JPWO2018146844A1 - ゼロクロス検出装置及びゼロクロス検出方法 - Google Patents

ゼロクロス検出装置及びゼロクロス検出方法 Download PDF

Info

Publication number
JPWO2018146844A1
JPWO2018146844A1 JP2018566744A JP2018566744A JPWO2018146844A1 JP WO2018146844 A1 JPWO2018146844 A1 JP WO2018146844A1 JP 2018566744 A JP2018566744 A JP 2018566744A JP 2018566744 A JP2018566744 A JP 2018566744A JP WO2018146844 A1 JPWO2018146844 A1 JP WO2018146844A1
Authority
JP
Japan
Prior art keywords
zero
integration
value
signal
cross detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018566744A
Other languages
English (en)
Other versions
JP6792177B2 (ja
Inventor
則和 万木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RKC INSTRUMENT Inc
Original Assignee
RKC INSTRUMENT Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RKC INSTRUMENT Inc filed Critical RKC INSTRUMENT Inc
Publication of JPWO2018146844A1 publication Critical patent/JPWO2018146844A1/ja
Application granted granted Critical
Publication of JP6792177B2 publication Critical patent/JP6792177B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/175Indicating the instants of passage of current or voltage through a given value, e.g. passage through zero

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Measuring Phase Differences (AREA)

Abstract

積分値算出部140が交流信号の積分値を算出し、記録部150に4つの積分値S1’〜S4’を記録し、ゼロクロス検出部160が、S1’〜S4’の最大値を判断し、判断結果に対応する演算式により、交流信号のゼロクロスを検出することで、ノイズの影響を受けにくく、他の用途にも転用できる、汎用的な入力回路を用いたゼロクロス検出装置1を得ることが出来る。また、計測値演算部180が記録部150に記録された積分値に基づき交流信号の平均値又は実効値の演算を行うことにより、ゼロクロス検出と交流信号の平均値又は実行値の演算が同時に実行可能となる。

