JPWO2020003464A1 - 光触媒、ガスセンサデバイス、ガスセンサ及び測定方法 - Google Patents
光触媒、ガスセンサデバイス、ガスセンサ及び測定方法 Download PDFInfo
- Publication number
- JPWO2020003464A1 JPWO2020003464A1 JP2020526827A JP2020526827A JPWO2020003464A1 JP WO2020003464 A1 JPWO2020003464 A1 JP WO2020003464A1 JP 2020526827 A JP2020526827 A JP 2020526827A JP 2020526827 A JP2020526827 A JP 2020526827A JP WO2020003464 A1 JPWO2020003464 A1 JP WO2020003464A1
- Authority
- JP
- Japan
- Prior art keywords
- gas
- gas sensor
- light
- sensor device
- sensitive film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 34
- 238000000691 measurement method Methods 0.000 title claims description 11
- 229910021589 Copper(I) bromide Inorganic materials 0.000 claims abstract description 113
- NKNDPYCGAZPOFS-UHFFFAOYSA-M copper(i) bromide Chemical compound Br[Cu] NKNDPYCGAZPOFS-UHFFFAOYSA-M 0.000 claims abstract description 113
- 230000001699 photocatalysis Effects 0.000 claims abstract description 49
- 239000000126 substance Substances 0.000 claims abstract description 30
- 239000010949 copper Substances 0.000 claims abstract description 5
- 229910052802 copper Inorganic materials 0.000 claims abstract description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000005259 measurement Methods 0.000 claims description 211
- 238000010926 purge Methods 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 43
- 230000007246 mechanism Effects 0.000 claims description 25
- 230000001678 irradiating effect Effects 0.000 claims description 19
- 230000001747 exhibiting effect Effects 0.000 claims description 11
- 239000013078 crystal Substances 0.000 claims description 4
- 229910052794 bromium Inorganic materials 0.000 claims description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 2
- ODWXUNBKCRECNW-UHFFFAOYSA-M bromocopper(1+) Chemical compound Br[Cu+] ODWXUNBKCRECNW-UHFFFAOYSA-M 0.000 claims 1
- 238000004904 shortening Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 78
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 69
- 230000004044 response Effects 0.000 description 45
- 230000008859 change Effects 0.000 description 25
- 230000008569 process Effects 0.000 description 24
- 238000011084 recovery Methods 0.000 description 21
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 19
- 238000000354 decomposition reaction Methods 0.000 description 19
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 12
- 238000012986 modification Methods 0.000 description 12
- 230000004048 modification Effects 0.000 description 12
- 239000007788 liquid Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000012790 confirmation Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 239000010865 sewage Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 241000186361 Actinobacteria <class> Species 0.000 description 1
- 208000035985 Body Odor Diseases 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 206010040904 Skin odour abnormal Diseases 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 206010016766 flatulence Diseases 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
- B01J27/08—Halides
- B01J27/122—Halides of copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0238—Impregnation, coating or precipitation via the gaseous phase-sublimation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G3/00—Compounds of copper
- C01G3/04—Halides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/125—Composition of the body, e.g. the composition of its sensitive layer
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Electrochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Inorganic Chemistry (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
光触媒(1)は、臭化第一銅からなり、臭化第一銅が光の照射で臭化第一銅に接する物質を分解する光触媒性を示す。
