WO2021207951A1 - 一种用于pet挤出发泡的扩链剂母粒及其制备方法和应用 - Google Patents

一种用于pet挤出发泡的扩链剂母粒及其制备方法和应用 Download PDF

Info

Publication number
WO2021207951A1
WO2021207951A1 PCT/CN2020/084812 CN2020084812W WO2021207951A1 WO 2021207951 A1 WO2021207951 A1 WO 2021207951A1 CN 2020084812 W CN2020084812 W CN 2020084812W WO 2021207951 A1 WO2021207951 A1 WO 2021207951A1
Authority
WO
WIPO (PCT)
Prior art keywords
poe
pet
masterbatch
gma
chain extender
Prior art date
Application number
PCT/CN2020/084812
Other languages
English (en)
French (fr)
Inventor
陈志强
夏天
Original Assignee
南京越升挤出机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京越升挤出机械有限公司 filed Critical 南京越升挤出机械有限公司
Priority to PCT/CN2020/084812 priority Critical patent/WO2021207951A1/zh
Publication of WO2021207951A1 publication Critical patent/WO2021207951A1/zh
Priority to US17/867,203 priority patent/US20220348763A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/914Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/916Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1535Five-membered rings
    • C08K5/1539Cyclic anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2310/00Masterbatches

Definitions

  • the invention relates to the technical field of chain extenders, in particular to a chain extender master batch for PET extrusion foaming, and a preparation method and application thereof.
  • PET foam material has excellent heat resistance, heat insulation, water vapor barrier and mechanical properties, low density, recyclability, good environmental performance, and is used in many fields.
  • the market prospect is broad, and PET extrusion foam molding can realize continuous production, which meets the requirements of industrial production.
  • PET chain extenders are a class of multifunctional organics containing electrophilic groups, such as acid anhydrides, epoxy, oxazolines, etc.
  • the chain extenders are usually composed of one or more of them.
  • the chain extender masterbatch used in the PET extrusion foaming process usually selected a single polymer as the carrier of the chain extender: 1)
  • PCT International Publication No. WO 95/09884 discloses the use of polyolefin as the polymer carrier , Such as PP, PE and their copolymers, etc.
  • European Patent No. EP 2048188 discloses that when ethylene-acrylate-glycidyl methacrylate copolymer is used as the polymer carrier, the prepared chain extender masterbatch is The softening point is very low, usually lower than 100°C. During the extrusion and foaming process, the chain extender masterbatch will soften when it comes in contact with the dry PET (drying temperature is usually >160°C), which affects the material in the extruder.
  • CN 102056967 discloses a polyester elastomer TPEE as a low-melting component;
  • the high melting point polyester component easily reacts with the chain extender, which affects the chain extension efficiency during the foaming process, so it is necessary to grind the high melting point polyester component into powder.
  • the chain extender masterbatch is prepared at the processing temperature of the low melting point component, which undoubtedly increases the complexity of the processing process.
  • one of the objectives of the present invention is to provide a chain extender masterbatch for PET extrusion foaming, which can effectively solve the above shortcomings, thereby improving the chain extension efficiency and The mechanical properties of the foamed product;
  • the second object of the present invention is to provide a method for preparing a chain extender masterbatch for PET extrusion foaming, which is simple, and the foamed product is uniform and stable;
  • the third object of the present invention It is to provide an application of chain extender used in the extrusion and foaming process of PET, with strong adaptability and wide application.
  • a chain extender masterbatch for PET extrusion and foaming mainly made of the following components by weight: PMDA 5-30 parts, PBT 25-90 parts, POE+POE-g-GMA 5-70 parts , Wherein the weight percentage of POE to POE+POE-g-GMA is 0-85%; the melting temperature of the PBT is 170-225°C.
  • this application selects pyromellitic anhydride PMDA as the chain extender.
  • the melting point of pyromellitic anhydride is about 285°C, which is close to the processing temperature of PET, and has better reactivity with PET; and the functionality of PMDA The degree is 4, which can react quickly with PET in the extruder. Therefore, PMDA is selected as an effective chain extender for the formulation of this application.
  • This application limits the melting temperature of the PBT component to 170-225°C, which helps to reduce the processing temperature of the masterbatch preparation process, effectively avoids the reaction between the chain extender PMDA and PBT, and eliminates the need to grind the PBT component.
  • the step of crushing into powder significantly simplifies the production process; in the PET extrusion foaming process, the degree of thermal decomposition of the PBT of the present application is relatively light, and the PBT and PET have good compatibility, which helps to improve the foaming
  • the mechanical properties of the product In addition, compared with other low-melting polymer carriers, the PBT component will not soften when contacted and mixed with dry PET, so that each component is in the feeding section during the extrusion and foaming process of PET. Maintain stable delivery; using PBT as the main component of the chain extender masterbatch, the pressure at the extruder head is moderate, which helps to reduce the impact on the quality of the extruded foamed product.
  • This application also selects glycidyl methacrylate grafted polyolefin elastomer POE-g-GMA and polyolefin elastomer POE as dispersion accelerators, which is conducive to the better dispersion of the chain extender masterbatch in the extrusion and foaming stage In the PET matrix, it can improve the stability of the extrusion foaming process and the uniformity of the foamed product; using POE-g-GMA alone as a dispersion accelerator can also achieve a good dispersion effect, and adding POE to replace part of the POE-g- GMA can significantly reduce production costs, and both POE and POE-g-GMA have good temperature resistance. Under the processing temperature of PET, the degree of thermal degradation of the masterbatch is reduced; but the combination of POE and PET is not good, and POE -g-GMA acts as a compatibilizer and promotes a good combination of POE and PET.
  • This application uses low-melting polyester PBT, polyolefin elastomer POE and POE-g-GMA composite as the chain extender carrier, which can solve the problems of thermal degradation, compatibility, transportation stability, reaction system pressure, and complex processing processes. It helps to improve the chain extension efficiency of the masterbatch and the mechanical properties of PET extruded foam products.
  • the present invention can be further configured to be mainly made of the following components by weight: PMDA 10-20 parts, PBT 50-80 parts, POE+POE-g-GMA 10-35 parts, of which POE The weight percentage of POE+POE-g-GMA is 60-85%; the melting temperature of the PBT is 175-215°C.
  • the present invention can be further configured as: the intrinsic viscosity of the PBT is 0.75-1.3 dL/g.
  • the intrinsic viscosity of PBT is limited to 0.75-1.3dL/g, which helps to increase the viscosity of the melt, thereby increasing the head pressure of the extruder, and finally increasing the foaming ratio of the PET extruded product;
  • the intrinsic viscosity of PBT is less than 0.75dL/g, the dispersion uniformity of PBT and POE and POE-g-GMA will be affected during the preparation of masterbatch, and the viscosity of the melt will be reduced during the extrusion and foaming stage of PET.
  • the melt pressure is unstable, which ultimately affects the foaming effect of the PET extruded product; and when the intrinsic viscosity of the PBT is greater than 1.3dL/g, the PBT will increase more energy consumption during the preparation process, which is not conducive to the development of materials Energy saving and environmental protection.
  • the present invention can be further configured as: the intrinsic viscosity of the PBT is 0.90 to 1.20 dL/g.
  • the pressure of the reaction system will decrease during the extrusion and foaming process of PET. It is preferable that the intrinsic viscosity of PBT is between 0.90 and 1.20dL/g, which can ensure that PBT has a higher intrinsic viscosity. After PBT with a viscosity range is put into the extruder, the head pressure of the extruder is significantly increased, thereby improving the quality of foamed products.
  • the present invention can be further configured as follows: the melt index of the POE is 0.5-5 g/10min, and the melt index of the POE-g-GMA is 1-5 g/10min.
  • the melt index of POE is limited to 0.5-5g/10min
  • the melt index of POE-g-GMA is limited to 1-5g/10min.
  • POE and POE-g-GMA in the above-mentioned range of melt index have good performance.
  • Processability helps to improve the compatibility of POE and PBT; and in the PET extrusion foaming process, it helps to improve the dispersion and compatibility of the masterbatch in the extruder, thereby improving the foaming process Stability and quality of the foamed product; if the melt index is too large, the masterbatch is difficult to mold; if the melt index is too small, the masterbatch is difficult to mix with PET uniformly, and there is a phenomenon of uneven dispersion.
  • the present invention can be further configured as follows: the melt index of the POE is 0.5 to 1.5 g/10 min, and the melt index of the POE-g-GMA is 2 to 5 g/10 min.
  • the processability of the masterbatch can be further improved, and the dispersibility of the masterbatch in the PET system can also be improved.
  • the present invention can be further configured as follows: the grafting rate of GMA in the POE-g-GMA is 0.2-5%.
  • the grafting rate of GMA in POE-g-GMA is limited to 0.2% to 5%, which can improve the compatibility between POE-g-GMA and PET matrix, and ensure that the foamed product has a uniform texture, thereby improving Mechanical properties of foamed products.
  • the present invention can be further configured as: the grafting rate of GMA in the POE-g-GMA is 0.5-2%.
  • the grafting rate of GMA in POE-g-GMA is limited to 0.5-2%, which can further improve the compatibility between POE-g-GMA and PET matrix, and further ensure that the foamed product has a uniform texture. Further improve the mechanical properties of foamed products.
  • a method for preparing a chain extender masterbatch for PET extrusion foaming includes the following steps:
  • the blending temperature is 5-25°C higher than the melting point of the PBT component and 20-100°C lower than the melting point of the chain extender component.
  • the screw speed It is 100 ⁇ 500rpm, air-cooled pelletizing or pelletizing on hot die surface.
  • the above components are uniformly mixed, and the blending temperature is selected according to the above method, in order to reduce or even avoid the reaction between PBT and the chain extender component PMDA during the preparation of the masterbatch; the masterbatch of the present application
  • the preparation process is simple, and it can be prepared by only one-step melt blending with an ordinary twin-screw extruder. All components only need to be fed from the main feed port of the extruder, and there is no need to set a side feed in the middle of the extruder barrel.
  • the feeder is used to feed the powder components, which helps to reduce the construction cost of the extruder and the complexity of the extrusion process.
  • the masterbatch can be used in the extrusion foaming process of fiber grade PET, film grade PET, bottle grade PET, engineering plastic grade PET and recycled PET,
  • the intrinsic viscosity IV of the PET is 0.5 to 1.5 dL/g
  • the carboxyl terminal concentration of the PET is 15 to 50 mol/t
  • the added mass percentage of the master batch during the extrusion and foaming process of the PET is 0.5 to 10 wt%.
  • the intrinsic viscosity of fiber-grade PET, film-grade PET, bottle-grade PET, engineering plastics-grade PET and recycled PET is between 0.5 and 1.5 dL/g, and the terminal carboxyl group concentration is between 15 and 50 mol/t.
  • the masterbatch of the present application can be extruded and foamed with the above-mentioned different grades of PET, and is not picky about the molecular weight of the PET, which significantly improves the flexibility and convenience of the masterbatch, and can produce PET foamed products with uniform texture.
  • the present invention includes at least one of the following beneficial technical effects:
  • the chain extender masterbatch of this application adopts low-melting PBT components, which helps to reduce the processing temperature of the masterbatch preparation process, effectively avoids the reaction between the chain extender PMDA and PBT; and there is no need to combine the PBT group After being pulverized into powder, it is used to prepare chain extender masterbatch, which significantly simplifies the production process.
  • PBT and PET have good compatibility, and PBT and dry PET will not be in contact or mixed. Softening helps to maintain the stable delivery of each component in the feeding section during the PET extrusion and foaming process;