Description

この発明は、交流信号のゼロクロスの位置を検出するゼロクロス検出装置及びゼロクロス検出方法に関するものである。
従来から、電力制御において、負荷電源との同期をとるために、交流電源の各サイクルのゼロ電圧と交差する点、すなわち、ゼロクロスを検出することが行われている。ゼロクロスの検出には、フォトカプラを使用して電源電圧等の交流信号からトリガ信号を発生させる回路が用いられることが多い。しかし、このような回路では、交流信号に大きなノイズが重畳している場合に、ゼロクロスを誤検出してしまうという課題があり、ノイズ対策として低域通過フィルタ(LPF)回路やヒステリシス特性を持った比較器(コンパレータ)を使用する等の工夫を行う必要があった。特許文献1にはこのような課題に対応するゼロクロス信号出力装置が開示されている。
特開2004−328869号公報
しかし、特許文献1が開示する技術では、ゼロクロス検出専用の回路を用いるため、同じ回路を別の用途に転用することが難しいという課題があった。
本発明は、上記の点に鑑み、ノイズの影響を受けにくく、他の用途にも転用できる、汎用的な入力回路を用いたゼロクロス検出装置を提供することを目的とする。
(構成1)
交流信号が入力される入力部と、前記交流信号の1/4周期以下の期間である複数の積分範囲について前記交流信号の積分値を算出する積分値算出部と、前記積分値に基づき前記交流信号のゼロクロスの位置を検出するゼロクロス検出部と、
を備えることを特徴とするゼロクロス検出装置。
(構成2)
前記ゼロクロス検出部が、前記複数の積分範囲から2つを選択し、当該選択された2つの積分範囲についての積分値の差分である面積差に基づき、前記交流信号のゼロクロスの位置を検出することを特徴とする構成1に記載のゼロクロス検出装置。
(構成3)
前記選択された2つの積分範囲の開始点同士の位相差がπ/2となることを特徴とする構成2に記載のゼロクロス検出装置。
(構成4)
前記ゼロクロス検出部が、前記積分値又は前記面積差の少なくとも何れかが最大となる前記積分範囲に対応する2つの前記積分範囲を選択することを特徴とする構成2又は3に記載のゼロクロス検出装置。
(構成5)
前記ゼロクロス検出部が、前記積分値又は前記面積差の少なくとも何れかに基づき、前記交流信号のゼロクロス検出のための演算式を選択し、当該選択された演算式と、前記面積差と、に基づき前記交流信号のゼロクロスを検出することを特徴とする構成2から4の何れかに記載のゼロクロス検出装置。
(構成6)
前記ゼロクロス検出部が、前記積分値が最小となる積分範囲の中に前記交流信号のゼロクロスがあると検出することを特徴とする構成1に記載のゼロクロス検出装置。
(構成7)
前記ゼロクロス検出部が、前記交流信号のゼロクロスの位置を複数回検出し、当該複数回検出されたゼロクロスの位置の少なくとも何れかに基づきゼロクロスの位置を演算することを特徴とする構成1から6の何れかに記載のゼロクロス検出装置。
(構成8)
前記複数の積分範囲についての積分値に基づき、前記交流信号の平均値又は実行値を演算する計測値演算部を備えることを特徴とする構成1から7の何れかに記載のゼロクロス検出装置。
(構成9)
前記計測値演算部が、前記複数の積分範囲についての積分値と、前記複数の積分範囲以外の期間についての積分値に基づき、前記交流信号の平均値又は実行値の演算を行うことを特徴とする構成8に記載のゼロクロス検出装置。
(構成10)
入力部に交流信号が入力される入力工程と、
積分値算出部が、前記交流信号の1/4周期以下の期間である複数の積分範囲について前記交流信号の積分値を算出する積分値算出工程と、
ゼロクロス検出部が、前記積分値に基づき前記交流信号のゼロクロスの位置を検出するゼロクロス検出工程と、
を備えることを特徴とするゼロクロス検出方法。
本発明によれば、ノイズの影響を受けにくく、他の用途にも転用できる、汎用的な入力回路を用いたゼロクロス検出装置を提供することができる。
本発明に係る実施形態のゼロクロス検出装置1を示す概略構成図である。 本発明に係る実施形態のゼロクロス検出装置1の概略動作を表すフロー図である。 本発明に係るゼロクロスの検出原理を説明するための概念図である。 本発明に係る実施形態において、正規化された積分値とゼロクロスの位置の関係の理論値を示した図である。 本発明に係る実施形態のゼロクロス検出部160で使用する演算式の導出方法を説明するための概念図である。 本発明に係る実施形態のゼロクロス検出装置1を用いて実際にゼロクロス検出を行った結果を示した図である。 本発明に係る実施形態の計測値演算部180における積分対象の追加範囲を説明した概念図である。 本発明に係る実施形態のゼロクロス検出装置1において、積分範囲γがπ/4を超えた場合の概念図である。 本発明に係る実施形態のゼロクロス検出装置1において、動作タイミング及び積分範囲γが、5π/18である場合の概念図である。
以下、この発明を実施するための形態について、添付の図面にしたがって説明する。
ここで、「検出」とは、ゼロクロスの位置を演算し、一意に決定するという意味、又はゼロクロスの存在する範囲を特定するという意味を有し、以下においても同様である。
<実施形態1>
図1は、この発明の実施形態1によるゼロクロス検出装置1の概略構成図である。
ゼロクロス検出装置1は、入力された交流信号のゼロクロスを検出し、出力する装置であり、入力部110と、絶対値変換部120と、VF変換部130とMCU200と、を備える。
MCU200はマイクロコントローラユニット等で構成され、積分値算出部140と、記録部150と、ゼロクロス検出部160と、指示部170と、計測値演算部180と、を備える。
入力部110は、交流電源(不図示)等からの信号取得手段であり、交流信号が入力される。
絶対値変換部120は、全波整流回路等により構成されており、入力部110から入力された交流信号を絶対値に変換して出力する機能を有する。
VF変換部130は、VF変換器(Voltage−to−Frequency変換器)等により構成されており、絶対値変換部120から入力された交流信号の絶対値をパルス列に変換し、出力する機能を有する。
指示部170は、事前に設定された後述する積分範囲、積分回数及び動作タイミングに基づき、積分値算出部140の積分処理の開始及び停止を指示する積分開始信号及び積分停止信号と、記録部150への記録指示信号と、ゼロクロス検出部160への検出指示信号と、を出力する機能を有する。
積分値算出部140は、パルスカウンタ等により構成されており、指示部170からの積分開始信号及び積分停止信号に基づき、VF変換部130から入力されたパルス列の積分値を算出する機能及び、この積分値を出力する機能を有する。
記録部150は、RAM等により構成されており、指示部170からの記録指示信号に基づき、積分値算出部140から入力された積分値を記録する機能及び、この記録した積分値を出力する機能を有する。
ゼロクロス検出部160は、演算手段であり、指示部170からの検出指示信号に基づき、記録部150から入力された複数の積分値に基づいて入力部110に入力された交流信号のゼロクロスを検出する機能及び、複数回検出したゼロクロスの位置の平均値等を演算するゼロクロス値演算部及び、この検出結果を出力する機能を有する。