また、ガスセンサデバイスが提供され、該ガスセンサデバイスは、第1電極と、第2電極と、前記第1電極と前記第2電極とを接続する感応膜とを備え、前記感応膜は、臭化第一銅からなり、前記臭化第一銅が光の照射で前記臭化第一銅に接する物質を分解する光触媒性を示す。
Description
その用途も様々で、例えば周辺環境のガス濃度測定、ガス警報器などとしても使われている。
ガスセンサは、検出方法の違いによっていくつかの種類があるが、酸化物半導体を感応膜としたガスセンサ、特に酸化すずを感応膜材料としたガスセンサが最も広く使われている(例えば図46参照)。
例えば、対象ガスの濃度を繰り返し測定する場合には、対象ガスが含まれていないときのセンサ抵抗と対象ガスが含まれているときのセンサ抵抗とを繰り返し取得することになる。
なお、ここでは、ガスセンサにおいて、ガスセンサデバイスの表面のガス分子を脱離させるのに、即ち、分解対象物を分解するのに、多くの時間がかかってしまうことを課題として説明しているが、これに限られるものではない。
本発明は、分解対象物を分解するのに要する時間を短くすることを目的とする。
1つの態様では、ガスセンサデバイスは、第1電極と、第2電極と、第1電極と第2電極とを接続する感応膜とを備え、感応膜は、臭化第一銅からなり、臭化第一銅が光の照射で臭化第一銅に接する物質を分解する光触媒性を示す。
1つの態様では、測定方法は、制御部が、臭化第一銅からなり、臭化第一銅が光の照射で臭化第一銅に接する物質を分解する光触媒性を示す感応膜を備えるガスセンサデバイスに、測定対象ガスを供給する制御を行ない、制御部が、ガスセンサデバイスによって検出される値に基づいて測定対象ガスの濃度を測定し、制御部が、測定対象ガスの供給を停止する制御を行なうとともに、感応膜に光を照射するように光源に対する制御を行なう。
本実施形態にかかる光触媒は、臭化第一銅(CuBr)からなり、CuBrが光の照射でCuBrに接する物質を分解する光触媒性を示す光触媒1である(図1参照)。この場合、光触媒材料はCuBrである。
これは、以下に説明するように、CuBrが光触媒性を有することを発見したことに基づくものであり、CuBrからなる光触媒1は新しい光触媒であり、CuBrは新しい光触媒材料である。
価電子帯と伝導帯のバンドギャップに相当する波長の光エネルギをそれが吸収すると、励起によって価電子帯の電子が伝導帯に移り、価電子帯に正孔が発生する。
伝導帯では物質の表面になんらかの物質(例えば有機物)が吸着しているとして、それに移ってきた電子が表面の有機物に移動して、それを還元し、また、価電子帯では、そこに発生した正孔が電子を奪い取り、有機物の酸化を行なう。
つまり、照射する光(例えば紫外光)のエネルギに相当するバンドギャップを持ち、生成した電子・正孔の寿命が長く、かつ、強い酸化還元力を持った材料が光触媒材料となる。
本発明者は、CuBrの光触媒性を、他の実験中に紫外線照射時のみセンサ抵抗が下降することから発見した。
そこで、あらためて以下の方法で光触媒活性の評価を行ない、CuBrが光触媒性を持つことを確認した。
CuBrのバンドギャップはEg=3.1eVであるため(例えばK.V. Rajani, S.Daniels, M.Rahman, A.Cowley, P.J. McNally, “Deposition of earth-abundant p-type CuBr films with high hole conductivity and realization of p-CuBr/n-Si heterojunction solar cell”, Materials Letter, 111, (2013), 63-66参照)、これを、以下の式(1)に代入して、波長を求めると、λ=405nmとなる。
このことから、以下の評価では、波長405nmの成分を含む光源を使用すれば良いことがわかった。
まず、JIS R 1701−2による評価、即ち、JIS R 1701−2試験による光触媒性の確認を行なった。
この間、デシケータ内に外光が入らないように遮蔽している。
ここで、図2(A)、図2(B)は、これらの結果を示している。
一方、図2(B)に示すように、二酸化炭素は紫外線照射と同時に急激に増加していることが分かる。
これは、密閉デシケータ内に充填したアセトアルデヒドが分解して二酸化炭素になっていることを示している。
なお、UV照射前のdark期間中にアセトアルデヒドガス濃度が若干減少しているのは、チャンバ内壁に吸着したことによるものと考えられる。
次に、表面分析による評価、即ち、近紫外光を照射していない場合と照射した場合のCuBr膜4の表面のXPS(X-ray Photoelectron Spectroscopy)分析を行なった。
つまり、光触媒性を確認するには、紫外光照射前と照射後とを比較して、CuBr膜4の組成が変化しないことを確認する必要がある。
紫外光照射(近紫外光照射)によるCuBr膜4の表面の変化を確認するため、CuBr薄膜4にLED紫外光(中心波長405nm)を約10sec×11回照射したサンプル(#75C3)と照射していないサンプル(#75D3)の表面を、それぞれ、XPSによって分析し、組成を比較した。
なお、図3(A)、図3(B)中、右上に定量分析結果を示している。
図3(A)、図3(B)に示すように、紫外光を照射したサンプルと照射していないサンプルにおいて検出された元素はC、N、O、Cu、Brでこれ以外の元素は検出されなかった。それぞれの組成比は紫外光照射前と後とでは違いはなかった。
このように、上述の2種類の評価によって、CuBrは光触媒性を持つことを確認することができた。
CuBrの光触媒活性の発現に必要な光は、約410nm以下の波長を含む光であれば特に制限はなく、目的に応じて適宜選択することができる。
ここでは、紫外線は、約10nm〜約410nmの波長を持つ光であり、近紫外線は、約320nm〜約410nmの波長を持つ光である。
光源のコスト等を考慮すると、約380nm〜約410nmの波長の近紫外線を照射するのが好ましい。
また、光触媒性によってCuBrが分解対象とするものは、特に制限はなく、目的に応じて適宜選択することができる。
例えば、その成分としては、タンパク質、アミノ酸、脂質、糖質などの有機物以外に、特定の無機物、例えばNH3を分解することも報告されている(例えば図4参照;例えばH.Mozzanega et al., “NH3 Oxidation over UV-Irradiated TiO2 at Room Temperature”, The Journal of Physical Chemistry, Vol. 83, No. 17, 1979, pp. 2251-2255参照)。
また、分解対象物の具体例としては、一般に、人間の皮膚に由来する汚れ成分、ゴミ、埃、汚泥、不要成分、廃液成分、土壌中乃至空気中の有害成分、微生物、ウイルスなどが挙げられる。
微生物としては、特に制限はなく、原核生物及び真核生物のいずれであっても良いし、原生動物も含まれ、原核生物としては、例えば、大腸菌、黄色ブドウ球菌等の細菌などが挙げられ、真核生物としては、例えば、酵母菌類、カビ、放線菌等の糸状菌類などが挙げられる。
また、分解対象物は、固体状、液体状、及び気体状のいずれの態様の中に存在していても良い。
例えば、液体状の態様の中に存在する場合としては、例えば、廃液、栄養液、循環液などの液体状のものの中に分解対象物が存在する場合がある。
つまり、上述の光触媒性を有するCuBr、即ち、CuBrからなる光触媒は、例えば、浄水器や汚水浄化などに適用することができ、これに光(紫外光)を照射することで、例えば廃液や循環液などの中に含まれる分解対象物を分解することができ、さらに分解対象物を分解するのに要する時間を短くすることができる。
この場合、このような気体状のものの中に、上述の光触媒性を有するCuBr、即ち、CuBrからなる光触媒を入れ、光(紫外光)を照射することで、これらの中に含まれる分解対象物を分解することができ、さらに分解対象物を分解するのに要する時間を短くすることができる。
この場合は、例えば浄水器、汚水浄化、空気清浄機、空調装置、排ガス浄化装置などの装置は、CuBrからなり、CuBrが光の照射でCuBrに接する物質を分解する光触媒性を示す光触媒と、光触媒に光を照射する光源とを備えるものとすれば良い。