  • This application uses POE and POE-g-GMA as dispersion accelerators to help improve the compatibility of the masterbatch in the PET extrusion foaming process. Compared with adding POE-g-GMA alone, it can significantly reduce the cost of raw materials , And the temperature resistance of POE and POE-g-GMA can also meet the processing requirements of PET, reducing the degree of thermal degradation of the masterbatch;
  • the blending temperature can be selected to effectively avoid the reaction of PBT and the chain extender component PMDA, which helps to improve the chain extension efficiency of the masterbatch; and the process is simple, only It is made by one-step melt blending with an ordinary twin-screw extruder. All components only need to be fed from the main feed port of the twin-screw extruder. There is no need to install a side feeder in the middle of the extruder barrel. The feeding of powder components reduces the construction cost of the extruder and the complexity of the extrusion process.
  • Figure 1 is a schematic diagram of the cell morphology of the sample in Application Example 9.
  • Figure 2 is a graph of the extensional rheological curve of the sample of application example 9 under different tensile strain rate conditions.
  • PBT was purchased from PBT produced by Sinopec Co., Ltd.
  • POE was purchased from POE produced by LG Chem
  • POE-g-GMA was purchased from Jiayirong Compatibility Co., Ltd.
  • a chain extender masterbatch for PET extrusion foaming is prepared by the following method:
  • a chain extender masterbatch for PET extrusion foaming is prepared by the following method:
  • a twin-screw extruder is used to melt and blend the above components, and all the components are fed at the same time at the main feed port of the extruder.
  • a chain extender masterbatch for PET extrusion foaming is prepared by the following method:
  • a twin-screw extruder is used to melt and blend the above components, and all the components are fed at the same time at the main feed port of the extruder.
  • a chain extender masterbatch for PET extrusion foaming is prepared by the following method:
  • a twin-screw extruder is used to melt and blend the above components, and all the components are fed at the same time at the main feed port of the extruder.
  • a chain extender masterbatch for PET extrusion foaming is prepared by the following method:
  • a twin-screw extruder is used to melt and blend the above components, and all the components are fed at the same time at the main feed port of the extruder.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • a chain extender masterbatch for PET extrusion foaming is prepared by the following method:
  • a twin-screw extruder is used to melt and blend the above components, and all the components are fed at the same time at the main feed port of the extruder.
  • a chain extender masterbatch for PET extrusion foaming is prepared by the following method:
  • a twin-screw extruder is used to melt and blend the above components, and all the components are fed at the same time at the main feed port of the extruder.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • a chain extender masterbatch for PET extrusion foaming is prepared by the following method:
  • a twin-screw extruder is used to melt and blend the above components, and all the components are fed at the same time at the main feed port of the extruder.
  • a chain extender masterbatch for PET extrusion foaming is prepared by the following method:
  • a twin-screw extruder is used to melt and blend the above components, and all the components are fed at the same time at the main feed port of the extruder.
  • a chain extender masterbatch for PET extrusion foaming is prepared by the following method:
  • a twin-screw extruder is used to melt and blend the above components, and all the components are fed at the same time at the main feed port of the extruder.
  • Embodiment 11 is a diagrammatic representation of Embodiment 11:
  • a chain extender masterbatch for PET extrusion foaming The difference from Example 9 is that PBT is made by itself.
  • the preparation method of PBT includes the following steps:
  • the melting temperature of the PBT is 190°C; the preparation method has fast reaction speed, environmentally friendly reaction by-products, and the prepared PBT is dispersed in the PET system Better compatibility and compatibility.
  • Embodiment 12 is a diagrammatic representation of Embodiment 12
  • a chain extender masterbatch for PET extrusion foaming The difference from Example 11 is that the mole percentage of cyclohexanedimethanol in the diol is 10%, and the melting temperature of the final PBT is 185°C; in the blending stage, the blending temperature is 200°C.
  • Embodiment 13 is a diagrammatic representation of Embodiment 13:
  • a chain extender masterbatch for PET extrusion foaming The difference from Example 11 is that the mole percentage of cyclohexanedimethanol in the glycol is 20%, and the melting temperature of the final PBT is 176°C; in the blending stage, the blending temperature is 190°C.
  • the blowing agent can use supercritical fluids (such as CO 2 , N 2 ), alkanes (such as butane, cyclopentane, etc.), Freon and a mixture of two or more of the above blowing agents, in this application
  • supercritical fluids such as CO 2 , N 2
  • alkanes such as butane, cyclopentane, etc.
  • Freon and a mixture of two or more of the above blowing agents, in this application
  • cyclopentane is used as the blowing agent, and the blowing agent is injected into the extruder through a syringe pump at a rate of 3kg/hr.
  • Extrusion section Temperature(°C) Feeding section 260 Melting section 265-280 Mixed section 280-290 Metering section 260-280 Static mixer 260-280 Mould 250-275
  • the above-mentioned preparation process can continuously and stably prepare PET foamed boards with uniform cells and stable performance.
  • a PET extruded foam board which is different from Application Example 1 is that the chain extender masterbatch is prepared in Example 2.
  • a PET extruded foam board is different from Application Example 1 in that the chain extender masterbatch is prepared in Example 3.
  • a PET extruded foam board is different from Application Example 1 in that the chain extender masterbatch is prepared in Example 4.
  • a PET extruded foam board is different from Application Example 1 in that the chain extender masterbatch is prepared in Example 5.
  • a PET extruded foam board is different from Application Example 1 in that the chain extender masterbatch is prepared in Example 6.
  • a PET extruded foam board is different from Application Example 1 in that the chain extender masterbatch is prepared in Example 7.
  • a PET extruded foam board is different from Application Example 1 in that the chain extender masterbatch is prepared in Example 8.
  • a PET extruded foam board is different from Application Example 1 in that the chain extender masterbatch is prepared in Example 10.
  • a PET extruded foam board is different from Application Example 1 in that the chain extender masterbatch is prepared in Example 11.
  • a PET extruded foam board is different from Application Example 1 in that the chain extender masterbatch is prepared in Example 12.
  • a PET extruded foam board is different from Application Example 1 in that the chain extender masterbatch is prepared in Example 13.
  • the pellets are used for PET extrusion foaming, and the same extrusion equipment and foaming process are used for PET extrusion foaming as in Application Example 1, to achieve continuous and stable production of PET foamed sheets with uniform cell structure.
  • a static mixer and a porous foaming die are installed in the downstream of the extruder.
  • the width of the porous die is 35mm and the thickness is 20mm.
  • supercritical CO 2 is used as the foaming agent.
  • the foaming agent is injected into the extruder through a syringe pump at a rate of 2.5 kg/hr.
  • the temperature setting during the extrusion process is shown in the following table:
  • the above preparation process can continuously and stably prepare a PET foamed board with a uniform cell structure.
  • a PET extruded foam board is prepared according to the following steps:
  • the difference between a PET extruded foam board and Application Example 16 is that the selected PBT has a melting temperature of 175°C and a blending temperature of 190°C.
  • the difference between a PET extruded foam board and Application Example 16 is that the selected PBT has a melting temperature of 215°C and a blending temperature of 225°C.
  • the difference between a PET extruded foam board and Application Example 16 is that the selected PBT has a melting temperature of 225°C and a blending temperature of 230°C.
  • a PET extruded foam board is prepared according to the following steps:
  • the difference between a PET extruded foam board and Application Example 20 is that the intrinsic viscosity of the selected PBT is 0.9dL/g.
  • the difference between a PET extruded foam board and Application Example 20 is that the intrinsic viscosity of the selected PBT is 1.2dL/g.
  • the difference between a PET extruded foam board and Application Example 20 is that the intrinsic viscosity of the selected PBT is 1.3 dL/g.
  • a PET extruded foam board is different from Application Example 9 in that the grafting rate of GMA in POE-g-GMA is 0.2%.
  • a PET extruded foam board is different from Application Example 24 in that the grafting rate of GMA in POE-g-GMA is 0.5%.
  • a PET extruded foam board is different from Application Example 24 in that the grafting rate of GMA in POE-g-GMA is 2%.
  • a PET extruded foam board is different from Application Example 24 in that the grafting rate of GMA in POE-g-GMA is 5%.
  • a PET extruded foam board is prepared according to the following steps:
  • a PET extruded foam board is prepared according to the following steps:
  • a PET extruded foam board is prepared according to the following steps:
  • a PET extruded foam board is prepared according to the following steps:
  • a PET extruded foam board is prepared according to the following steps:
  • a PET extruded foam board is prepared according to the following steps:
  • a PET extruded foam board is prepared according to the following steps:
  • a PET extruded foam board is prepared according to the following steps:
  • Intrinsic viscosity According to GB/T14190, the solvent is phenol: tetrachloroethane is mixed in a weight ratio of 1:1, and the test temperature is 25 ⁇ 0.1°C;
  • Processing conditions Observe the material transmission and head pressure in the masterbatch preparation stage and the PET foaming stage.
  • the PET foam board prepared by the application examples of this application has higher tensile strength, compressive strength and shear strength, and excellent mechanical properties; it can be seen that the examples 1 to the examples 10.
  • the prepared chain extender masterbatch has good dispersibility and compatibility in the PET foaming system, so that the masterbatch has good chain extension efficiency, so as to realize the preparation of light weight and excellent mechanical properties of PET foam board;
  • the foamed board of Application Example 9 has excellent mechanical properties.
  • the cell structure was observed by SEM scanning electron microscope. It can be seen from Figure 1 that the cells of Application Example 9 are uniform and stable, which is helpful for the preparation of light and A foamed board with excellent mechanical properties; in addition, it can be seen from Figure 2 that under different tensile strain rates, the sample of application example 9 has a significant strain hardening effect, indicating that the melt strength of the PET foamed board is improved, and the masterbatch has a higher High chain extension efficiency.
  • the melting temperature of PBT is preferably 175 to 215°C, and the mechanical properties of the PET extruded foam board are the best; according to application example 20 to application example 23, it can be seen that the PBT The intrinsic viscosity is preferably 0.9-1.2dL/g, and the mechanical properties of the PET extruded foam board are the best; according to application examples 24 to 27, it can be seen that the grafting rate of GMA in POE-g-GMA is selected as At 0.5% to 2%, the mechanical properties of the PET extruded foam board are the best.
  • processing aids such as heat stabilizers, nucleating agents, flame retardants, etc.
  • the flame retardants include halogens, phosphorus and inorganic compounds
  • Nucleating agents include talc, nano clay, and silica.
  • the PET extrusion and foaming process involved in the present invention includes but is not limited to twin-screw extruders. Actually, all forms of extrusion and foaming units can be used, such as single-screw extruders, twin-screw extruders and tandem extruders. Unit (upper stage is twin screw extruder/lower stage is single screw extruder and both upper and lower stages are single screw extruder).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Molding Of Porous Articles (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明涉及一种用于PET挤出发泡的扩链剂母粒及其制备方法和应用,该母粒主要由如下重量份的组分制成:PMDA 5~30份、PBT 25~90份、POE+POE-g-GMA 5~70份,其中POE占POE+POE-g-GMA的重量百分比为0~85%;PBT的熔融温度为170~225℃;该制备方法是将上述各组分熔融共混,共混温度为180~230℃,螺杆转速为100~500rpm,风冷切粒或热模面切粒;该母粒可用于纤维级PET、膜级PET、瓶级PET、工程塑料级PET以及回收PET的挤出发泡过程;本申请采用PMDA作为扩链剂,采用低熔点聚酯PBT、聚烯烃弹性体POE和POE-g-GMA复合作为扩链剂载体,显著提高了母粒的扩链效率与发泡产品性能,并且制备方法简单、方便,该扩链剂母粒应用范围广。