計測値演算部180は、演算手段であり、指示部170からの検出指示信号に基づき、記録部150から入力された複数の積分値に基づいて入力部110に入力された交流信号の平均値又は実行値等を演算する機能及び、これらの演算結果を出力する機能を有する。
<動作>
次に、図2のフローチャートを参照しつつ、実施形態1のゼロクロス検出装置1による、ゼロクロスの検出動作について説明する。
まず、ステップ410において、交流電源(不図示)等から入力部110へ交流信号が入力され、所定の信号レベルに変換し、この信号を絶対値変換部120へと出力し、ステップ420へと移行する。
ステップ420において、絶対値変換部120は入力された信号を絶対値に変換し、この変換した信号をVF変換部130へと出力しステップ430へと移行する。
ステップ430において、VF変換部130は入力された信号の電圧を電圧に比例した周波数を有するパルス信号に変換し、積分値算出部140へと出力しステップ440へと移行する。
ステップ440において、積分値算出部140は、指示部170から積分開始信号が入力されると、積分停止信号が入力されるまでの間、VF変換部130から入力されたパルス信号のパルス数をカウントすることで積分値を算出する。そして、指示部170から積分停止信号が入力されると、算出した積分値を記録部150へと出力する。
そして記録部150は指示部170より記録指示信号が入力されると、積分値算出部140から入力された積分値を記録する。
なお、図示していないが、ステップ430及びステップ440の一連の動作については積分回数だけ繰り返される。
積分動作及び記録動作の詳細については後述する。
そして、ステップ450において、ゼロクロス検出部160は、指示部170より入力された検出指示信号と、記録部150に記録された積分値に基づき、交流信号のゼロクロスを検出する。
ゼロクロス検出部160の動作詳細については後述する。
また、ステップ460において、計測値演算部180は指示部170より入力された検出指示信号と、記録部150に記録された積分値に基づき、交流信号の平均値又は実行値等の演算を行う。
計測値演算部180の動作詳細については後述する。
ステップ450及び、ステップ460の動作については、指示部170からの指示(信号)に基づき、それぞれが独立して動作する。つまり、ステップ450及びステップ460の動作は、指示部170からの指示により選択が可能であり、同時に実行する事も、どちらか一方のみを実行することも、どちらも実行しない事も可能である。例えば、ステップ450及びステップ460の動作を同時に実行した場合、一連の積分値の計測から、ゼロクロスと交流信号の平均値又は実行値を同時に得ることができる。
指示されたステップの動作がすべて終了した後、ステップ470に移行する。
そしてステップ470において、ゼロクロス検出部160及び計測値演算部180は、検出結果を出力し、動作を終了する。
<積分動作及び記録動作>
以下、指示部170と、積分値算出部140における積分値算出動作及び記録部150における記録動作につき説明する。
指示部170は、事前に設定された積分範囲、積分回数及び動作タイミングに基づき、積分開始信号及び積分停止信号を積分値算出部140へ出力する。
なお、「積分範囲」とは、積分開始信号が入力されてから、積分停止信号が入力されるまでの期間を表し、「動作タイミング」とは、積分開始信号と次の積分開始信号の間隔を表す。
また、指示部170は、積分値算出部140へ積分停止信号を出力すると同時に、記録部150へ記録指示信号を出力する。
また、指示部170はこれらの積分開始信号及び積分停止信号、記録指示信号の出力操作を事前に設定された積分回数だけ繰り返す。
また、積分値算出部140は、指示部170より積分開始信号が入力されてから、積分停止信号が入力されるまでの間、VF変換部130より入力されたパルス信号をカウント値として積算し、積分停止信号が入力されるとカウント値を積分値として記録部150へ出力する。なお、積分値算出部140は、指示部170より積分開始信号が入力されると同時に、内部のカウント値をリセットする。
また、積分値算出部140は、指示部170より積分開始信号が入力されてから、積分停止信号が入力されるまでの間以外は、カウント値の積算は行わない。
記録部150は、指示部170より記録指示信号が入力されると、積分値算出部140より入力される積分値を記録する。
「積分範囲」とは上述の通り、積分開始信号が入力されてから積分停止信号が入力されるまでの期間のことを表し、交流信号の1/4周期以下の期間であり、以下、「γ」とも称する。
また、積分値のことを「面積」とも称し、以下においても同様である。
なお、積分開始信号については、積分停止信号が出力された後、すぐに次の積分開始信号を出力することもでき、連続して複数の積分値を記録することが可能である。
以下、記録部150に記録された複数の積分値のうち、検出の基準となる最初の積分範囲において積分開始信号が出力されるタイミングのことを、単に「計測開始点」と称する。
<ゼロクロスの検出原理>
ここで、ゼロクロスの検出原理を説明する。
まず、振幅1の正弦波の絶対値を取った波形において、図3に示すような2つの積分範囲を考える。
ここで、2つの積分範囲のθaとθbの位相差を数1のように定める。
Figure 2018146844
また、積分範囲γの取りうる値を下記の数2のように定める。
Figure 2018146844
このとき、θaの範囲を0≦θa≦π/4とすると、積分値SaとSbの差(面積差)は以下の数3のように表すことができる。
Figure 2018146844
さらに、θaに関して式をまとめると、θaと面積差Sa−Sbの関係式(数4)が得られる。
Figure 2018146844
この数4の逆正弦関数を求めることで、面積差Sa−Sbからθaを導出する演算式(数5)を得ることができる。
Figure 2018146844
このように、ゼロクロスから最初の積分範囲までの位相差θaを、面積差Sa−Sbによって算出することができる。つまり、最初の積分範囲の開始点を基準として、ゼロクロスの位置を一意に定めることができる。
上記のゼロクロスと面積差の関係を表す数5を、本実施形態1に適用することで、図2中のステップ450におけるゼロクロスの検出動作が実施される。
<実施形態1への検出原理の適用>
以下、数5を本実施形態1に適用した場合の、計測開始点の直近かつ手前にあるゼロクロスから計測開始点までの位相差を算出する演算式について説明する。
なお、実施形態1において指示部170に設定される値は、積分範囲γがπ/4、積分回数が4、動作タイミングがπ/4間隔であり、記録部150には交流信号のπ/4に対応する積分値が連続して4つ記録されることになる。記録部150に記録される4つの積分値を、それぞれS1’からS4’とし、そこから交流信号の振幅が1となるように正規化された積分値を、それぞれS1からS4とし、ゼロクロスからS1からS4までの位相差をそれぞれθ1からθ4とする。
ところで、交流信号が振幅1の正弦波の場合の、ゼロクロスから計測開始点までの位相差θ1と、積分値S1からS4の関係は、図4(1)のようになる。この特性をもとに、数5の適用範囲を4つに大別し、ゼロクロス検出に必要な範囲0≦θ1≦πを網羅する。