例えば、空気清浄機を、CuBrからなり、CuBrが光の照射でCuBrに接する物質を分解する光触媒性を示す光触媒と、この光触媒の機能を発現させるのに必要な波長の光を光触媒に照射する機構を備えるものとすれば良い。
ところで、CuBrは、上述のように、光触媒性を持っている一方、アンモニアガスに対して、高感度、高選択比といった特性を持つガスセンサの感応膜となる感ガス性も持っている(例えば、丑込道雄,柄澤一明,百瀬悟,高須良三,壷井修、「呼気中のアンモニア成分を短時間で測定する携帯型呼気センサーの開発」、電気学会第33回「センサ・マイクロマシンと応用システム」シンポジウム予稿集、25am2−PS−079、(2016)参照)。
なお、これに限られるものではなく、上述の光触媒性を持つCuBrはアンモニアガスセンサ以外のガスセンサに用いることもできる。
この場合、図7に示すように、ガスセンサ5に備えられるガスセンサデバイス6は、第1電極7と、第2電極8と、第1電極7と第2電極8とを接続する感応膜9とを備え、感応膜9は、CuBrからなり、CuBrが光の照射でCuBrに接する物質を分解する光触媒性を示すものとすれば良い。
そして、ガスセンサ5は、このように構成されるガスセンサデバイス6と、ガスセンサデバイス6の感応膜9に光を照射する光源10とを備えるものとすれば良い。
ここで、光源10は、紫外光領域(近紫外光領域)の波長成分を含む光を照射する光源であれば良く、例えばUV−LEDを用いれば良い。
そして、ガスセンサ5は、このように構成されるガスセンサデバイス6と、光触媒機能を発現させるのに必要な波長の光を感応膜面に照射する光照射機構(ここでは紫外光照射機構;光源10;例えばUV−LED)を備えるものとすれば良い。
つまり、測定対象ガスにガスセンサデバイス6を曝すと、ガスセンサデバイス6の感応膜(CuBr膜)9の表面にガス分子が吸着するため、この状態でガス濃度を測定した後、清浄空気(パージガス)を導入することで、感応膜9の表面からガス分子を脱離させて元の状態に戻す(例えば図6参照)。
図5に示すように、アンモニアガスの測定時間(アンモニアガス暴露時間)は約60secであるのに対して、清浄空気(Air)を導入して初期抵抗に回復するまでの回復時間は約290secであり、回復時間は測定時間(アンモニアガス暴露時間)に対して約5倍程度も要する。
図8に示すように、回復時間は約290secから約40secとほぼ1/7となり、アンモニアガスの測定時間(アンモニアガス暴露時間;ここでは約60sec)よりも短い時間で回復できるようになる。
これに対し、本実施形態では、紫外線を照射することによって強制的にガス分子を分解、脱離させるため、フィルタを用いるなどして清浄空気を導入しなくても良く、例えばフィルタを用いないで外気を導入するだけでも良い。
ここで、図9は、実際に3回連続してアンモニアガスの濃度測定を行なった例を示している。
上述のように構成し、回復時間にUV照射を行なうことで、回復時間を短くすることができるため、図9に示すように、連続してアンモニアガスの濃度測定を行なうことが可能となった。
これにより、ガスセンサ5(ガスセンサデバイス6)の長寿命化を実現することも可能である。
図10に示すように、紫外光照射前に対して紫外光照射後のアンモニアガスに対する応答は約2倍になっていることが分かる。
ここで、図11は、近紫外光源としてUV−LED10を使用したガスセンサ5の一例を示している。
なお、ガスセンサ5を、ガスセンサシステム又は測定装置ともいう。また、図11中、実線はガス配管経路を示しており、破線は電気信号経路を示している。
ここでは、ガスセンサデバイス6は、センサチャンバ18内に設けられている。
また、引き込み口(導入口)からの経路としては、例えば活性炭などのフィルタ14を介した経路とこのようなフィルタ14を介さない経路があり、これらを電磁弁(ここでは3方電磁弁)13によって切り替える構造になっている。
また、ガスセンサデバイス6の直上には、紫外光源(近紫外光源)10としてUV−LED(UV−LEDユニット)が設置されている。
また、これらのポンプ16、電磁弁13、UV−LED10は、すべて制御部17に接続されており、制御部17によって、プログラムされたシーケンスにしたがって、制御されるようになっている。
このため、例えば測定対象、測定環境、目的に応じて、シーケンスを変えることで、フレキシブルなガスセンサ5を実現することも可能である。
ここで、図12は、自動で連続的にガス濃度測定が可能なガスセンサのシーケンス(ガス濃度測定シーケンス)の例を示している。
まず、ガス測定プロセスでは、ポンプ16を稼動させて、一定時間のガスセンサデバイス6の抵抗(センサ抵抗)の変化量を検出して、その変化に対応するガス濃度を算出する。
また、事前にガス濃度に対するガスセンサデバイス6の応答の対応関係データを取得しておき、それを制御部17内のメモリに記憶しておく。
なお、ここでは、フィルタ14を介して清浄空気を取り込むようにしているが、これに限られるものではなく、フィルタ14を介さずに外気を取り込むようにしても良い。
この清浄空気導入及びUV照射は、ガスセンサデバイス6が回復するまでの時間行なう。
そして、ガス濃度測定直前のセンサ抵抗に戻った時点で、リフレッシュプロセスを停止(UV照射停止)して、ポンプ16は稼働させたまま、待機する。
すぐに測定が無い場合は、ポンプ16も停止して待機する(スリープ)。
ここで、図13は、このようなガス濃度測定シーケンスを、ガスセンサ5に備えられる制御部17がプログラムを実行することによって実現する場合の処理(測定方法)を示すフローチャートである。
次に、制御部17は、測定対象ガスを導入すべく、電磁弁13を制御して、ガス供給側配管12の経路を、フィルタ14を介さない経路に切り替える(ステップS2)。
これにより、測定対象ガスが、上述のように構成されるガスセンサデバイス6が設けられているセンサチャンバ18内に供給される。
ここでは、制御部17は、所定時間(一定時間;例えば60sec)のガスセンサデバイス6の抵抗(センサ抵抗)の変化量を検出して、その変化に対応するガス濃度を算出することによって、測定対象ガスの濃度を測定する。
具体的には、測定対象ガスに暴露される直前の測定開始時点を0secとしたとき、このときのセンサ抵抗値をR0、tmeassec後のセンサ抵抗値をRsとしたとき、抵抗値の変化率|R0−Rs|/R0−1を算出し、これから制御部17内のメモリ等に保持しているガス濃度変換式によってガス濃度を導出すれば良い。
次に、制御部17は、ポンプ16を稼動させたまま、測定対象ガスに代えて清浄空気を導入すべく、電磁弁13を制御して、ガス供給側配管12の経路を、フィルタ14を介した経路に切り替える(ステップS4)。
なお、清浄空気をパージガスともいう。また、このようにして測定対象ガスに代えてパージガスを供給する機構をパージガス供給機構ともいう。ここでは、パージガス供給機構は、電磁弁13及びフィルタ14によって構成される。
このように、測定対象ガスの濃度を測定した後、清浄空気を導入してガスセンサデバイス6の感応膜9の表面に吸着したガス分離を脱離させてガスセンサデバイス6をリフレッシュ(回復)させる回復時間に、ガスセンサデバイス6の感応膜9の表面にUV照射を行なう(例えば図14参照)。
この場合、ガスセンサデバイス6に清浄空気を供給しながら、ガスセンサデバイス6の感応膜9の表面にUV照射を行なうことになる。
次に、制御部17は、ガスセンサデバイス6が回復したか否かを判定する(ステップS6)。
この判定の結果、ガスセンサデバイス6が回復していないと判定した場合には、NOルートへ進み、ステップS5へ戻って、UV照射を継続する。
そして、制御部17は、ガスセンサデバイス6が回復したと判定した場合、YESルートへ進み、UV照射を停止する(ステップS7)。
これにより、リフレッシュプロセスが終了する。但し、この時点ではポンプ16は停止させないため、清浄空気は流したままの待機状態となる。このとき、センサ抵抗は初期値に戻った状態で安定した状態となる。
この判定の結果、設定回数の測定を行なっていないと判定した場合は、NOルートへ進み、ステップS2へ戻って、測定を繰り返す。
そして、制御部17は、設定回数の測定を行なったと判定した場合は、YESルートへ進み、制御部17は、ポンプ16を制御して、ポンプ16を停止させ(ステップS9)、処理を終了する。
また、例えば、UV照射時間よりも十分長い時間(例えばUV照射時間の約3倍程度の時間)が経過したら、ポンプ16を停止するようにしても良い。
