molding apparatus used in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 雄型 20 雌型 115 蒸気弁 116 エアーレーション用エアー弁 10 Male type 20 Female type 115 Steam valve 116 Air valve for aeration

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】芳香族ポリエステル系樹脂の予備発泡粒子
を成形型に充填し、加熱、冷却等を行い、所定の形状の
型内発泡成形体を製造する方法において、本加熱の前に
先ず90〜105℃の加熱媒体によって加熱し、その後
0.03〜0.1MPaの蒸気により本加熱を行うこと
を特徴とする芳香族ポリエステル系樹脂による型内発泡
成形体の製造方法。
1. A method of filling pre-expanded particles of an aromatic polyester resin into a mold, heating, cooling, etc., to produce an in-mold foam molded article having a predetermined shape, first of all, before heating. A method for producing an in-mold foam molded article made of an aromatic polyester resin, comprising heating with a heating medium at a temperature of about 105 ° C. and subsequently performing main heating with a steam of 0.03 to 0.1 MPa.
【請求項2】加熱媒体を90〜105℃に温度調整する
方法として、蒸気にエアーを混合させ、その比率により
温度調整することを特徴とする請求項1記載の芳香族ポ
リエステル系樹脂による型内発泡成形体の製造方法。
2. The method according to claim 1, wherein the temperature of the heating medium is adjusted to 90 to 105 ° C. by mixing air with steam and adjusting the temperature by the ratio. A method for producing a foam molded article.
【請求項3】加熱媒体の90〜105℃の温度調整を、
一方加熱と逆一方加熱のうち先に行う一方加熱によって
行うか、一方加熱と逆一方加熱の両方によって行うこと
を特徴とする請求項1または2記載の芳香族ポリエステ
ル系樹脂による型内発泡成形体の製造方法。
3. The method of controlling the temperature of the heating medium at 90 to 105 ° C.
The in-mold foam molded article made of an aromatic polyester resin according to claim 1 or 2, wherein the one-side heating and the one-side heating are performed first by one-side heating or by both one-side heating and one-side reverse heating. Manufacturing method.
JP2000086940A 2000-03-27 2000-03-27 Method for manufacturing in-mold foam molding made from aromatic polyester-based resin Pending JP2001269960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000086940A JP2001269960A (en) 2000-03-27 2000-03-27 Method for manufacturing in-mold foam molding made from aromatic polyester-based resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000086940A JP2001269960A (en) 2000-03-27 2000-03-27 Method for manufacturing in-mold foam molding made from aromatic polyester-based resin

Publications (1)

Publication Number Publication Date
JP2001269960A true JP2001269960A (en) 2001-10-02

Family

ID=18603032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000086940A Pending JP2001269960A (en) 2000-03-27 2000-03-27 Method for manufacturing in-mold foam molding made from aromatic polyester-based resin

Country Status (1)

Country Link
JP (1) JP2001269960A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001334605A (en) * 2000-05-26 2001-12-04 Sekisui Plastics Co Ltd Aromatic polyester resin laminate and method for manufacturing the same
JP2007237468A (en) * 2006-03-06 2007-09-20 Sekisui Plastics Co Ltd In-mold foam molding method
JP2008183782A (en) * 2007-01-30 2008-08-14 Kaneka Corp Manufacturing method of thermoplastic resin foam
JP2012214636A (en) * 2011-03-31 2012-11-08 Sekisui Plastics Co Ltd Method for producing polyester-based resin foamed body and polyester-based resin foamed body
JP2016515189A (en) * 2014-02-11 2016-05-26 凱 劉 Pump type high pressure steam system and its steam and pressure supply method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001334605A (en) * 2000-05-26 2001-12-04 Sekisui Plastics Co Ltd Aromatic polyester resin laminate and method for manufacturing the same
JP2007237468A (en) * 2006-03-06 2007-09-20 Sekisui Plastics Co Ltd In-mold foam molding method
JP2008183782A (en) * 2007-01-30 2008-08-14 Kaneka Corp Manufacturing method of thermoplastic resin foam
JP2012214636A (en) * 2011-03-31 2012-11-08 Sekisui Plastics Co Ltd Method for producing polyester-based resin foamed body and polyester-based resin foamed body
JP2016515189A (en) * 2014-02-11 2016-05-26 凱 劉 Pump type high pressure steam system and its steam and pressure supply method

Similar Documents

Publication Publication Date Title
EP0026554B1 (en) Process for producing foamed articles of an aromatic polyester
KR0118112B1 (en) Process for producing thermoplastic polyester resin foam
BR102012022780A2 (en) EXPANSION WITH EXTRUSION OF LOW MOLECULAR POLYALKYLENE TEREPHALATE FOR EXPANDED ACCOUNT PRODUCTION
EP1166990B1 (en) Method for producing foamed-in-mold product of aromatic polyester based resin
JP7342178B2 (en) Microcell foam sheet and fabrication process and use
US20070293593A1 (en) Low density polylactic acid polymeric foam and articles made thereof
KR100482404B1 (en) Pre-expanded particles of crystalline aromatic polyester-based resin, and in-mold expanded product and expanded laminate using the same
JP4876385B2 (en) Resin hollow molded container and manufacturing method thereof
JP2001269960A (en) Method for manufacturing in-mold foam molding made from aromatic polyester-based resin
US5679295A (en) Method for producing polyester foam using a blowing agent combination
JP3213871B2 (en) Thermoplastic polyester resin foam molded article, thermoplastic polyester resin pre-expanded particles, and method for producing thermoplastic polyester resin foam molded article from the pre-expanded particles
JP3722727B2 (en) In-mold foam molded article of thermoplastic polyester resin, its production method and its use
JP3631943B2 (en) Method for producing pre-expanded particles of aromatic polyester resin
JP3688179B2 (en) Thermoplastic polyester resin foamed particles for in-mold foam molding and method for producing in-mold foam molded article using the same
JP2001027387A (en) Pipe heat retaining material
JP6133807B2 (en) Aromatic polyester resin foamed particles, method for producing aromatic polyester resin foamed particles, and molded article
JP3631942B2 (en) Method for producing pre-expanded particles of aromatic polyester resin
JP3705748B2 (en) Method for producing pre-expanded particles of thermoplastic polyester resin
JP3594877B2 (en) Method for producing aromatic polyester resin laminate
JP3704047B2 (en) Pre-expanded particles of thermoplastic polyester resin and method for producing the same
AU650812B2 (en) Process for producing polyester resin foam sheet
KR0118102B1 (en) Thermoplastic polyester resin foam sheet
JP2001026217A (en) Sun visor
JP3488400B2 (en) Insulation material for floor heating and floor heating device using it
JP3631940B2 (en) Aromatic polyester resin pre-expanded particles and foamed moldings using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050510