まず、図4(2)においてS2が最大となる範囲は、θ1が0≦θ1≦π/4の範囲と一致する。つまり、この範囲における演算式を求めるには、数5のθaにはθ1を、SaとSbには積分範囲の位相差がπ/2の関係にある積分値であるS1とS3を、γにはπ/4を対応させればよい。故に、ゼロクロスから計測開始点までの位相差θ1に関する演算式は、以下の数6のようになる。
Figure 2018146844
次に、図4(2)においてS1が最大となる範囲は、π/4≦θ1≦π/2と一致する。このとき、図5(1)のS4と図5(2)のS4のように、それぞれのS4が図形的に相似の関係となるため、0≦θ4≦π/4の範囲として数5を適用することができる。よって、数5のθa、Sa、Sbには、それぞれθ4、S4、S2を、γにはπ/4を対応させればよい。故に、数7のような数式が成立する。
Figure 2018146844
そして、θ1とθ4の位相差π/4を考慮すると、ゼロクロスから計測開始点までの位相差θ1に関する演算式、数8を得ることができる。
Figure 2018146844
同様に、図4(2)においてS4が最大となるπ/2≦θ1≦3π/4の範囲においては、0≦θ3≦π/4の範囲で、数5のθa、Sa、Sbにそれぞれθ3、S3、S1を、γにπ/4を対応させて適用すればよい。故に、数9のような数式を得ることができる。
Figure 2018146844
そして、θ1とθ3の位相差2π/4を考慮すると、ゼロクロスから計測開始点までの位相差θ1に関する演算式、数10を得ることができる。
Figure 2018146844
同様に、図4(2)においてS3が最大となる3π/4≦θ1≦πの範囲においては、0≦θ2≦π/4の範囲で、数5のθa、Sa、Sbにそれぞれθ2、S2、S4を、γにπ/4を対応させて適用すればよい。故に、数11のような数式を得ることができる。
Figure 2018146844
そして、θ1とθ2の位相差3π/4を考慮すると、ゼロクロスから計測開始点までの位相差θ1に関する演算式、数12を得ることができる。
Figure 2018146844
また、実際の動作で記録部150に記録された積分値S1’からS4’と、各演算式で用いる積分値S1からS4との関係は、事前に設定された正規化係数Vm(積分範囲をπとしたときに得られる積分値の1/2)を用いて正規化することができる。例えば、積分値S1の場合、数13の式で表すことができる。
Figure 2018146844
なお、本実施形態1においては、連続する4つの積分範囲の積分値S1’からS4’の合計値が、積分範囲をπとした場合の積分値と等価である。よって、例えば面積差の正規化値(S1−S3)を求める式を、数14のように表すことができる。
Figure 2018146844
このように、入力される交流信号のどのタイミングに計測開始点があったとしても、積分値S1からS4又はS1’からS4’の大小関係を判断することで、ゼロクロスを検出(対象となるゼロクロスから計測開始点までの位相差を算出)することができる。
<ゼロクロス検出部160の動作>
以下、ステップ450における、ゼロクロス検出部160における動作の詳細について説明する。
まず、記録部150に記録された積分値S1’からS4’のうち、最大値を有する積分値を判断する。
次に、記録された積分値S1’からS4’を、事前に設定された正規化係数Vmを用いて正規化し、S1からS4を算出する。
そして、
最大値を有する積分値がS1’と判断された場合は数8を、
最大値を有する積分値がS2’と判断された場合は数6を、
最大値を有する積分値がS3’と判断された場合は数12を、
最大値を有する積分値がS4’と判断された場合は数10を用いて、ゼロクロスの位置を演算により算出する。
<計測値演算部180の演算動作>
以下、ステップ460における計測値演算部180の動作について説明する。計測値演算部180は、記録部150に記録された積分値に基づき、入力部110に入力された交流信号の平均値や実効値等の演算を行う。
たとえば、交流信号が電流であった場合、交流電流の平均値Iaveを次の式で算出する。
Iave=α(S1’+S2’+S3’+S4’)
なお、αは入力部110、絶対値変換部120及びVF変換部130の設計値、積分値算出部140及び指示部170の動作タイミングなどに基づき、あらかじめ算出可能な係数であり、積分値S1’からS4’の和を平均電流値に換算するための値である。
また、次の式で算出される電流値の実行値Irmsを演算結果として算出するように構成されていてもよい。
Irms=π/2√2×Iave
<追加の積分範囲を含む計測値演算部180の演算動作>
以下、図7を参照して説明を行う。
ステップ440での積分処理において、積分値算出部140は上述のS1’からS4’と連続する追加の積分範囲に基づくS5’を算出して記録部150に記録することもできる。ここで、S5’は交流信号のnπに対応する積分値であり、nは1以上の任意の数である。また、平均値の算出等、分解能向上の観点からnが1以上の整数であり、S5’の期間はS1’〜S4’と同等以上の期間であると好適である。なお、nを奇数とすると、S1’からS5’の期間が2πの倍数となり、指示部170のタイミングを管理する上で好適である。ここではn=1として説明する。
更に、ステップ460において計測値演算部180は、記録部150に記録された積分値S1’からS5’に基づき、入力部110に入力された交流信号の平均値や実効値等の演算を行う。たとえば、交流信号が電流であった場合、交流電流の平均値Iaveを次の式で算出する。
Iave=β(S1’+S2’+S3’+S4’+S5’)
なお、βは入力部110、絶対値変換部120及びVF変換部130の設計値、積分値算出部140及び指示部170の動作タイミングなどに基づき、あらかじめ算出可能な係数であり、積分値S1’からS5’の和を平均電流値に換算するための値である。
また、計測値演算部180は、先述の電流値の実行値Irmsを算出する式に基づき、Irmsを演算結果として算出するように構成されていてもよい。
<積分値と追加の積分範囲との関係>
ここでは、積分値算出部140が上述のS1’からS4’と連続する追加の積分範囲に基づくS5’を算出して記録部150に記録する場合について説明したが、S5’の期間はS1’からS4’と連続していなくてもよく、離れていてもよい。また、S1’より前の期間をS5’、又はS1’の前及びS4’の後の両方の期間をS5’として設定するように構成されていてもよい。また、別の期間に取得した積分値S1’〜S4’の和をS5’としてもよい。
<演算を行う場合の考慮>
また、ゼロクロス検出部160は、複数回のゼロクロス位置の演算結果を用いて、平均値、最小値、最大値などといった任意の条件により、結果を出力するように構成されていてもよい。また、計測値演算部180は、交流信号の平均値及び実行値についての複数回分の演算結果から、平均値、最小値、最大値などといった任意の条件により、結果を出力するように構成されていてもよい。
また、ゼロクロス検出部160及び計測値演算部180は、記録部150に記録された過去の積分値の差が閾値を超えていた場合、ノイズの重畳といった異常が生じていると判断して、エラー状態を表す信号を出力するように構成されていてもよい。
<実際の交流信号に対するゼロクロス検出結果>
本実施形態1のゼロクロス検出装置1を用いて、正弦的な変化をする交流信号に対してゼロクロスの検出を行った。
なお、交流信号の周波数を50Hzとした場合、積分範囲π/4に対応する積分時間は2.5ミリ秒となる。