また、制御部17は、測定対象ガスを供給するガス供給タイミング及びガス供給時間を制御するとともに、感応膜9に光源10から光を照射する光照射タイミング及び光照射時間を制御することになる。
また、制御部17は、測定対象ガスの供給開始時に検出したガスセンサデバイス6からの抵抗値に戻るまで感応膜9に光を照射するように光源10に対する制御を行なうことになる。
また、測定方法としては、制御部17が、上述のように構成されるガスセンサデバイス6、即ち、臭化第一銅からなり、臭化第一銅が光の照射で臭化第一銅に接する物質を分解する光触媒性を示す感応膜9を備えるガスセンサデバイス6に、測定対象ガスを供給する制御を行なうことになる。また、制御部17が、ガスセンサデバイス6によって検出される値に基づいて測定対象ガスの濃度を測定することになる。また、制御部17が、測定対象ガスの供給を停止する制御を行なうとともに、感応膜9に光を照射するように光源10に対する制御を行なうことになる。
ここで、図15は、上述のようにしてガス濃度を測定した場合のセンサ抵抗の時間的変化の一例を示している。
このように、上述のように構成されるガスセンサ5に、ガスセンサデバイス6に光を照射してガスセンサデバイス6をリフレッシュ(回復)させるためのリフレッシュ機構として紫外光照射機構(紫外光照射光学系;光源10)を持たせることで、回復時間(リフレッシュ時間)を短くすることができ、短い時間間隔でガス濃度測定が可能となる。
ガスセンサを使って、周辺の空気中含まれるガスの濃度を測定する場合、対象ガスが含まれていないときのセンサ応答を基準として考えなくてはならない。
つまり、対象ガスが含まれていないときのセンサ抵抗をベースラインの抵抗R0とし、対象ガスに応答したときのセンサ抵抗をRsとしたとき、ガスに対するセンサの応答の大きさをRs/R0で表し、この応答の大きさに濃度を対応させて対象ガスの濃度とする。
対象ガスの濃度を繰り返し測定するには、ベースラインとガスに対するセンサの応答を繰り返し取得すれば良いのであるが、ベースラインを求めるためには、センサ周辺の空気を、対象ガスを含まない気体で換気して、上昇したセンサ抵抗をガス暴露前の値まで戻す必要がある。これにはポンプ等で清浄な空気をセンサ周辺に供給し、表面に残留しているガス分子を脱離させる必要がある。
そこで、上述のような光触媒性を持つCuBr膜をガスセンサデバイス(アンモニアガスセンサデバイス)6の感応膜9として使用し、光触媒性を発現する波長の光を膜面に向かって照射することができる機構(ここでは光源10)を設置し、ガスセンサデバイス6の回復時に光を照射することで、回復が早く、繰り返し濃度測定が可能なガスセンサ5を実現している。
なお、ガスセンサ5の構成は、上述の実施形態のもの(例えば図11参照)に限られるものではなく、他の構成であっても良い。
なお、図16中、実線はガス流路を示しており、破線は制御信号を示しており、一点鎖線はセンサ信号を示している。
また、制御部17は、ガスセンサデバイス6からの抵抗(センサ抵抗)を測定する測定部23と、例えばメモリなどの記憶部24と、MPU(microprocessor unit)25とを備えるものとすれば良い。
また、ガス導入機構部20は、例えばポンプ16などである。
また、ガス流路切り替え装置21は、例えば3方電磁弁などの電磁弁13などである。
また、例えば、図17に示すように、ガスセンサ5(ガスセンサシステム)を、上述の第1変形例の構成において、ガス導入機構部20をガス供給側配管12に設けるようにしても良い。これを第2変形例という。
なお、図17中、実線はガス流路を示しており、破線は制御信号を示しており、一点鎖線はセンサ信号を示している。
なお、図18中、実線はガス流路を示しており、破線は制御信号を示しており、一点鎖線はセンサ信号を示している。
この場合、例えば、不揮発性メモリ素子26に、例えば、ガスセンサデバイス6の基本特性、ガスセンサデバイス6の応答の大きさをガス濃度に変換するための変換式、ガス濃度測定シーケンスなどの情報を格納しておき、ガスセンサデバイス6を交換するたびに、これらを読み出して、制御部17における設定を再設定するようにしても良い。
また、例えば、図19に示すように、ガスセンサ5(ガスセンサシステム)を、上述の第2変形例の構成(例えば図17参照)において、さらに、表示部27と、通信部(伝送部)28とを備えるものとしても良い。これを第4変形例という。
この場合、表示部27には、制御部17によって算出されたガス濃度(データ)、設定値、検出値などを表示させるようにすれば良い。また、通信部28によって、例えばガス濃度、設定値、検出値などのデータを、例えば他の端末やサーバなどへ送信するようにすれば良い。
例えば、上述の実施形態及び各変形例のように構成される場合、制御部17に備えられる記憶部24に記憶されているガス濃度測定シーケンスに基づいて、測定対象ガス導入制御、パージガス導入制御、光照射制御(UV照射制御)を行ない、センサ部19に備えられるガスセンサデバイス6の応答(センサ応答)をもとにガス濃度を測定するようにすれば良い。
例えば、図20に示すように、ガスセンサシステム5の始動から、時間経過に沿って、始動シーケンス、測定シーケンス、測定シーケンス、・・・、停止シーケンスが実行されて、停止するようにすれば良い。
また、例えば、測定の間隔が長い場合は、図21に示すように、上述の一連のシーケンスを1サイクルとして、各サイクルの間にスリープを設定して、間欠動作による測定が行なわれるようにしても良い。
ここで、始動シーケンスは、試運転動作、即ち、測定開始前に、センサチャンバ18内を密閉したまま、ガスセンサ5の動作確認(ガスセンサデバイス6の動作確認及びUV光源10の動作確認)を行なうためのシーケンスである。
始動シーケンスでは、図22に示すように、まず、UV照射のみを行なってセンサ応答を確認する(第1の動作確認;図22中、(1)で示す)。
例えば、UV照射を一定時間行なった後にガスセンサデバイス6からの抵抗値がどの程度変化するかを確認すれば良い。
次に、UV照射と同時に測定対象ガスを導入してセンサ応答を確認する(第2の動作確認;図22中、(2)で示す)。
例えば、UV照射、及び、フィルタ14(22)を介さない経路に電磁弁13(21)を切り替えた状態でのポンプ16(20)の稼動を一定時間行なった後にガスセンサデバイス6からの抵抗値がどの程度変化するかを確認すれば良い。
これにより、ガスセンサデバイス6の感応膜9の表面を汚染することなく、センサ応答を確認することができる。
また、始動シーケンスを省略して、後述の測定シーケンスから始動するようにしても良い。
まず、ガスセンサ(ガスセンサシステム)5がオンになると、制御部17が、オンとなり(ステップA1)、タイマをスタートさせる(ステップA2)。なお、タイマのカウント開始はT=0である。
次に、制御部17は、光源(ここではUV−LED)10をオンにして、ガスセンサデバイス6の感応膜9に光(ここではUV)を照射する(ステップA4)。
このようにしてUV照射を行なっている状態で、制御部17は、タイマのカウントTがT1よりも大きいか否かを判定し(ステップA5)、TがT1よりも大きいと判定しなかった場合は、NOルートへ進み、この判定を繰り返す。ここで、T1は、UV照射時間、即ち、UV照射を行なう一定時間であり、あらかじめ設定しておく。
そして、制御部17は、光源(ここではUV−LED)10をオフにして、ガスセンサデバイス6の感応膜9に対する光の照射(ここではUV照射)を終了する(ステップA7)。
次に、制御部17は、このようにして算出したセンサ抵抗の変化、即ち、ΔR0がR1よりも小さいか否かを判定する(ステップA9)。ここで、は、センサ動作確認抵抗値であり、あらかじめ設定しておく。
このようにして、制御部17は、UV照射を一定時間行なった後にガスセンサデバイス6からの抵抗値がどの程度変化するか、即ち、UV照射を一定時間行なった場合のセンサ応答を確認し、センサ応答が良くない場合は、警報として、レッドREDを点灯させ、電源をオフにする。
これにより、フィルタ14(22)を介さない経路に電磁弁13(21)を切り替えた状態でポンプ16(20)が稼動して、測定対象ガスが導入されるとともに、ガスセンサデバイス6の感応膜9に光(ここではUV)が照射され、これらが一定時間行なわれる。