Description

一种用于PET挤出发泡的扩链剂母粒及其制备方法和应用 技术领域
本发明涉及扩链剂的技术领域,尤其是涉及一种用于PET挤出发泡的扩链剂母粒及其制备方法和应用。
背景技术
聚对苯二甲酸乙二醇酯(PET)发泡材料具有优良的耐热性、隔热性、水汽阻隔性和力学性能,密度小,可回收利用、环保性能好,应用于多个领域,市场前景广阔,并且PET挤出发泡成型可以实现连续化生产,符合工业化生产的要求。
在PET挤出发泡过程中,由于常规PET的分子量较低,分子链规整,熔体强度较低;在PET熔融发泡的泡孔生长阶段,泡孔壁无法承受剧烈的拉伸应力,易导致泡孔壁的破裂以及泡孔的合并;因此,在PET挤出发泡过程中,需采用扩链剂与PET的端羧基/端羟基发生扩链/支化反应,增加PET熔体中分子链缠结的几率,从而提高PET的熔体强度及发泡性能。
PET扩链剂为一类含有亲电子基的多官能团有机物,如酸酐类、环氧类、恶唑啉类等,扩链剂通常由其中一种或几种构成。早期,用于PET挤出发泡过程的扩链剂母粒,通常选用单一的聚合物作为扩链剂的载体:1)PCT国际公开第WO 95/09884号公开了选用聚烯烃作为聚合物载体,如PP、PE及其共聚物等,但是,在PET挤出加工的温度下,PP、PE等聚烯烃会发生明显的热降解,且PP、PE与PET的相容性不佳,影响最终产品的性能和发泡过程的稳定性;2)欧洲专利第EP 2048188号公开了采用乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯共聚物作为聚合物载体时,所制备的扩链剂母粒的软化点很低,通常低于100℃,在挤出发泡过程中,扩链剂母粒与干燥的PET(干燥温度通常>160℃)接触时即会发生软化,影响物料在挤出机内输送的稳定性;而且,在PET挤出发泡的温度条件下,乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯共聚物载体的粘度很低,造成反应体系压力降低,不利于PET发泡;3)美国专利第US 2006/0293416号公开了采用低熔点聚酯作为聚合物载体时,如PCL,同样会面临聚合物载体的降解 和发泡温度下粘度低的问题,如无定型的PETG,则会降低最终制品的结晶度,从而降低最终产品的力学性能。
而近些年,研究者开始使用双组分聚合物载体,其中一种组分通常是PET等高熔点聚酯,另外一种组分是低熔点聚合物,如欧洲专利第EP 2009043号公开了采用聚烯烃作为低熔点组分、美国专利第US 2011130475号公开了采用乙烯-丙烯酸酯类共聚物作为低熔点组分、中国专利第CN 102056967号公开了聚酯弹性体TPEE作为低熔点组分;但是,在扩链剂母粒制备过程中,高熔点聚酯组分易与扩链剂发生反应,影响发泡过程中的扩链效率,从而需将高熔点聚酯组分磨碎成粉末,然后在低熔点组分的加工温度下制备扩链剂母粒,无疑增加了加工过程的复杂性。
发明内容
针对现有技术存在的不足,本发明的目的之一是提供一种用于PET挤出发泡的扩链剂母粒,能够有效解决上述不足之处,从而提高该母粒的扩链效率与发泡产品的力学性能;本发明的目的之二是提供一种用于PET挤出发泡的扩链剂母粒的制备方法,方法简单、发泡产品均匀、稳定;本发明的目的之三是提供一种用于PET挤出发泡过程的扩链剂的应用,适配性较强,应用广泛。
本发明的上述发明目的一是通过以下技术方案得以实现的:
一种用于PET挤出发泡的扩链剂母粒,主要由如下重量份的组分制成:PMDA 5~30份、PBT 25~90份、POE+POE-g-GMA 5~70份,其中POE占POE+POE-g-GMA的重量百分比为0~85%;所述PBT的熔融温度为170~225℃。
通过采用上述技术方案,本申请选用均苯四酐PMDA作为扩链剂,均苯四酐的熔点约为285℃,与PET的加工温度接近,可与PET的反应性更佳;且PMDA的官能度为4,可与PET在挤出机内快速反应,因此选用PMDA作为本申请配方的有效扩链剂。
在PET挤出发泡的泡孔稳定阶段,随着熔体温度的降低,PET分子链开始结晶,发泡体系的硬度提高,从而阻止泡孔继续生长;通常,PET的结晶速率较慢,不利于泡孔的稳定;因此本申请采用结晶速率更快的聚对苯二甲酸丁二酯PBT作为扩链剂的载体,可在冷却过程中起到PET结晶成核剂的作用,促进PET进行非等温结晶,从而快速抑制泡孔的生长,减小泡孔尺寸。
本申请限定PBT组分的熔融温度为170~225℃,有助于降低该母粒制备过程的加工温度,有效避免了扩链剂PMDA与PBT之间发生反应,省去了将PBT组分磨碎成粉末的步骤,显著简化了生产过程;在PET挤出发泡过程中,本申请的PBT发生热分解的程度较轻,而且PBT与PET具有良好的相容性,有助于提高发泡产品的力学性能;另外,相比于采用其他低熔点聚合物载体而言,PBT组分与干燥的PET接触、混合时不会软化,使得PET挤出发泡过程中各组分在喂料段保持稳定输送;采用PBT为主体成分的扩链剂母粒,挤出机机头处的压力适中,有助于降低对挤出发泡产品质量的影响。
本申请还选用甲基丙烯酸缩水甘油酯接枝聚烯烃弹性体POE-g-GMA、聚烯烃弹性体POE作为分散促进剂,有利于该扩链剂母粒在挤出发泡阶段更好的分散在PET基体中,从而提高挤出发泡过程的稳定性和发泡产品的均匀性;单独采用POE-g-GMA作为分散促进剂也能达到良好的分散效果,添加POE替代部分POE-g-GMA,可显著降低生产成本,而且POE和POE-g-GMA的耐温性均良好,在PET的加工温度条件下,降低该母粒发生热降解的程度;但POE与PET的结合性不佳,POE-g-GMA起到相容剂的作用,促进POE与PET良好的结合。
本申请采用低熔点聚酯PBT、聚烯烃弹性体POE和POE-g-GMA复合作为扩链剂载体,能够解决热降解、相容性、输送稳定性、反应体系压力以及加工过程复杂的问题,有助于提高该母粒的扩链效率以及PET挤出发泡产品的力学性能。
本发明在一较佳示例中可以进一步配置为,主要由如下重量份的组分制成:PMDA 10~20份、PBT 50~80份、POE+POE-g-GMA 10~35份,其中POE占POE+POE-g-GMA的重量百分比为60~85%;所述PBT的熔融温度为175~215℃。
通过采用上述技术方案,限定PMDA 10~20份、PBT 50~80份、POE+POE-g-GMA 10~35份,分别对三种组分的占比进行优选,使得扩链剂母粒中有效成分的占比提高,有助于提高该母粒的扩链效率;限定POE占POE+POE-g-GMA的重量百分比为60~85%,由于POE的成本较低,可显著降低母粒的成本;限定PBT的熔融温度为175~215℃,进一步降低PBT发生热降解的程度,提高母粒的扩链效率,进而提高发泡产品的力学性能;当PBT物料温 度达到175~215℃时,PBT物料开始熔融,熔体黏度下降,有助于保持较好的流动性,具有优异的可加工性;而且该熔融温度范围的PBT与干燥后的PET接触时不会发生软化,显著提高了PBT在挤出发泡过程的传输稳定性。
本发明在一较佳示例中可以进一步配置为:所述PBT的特性黏度为0.75~1.3dL/g。
通过采用上述技术方案,限定PBT的特性黏度为0.75~1.3dL/g,有助于增加熔体的黏度,从而提高挤出机的机头压力,最终提高PET挤出产品的发泡倍率;若PBT的特性黏度小于0.75dL/g时,在制备母粒阶段,会影响PBT与POE、POE-g-GMA的分散均匀性,而且在PET挤出发泡阶段,会使熔体的粘度降低,造成熔体压力不稳定,最终影响PET挤出产品的发泡效果;而当PBT的特性黏度大于1.3dL/g时,该PBT在制备过程中会增加较多的能耗,不利于材料研发的节能环保性。
本发明在一较佳示例中可以进一步配置为:所述PBT的特性黏度为0.90~1.20dL/g。
通过采用上述技术方案,在PET挤出发泡过程中,反应体系的压力会下降,优选PBT的特性黏度在0.90~1.20dL/g之间,可保证PBT具有较高的特性黏度,将该特性黏度范围的PBT投入挤出机后,显著提高挤出机的机头压力,从而提高发泡产品质量。
本发明在一较佳示例中可以进一步配置为:所述POE的熔融指数为0.5~5g/10min,所述POE-g-GMA的熔融指数为1~5g/10min。