なお、本実施形態1のゼロクロス検出装置1においては、検出結果が角度に換算され、0.0°から179.9°の範囲で角度表示されるようになっている。
図6(1)〜図6(6)は、入力部110に入力される交流信号及び計測開始点のタイミングに同期したトリガ信号の観測結果と、各記録動作で記録された積分値S1’からS4’、事前に設定された正規化係数Vm、最大値を有する積分範囲の判断結果であるMAX、及びゼロクロス検出結果であるゼロクロスから計測開始点までの位相差θ1を表す。
それぞれの条件において、ゼロクロスから計測開始点までの位相差θ1と観測結果から読み取れるθ1はほぼ一致し、演算式のいずれの適用範囲においても、計測開始点とゼロクロスの位置関係を検出できていることがわかる。
<ノイズ重畳信号への適用>
次に、本実施形態1のゼロクロス検出装置1におけるノイズの影響を確認するために、従来方式において誤検知の可能性があるノイズ重畳信号に対してゼロクロスの検出を行った。ここでは、交流信号として周波数50Hzの正弦波に、正弦波の振幅の5%に相当するランダムノイズと、正弦波の振幅の100%に相当する周期的なスパイクノイズを重畳した交流信号を用いた。
図6(7)に、入力部110に入力される交流信号及び計測開始点のタイミングに同期したトリガ信号の観測結果と、各記録動作で記録された積分値S1’からS4’、事前に設定された正規化係数Vm、最大値を有する積分範囲の判断結果であるMAX、及びゼロクロス検出結果であるゼロクロスから計測開始点までの位相差θ1を表す。
検出結果であるゼロクロスから計測開始点までの位相差θ1は、観測結果から読み取れるθ1とほぼ一致する。このように、本実施形態1のゼロクロス検出装置1は、ノイズの重畳した交流信号においても有効であることがわかる。
例えば交流信号が電流であった場合、図6(1)〜(7)のそれぞれについて、計測値演算部180においてS1’〜S4’に基づき電流値の実行値Irmsを算出したところ、図6(1)〜(7)の全てにおいて、約7Aであった。なお、この実施例における換算係数αは0.00857である。
<積分範囲γがπ/4より大きい場合>
ここまで、積分範囲γが0<γ≦π/4であり、動作タイミングがπ/4である場合のゼロクロス検出について説明を行った。本来、数5の成立条件であるγの範囲は数2に示した範囲ではあるが、積分範囲γが、π/4<γ≦π/2である場合についても、近似演算が可能である。数5にγを代入して、上記にて説明した数6、数8、数10、数12と同じような数式展開を行うことで、θ1を算出する近似式を得ることができる。その場合、積分範囲がπ/2に近づくにつれ、演算結果に多少の誤差は発生するものの、大まかなゼロクロス検出を目的とした用途には一定の効果が見込める。
図8は、積分範囲γが、π/4<γ≦π/2の場合の、S1からS4の一例を示したものである。
例えば、積分範囲γがπ/2、積分回数が4、動作タイミングがπ/4の場合、S2が最大となる範囲θ1は−π/8≦θ1≦π/8の範囲と一致する。この範囲における近似式を求めるには、数5のθaにはθ1を、SaとSbには積分範囲の位相差がπ/2の関係にある積分値であるS1とS3を、γにはπ/2を対応させればよい。故に、ゼロクロスから計測開始点までの位相差θ1に関する近似式は、以下の数15のようになる。
Figure 2018146844
また、S1、S4、S3が最大となる範囲θ1は、それぞれπ/8≦θ1≦3π/8、3π/8≦θ1≦5π/8、5π/8≦θ1≦7π/8の範囲と一致する。数8、数10、数12の導出と同様、θ1との位相差を考慮した数式展開を行うと、次のような近似式を得る。
Figure 2018146844
Figure 2018146844
Figure 2018146844
積分範囲γがπ/2のときが、積分範囲の設定範囲π/4<γ≦π/2の中でも最も誤差が大きくなる条件となるが、近似式(数15、数16、数17、数18)による理論上の演算誤差は最大±5°程度であり、大まかなゼロクロス検出を目的とする場合には十分な効果を有する。
図9は、積分範囲γが5π/18、動作タイミングが5π/18、SaとSbの位相差が5π/9である場合のS1からS4を示したものである。積分範囲γがπ/4よりもわずかに大きく、SaとSbの位相差もπ/2より大きいが、それらが許容誤差とみなせる範囲であれば、数6、数8、数10、数12等の所定の演算式をそのまま適用することで、おおまかなθ1を算出することが可能である。先述の条件では最大誤差+16°程度となる。
以上のように、本実施形態1のゼロクロス検出装置1は、ゼロクロス検出部160が積分値算出部140にて算出された交流信号の積分値を用いてゼロクロスを検出するように構成されているため、入力部110に低域通過フィルタ回路や比較器等を用いなくても、ノイズの影響を受けにくいゼロクロス検出装置を得ることができる。
また、本実施形態1のゼロクロス検出装置1は、入力部110、絶対値変換部120及びVF変換部130及びMCU200によって構成され、これらの組み合わせは、アナログ入力値を取得するための回路構成としても有効であり、直流、交流に関わらず利用可能である。また、シャント抵抗等で電圧値に変換して取り込めば、電圧値のほか電流値を計測することも可能である。つまり、本実施形態1のゼロクロス検出装置1は、ゼロクロス検出以外の用途にも転用でき、汎用的な入力回路として使用することができる。
また、本実施形態1のゼロクロス検出装置1は、ゼロクロス検出部160が、計測開始点が交流信号のどのタイミングにあったとしても、最大となる積分値と、対応する演算式により、ゼロクロスから計測開始点までの位相差を算出可能に構成されているため、任意のタイミングでゼロクロスの検出動作を行ったとしてもゼロクロスの位置を検出可能なゼロクロス検出装置を得ることができる。
また、本実施形態1のゼロクロス検出装置1は、ゼロクロス検出部160が、ゼロクロスの検出結果をゼロクロスから計測開始点までの位相差により出力するように構成されているため、ゼロクロスの計測開始点からの相対的な位置関係が判別可能なゼロクロス検出装置を得ることができる。
また、従来の電力制御装置等においては、フォトカプラ等を用いた回路でゼロクロス検出を行い、別の入力回路を用いて電流計測を行っていた。一方、本実施形態1のゼロクロス検出装置1は、計測値演算部180がゼロクロス検出とともに交流信号の平均値又は実行値の計測を実施するように構成されている。そのため、本実施形態1のゼロクロス検出装置1は、1つの汎用的な入力回路によりゼロクロスの検出と、交流信号の計測と、の両方が実施可能となるため、電力制御装置等の小型化及び低コスト化を実現することができる。
さらに、本実施形態1のゼロクロス検出装置1は、上記のようにステップ450とステップ460の動作が同時に実行可能に構成されている。従って、一連の積分値の計測から、ゼロクロスと交流信号の平均値又は実行値等を同時に得ることができる。
また、本実施形態1のゼロクロス検出装置1は、ゼロクロス検出部160及び計測値演算部180が複数回分の算出値に基づき結果を出力するように構成されているため、更にノイズの影響を受けにくいゼロクロス検出装置を得ることができる。更に、計測値演算部180が、追加した積分範囲を含む複数の積分値に基づき結果を出力するように構成されている場合には、ゼロクロス位置の分解能を向上させることができる。