この場合、制御部17は、上述と同様に、UV照射及び測定対象ガスの導入の前後のセンサ抵抗を測定し、その変化を算出し、それが所定値よりも大きいか否かを判定することなどによって、UV照射及び測定対象ガスの導入を一定時間行なった後にガスセンサデバイス6からの抵抗値がどの程度変化するか、即ち、UV照射と同時に測定対象ガスを導入した場合のセンサ応答を確認する。そして、センサ応答が良くない場合には、上述と同様に、警報として、レッドREDを点灯させ、電源をオフにすれば良い。
上述のような制御を行なう場合、ガスセンサ5に備えられる制御部17は、測定開始前の始動時に、ガスセンサデバイス6の感応膜9に光を照射するように光源10に対する制御を行なうか、測定対象ガスを供給しながら感応膜9に光を照射するように光源10に対する制御を行なうか、又は、感応膜9に光を照射するように光源10に対する制御及び測定対象ガスを供給しながら感応膜9に光を照射するように光源10に対する制御を行なうことになる。
ここでは、図24に示すように、1つの測定シーケンスを3つの領域[領域(1)、領域(2)、領域(3)]に分け、領域(2)でのセンサ応答からガス濃度を測定するものとし、測定対象ガス導入制御、パージガス導入制御、光照射制御(UV照射制御)のタイミングは、あらかじめ制御部17に備えられる記憶部24に記憶されている複数の測定パターン(ここでは後述のAグループ〜Gグループに含まれる複数の測定パターン)の中からパターンを指定することによって、測定シーケンスを容易に実行できるようにしている。
また、例えば、図25(B)に示すように、始動シーケンス、複数回の測定シーケンス、停止シーケンスを順に実行する場合に、測定パターンとして、後述のAグループ〜Gグループに含まれる複数の測定パターンの中からC−3、B−1、D−1などのパターンを指定することによって、複数回の測定シーケンスを実行するようにしても良い。
ここで、測定パターンは、UV照射タイミング、測定対象ガスやパージガスのガス導入タイミングを規定したパターンである。つまり、測定パターンは、ポンプ動作タイミング及び時間、電磁弁切替タイミング及び時間、UV照射タイミング及び時間を規定したパターンである。なお、測定パターンをシーケンスパターングループともいう。
また、ガス導入タイミングとして、図27に示すように、1〜8の各グループで、測定シーケンスの3つの領域である領域(1)、領域(2)、領域(3)のどの領域で、測定対象ガス又はパージガスを導入するかを規定する。なお、図27では、測定対象ガスを導入する場合に濃い領域として表示している。
つまり、Aグループに含まれる複数の測定パターンとして、図28に示すように、A−1〜A−8のパターンを規定する。
そして、測定パターンとしてA−1〜A−8が指定された場合、A−1〜A−8のパターンのそれぞれにおいて、センサ応答、即ち、ガスセンサデバイス6からの抵抗値の変化は、図29に示すようになる。
なお、図30では、UV照射を行なう場合に丸印を付け、測定対象ガスを導入する場合に濃い領域として表示している。
そして、測定パターンとしてB−1〜B−8が指定された場合、B−1〜B−8のパターンのそれぞれにおいて、センサ応答、即ち、ガスセンサデバイス6からの抵抗値の変化は、図31に示すようになる。
なお、図32では、UV照射を行なう場合に丸印を付け、測定対象ガスを導入する場合に濃い領域として表示している。
そして、測定パターンとしてC−1〜C−8が指定された場合、C−1〜C−8のパターンのそれぞれにおいて、センサ応答、即ち、ガスセンサデバイス6からの抵抗値の変化は、図33に示すようになる。
なお、図34では、UV照射を行なう場合に丸印を付け、測定対象ガスを導入する場合に濃い領域として表示している。
そして、測定パターンとしてD−1〜D−8が指定された場合、D−1〜D−8のパターンのそれぞれにおいて、センサ応答、即ち、ガスセンサデバイス6からの抵抗値の変化は、図35に示すようになる。
なお、図36では、UV照射を行なう場合に丸印を付け、測定対象ガスを導入する場合に濃い領域として表示している。
そして、測定パターンとしてE−1〜E−8が指定された場合、E−1〜E−8のパターンのそれぞれにおいて、センサ応答、即ち、ガスセンサデバイス6からの抵抗値の変化は、図37に示すようになる。
なお、図38では、UV照射を行なう場合に丸印を付け、測定対象ガスを導入する場合に濃い領域として表示している。
そして、測定パターンとしてF−1〜F−8が指定された場合、F−1〜F−8のパターンのそれぞれにおいて、センサ応答、即ち、ガスセンサデバイス6からの抵抗値の変化は、図39に示すようになる。
なお、図40では、UV照射を行なう場合に丸印を付け、測定対象ガスを導入する場合に濃い領域として表示している。
そして、測定パターンとしてG−1〜G−8が指定された場合、G−1〜G−8のパターンのそれぞれにおいて、センサ応答、即ち、ガスセンサデバイス6からの抵抗値の変化は、図41に示すようになる。
まず、濃度測定方法Iは、図42に示すように、パージガスから測定対象ガスに切り替えたときのセンサ抵抗の立ち上がりの大きさを、ガス濃度に対応させて、ガス濃度を測定する方法である。
そして、測定対象ガスの供給開始から所定時間(一定時間;例えば60sec)経過後(図42中、符号Yで示す箇所参照)のガスセンサデバイス6からの抵抗値を測定し、これが基準値に対してどの程度変化したか、即ち、センサ応答の大きさを求め、それをガス濃度に対応させてガス濃度を測定すれば良い。
例えば、この濃度測定方法IIでは、測定対象ガスからパージガスに切り替えるとともにUV照射を開始した時点(図43中、符号Xで示す箇所参照)のガスセンサデバイス6からの抵抗値(センサ抵抗)を測定して、これを基準値とすれば良い。
次に、濃度測定方法IIIは、図43に示すように、UV照射後のセンサ抵抗の立ち上がり、即ち、パージガスの供給及びUV照射から測定対象ガスの供給及びUV非照射に切り替えたときのセンサ抵抗の立ち上がりの大きさを、ガス濃度に対応させて、ガス濃度を測定する方法である。
そして、パージガスから測定対象ガスに切り替えるとともにUV照射をUV非照射に切り替えた時点から所定時間(一定時間;例えば60sec)経過後(図43中、符号Zで示す箇所参照)のガスセンサデバイス6からの抵抗値を測定し、これが基準値に対してどの程度変化したか、即ち、センサ応答の大きさを求め、それをガス濃度に対応させてガス濃度を測定すれば良い。
この場合、ガスセンサ5に備えられる制御部17は、ガスセンサデバイス6の感応膜9に所定時間(第1所定時間)だけ光を照射するように光源10(ここではUV光源)に対する制御を行なうことになる。
また、上述の濃度測定方法IIIでは、ガスセンサ5に備えられる制御部17は、ガスセンサデバイス6の感応膜9に対する光照射終了時に検出したガスセンサデバイス6からの抵抗値と感応膜9に対する光照射終了時から所定時間(第2所定時間)後に検出したガスセンサデバイス6からの抵抗値とに基づいて測定対象ガスの濃度を測定することになる。
これにより、ガスセンサデバイス6の感応膜9の表面及びその周囲を清浄な状態に回復させることができる。
停止シーケンスでは、図44に示すように、始動時又は測定開始時のセンサ抵抗、即ち、ガスセンサデバイス6からの抵抗値をR00とし、ガスセンサデバイス6からの抵抗値がR00以下となる時点、あるいは、ガスセンサデバイス6からの抵抗値がR00よりも小さくなる時点までUV照射を行なう。
ここでは、UV照射と同時にパージガスを導入する。例えば、フィルタ14(22)を介した経路に電磁弁13(21)を切り替えた状態でポンプ16(20)を稼動させることでパージガスを導入する。
ここで、図45は、このような停止シーケンスを、ガスセンサ5に備えられる制御部17がプログラムを実行することによって実現する場合の処理を示すフローチャートである。
これにより、ガスセンサデバイス6の感応膜9に光(ここではUV)が照射されるとともに、フィルタ14(22)を介した経路に電磁弁13(21)を切り替えた状態でポンプ16(20)を稼動させることでパージガスが導入される。
そして、制御部17は、センサ抵抗、即ち、ガスセンサデバイス6からの抵抗値RSをモニタしながら、ガスセンサデバイス6からの抵抗値RSがR00よりも小さくなるまで、UV照射及びパージガスの導入を継続する(ステップB5、B6)。
そして、この判定の結果、測定された抵抗値RSがR00よりも小さくなったと判定しなかった場合は、NOルートへ進み、ステップB5、B6の処理を繰り返す。