通过采用上述技术方案,限定POE的熔融指数为0.5~5g/10min、限定POE-g-GMA的熔融指数为1~5g/10min,上述熔融指数范围的POE、POE-g-GMA具有良好的可加工性,有助于提高POE与PBT的相容性;而且在PET挤出发泡过程中,有助于提高母粒在挤出机中的分散性、相容性,从而提高发泡过程的稳定性以及发泡产品的质量;若熔融指数过大,则该母粒难以成型;若熔融指数太小,则该母粒难以与PET均匀混合,存在分散不均匀的现象。
本发明在一较佳示例中可以进一步配置为:所述POE的熔融指数为0.5~1.5g/10min,所述POE-g-GMA的熔融指数为2~5g/10min。
通过采用上述技术方案,优选POE的熔融指数、POE-g-GMA的熔融指 数,可进一步提高该母粒的可加工性,而且还可提高该母粒在PET体系内的分散性。
本发明在一较佳示例中可以进一步配置为:所述POE-g-GMA中GMA的接枝率为0.2~5%。
通过采用上述技术方案,限定POE-g-GMA中GMA的接枝率为0.2~5%,可提高POE-g-GMA与PET基体之间的相容性,保证发泡产品质地均匀,从而提高发泡产品力学性能。
本发明在一较佳示例中可以进一步配置为:所述POE-g-GMA中GMA的接枝率为0.5~2%。
通过采用上述技术方案,限定POE-g-GMA中GMA的接枝率为0.5~2%,可进一步提高POE-g-GMA与PET基体之间的相容性,进一步保证发泡产品质地均匀,进一步提高发泡产品力学性能。
本发明的上述发明目的二是通过以下技术方案得以实现的:
一种用于PET挤出发泡的扩链剂母粒的制备方法,包括如下步骤:
(1)配料;按照重量份,称量PMDA 5~30份、PBT 25~90份、POE+POE-g-GMA 5~70份,其中POE占POE+POE-g-GMA的重量百分比为0~85%;
(2)将上述各组分通过挤出机的主喂料口喂入,共混温度高于PBT组分熔点5~25℃,而低于扩链剂组分熔点20~100℃,螺杆转速为100~500rpm,风冷切粒或热模面切粒。
通过采用上述技术方案,将上述各组分均匀混合,共混温度按照上述方法进行选择,目的是减少甚至避免在母粒制备过程中PBT与扩链剂组分PMDA发生反应;本申请的母粒制备工艺简单,且可仅采用普通的双螺杆挤出机一步熔融共混制得,所有组分只需从挤出机的主喂料口喂入,无需在挤出机机筒中部设置侧喂料机用于粉末组分的喂料,有助于降低挤出机的建造成本以及挤出工艺的复杂程度。
本发明的上述发明目的三是通过以下技术方案得以实现的:
一种用于PET挤出发泡的扩链剂母粒的应用,所述母粒可用于纤维级PET、膜级PET、瓶级PET、工程塑料级PET以及回收PET的挤出发泡过程,PET的特性黏度IV为0.5~1.5dL/g,PET的端羧基浓度为15~50mol/t,所述母粒在PET挤 出发泡过程中的添加质量百分比为0.5~10wt%。
通过采用上述技术方案,纤维级PET、膜级PET、瓶级PET、工程塑料级PET以及回收PET的特性黏度在0.5~1.5dL/g之间、端羧基浓度在15~50mol/t之间,本申请的母粒可与上述不同级别的PET挤出发泡,对PET的分子量不挑剔,显著提高了母粒的适用灵活性、便捷性,可制得质地均匀的PET发泡产品。
综上所述,本发明包括以下至少一种有益技术效果:
1.本申请的扩链剂母粒采用低熔点的PBT组分,有助于降低该母粒制备过程的加工温度,有效避免了扩链剂PMDA与PBT之间发生反应;而且无需将PBT组分磨碎成粉末后再用于制备扩链剂母粒,显著地简化了生产过程;另外,PBT与PET之间具有良好的相容性,并且PBT与干燥的PET在接触、混合时不会软化,有助于维持PET挤出发泡过程中各组分在喂料段的稳定输送;
2.本申请采用POE与POE-g-GMA作为分散促进剂,有助于提高母粒在PET挤出发泡过程的相容性,相比单独添加POE-g-GMA,可显著降低原材料成本,而且POE和POE-g-GMA的耐温性也可满足PET的加工要求,降低母粒发生热降解的程度;
3.本申请的扩链剂母粒在制备过程中,共混温度的选择可有效避免PBT与扩链剂组分PMDA发生反应,有助于提高母粒的扩链效率;并且工艺简单,仅采用普通的双螺杆挤出机一步熔融共混制得,所有组分只需从双螺杆挤出机的主喂料口喂入,无需在挤出机机筒的中部设置侧喂料机用于粉末组分的喂料,降低了挤出机的建造成本与挤出工艺的复杂程度。
附图说明
图1是应用例九样品的泡孔形貌示意图。
图2是应用例九样品在不同拉伸应变速率条件下的拉伸流变曲线图。
具体实施方式
以下结合实施例和附图对本发明作进一步详细说明。
PBT购自中石化股份有限公司生产的PBT;POE购自LG化学公司生产的POE;POE-g-GMA购自佳易容相容剂有限公司生产。
实施例一:
一种用于PET挤出发泡的扩链剂母粒,采用如下方法制备:
(1)配料:按照重量份,称量PMDA 5份、PBT 25份、POE-g-GMA 70份,PBT的熔融温度为190℃、特性黏度为1.0dL/g,POE-g-GMA的熔融指数为2g/10min,POE-g-GMA中GMA的接枝率为1%;
(2)采用双螺杆挤出机对上述各组分进行熔融共混,共混温度选择205℃;所有组分均从挤出机主喂料口同时喂料,经熔融塑化、共混再通过多孔机头挤出,挤出机的螺杆直径D=30mm,挤出机螺杆的长径比L/D为30~48,在本实施例中选为40,螺杆转速为100~500rpm,在本实施例中选为200rpm,挤出物料经风冷、切粒制得扩链剂母粒。
实施例二:
一种用于PET挤出发泡的扩链剂母粒,采用如下方法制备:
(1)配料:按照重量份,称量PMDA 5份、PBT 25份、POE 35份、POE-g-GMA 35份,PBT的熔融温度为190℃、特性黏度为1.0dL/g,POE的熔融指数为1g/10min,POE-g-GMA的熔融指数为2g/10min,POE-g-GMA中GMA的接枝率为1%;
(2)采用双螺杆挤出机对上述各组分进行熔融共混,所有组分在挤出机主喂料口同时喂料,挤出机的螺杆直径D=30mm、长径比L/D=48,共混温度为205℃,螺杆转速为200rpm,挤出物料经风冷、切粒。
实施例三:
一种用于PET挤出发泡的扩链剂母粒,采用如下方法制备:
(1)配料:按照重量份,称量PMDA 10份、PBT 40份、POE 30份、POE-g-GMA 20份,PBT的熔融温度为190℃、特性黏度为1.0dL/g,POE的熔融指数为1g/10min,POE-g-GMA的熔融指数为2g/10min,POE-g-GMA中GMA的接枝率为1%;
(2)采用双螺杆挤出机对上述各组分进行熔融共混,所有组分在挤出机主喂料口同时喂料,挤出机的螺杆直径D=30mm、长径比L/D=48,共混温度为205℃,螺杆转速为200rpm,挤出物料经风冷、切粒。
实施例四:
一种用于PET挤出发泡的扩链剂母粒,采用如下方法制备:
(1)配料:按照重量份,称量PMDA 10份、PBT 50份、POE 24份、POE-g-GMA  16份,PBT的熔融温度为190℃、特性黏度为1.0dL/g,POE的熔融指数为1g/10min,POE-g-GMA的熔融指数为2g/10min,POE-g-GMA中GMA的接枝率为1%;
(2)采用双螺杆挤出机对上述各组分进行熔融共混,所有组分在挤出机主喂料口同时喂料,挤出机的螺杆直径D=30mm、长径比L/D=48,共混温度为205℃,螺杆转速为200rpm,挤出物料经风冷、切粒。
实施例五:
一种用于PET挤出发泡的扩链剂母粒,采用如下方法制备:
(1)配料:按照重量份,称量PMDA 10份、PBT 60份、POE 18份、POE-g-GMA 12份,PBT的熔融温度为190℃、特性黏度为1.0dL/g,POE的熔融指数为1g/10min,POE-g-GMA的熔融指数为2g/10min,POE-g-GMA中GMA的接枝率为1%;
(2)采用双螺杆挤出机对上述各组分进行熔融共混,所有组分在挤出机主喂料口同时喂料,挤出机的螺杆直径D=30mm、长径比L/D=48,共混温度为205℃,螺杆转速为200rpm,挤出物料经风冷、切粒。
实施例六:
一种用于PET挤出发泡的扩链剂母粒,采用如下方法制备:
(1)配料:按照重量份,称量PMDA 10份、PBT 70份、POE 12份、POE-g-GMA 8份,PBT的熔融温度为190℃、特性黏度为1.0dL/g,POE的熔融指数为1g/10min,POE-g-GMA的熔融指数为2g/10min,POE-g-GMA中GMA的接枝率为1%;
(2)采用双螺杆挤出机对上述各组分进行熔融共混,所有组分在挤出机主喂料口同时喂料,挤出机的螺杆直径D=30mm、长径比L/D=48,共混温度为205℃,螺杆转速为200rpm,挤出物料经风冷、切粒。