<実施形態2>
<積分値の大きさによるゼロクロスの検出>
本実施形態2におけるゼロクロス検出装置2は、ゼロクロス検出部260を備える点以外については実施形態1におけるゼロクロス検出装置1と同様であるため、実施形態1と同様の構成については説明を省略する。
ゼロクロス検出部260は、まずS1’からS4’のどの積分値が最小であるかを判断する。そして、積分値が最小となる積分範囲の中にゼロクロスがあると判断し、その積分範囲に対応するデータを、ゼロクロスの検出結果を出力する。
例えば、S3’が最小であると判断した場合には、67.5°(S3’の中央にゼロクロス点があると仮定した場合の、ゼロクロスから計測開始点までの目安となる位相差θ1)を出力する。
以上のように、本実施形態2におけるゼロクロス検出装置2は、実施形態1と同様の回路構成を用いて、ゼロクロス検出部260が演算式を使用せずにゼロクロス位置を検出できるように構成されているため、より演算コストを抑えたゼロクロス検出装置を得ることができる。
また、検出方法切り換え部(不図示)により、詳細なゼロクロス位置の検出が必要な場合はゼロクロス検出部160に、そうでない場合はゼロクロス検出部260に切り替えることで、必要に応じた検出方法を選択することが可能となる。
各実施形態における各構成は、それぞれ専用回路等でハード的に構成されるものであってもよいし、マイコン等の汎用的な回路上でソフトウェア的に実現されるものであってもよい。
また、各実施形態における積分動作は、VF変換部130と積分値算出部140によって実現されているが、ΔΣAD変換器等を用いて実現しても良い。
また、各実施形態において、ステップ470の処理のあとで動作を終了するとしていたが、ステップ470が完了し次第、一定の時間を置いて次のステップ410を開始してもよい。
また、常時入力される交流信号に対して、積分動作と記録動作を連続して行う中で、必要な回数の積分動作が完了する度に、ゼロクロスの検出を行ってもよいし、適当なインターバル(例えば1秒周期)を設定してゼロクロスの検出を行ってもよい。
<数5の別解>
また、実施形態1においてはゼロクロス検出部160が数5のように面積差を用いた逆正弦関数に基づいてゼロクロスを検出するように構成されていたが、面積差を用いた逆余弦関数に基づいてゼロクロスを検出するように構成することも可能である。その場合、数5に対応する逆余弦関数は以下の数19のようになる。
Figure 2018146844
<演算式の変形例1>
また、実施形態1においてはゼロクロス検出部160が数5に基づく演算式によりゼロクロスを検出するように構成されていたが、積分範囲、積分回数及び動作タイミングの組み合わせを容易に変更に対応できるよう、算術し易い形に変形した演算式に基づいてゼロクロスを検出するように構成されていてもよい。そのような、数5に対応する演算式を数20に示す。
Figure 2018146844
例えば、積分範囲がπ/4、積分回数が4、動作タイミングがπ/4間隔の組み合わせでは係数αがπ/8となり、例えば、積分範囲がπ/6、積分回数が6、動作タイミングがπ/6間隔の組み合わせでは係数αがπ/6となる。
以上のような演算式を用いると、共通の数式における係数αの変更を行うだけで、積分範囲及、積分回数及び動作タイミングの組み合わせを容易に変更可能なゼロクロス検出装置を得ることができる。
<演算式の変形例2>
また、実施形態1においては、ゼロクロスの検出原理を考える際に、数4から逆正弦関数を求めるように構成されていたが、数4を周期関数として近似した上で、面積差Sa−Sbからθaを導出する演算式に基づいてゼロクロスを検出するように構成されていても良い。積分範囲がπ/4のときの数4に対応する近似式を数21に、数5に対応する演算式を数22に示す。
Figure 2018146844
Figure 2018146844
<積分範囲>
また、実施形態1において、ゼロクロス検出部160に事前に設定された積分範囲がπ/4であるように構成されていたが、その他の値が設定されるように構成されていてもよく、積分範囲が0<γ<π/4の場合であっても、図5における説明と同様に、積分範囲同士の位相差を考慮することで、数5に基づきθ1を算出する演算式を導出することが可能であるが、積分範囲の値としては、積分動作を連続して実施できる(積分動作の切れ目が発生しない)、位相差π/2を整数で割った数が好適である。また、積分範囲が大きいほど積分値の分解能が向上するため、積分範囲を定めた数2の上限値であるπ/4が特に好適である。
なお、積分範囲と、動作タイミングの組み合わせによっては、積分範囲が部分的に重なってしまう場合がある。そのような条件においては、積分範囲が重なっている範囲において、それぞれの積分値を並行して算出が可能となるように、積分値算出部140が構成されていればよい。
<演算式の選択方法>
また、実施形態1において、ゼロクロス検出部160が、積分値が最大となる範囲に基づきゼロクロス検出の演算式を選択するように構成されていたが、積分値が最小となる範囲に基づきゼロクロス検出の演算式を選択するように構成されていてもよい。
また、実施形態1において、ゼロクロス検出部160は、積分値が最大となる範囲に基づき、ゼロクロス検出の演算式を選択するように構成されていたが、演算に必要な組み合わせの面積差をあらかじめ算出し、最大又は最小となる面積差を用いてゼロクロス検出の演算式を選択するように構成されていてもよい。
これは、特定の積分値が最大もしくは最小となる範囲と、特定の面積差が最大もしくは最小となる範囲の組み合わせは、原理的に同じになるためである。
また、最大又は最小となる積分値が2つ存在する場合は、どちらの演算式を選択してもよい。また、面積差についても同様である。
このように、ゼロクロス検出部160は、積分値又は面積差の大きさで演算式を選択するように構成されていればよい。
<演算式のテーブル化、近似式化>
また、ゼロクロス検出部160は、数6、数8、数10、数12等の所定の演算式によりゼロクロス検出を行うように構成されていたが、演算コストの観点から、演算結果の引き当てにテーブル参照等を用いるように構成されていてもよい。
また、ゼロクロス検出部160は、数6、数8、数10、数12等の所定の演算式によりゼロクロス検出を行うように構成されていたが、演算コストの観点から、所定の演算式を一次関数等の近似式に簡略化してもよい。
<出力データの違い>
また、実施形態2のゼロクロス検出部260が具体的な角度データ、例えば、S3’が最小であると判断した場合には67.5°を出力するとしたが、例えば、S3’が最小であると判断された場合には3を、即ち、最小であると判断した積分範囲を特定できるデータ(1から4の整数等)を出力するようにしてもよい。
また、実施形態2における積分範囲はπ/4としたが、積分値の大小判断に影響の無い範囲で積分範囲を小さくしてもよい。
以上、実施形態を参照して本発明を説明したが、本発明は上述した実施形態に限定されるものではない。本発明の構成及び動作については、本発明の趣旨を逸脱しない範囲において、当業者が理解しうる様々な変更を行うことができる。
1、2…ゼロクロス検出装置
110…入力部
120…絶対値変換部
130…VF変換部
140…積分値算出部
150…記録部
160、260…ゼロクロス検出部
170…指示部
180…計測値演算部
200…MCU

Claims (10)

  1. 交流信号が入力される入力部と、前記交流信号の1/4周期以下の期間である複数の積分範囲について前記交流信号の積分値を算出する積分値算出部と、前記積分値に基づき前記交流信号のゼロクロスの位置を検出するゼロクロス検出部と、
    を備えることを特徴とするゼロクロス検出装置。
  2. 前記ゼロクロス検出部が、前記複数の積分範囲から2つを選択し、当該選択された2つの積分範囲についての積分値の差分である面積差に基づき、前記交流信号のゼロクロスの位置を検出することを特徴とする請求項1に記載のゼロクロス検出装置。
  3. 前記選択された2つの積分範囲の開始点同士の位相差がπ/2となることを特徴とする請求項2に記載のゼロクロス検出装置。
  4. 前記ゼロクロス検出部が、前記積分値又は前記面積差の少なくとも何れかが最大となる前記積分範囲に対応する2つの前記積分範囲を選択することを特徴とする請求項2又は3に記載のゼロクロス検出装置。
  5. 前記ゼロクロス検出部が、前記積分値又は前記面積差の少なくとも何れかに基づき、前記交流信号のゼロクロス検出のための演算式を選択し、当該選択された演算式と、前記面積差と、に基づき前記交流信号のゼロクロスを検出することを特徴とする請求項2から4の何れかに記載のゼロクロス検出装置。
  6. 前記ゼロクロス検出部が、前記積分値が最小となる積分範囲の中に前記交流信号のゼロクロスがあると検出することを特徴とする請求項1に記載のゼロクロス検出装置。
  7. 前記ゼロクロス検出部が、前記交流信号のゼロクロスの位置を複数回検出し、当該複数回検出されたゼロクロスの位置の少なくとも何れかに基づきゼロクロスの位置を演算することを特徴とする請求項1から6の何れかに記載のゼロクロス検出装置。
  8. 前記複数の積分範囲についての積分値に基づき、前記交流信号の平均値又は実行値を演算する計測値演算部を備えることを特徴とする請求項1から7の何れかに記載のゼロクロス検出装置。
  9. 前記計測値演算部が、前記複数の積分範囲についての積分値と、前記複数の積分範囲以外の期間についての積分値に基づき、前記交流信号の平均値又は実行値の演算を行うことを特徴とする請求項8に記載のゼロクロス検出装置。
  10. 入力部に交流信号が入力される入力工程と、
    積分値算出部が、前記交流信号の1/4周期以下の期間である複数の積分範囲について前記交流信号の積分値を算出する積分値算出工程と、
    ゼロクロス検出部が、前記積分値に基づき前記交流信号のゼロクロスの位置を検出するゼロクロス検出工程と、
    を備えることを特徴とするゼロクロス検出方法。
JP2018566744A 2017-02-09 2017-09-04 ゼロクロス検出装置及びゼロクロス検出方法 Active JP6792177B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/004724 WO2018146767A1 (ja) 2017-02-09 2017-02-09 ゼロクロス検出装置
JPPCT/JP2017/004724 2017-02-09
PCT/JP2017/031754 WO2018146844A1 (ja) 2017-02-09 2017-09-04 ゼロクロス検出装置及びゼロクロス検出方法

Publications (2)

Publication Number Publication Date
JPWO2018146844A1 true JPWO2018146844A1 (ja) 2019-11-07
JP6792177B2 JP6792177B2 (ja) 2020-11-25

Family

ID=63107291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018566744A Active JP6792177B2 (ja) 2017-02-09 2017-09-04 ゼロクロス検出装置及びゼロクロス検出方法

Country Status (3)

Country Link
JP (1) JP6792177B2 (ja)
CN (1) CN110192113B (ja)
WO (2) WO2018146767A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113203891A (zh) * 2021-06-04 2021-08-03 无锡和晶智能科技有限公司 用于冰箱控制器双过零点的检测装置和方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630439B2 (ja) * 1983-04-27 1994-04-20 株式会社安川電機製作所 正弦波信号の零交差点検出装置
US5151866A (en) * 1990-03-30 1992-09-29 The Dow Chemical Company High speed power analyzer
JPH05322941A (ja) * 1992-05-20 1993-12-07 Mitsubishi Electric Corp 交流計測装置の調整方法
JPH1010163A (ja) * 1996-06-20 1998-01-16 Yokogawa Electric Corp 実効値電圧測定装置
SE516437C2 (sv) * 2000-06-07 2002-01-15 Abb Ab Förfarande, anordning, apparat och användning, dataprogram med dataprodukt för prediktering av en nollgenomgång hos en växelström
JP4419882B2 (ja) * 2005-03-18 2010-02-24 横河電機株式会社 ゼロクロス検出回路
JP4664837B2 (ja) * 2006-03-01 2011-04-06 日置電機株式会社 電圧等の実効値演算回路および測定器
JP5701079B2 (ja) * 2011-01-26 2015-04-15 日置電機株式会社 測定装置および測定方法
CN102645576B (zh) * 2012-05-17 2014-11-12 合肥工业大学 一种电感电流过零点的检测装置与检测方法
JP6057876B2 (ja) * 2013-11-18 2017-01-11 東芝三菱電機産業システム株式会社 電力変換装置
JP6173234B2 (ja) * 2014-02-19 2017-08-02 株式会社日立製作所 電源装置および並列型の電源システム
CN105116218B (zh) * 2015-07-15 2018-11-02 厦门大学 基于输入观测器理论的电力线路电流谐波检测方法
CN204964613U (zh) * 2015-09-06 2016-01-13 艾德克斯电子(南京)有限公司 一种过零检测电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113203891A (zh) * 2021-06-04 2021-08-03 无锡和晶智能科技有限公司 用于冰箱控制器双过零点的检测装置和方法

Also Published As

Publication number Publication date
CN110192113A (zh) 2019-08-30
CN110192113B (zh) 2021-03-12
WO2018146767A1 (ja) 2018-08-16
WO2018146844A1 (ja) 2018-08-16
JP6792177B2 (ja) 2020-11-25

Similar Documents

Publication Publication Date Title
JP5901832B2 (ja) 判定装置、判定方法、およびプログラム
JP2013531233A5 (ja)
JP5561283B2 (ja) センサ信号の処理装置
JP2010032347A (ja) 検出装置
JP5228128B1 (ja) 信号生成装置、測定装置、漏電検出装置及び信号生成方法
JP5877350B2 (ja) 電力計測装置
JP6803277B2 (ja) 周期信号測定装置、周期信号測定方法およびサンプリング周期決定方法
WO2018146844A1 (ja) ゼロクロス検出装置及びゼロクロス検出方法
JP2013024577A (ja) レゾルバによる角度検出方法
KR101834526B1 (ko) 마그네틱 엔코더의 출력 신호를 보상하는 장치
JP6005409B2 (ja) 冗長型レゾルバ装置
JP2007171081A (ja) 位置検出方法
WO2016076419A1 (ja) 位相計測装置およびこの位相計測装置を適用した機器
JP6760612B2 (ja) 位相計測装置およびこの位相計測装置を適用した機器
JP2015169631A (ja) レゾルバ誤差補正構造、レゾルバおよびレゾルバ誤差補正方法
RU2442180C1 (ru) Способ определения параметров гармоники несинусоидального электрического сигнала
JP2007114190A (ja) 漏洩電流抵抗分検出方法及びその装置
JP2010117234A (ja) 測定装置
TWI504160B (zh) 時域切換之類比至數位轉換器設備與方法
JP2020003254A (ja) 位置検出装置
KR101499889B1 (ko) 인버터 제어를 위한 신호의 옵셋 보상방법 및 장치
JP2015150023A (ja) 生体情報測定方法
JP5361658B2 (ja) レゾルバデジタルコンバータ
JP2008292222A (ja) 回転振動位相検出装置及び方法
JP6226061B2 (ja) 交流信号測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R150 Certificate of patent or registration of utility model

Ref document number: 6792177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250