そして、制御部17は、UV照射を停止した後、UV照射時間の2倍の時間(2T3)が経過するまで、パージガスを流し続け、UV照射時間の2倍の時間(2T3)が経過したら、ポンプ16(20)をオフにして、パージガスの導入を停止させる(ステップB9、B10)。
一方、制御部17は、タイマのカウント値Tが2T3よりも大きくなったと判定した場合は、YESルートへ進み、ポンプ16(20)をオフにして、パージガスの導入を停止させる(ステップB10)。
このような制御を行なう場合、ガスセンサ5に備えられる制御部17は、測定終了後に、ガスセンサデバイス6からの抵抗値が初期値になるまでパージガスを供給するようにパージガス供給機構13、14(21、22)に対する制御を行なうとともに感応膜9に光を照射するように光源10に対する制御を行ない、ガスセンサデバイス6からの抵抗値が初期値になったら光源10に対する制御を終了し、パージガス供給機構13、14(21、22)に対する制御をある時間だけ継続した後、動作を停止するように制御を行なうことになる。
2 Si基板
3 CuBr結晶粒
4 CuBr膜(CuBr薄膜)
5 ガスセンサ
6 ガスセンサデバイス
7 第1電極
8 第2電極
9 感応膜(CuBr膜)
10 光源(UV−LED)
11 基板
12 ガス供給側配管
13 電磁弁
14 フィルタ
15 排気側配管
16 ポンプ
17 制御部
18 センサチャンバ
19 センサ部
20 ガス導入機構部
21 ガス流路切り替え装置
22 ガスフィルタ(ガスフィルタ機構部)
23 測定部
24 記憶部
25 MPU
26 不揮発性メモリ(不揮発性メモリ素子)
27 表示部
28 通信部(伝送部)
Claims (20)
- 臭化第一銅からなり、前記臭化第一銅が光の照射で前記臭化第一銅に接する物質を分解する光触媒性を示すことを特徴とする光触媒。
- 前記臭化第一銅は、1価の銅と1価の臭素とから構成されるイオン結晶で(111)配向した成分を少なくとも含む多結晶体であることを特徴とする、請求項1に記載の光触媒。
- 第1電極と、
第2電極と、
前記第1電極と前記第2電極とを接続する感応膜とを備え、
前記感応膜は、臭化第一銅からなり、前記臭化第一銅が光の照射で前記臭化第一銅に接する物質を分解する光触媒性を示すことを特徴とするガスセンサデバイス。 - 第1電極と、第2電極と、前記第1電極と前記第2電極とを接続する感応膜とを備えるガスセンサデバイスと、
前記感応膜に光を照射する光源とを備え、
前記感応膜は、臭化第一銅からなり、前記臭化第一銅が前記光源から照射される光で前記臭化第一銅に接する物質を分解する光触媒性を示すことを特徴とするガスセンサ。 - 前記光源は、近紫外光領域の波長成分を含む光を照射する光源であることを特徴とする、請求項4に記載のガスセンサ。
- 測定対象ガスを供給した場合に前記ガスセンサデバイスによって検出される値に基づいて前記測定対象ガスの濃度を測定するとともに、前記光源に対する制御も行なう制御部を備えることを特徴とする、請求項4又は5に記載のガスセンサ。
- 前記制御部は、前記測定対象ガスを供給するガス供給タイミング及びガス供給時間を制御するとともに、前記感応膜に前記光源から光を照射する光照射タイミング及び光照射時間を制御することを特徴とする、請求項6に記載のガスセンサ。
- 前記制御部は、前記測定対象ガスの供給を停止したタイミングで前記感応膜に光を照射するように前記光源に対する制御を行なうことを特徴とする、請求項7に記載のガスセンサ。
- 前記制御部は、前記測定対象ガスの供給開始時に検出した前記ガスセンサデバイスからの抵抗値に戻るまで前記感応膜に光を照射するように前記光源に対する制御を行なうことを特徴とする、請求項8に記載のガスセンサ。
- 前記制御部は、前記感応膜に第1所定時間だけ光を照射するように前記光源に対する制御を行なうことを特徴とする、請求項8に記載のガスセンサ。
- 前記制御部は、前記測定対象ガスの供給開始時に検出した前記ガスセンサデバイスからの抵抗値と前記測定対象ガスを所定時間供給した時に検出した前記ガスセンサデバイスからの抵抗値とに基づいて前記測定対象ガスの濃度を測定することを特徴とする、請求項9に記載のガスセンサ。
- 前記制御部は、前記測定対象ガスの供給停止時に検出した前記ガスセンサデバイスからの抵抗値と前記感応膜に対する光照射終了時に検出した前記ガスセンサデバイスからの抵抗値とに基づいて前記測定対象ガスの濃度を測定することを特徴とする、請求項10に記載のガスセンサ。
- 前記制御部は、前記感応膜に対する光照射終了時に検出した前記ガスセンサデバイスからの抵抗値と前記感応膜に対する光照射終了時から第2所定時間後に検出した前記ガスセンサデバイスからの抵抗値とに基づいて前記測定対象ガスの濃度を測定することを特徴とする、請求項10に記載のガスセンサ。
- 前記測定対象ガスに代えてパージガスを供給するパージガス供給機構を備え、
前記制御部は、パージガスを供給するパージガス供給タイミング及びパージガス供給時間を制御することを特徴とする、請求項7〜13のいずれか1項に記載のガスセンサ。 - 前記制御部は、前記測定対象ガスの濃度を測定する測定シーケンスを第1領域、第2領域及び第3領域に分けて実行するようになっており、
前記第1領域、前記第2領域及び前記第3領域で、測定対象ガス供給制御、パージガス供給制御及び光照射制御を組み合わせた複数のパターンの中から指定されたパターンを実行するようになっており、
前記第2領域で、前記ガスセンサデバイスによって検出される値に基づいて測定対象ガスの濃度を測定するようになっていることを特徴とする、請求項14に記載のガスセンサ。 - 前記制御部は、測定開始前の始動時に、前記感応膜に光を照射するように前記光源に対する制御を行なうか、前記測定対象ガスを供給しながら前記感応膜に光を照射するように前記光源に対する制御を行なうか、又は、前記感応膜に光を照射するように前記光源に対する制御及び前記測定対象ガスを供給しながら前記感応膜に光を照射するように前記光源に対する制御を行なうことを特徴とする、請求項6〜15のいずれか1項に記載のガスセンサ。
- 前記制御部は、測定終了後に、前記ガスセンサデバイスからの抵抗値が初期値になるまで前記パージガスを供給するように前記パージガス供給機構に対する制御を行なうとともに前記感応膜に光を照射するように前記光源に対する制御を行ない、前記ガスセンサデバイスからの抵抗値が前記初期値になったら前記光源に対する制御を終了し、前記パージガス供給機構に対する制御をある時間だけ継続した後、動作を停止するように制御を行なうことを特徴とする、請求項14〜16のいずれか1項に記載のガスセンサ。
- 臭化第一銅からなり、前記臭化第一銅が光の照射で前記臭化第一銅に接する物質を分解する光触媒性を示す光触媒と、
前記光触媒に光を照射する光源とを備えることを特徴とする装置。 - 制御部が、臭化第一銅からなり、前記臭化第一銅が光の照射で前記臭化第一銅に接する物質を分解する光触媒性を示す感応膜を備えるガスセンサデバイスに、測定対象ガスを供給する制御を行ない、
前記制御部が、前記ガスセンサデバイスによって検出される値に基づいて前記測定対象ガスの濃度を測定し、
前記制御部が、前記測定対象ガスの供給を停止する制御を行なうとともに、前記感応膜に光を照射するように光源に対する制御を行なうことを特徴とする測定方法。 - 前記制御部が、前記測定対象ガスの供給開始時に検出した前記ガスセンサデバイスからの抵抗値に戻るまで前記感応膜に光を照射するように前記光源に対する制御を行なうことを特徴とする、請求項19に記載の測定方法。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/024693 WO2020003464A1 (ja) | 2018-06-28 | 2018-06-28 | 光触媒、ガスセンサデバイス、ガスセンサ及び測定方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2020003464A1 true JPWO2020003464A1 (ja) | 2021-05-20 |
JP7115542B2 JP7115542B2 (ja) | 2022-08-09 |
Family