实施例七:
一种用于PET挤出发泡的扩链剂母粒,采用如下方法制备:
(1)配料:按照重量份,称量PMDA 10份、PBT 80份、POE 6份、POE-g-GMA 4份,PBT的熔融温度为190℃、特性黏度为1.0dL/g,POE的熔融指数为1g/10min,POE-g-GMA的熔融指数为2g/10min,POE-g-GMA中GMA的接枝率为1%;
(2)采用双螺杆挤出机对上述各组分进行熔融共混,所有组分在挤出机主喂料 口同时喂料,挤出机的螺杆直径D=30mm、长径比L/D=48,共混温度为205℃,螺杆转速为200rpm,挤出物料经风冷、切粒。
实施例八:
一种用于PET挤出发泡的扩链剂母粒,采用如下方法制备:
(1)配料:按照重量份,称量PMDA 15份、PBT 60份、POE 15份、POE-g-GMA 10份,PBT的熔融温度为190℃、特性黏度为1.0dL/g,POE的熔融指数为1g/10min,POE-g-GMA的熔融指数为2g/10min,POE-g-GMA中GMA的接枝率为1%;
(2)采用双螺杆挤出机对上述各组分进行熔融共混,所有组分在挤出机主喂料口同时喂料,挤出机的螺杆直径D=30mm、长径比L/D=48,共混温度为205℃,螺杆转速为200rpm,挤出物料经风冷、切粒。
实施例九:
一种用于PET挤出发泡的扩链剂母粒,采用如下方法制备:
(1)配料:按照重量份,称量PMDA 20份、PBT 60份、POE 12份、POE-g-GMA 8份,PBT的熔融温度为190℃、特性黏度为1.0dL/g,POE的熔融指数为1g/10min,POE-g-GMA的熔融指数为2g/10min,POE-g-GMA中GMA的接枝率为1%;
(2)采用双螺杆挤出机对上述各组分进行熔融共混,所有组分在挤出机主喂料口同时喂料,挤出机的螺杆直径D=30mm、长径比L/D=48,共混温度为205℃,螺杆转速为200rpm,挤出物料经风冷、切粒。
实施例十:
一种用于PET挤出发泡的扩链剂母粒,采用如下方法制备:
(1)配料:按照重量份,称量PMDA 30份、PBT 50份、POE 12份、POE-g-GMA 8份,PBT的熔融温度为190℃、特性黏度为1.0dL/g,POE的熔融指数为1g/10min,POE-g-GMA的熔融指数为2g/10min,POE-g-GMA中GMA的接枝率为1%;
(2)采用双螺杆挤出机对上述各组分进行熔融共混,所有组分在挤出机主喂料口同时喂料,挤出机的螺杆直径D=30mm、长径比L/D=48,共混温度为205℃,螺杆转速为200rpm,挤出物料经风冷、切粒。
实施例十一:
一种用于PET挤出发泡的扩链剂母粒,与实施例九的区别之处在于PBT采用自 制制得,PBT的制备方法包括如下步骤:
(1)对苯二甲酸二甲酯、1,4-丁二醇、钛酸四丁酯以及环己烷二甲醇按一定比例投入聚合反应釜中,在常压N 2的氛围下,边搅拌边升温至180℃,酯交换反应1.5hr,并精馏出副产物甲醇;其中,对苯二甲酸二甲酯与二元醇(1,4-丁二醇+环己烷二甲醇)的摩尔比为1:1.2,环己烷二甲醇在二元醇中所占摩尔百分比为5%,钛酸四丁酯的浓度为650ppm;
(2)关闭精馏装置,打开真空系统,将体系压力降低至100pa以下,并在搅拌条件下迅速升温至250℃,缩聚反应1.5hr;
(3)停止反应,经水冷、拉条、切粒制备PBT,制得PBT的熔融温度为190℃;采用该制备方法反应速度快、反应副产物环保,并且制得的PBT在PET体系的分散性、相容性更佳。
实施例十二:
一种用于PET挤出发泡的扩链剂母粒,与实施例十一的区别之处在于环己烷二甲醇占二元醇的摩尔百分比为10%,最终制得PBT的熔融温度为185℃;在共混阶段,共混温度为200℃。
实施例十三:
一种用于PET挤出发泡的扩链剂母粒,与实施例十一的区别之处在于环己烷二甲醇占二元醇的摩尔百分比为20%,最终制得PBT的熔融温度为176℃;在共混阶段,共混温度为190℃。
应用例一:
一种PET挤出发泡板,采用双螺杆挤出机进行PET挤出发泡,挤出机的螺杆直径D=75mm,长径比L/D=40,挤出机下游依次安装静态混合器和多孔发泡模具;多孔模具宽610mm、厚40mm;挤出物出模具后进入整平机即可得到横截面为矩形的发泡PET板材。
采用纤维级PET(特性黏度IV=0.65dL/g,端羧基浓度25mol/t)和实施例一制得的扩链剂母粒用于挤出发泡,其中PET需在165℃条件下除湿干燥4h,双螺杆挤出机的产量为100kg/hr,PET的喂料速率为95.5kg/hr,扩链剂母粒的喂料速率为4.5kg/hr,二者通过失重喂料机分别喂料,发泡剂可采用超临界流体(如CO 2、N 2)、烷烃(如丁烷、环戊烷等)、氟利昂以及上述发泡剂中的两种或两种 以上的混合物,在本应用例中选用环戊烷作为发泡剂,发泡剂通过注射泵以3kg/hr的速率注入挤出机中,挤出过程的温度设置如下表所示:
挤出段 温度(℃)
喂料段 260
熔融段 265-280
混合段 280-290
计量段 260-280
静态混合器 260-280
模具 250-275
上述制备过程可以连续、稳定地制备泡孔均匀和性能稳定的PET发泡板材。
应用例二:
一种PET挤出发泡板,与应用例一的区别之处在于扩链剂母粒采用实施例二制得。
应用例三:
一种PET挤出发泡板,与应用例一的区别之处在于扩链剂母粒采用实施例三制得。
应用例四:
一种PET挤出发泡板,与应用例一的区别之处在于扩链剂母粒采用实施例四制得。
应用例五:
一种PET挤出发泡板,与应用例一的区别之处在于扩链剂母粒采用实施例五制得。
应用例六:
一种PET挤出发泡板,与应用例一的区别之处在于扩链剂母粒采用实施例六制得。
应用例七:
一种PET挤出发泡板,与应用例一的区别之处在于扩链剂母粒采用实施例七制得。
应用例八:
一种PET挤出发泡板,与应用例一的区别之处在于扩链剂母粒采用实施例八制得。
应用例九:
一种PET挤出发泡板,与应用例一的区别之处在于扩链剂母粒采用实施例九制得。
应用例十:
一种PET挤出发泡板,与应用例一的区别之处在于扩链剂母粒采用实施例十制得。
应用例十一:
一种PET挤出发泡板,与应用例一的区别之处在于扩链剂母粒采用实施例十一制得。
应用例十二:
一种PET挤出发泡板,与应用例一的区别之处在于扩链剂母粒采用实施例十二制得。
应用例十三:
一种PET挤出发泡板,与应用例一的区别之处在于扩链剂母粒采用实施例十三制得。
应用例十四:
一种PET挤出发泡板,采用PET饮料瓶经回收造粒制得的颗粒(特性黏度IV=0.68dL/g,端羧基浓度为35mol/t)和实施例九制得的扩链剂母粒用于PET挤出发泡,采用与应用例一相同的挤出设备和发泡工艺进行PET挤出发泡,实现了连续、稳定地制得泡孔结构均匀的PET发泡板材。
应用例十五:
一种PET挤出发泡板,采用串联挤出机组进行PET挤出发泡,上阶双螺杆挤出机的螺杆直径D=52mm,长径比L/D=40,下阶单螺杆挤出机的直径D=90mm,长径比L/D=24;挤出机下游依次安装静态混合器和多孔发泡模具,多孔模具宽35mm,厚20mm,挤出物出模具后进入整平机即可得到横截面为矩形的发泡PET板材。
采用瓶级PET(特性黏度IV=0.8dL/g,端羧基浓度30mol/t)和实施例九制得的扩链剂母粒用于挤出发泡,其中PET需在165℃条件下除湿干燥4hr,双螺杆挤出机的产量为60kg/hr,PET的喂料速率为58.5kg/hr,扩链剂母粒的喂料速率为1.5kg/hr,二者通过失重喂料机分别喂料,本实施例采用超临界CO 2作为 发泡剂,发泡剂通过注射泵以2.5kg/hr的速率注入挤出机中,挤出过程的温度设置如下表所示:
Figure PCTCN2020084812-appb-000001
上述制备过程可以连续、稳定地制得泡孔结构均匀的PET发泡板材。
应用例十六:
一种PET挤出发泡板,按照如下步骤制备:
(1)制备扩链剂母粒:按照实施例九的步骤,与实施例九的区别之处在于选用的PBT的熔融温度为170℃,共混温度为185℃;
(2)制备发泡板:按照应用例一的步骤,扩链剂母粒选用步骤(1)制得的母粒。
应用例十七:
一种PET挤出发泡板,与应用例十六的区别之处在于选用的PBT的熔融温度为175℃,共混温度为190℃。
应用例十八:
一种PET挤出发泡板,与应用例十六的区别之处在于选用的PBT的熔融温度为215℃,共混温度为225℃。
应用例十九:
一种PET挤出发泡板,与应用例十六的区别之处在于选用的PBT的熔融温度为225℃,共混温度为230℃。
应用例二十:
一种PET挤出发泡板,按照如下步骤制备:
(1)制备扩链剂母粒:按照实施例九的步骤制备,与实施例九的区别之处在于选用的PBT的特性黏度为0.75dL/g;
(2)制备发泡板:按照应用例一的步骤,扩链剂母粒选用步骤(1)制得的母粒。
应用例二十一:
一种PET挤出发泡板,与应用例二十的区别之处在于选用的PBT的特性黏度为 0.9dL/g。
应用例二十二:
一种PET挤出发泡板,与应用例二十的区别之处在于选用的PBT的特性黏度为1.2dL/g。
应用例二十三:
一种PET挤出发泡板,与应用例二十的区别之处在于选用的PBT的特性黏度为1.3dL/g。
应用例二十四:
一种PET挤出发泡板,与应用例九的区别之处在于POE-g-GMA中GMA的接枝率为0.2%。
应用例二十五:
一种PET挤出发泡板,与应用例二十四的区别之处在于POE-g-GMA中GMA的接枝率为0.5%。
应用例二十六:
一种PET挤出发泡板,与应用例二十四的区别之处在于POE-g-GMA中GMA的接枝率为2%。
应用例二十七:
一种PET挤出发泡板,与应用例二十四的区别之处在于POE-g-GMA中GMA的接枝率为5%。
对比例一:
一种PET挤出发泡板,按照如下步骤制备:
(1)制备扩链剂母粒:按照实施例九的步骤,与实施例九的区别之处在于选用的PBT的熔融温度为165℃,共混温度为180℃;
(2)制备发泡板:按照应用例一的步骤,扩链剂母粒选用步骤(1)制得的母粒。
对比例二:
一种PET挤出发泡板,按照如下步骤制备:
(1)制备扩链剂母粒:按照实施例九的步骤,与实施例九的区别之处在于选用的PBT的熔融温度为230℃,共混温度为240℃;
(2)制备发泡板:按照应用例一的步骤,扩链剂母粒选用步骤(1)制得的母粒。
对比应用例一:
一种PET挤出发泡板,按照如下步骤制备:
(1)制备扩链剂母粒:按照实施例九的步骤,与实施例九的区别之处在于选用的PBT的特性黏度为0.6dL/g;
(2)制备发泡板:按照应用例一的步骤,扩链剂母粒选用步骤(1)制得的母粒。
对比应用例二:
一种PET挤出发泡板,按照如下步骤制备:
(1)制备扩链剂母粒:按照实施例九的步骤,与实施例九的区别之处在于选用的PBT的特性黏度为1.4dL/g;
(2)制备发泡板:按照应用例一的步骤,扩链剂母粒选用步骤(1)制得的母粒。
对比应用例三:
一种PET挤出发泡板,按照如下步骤制备:
(1)制备扩链剂母粒:按照实施例九的步骤,与实施例九的区别之处在于选用的POE的熔融指数为0.2g/10min,POE-g-GMA的熔融指数为0.5g/10min;
(2)制备发泡板:按照应用例一的步骤,扩链剂母粒选用步骤(1)制得的母粒。
对比应用例四:
一种PET挤出发泡板,按照如下步骤制备:
(1)制备扩链剂母粒:按照实施例九的步骤,与实施例九的区别之处在于选用的POE的熔融指数为6g/10min,POE-g-GMA的熔融指数为6g/10min;
(2)制备发泡板:按照应用例一的步骤,扩链剂母粒选用步骤(1)制得的母粒。
对比应用例五:
一种PET挤出发泡板,按照如下步骤制备:
(1)制备扩链剂母粒:按照实施例九的步骤,与实施例九的区别之处在于选用的POE-g-GMA中GMA的接枝率为0.1%;
(2)制备发泡板:按照应用例一的步骤,扩链剂母粒选用步骤(1)制得的母粒。
对比应用例六:
一种PET挤出发泡板,按照如下步骤制备:
(1)制备扩链剂母粒:按照实施例九的步骤,与实施例九的区别之处在于选用的POE-g-GMA中GMA的接枝率为7%;
(2)制备发泡板:按照应用例一的步骤,扩链剂母粒选用步骤(1)制得的母粒。
检测手段:
(1)表观密度:按照ISO 845标准,将涉及发泡板的应用例与对比例进行测试;
(2)抗拉强度:按照ASTMC297标准,将涉及发泡板的应用例与对比例进行测试;
(3)抗压强度:按照ISO 844标准,将涉及发泡板的应用例与对比例进行测试;
(4)剪切强度:按照ISO 1922标准,将涉及发泡板的应用例与对比例进行测试;
(5)特性黏度:按照GB/T14190,溶剂为苯酚:四氯乙烷以重量比为1:1混合,测试温度为25±0.1℃;
(6)泡孔形貌:利用SEM扫描电镜观察应用例九样品,放大倍率为200;
(7)加工情况:观察母粒制备阶段以及PET发泡阶段物料传输以及机头压力情况。
检测结果如下表所示:
Figure PCTCN2020084812-appb-000002
Figure PCTCN2020084812-appb-000003
Figure PCTCN2020084812-appb-000004
Figure PCTCN2020084812-appb-000005
通过上表可知,经本申请各应用例制得的PET发泡板,具有较高的抗拉强度、抗压强度和剪切强度,力学性能优异;由此可见,采用实施例一~实施例十制得的扩链剂母粒在PET发泡体系内的分散性、相容性均良好,使得母粒具有良好的扩链效率,从而实现制备质轻且力学性能优异的PET发泡板;实施例十一~实施例十三涉及的母粒,其中PBT组分采用自制,该制备方法反应速度快、反应副产物环保,并且自制的PBT在PET体系的分散性更佳,详见应用例十一~应用例十三的检测结果。
应用例九的发泡板力学性能优异,针对应用例九的样品,利用SEM扫描电镜观察泡孔结构,由图1可知,应用例九样品的泡孔均匀、稳定,有助于制备质轻且力学性能优异的发泡板;另外根据图2可知,在不同拉伸应变速率条件下,应用例九样品出现了显著的应变硬化效应,表明PET发泡板的熔体强度提高, 母粒具有较高的扩链效率。
根据应用例十一、应用例十二和应用例十三可知,采用自制的PBT,利用环己烷二甲醇替代部分1,4-丁二醇,破坏了PBT晶区排布的规整性,制备不同熔融温度的PBT组分,从检测结果可知,应用例十一~应用例十三的力学性能优于应用例一~应用例十,可知自制的PBT在PET体系内的分散性更佳,可进一步提高PET发泡板的力学性能。
根据应用例十六~应用例十九可知,PBT的熔融温度优选为175~215℃,PET挤出发泡板的力学性能最优;根据应用例二十~应用例二十三可知,PBT的特性黏度优选为0.9~1.2dL/g,PET挤出发泡板的力学性能最优;根据应用例二十四~应用例二十七可知,POE-g-GMA中GMA的接枝率选为0.5%~2%时,PET挤出发泡板的力学性能最优。
根据对比例一和对比例二可知,当PBT熔融温度选为165℃时,在PET发泡板加工过程中,PBT会发生热分解,影响母粒的扩链效率;当PBT熔融温度选为230℃时,在PET发泡板加工中,PBT会与PDMA发生部分反应,同样使得母粒的扩链效率降低,进而导致PET发泡板的力学性能指标大幅度下降。
根据对比应用例一和对比应用例二可知,若PBT的特性黏度为0.6dL/g时,母粒难制备,并且在PET挤出发泡工艺中,压力波动较大,发泡物料传输不够稳定,最终会影响发泡板的力学性能;若PBT的特性黏度为1.4dL/g时,PBT本身难制备,制备能耗较大。
根据对比应用例三和对比应用例四可知,当POE、POE-g-GMA的熔融指数较小时,在PET发泡体系内,母粒在PET体系的分散性不佳,发泡物料的传输不够稳定,影响PET发泡板的力学性能;当选用的POE、POE-g-GMA的熔融指数较大时,因流动性过大造成溢料,导致母粒难以成型,最终影响PET发泡板的力学性能。
根据对比应用例五和对比应用例六可知,POE-g-GMA中GMA的接枝率为0.1%时,PBT体系中的橡胶相粒子间距大于临界分子间距,无法实现发泡板的脆韧转变,影响母粒的成型;而随着POE-g-GMA中GMA的接枝率增大时,橡胶相的粒径变小,橡胶相分散更加均匀,当POE-g-GMA中GMA接枝率达到7%时,在PET挤出发泡体系容易产生交联而影响发泡物料传输的稳定性。
本申请涉及的扩链剂母粒中还可引入其他种类的加工助剂,如热稳定剂、成核剂、阻燃剂等,阻燃剂包括卤素类、磷类以及无机化合物类;发泡成核剂有滑石粉、纳米粘土、二氧化硅。
本发明涉及的PET挤出发泡过程,包括但不限于双螺杆挤出机,实际可采用所有形式的挤出发泡机组,如单螺杆挤出机、双螺杆挤出机以及串联的挤出机组(上阶为双螺杆挤出机/下阶为单螺杆挤出机以及上、下阶皆为单螺杆挤出机)。
本具体实施方式的实施例均为本发明的较佳实施例,并非依此限制本发明的保护范围,故:凡依本发明的结构、形状、原理所做的等效变化,均应涵盖于本发明的保护范围之内。

Claims (10)

  1. 一种用于PET挤出发泡的扩链剂母粒,其特征在于,主要由如下重量份的组分制成:PMDA 5~30份、PBT 25~90份、POE+POE-g-GMA 5~70份,其中POE占POE+POE-g-GMA的重量百分比为0~85%;所述PBT的熔融温度为170~225℃。
  2. 根据权利要求1所述的一种用于PET挤出发泡的扩链剂母粒,其特征在于,主要由如下重量份的组分制成:PMDA 10~20份、PBT 50~80份、POE+POE-g-GMA 10~35份,其中POE占POE+POE-g-GMA的重量百分比为60~85%;所述PBT的熔融温度为175~215℃。
  3. 根据权利要求1所述的一种用于PET挤出发泡的扩链剂母粒,其特征在于:所述PBT的特性黏度为0.75~1.3dL/g。
  4. 根据权利要求3所述的一种用于PET挤出发泡的扩链剂母粒,其特征在于:所述PBT的特性黏度为0.90~1.20dL/g。
  5. 根据权利要求1所述的一种用于PET挤出发泡的扩链剂母粒,其特征在于:所述POE的熔融指数为0.5~5g/10min,所述POE-g-GMA的熔融指数为1~5g/10min。
  6. 根据权利要求5所述的一种用于PET挤出发泡的扩链剂母粒,其特征在于:所述POE的熔融指数为0.5~1.5g/10min,所述POE-g-GMA的熔融指数为2~5g/10min。
  7. 根据权利要求1所述的一种用于PET挤出发泡的扩链剂母粒,其特征在于:所述POE-g-GMA中GMA的接枝率为0.2~5%。
  8. 根据权利要求7所述的一种用于PET挤出发泡的扩链剂母粒,其特征在于:所述POE-g-GMA中GMA的接枝率为0.5~2%。
  9. 如权利要求1~8任意一项所述的一种用于PET挤出发泡的扩链剂母粒的制备方法,其特征在于,包括如下步骤:
    (1)配料;按照重量份,称量PMDA 5~30份、PBT 25~90份、POE+POE-g-GMA5~70份,其中POE占POE+POE-g-GMA的重量百分比为0~85%;
    (2)将上述各组分通过挤出机的主喂料口喂入,共混温度高于PBT组分熔点5~25℃,而低于扩链剂组分熔点20~100℃,螺杆转速为100~500rpm,风冷切粒或热模面切粒。
  10. 如权利要求1~8任意一项所述的一种用于PET挤出发泡的扩链剂母粒以及权利要求9所述的制备方法制得的一种用于PET挤出发泡的扩链剂母粒的应用,其特征在于:所述母粒可用于纤维级PET、膜级PET、瓶级PET、工程塑料级PET、回收PET的一种或几种组合的挤出发泡过程,PET的特性黏度IV为0.5~1.5dL/g,PET的端羧基浓度为15~50mol/t,所述母粒在PET挤出发泡过程中的添加质量百分比为0.5~10wt%。
PCT/CN2020/084812 2020-04-15 2020-04-15 一种用于pet挤出发泡的扩链剂母粒及其制备方法和应用 WO2021207951A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/084812 WO2021207951A1 (zh) 2020-04-15 2020-04-15 一种用于pet挤出发泡的扩链剂母粒及其制备方法和应用
US17/867,203 US20220348763A1 (en) 2020-04-15 2022-07-18 Chain extender masterbatch for pet extrusion foaming, preparation method therefor, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084812 WO2021207951A1 (zh) 2020-04-15 2020-04-15 一种用于pet挤出发泡的扩链剂母粒及其制备方法和应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/867,203 Continuation US20220348763A1 (en) 2020-04-15 2022-07-18 Chain extender masterbatch for pet extrusion foaming, preparation method therefor, and use thereof