ID=68986769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020526827A Active JP7115542B2 (ja) | 2018-06-28 | 2018-06-28 | 光触媒、ガスセンサデバイス、ガスセンサ及び測定方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11986806B2 (ja) |
EP (1) | EP3815783A4 (ja) |
JP (1) | JP7115542B2 (ja) |
WO (1) | WO2020003464A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7519833B2 (ja) | 2020-07-22 | 2024-07-22 | 三井化学株式会社 | ガスセンサ、ガスセンサ用感応部材及びガスセンシング方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63158445A (ja) * | 1986-12-23 | 1988-07-01 | Matsushita Electric Works Ltd | ガスセンサ |
JP2000055853A (ja) * | 1998-08-05 | 2000-02-25 | Toyota Motor Corp | ガスセンサーおよびガス測定方法 |
JP2009233655A (ja) * | 2008-01-28 | 2009-10-15 | Toshiba Corp | 可視光応答型光触媒粉末とそれを用いた可視光応答型の光触媒材料、光触媒塗料、光触媒製品 |
CN104959155A (zh) * | 2015-06-03 | 2015-10-07 | 河北科技大学 | 纳米铜/卤化亚铜复合材料、制备方法及其应用 |
CN105148951A (zh) * | 2015-09-07 | 2015-12-16 | 河北科技大学 | 纳米铜/卤化亚铜复合材料的制备方法及其应用 |
JP2017191036A (ja) * | 2016-04-14 | 2017-10-19 | 富士通株式会社 | ガス分析装置およびガス分析方法 |
JP2017227499A (ja) * | 2016-06-21 | 2017-12-28 | 富士通株式会社 | ガスセンサ及び情報処理システム |
JP2018025412A (ja) * | 2016-08-08 | 2018-02-15 | 富士通株式会社 | ガスセンサーデバイス、ガス測定装置、及びガスセンサーデバイスの作製方法 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08245208A (ja) | 1995-03-07 | 1996-09-24 | Fujitsu Ltd | アパタイト構造金属化合物およびその合成方法 |
JP3678606B2 (ja) | 1999-05-21 | 2005-08-03 | 富士通株式会社 | 金属修飾アパタイト及びその製造方法 |
JP3697608B2 (ja) | 2001-03-30 | 2005-09-21 | 富士通株式会社 | 金属修飾アパタイト材料及びその製造方法 |
JP4061061B2 (ja) | 2001-12-12 | 2008-03-12 | 富士通株式会社 | 光触媒機能を有する金属修飾アパタイト膜の形成方法および金属修飾アパタイト被膜材 |
JP3806061B2 (ja) | 2002-05-21 | 2006-08-09 | 富士通株式会社 | 金属修飾アパタイト含有膜の形成方法、これに用いられるコーティング液、および金属修飾アパタイト含有膜で被覆された部位を有する電子機器 |
JP3928596B2 (ja) | 2003-07-11 | 2007-06-13 | 富士通株式会社 | 樹脂組成物 |
JP4586170B2 (ja) | 2003-12-09 | 2010-11-24 | 富士通株式会社 | 光触媒活性を有するアパタイト含有膜及びその製造方法 |
JP4619724B2 (ja) | 2004-08-16 | 2011-01-26 | 富士通株式会社 | 光触媒機能をもつ植物栽培システム及びそのシステムを用いた植物栽培方法 |
JP2006197837A (ja) | 2005-01-19 | 2006-08-03 | Fujitsu Ltd | 気体清浄器及びその再生方法、並びに、喫煙ホルダー |
JP2006204397A (ja) | 2005-01-26 | 2006-08-10 | Fujitsu Ltd | 空気浄化機能を有する電気機器 |
JP2006212928A (ja) | 2005-02-03 | 2006-08-17 | Fujitsu Ltd | 光触媒含有成形品および光触媒含有成形品の成形方法 |
JP4295231B2 (ja) | 2005-03-01 | 2009-07-15 | 富士通株式会社 | 広帯域光吸収性光触媒及びその製造方法、並びに、広帯域光吸収性光触媒含有組成物及び成形体 |
JP4320393B2 (ja) | 2005-03-14 | 2009-08-26 | 富士通株式会社 | 光触媒材料及びその製造方法 |
JP4224598B2 (ja) | 2005-03-14 | 2009-02-18 | 富士通株式会社 | 金属修飾アパタイト及びその製造方法 |
JP4324660B2 (ja) | 2005-03-14 | 2009-09-02 | 富士通株式会社 | 金属修飾アパタイト及びその製造方法 |
JP4961674B2 (ja) | 2005-03-22 | 2012-06-27 | 富士通株式会社 | 金属材料及びその製造方法 |
JP4915719B2 (ja) | 2005-11-28 | 2012-04-11 | 学校法人東京理科大学 | 硫黄化合物を含む水溶液から太陽光照射下で水素生成に高活性を示すZnS−CuX固溶体光触媒 |
JP4319184B2 (ja) | 2005-12-22 | 2009-08-26 | 富士通株式会社 | 光触媒、その製造方法および光触媒を用いた物品 |
JP2007252983A (ja) | 2006-03-20 | 2007-10-04 | Fujitsu Ltd | 光触媒及びその製造方法、並びに成形体 |
JP4800813B2 (ja) | 2006-03-29 | 2011-10-26 | 富士通株式会社 | 光触媒アパタイト組成物及びその製造方法ならびに物品 |
JP4739078B2 (ja) | 2006-03-29 | 2011-08-03 | 富士通株式会社 | 脱臭乾燥機 |
JP4791283B2 (ja) | 2006-08-01 | 2011-10-12 | 富士通株式会社 | 光触媒複合材料及びその製造方法 |
JP5076401B2 (ja) | 2006-08-22 | 2012-11-21 | 富士通株式会社 | 病原の感染防止方法 |
EP2248586B1 (en) | 2008-01-28 | 2020-07-29 | Kabushiki Kaisha Toshiba | Visible light response-type photocatalyst powder, visible light response-type photocatalyst material using the visible light response-type photocatalyst powder, photocatalyst coating material, and photocatalyst product |
US10386351B2 (en) * | 2015-12-07 | 2019-08-20 | Nanohmics, Inc. | Methods for detecting and quantifying analytes using gas species diffusion |
-
2018
- 2018-06-28 JP JP2020526827A patent/JP7115542B2/ja active Active
- 2018-06-28 EP EP18924125.0A patent/EP3815783A4/en active Pending
- 2018-06-28 WO PCT/JP2018/024693 patent/WO2020003464A1/ja active Application Filing
-
2020