Publications (1)

Publication Number Publication Date
WO2021207951A1 true WO2021207951A1 (zh) 2021-10-21

Family

ID=78084467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084812 WO2021207951A1 (zh) 2020-04-15 2020-04-15 一种用于pet挤出发泡的扩链剂母粒及其制备方法和应用

Country Status (2)

Country Link
US (1) US20220348763A1 (zh)
WO (1) WO2021207951A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113502013A (zh) * 2021-07-24 2021-10-15 上海双狮塑料制品有限公司 一种化妆品瓶用塑料软管的管坯、制备方法以及塑料软管
CN114957953A (zh) * 2022-03-24 2022-08-30 宁波龙洋塑化科技有限公司 一种耐水解抗低温冲击无卤阻燃pc/pbt合金材料及其制备方法
CN115044134A (zh) * 2022-07-11 2022-09-13 北京工商大学 一种高强度高回弹聚丙烯泡沫及其制备方法和控制聚丙烯泡沫回弹性能和压缩强度的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115806728B (zh) * 2022-12-07 2024-02-20 江苏越升科技股份有限公司 一种用于rPET挤出发泡的双组分扩链剂母粒及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59210955A (ja) * 1983-05-16 1984-11-29 Sekisui Chem Co Ltd 熱可塑性ポリエステル樹脂発泡体の製法
CN1135228A (zh) * 1993-10-04 1996-11-06 伊斯曼化学公司 用于改进聚酯组合物的母料及其制备方法
CN1791632A (zh) * 2003-05-19 2006-06-21 澳大利亚聚合物股份有限公司 聚酯母料组合物
US20100292352A1 (en) * 2009-05-18 2010-11-18 Armacell Enterprise Gmbh Preparation and application of chain-extending concentrates for polyester foaming process
CN102056967A (zh) * 2008-06-12 2011-05-11 3A科技和管理有限公司 发泡的聚酯及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5000991B2 (en) * 1988-12-01 2000-07-11 Sekisui Plastics Process for producing polyester resin foam and polyester resin foam sheet
US4999388A (en) * 1989-09-14 1991-03-12 General Electric Company Branched polyester resin composition having enhanced melt viscosity
US6355336B1 (en) * 1998-12-15 2002-03-12 Mitsubishi, Engineering-Plastics Corporation Multi-layer packaging film
CN105295317A (zh) * 2015-11-18 2016-02-03 东莞市万江明冠实业有限公司 一种耐高低温pbt导散热材料及其制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59210955A (ja) * 1983-05-16 1984-11-29 Sekisui Chem Co Ltd 熱可塑性ポリエステル樹脂発泡体の製法
CN1135228A (zh) * 1993-10-04 1996-11-06 伊斯曼化学公司 用于改进聚酯组合物的母料及其制备方法
CN1791632A (zh) * 2003-05-19 2006-06-21 澳大利亚聚合物股份有限公司 聚酯母料组合物
CN102056967A (zh) * 2008-06-12 2011-05-11 3A科技和管理有限公司 发泡的聚酯及其制备方法
US20100292352A1 (en) * 2009-05-18 2010-11-18 Armacell Enterprise Gmbh Preparation and application of chain-extending concentrates for polyester foaming process

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CAO YUFEI: "Preparation and Properties of Poly(Ethylene Terephthalate) / Poly(Butylene Terephthalate) Alloys with High Toughness)", GAOFENZI-CAILIAO-KEXUE-YU-GONGCHENG = POLYMER MATERIALS SCIENCE AND ENGINEERING, CHENGDU KEJI DAXUE GAOFENZI YANJIUSUO, CN, vol. 25, no. 11, 15 November 2009 (2009-11-15), CN , XP055864396, ISSN: 1000-7555 *
L. DI MAIO, I. COCCORULLO, S. MONTESANO, L. INCARNATO: "Chain Extension and Foaming of Recycled PET in Extrusion Equipment", MACROMOLECULAR SYMPOSIA, vol. 228, no. 1, 1 August 2005 (2005-08-01), pages 185 - 200, XP055116885, ISSN: 10221360, DOI: 10.1002/masy.200551017 *
LI CANGHONG, PENGWEI SHI, JUNJIE TANG, YE TIAN: "Influences of POE-g-GMA Graft Ratio on Properties and Morphologies of PBT / POE-g-GMA Blends)", GONGCHENG-SULIAO-YINGYONG = ENGINEERING PLASTICS APPLICATION, ZHONGGUO BINGGONG XUEHUI; FEIJINSHU XUEHUI, CHINA, vol. 44, no. 2, 1 January 2016 (2016-01-01), CHINA , pages 29 - 34, XP055864407, ISSN: 1001-3539, DOI: 10.3969/j.issn.1001-3539.2016.02.006 *
ZHANG ZHIJUN: "Study on Preparation and Properties of PBT/PET Alloy with High Strength and Anti-friction", CHINA PLASTICS INDUSTRY, vol. 41, no. 7, 20 July 2013 (2013-07-20), XP055864419, ISSN: 1005-5770 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113502013A (zh) * 2021-07-24 2021-10-15 上海双狮塑料制品有限公司 一种化妆品瓶用塑料软管的管坯、制备方法以及塑料软管
CN114957953A (zh) * 2022-03-24 2022-08-30 宁波龙洋塑化科技有限公司 一种耐水解抗低温冲击无卤阻燃pc/pbt合金材料及其制备方法
CN114957953B (zh) * 2022-03-24 2024-05-03 宁波龙洋塑化科技有限公司 一种耐水解抗低温冲击无卤阻燃pc/pbt合金材料及其制备方法
CN115044134A (zh) * 2022-07-11 2022-09-13 北京工商大学 一种高强度高回弹聚丙烯泡沫及其制备方法和控制聚丙烯泡沫回弹性能和压缩强度的方法
CN115044134B (zh) * 2022-07-11 2023-08-11 北京工商大学 一种高强度高回弹聚丙烯泡沫及其制备方法和控制聚丙烯泡沫回弹性能和压缩强度的方法

Also Published As

Publication number Publication date
US20220348763A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
WO2021207951A1 (zh) 一种用于pet挤出发泡的扩链剂母粒及其制备方法和应用
CN111269539B (zh) 一种用于pet挤出发泡的扩链剂母粒及其制备方法和应用
CN109605708B (zh) 一种热塑性聚酯挤出发泡成型方法
CN112048162B (zh) 一种吸塑薄壁制品用全生物降解改性塑料及其制备方法
TW201602211A (zh) 使用烯烴-順丁烯二酸酐共聚物修飾工程塑膠
CN113801450A (zh) 耐高温挤出吸管制品用全生物降解改性塑料及其制备方法
CN113956623B (zh) 一种适于膜袋的全生物降解塑料复合改性材料及其制备方法
CN111154134B (zh) 一种高韧性非结晶共聚酯阻燃泡沫及其制备方法
CN113337088B (zh) 注塑用复合降解塑料材料的制备方法
CN104530664A (zh) 一种以改性pet为基料的板材、加工方法及其加工设备
CN113429759A (zh) Pbat复合改性生物降解材料及其制备方法
CN114989581B (zh) 一种生物可降解聚乳酸发泡粒子及其制备方法
CN109575557A (zh) 用于三维打印的pc/abs混合料及其制备方法和直接打印方法
CN113234304A (zh) 一种生物可降解薄膜材料及薄膜的制备方法
CN102134378B (zh) 片材用可控结晶聚酯复合材料
CN113442401A (zh) 一种高强高阻隔pga/pbat食品包装膜及其制备方法
EP2048188B1 (en) Masterbatch of polyfunctional compounds usable for producing manufactured articles made of expanded polyester resin
CN106939112B (zh) 一种高光泽hips/回收pet瓶片复合材料及其制备方法
CN115466491A (zh) 一种高模量的可降解pbat/pla复合物及其制备方法
CN115806728B (zh) 一种用于rPET挤出发泡的双组分扩链剂母粒及其制备方法和应用
CN113121988B (zh) 复合材料及由其所制备的发泡体
CN110283436B (zh) 一种高强度芳香族聚酯微孔发泡材料及其制备方法
CN114015214B (zh) 一种聚乳酸/可降解聚酯弹性体共混物及其制备方法
CN113831632B (zh) 一种发泡聚丙烯板材及其制备方法
KR100478601B1 (ko) 층상점토광물을 함유한 폴리에스테르 나노복합재의제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931534

Country of ref document: EP

Kind code of ref document: A1