- 2020-12-09 US US17/115,846 patent/US11986806B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63158445A (ja) * | 1986-12-23 | 1988-07-01 | Matsushita Electric Works Ltd | ガスセンサ |
JP2000055853A (ja) * | 1998-08-05 | 2000-02-25 | Toyota Motor Corp | ガスセンサーおよびガス測定方法 |
JP2009233655A (ja) * | 2008-01-28 | 2009-10-15 | Toshiba Corp | 可視光応答型光触媒粉末とそれを用いた可視光応答型の光触媒材料、光触媒塗料、光触媒製品 |
CN104959155A (zh) * | 2015-06-03 | 2015-10-07 | 河北科技大学 | 纳米铜/卤化亚铜复合材料、制备方法及其应用 |
CN105148951A (zh) * | 2015-09-07 | 2015-12-16 | 河北科技大学 | 纳米铜/卤化亚铜复合材料的制备方法及其应用 |
JP2017191036A (ja) * | 2016-04-14 | 2017-10-19 | 富士通株式会社 | ガス分析装置およびガス分析方法 |
JP2017227499A (ja) * | 2016-06-21 | 2017-12-28 | 富士通株式会社 | ガスセンサ及び情報処理システム |
JP2018025412A (ja) * | 2016-08-08 | 2018-02-15 | 富士通株式会社 | ガスセンサーデバイス、ガス測定装置、及びガスセンサーデバイスの作製方法 |
Non-Patent Citations (2)
Title |
---|
MITANI, M., ET AL.: "Effect of phosphorus ligands on the Cu(I)-catalyzed addition reaction of alkyl halide to an electron", REACTION KINETICS AND CATALYSIS LETTERS, vol. 65, no. 1, JPN6018037549, 1998, pages 101 - 106, XP055666844, ISSN: 0004754049, DOI: 10.1007/BF02475322 * |
YAO, RU-XIN, ET AL.: "A perfectly aligned 63 helical tubular cuprous bromide single crystal for selective photo-catalysis,", DALTON TRANSACTIONS, vol. 44, JPN6018037547, 2015, pages 3410 - 3416, XP055666845, ISSN: 0004754048, DOI: 10.1039/C4DT03657C * |
Also Published As
Publication number | Publication date |
---|---|
EP3815783A1 (en) | 2021-05-05 |
EP3815783A4 (en) | 2021-07-14 |
US11986806B2 (en) | 2024-05-21 |
JP7115542B2 (ja) | 2022-08-09 |
US20210086169A1 (en) | 2021-03-25 |
WO2020003464A1 (ja) | 2020-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6947303B2 (ja) | ガスセンサ及びガスセンサカートリッジ | |
KR102576035B1 (ko) | 공기정화장치 및 그의 제어방법 | |
Chen et al. | Performance of air cleaners for removing multiple volatile organic compounds in indoor air | |
CA2947432C (en) | Purified hydrogen peroxide gas generation methods and devices | |
JP5948020B2 (ja) | 有害物質除去装置、これを用いた空気浄化装置、及び有害物質除去方法 | |
CN114608109B (zh) | 气体过滤系统和方法 | |
US6379435B1 (en) | Adsorbing device, method of deodorizing therewith, and method of supplying high concentration oxygen | |
JP6528006B2 (ja) | 拡張された湿度作動範囲を有する空気清浄機 | |
US20150359922A1 (en) | Air purifying apparatus using ultra violet light emitting diode | |
US20120219462A1 (en) | Cleaning filter, air cleaning device using same, and air cleaning maintenance system | |
Tompkins et al. | Evaluation of photocatalysis for gas-phase air cleaning-Part 1: Process, technical, and sizing considerations | |
TWI543783B (zh) | 脫臭裝置 | |
JP2008302348A (ja) | 排ガス処理監視装置、排ガス処理装置及び排ガス処理監視方法 | |
CN107045040A (zh) | 室内有毒气体自动检测与净化换气装置 | |
JP7115542B2 (ja) | 光触媒、ガスセンサデバイス、ガスセンサ及び測定方法 | |
JP5108492B2 (ja) | 空気浄化方法及び空気浄化装置 | |
Sørensen et al. | Removal of volatile organic compounds by mobile air cleaners: Dynamics, limitations, and possible side effects | |
JP2009125606A (ja) | 排ガス処理装置に組み込まれて用いられる吸着剤再生装置、排ガス処理装置及び吸着剤再生処理方法 | |
JP2012254239A (ja) | 空気清浄装置 | |
JP5391123B2 (ja) | 空気浄化装置 | |
JP2019500066A (ja) | ガス濾過システム及び方法 | |
CN112833507A (zh) | 一种光触媒净化装置、空气净化器及空气净化方法 | |
CN208493763U (zh) | 空气净化设备 | |
KR101522761B1 (ko) | 가시광응답형 광촉매의 재생 기능을 가지는 공기청정 시스템 | |
JP2006272062A (ja) | 医療用途等有害物質分解材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201014 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211005 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220419 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220616 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220628 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220711 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7115542 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |