JPWO2018056121A1 - 強化ガラスの応力測定装置、強化ガラスの応力測定方法、強化ガラスの製造方法、強化ガラス - Google Patents

強化ガラスの応力測定装置、強化ガラスの応力測定方法、強化ガラスの製造方法、強化ガラス Download PDF

Info

Publication number
JPWO2018056121A1
JPWO2018056121A1 JP2018540987A JP2018540987A JPWO2018056121A1 JP WO2018056121 A1 JPWO2018056121 A1 JP WO2018056121A1 JP 2018540987 A JP2018540987 A JP 2018540987A JP 2018540987 A JP2018540987 A JP 2018540987A JP WO2018056121 A1 JPWO2018056121 A1 JP WO2018056121A1
Authority
JP
Japan
Prior art keywords
tempered glass
stress
light
glass
stress distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018540987A
Other languages
English (en)
Other versions
JP6830606B2 (ja
Inventor
秀治 折原
秀治 折原
芳男 折原
芳男 折原
聡司 大神
聡司 大神
稲葉 誠二
誠二 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORIHARA INDUSTRIAL CO., LTD.
AGC Inc
Original Assignee
ORIHARA INDUSTRIAL CO., LTD.
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORIHARA INDUSTRIAL CO., LTD., Asahi Glass Co Ltd filed Critical ORIHARA INDUSTRIAL CO., LTD.
Publication of JPWO2018056121A1 publication Critical patent/JPWO2018056121A1/ja
Application granted granted Critical
Publication of JP6830606B2 publication Critical patent/JP6830606B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0047Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to residual stresses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/12Making multilayer, coloured or armoured glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/06Tempering or quenching glass products using gas for glass products other than flat or bent glass plates, e.g. hollow glassware, lenses
    • C03B27/067Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本応力測定装置は、レーザ光の偏光位相差を、前記レーザ光の波長に対して1波長以上可変する偏光位相差可変部材と、前記偏光位相差を可変されたレーザ光が強化ガラスに入射されたことにより発する散乱光を、所定の時間間隔で複数回撮像し、複数の画像を取得する撮像素子と、前記複数の画像を用いて前記散乱光の周期的な輝度変化を測定し、前記輝度変化の位相変化を算出し、前記位相変化に基づき前記強化ガラスの表面からの深さ方向の応力分布を算出する演算部と、を有する。

Description

本発明は、強化ガラスの応力測定装置、強化ガラスの応力測定方法、強化ガラスの製造方法、及び強化ガラスに関する。
携帯電話やスマートフォン等の電子機器において、表示部や、筐体本体にガラスが用いられることが多く、そのガラスは強度を上げるために、ガラス表面にイオン交換による表面層(イオン交換層)を形成することにより強度を上げた、所謂化学強化ガラスが使用されている。表面層は、少なくともガラス表面側に存在しイオン交換による圧縮応力が発生している圧縮応力層を含み、ガラス内部側に該圧縮応力層に隣接して存在し引張応力が発生している引張応力層を含んでもよい。
強化ガラスの表面層の応力を測定する技術としては、例えば、強化ガラスの表面層の屈折率が内部の屈折率より高い場合に、光導波効果と光弾性効果とを利用して、表面層の圧縮応力を非破壊で測定する技術(以下、非破壊測定技術とする)を挙げることができる。この非破壊測定技術では、単色光を強化ガラスの表面層に入射して光導波効果により複数のモードを発生させ、各モードで光線軌跡が決まった光を取出し、凸レンズで各モードに対応する輝線に結像させる。なお、結像させた輝線は、モードの数だけ存在する。
又、この非破壊測定技術では、表面層から取出した光は、出射面に対して、光の振動方向が水平と、垂直の二種の光成分についての輝線を観察できるように構成されている。そして、次数の一番低いモード1の光は表面層の一番表面に近い側を通る性質を利用し、二種の光成分のモード1に対応する輝線の位置から、それぞれの光成分についての屈折率を算出し、その二種の屈折率の差とガラスの光弾性定数から強化ガラスの表面付近の応力を求めている(例えば、特許文献1参照)。
一方、上記の非破壊測定技術の原理を元に、モード1とモード2に対応する輝線の位置から、外挿でガラスの最表面での応力(以下、表面応力値とする)を求め、かつ、表面層の屈折率分布は直線的に変化すると仮定し、輝線の総本数から、圧縮応力層の深さを求める方法が提案されている(例えば、特許文献3及び非特許文献1参照)。
又、上記の表面導波光を利用した測定技術により測定した表面応力値と圧縮応力層の深さを元に、ガラス内部の引張応力CTを定義し、CT値で強化ガラスの強度を管理する方法が提案されている(例えば、特許文献2参照)。この方法では、引張応力CTを『CT=(CS×DOL)/(t×1000−2×DOL)』(式0)で計算している。ここで、CSは表面応力値(MPa)、DOLは圧縮応力層の深さ(単位:μm)、tは板厚(単位:mm)である。
一般的に外力が加わらなければ、応力の総和は0である。従って、化学強化により形成された応力を深さ方向に積分した値が、化学強化されていない中心部分でバランスをとるように略均等に引張応力が発生する。
又、応力分布が屈曲する位置のガラス深さ(DOL_TP)よりもガラス表層側の応力分布を測定し、ガラス表層側の応力分布の測定結果(測定画像)に基づいて、DOL_TPよりもガラス深層側の応力分布を予測する方法も提案されている(例えば、特許文献4参照)。しかしながら、この方法では、DOL_TPよりもガラス深層側の応力分布の実測を行わないため、測定再現性が悪いという問題がある。
特開昭53−136886号公報 特表2011−530470号公報 特開2016−142600号公報 米国特許公開2016/0356760
Yogyo-Kyokai-Shi(窯業協会誌)87{3}1979 Yogyo-Kyokai-Shi(窯業協会誌)80{4}1972
近年、イオン交換がしやすく、化学強化工程で、短時間で、表面応力値が高く、応力層の深さが深くできるガラスとして、リチウム・アルミノシリケート系のガラスが注目されている。
このガラスを高温の硝酸ナトリウムと硝酸カリウムの混合溶融塩に浸漬して、化学強化処理を施す。ナトリウムイオン、カリウムイオンとも、溶融塩中の濃度が高いために、ガラス中のリチウムイオンとイオン交換するが、ナトリウムイオンの方がガラス中へ拡散しやすいために、まず、ガラス中のリチウムイオンと溶融塩中のナトリウムイオンが交換される。
ここで、ガラスの屈折率は、ナトリウムイオンがリチウムイオンとイオン交換されるとより低く、カリウムイオンが、リチウムイオン、或いはナトリウムイオンとイオン交換されるとより高くなる。つまり、ガラス中のイオン交換されていない部分に比べて、ガラス表面付近のイオン交換された領域はカリウムイオン濃度が高く、更に深いイオン交換された領域になるとナトリウムイオン濃度が高くなるので、イオン交換されたガラスの最表面付近は、屈折率が深さとともに下がるが、ある深さからイオン交換されていない領域まで、深さとともに屈折率が高くなる特徴を持っている。
そのため、背景技術で説明した表面の導波光を利用した応力測定装置では、最表面の応力値、或いは、応力分布だけで、深い部分の応力分布を測定することができず、応力層の深さ、CT値、全体の応力分布を知ることができなかった。その結果、適正な化学強化条件を見つけ出すための開発ができず、又、製造の品質管理ができなかった。
又、アルミノシリケートガラスやソーダガラスを風冷強化した後に化学強化した場合、化学強化された部分は背景技術で説明した表面の導波光を利用した応力測定装置で応力分布或いは応力値を測定できるが、化学強化がされておらず風冷強化だけがされた部分は屈折率変化が小さく背景技術で説明した表面の導波光を利用した応力測定装置では測定できない。その結果、応力層の深さ、CT値、全体の応力分布を知ることができなかった。その結果、適正な化学強化条件を見つけ出すための開発ができず、又、製造の品質管理ができなかった。
本発明は、上記の点に鑑みてなされたものであり、強化ガラスの屈折率分布にかかわらず、強化ガラスの応力分布を、強化ガラスの最表面から従来よりも深い部分まで測定可能な、強化ガラスの応力測定装置を提供することを目的とする。
本応力測定装置は、レーザ光の偏光位相差を、前記レーザ光の波長に対して1波長以上可変する偏光位相差可変部材と、前記偏光位相差を可変されたレーザ光が強化ガラスに入射されたことにより発する散乱光を、所定の時間間隔で複数回撮像し、複数の画像を取得する撮像素子と、前記複数の画像を用いて前記散乱光の周期的な輝度変化を測定し、前記輝度変化の位相変化を算出し、前記位相変化に基づき前記強化ガラスの表面からの深さ方向の応力分布を算出する演算部と、を有することを要件とする。
開示の技術によれば、強化ガラスの屈折率分布にかかわらず、強化ガラスの応力分布を、強化ガラスの最表面から従来よりも深い部分まで測定可能な、強化ガラスの応力測定装置を提供できる。
第1の実施の形態に係る応力測定装置を例示する図である。 第1の実施の形態に係る応力測定装置を図1のH方向から見た図である。 液晶素子の印加電圧と偏光位相差との関係を例示する図である。 液晶素子に偏光位相差が時間的に直線的に変化するような駆動電圧を発生させる回路を例示する図である。 撮像素子に結像されたレーザ光Lのある瞬間の散乱光像を例示する図である。 図5の点Bと点Cでの散乱光輝度の時間的な変化を例示する図である。 ガラス深さに応じた散乱光変化の位相を例示する図である。 図7の散乱光変化の位相データを基に、式1より求めた応力分布を例示する図である。 異なる時刻t1、t2の実際の散乱光像を例示する図である。 強化ガラス中のレーザ光Lの入射面の好ましくない設計例を示す図である。 強化ガラス中のレーザ光Lの入射面の好ましい設計例を示す図である。 応力測定装置1の測定方法を例示するフローチャートである。 応力測定装置1の演算部70の機能ブロックを例示する図である。 第1の実施の形態の変形例1に係る応力測定装置を例示する図である。 第1の実施の形態の変形例2に係る応力測定装置を例示する図である。 光弾性効果を利用した偏光位相差可変部材の説明図である。 第2の実施の形態に係る応力測定装置を例示する図である。 応力測定装置1及び2で測定した応力分布を同じグラフに示した図である。 応力測定装置2の測定方法を例示するフローチャートである。 応力測定装置2の演算部75の機能ブロックを例示する図である。 強化ガラスの深さ方向の応力分布を例示する図である。 応力分布に基づいて特性値を導出するフローチャート(その1)である。 測定された応力分布から各特性値を導出した例を示す図である。 応力分布に基づいて特性値を導出するフローチャート(その2)である。 測定された応力分布から各特性値を導出した他の例を示す図(その1)である。 応力分布に基づいて特性値を導出するフローチャート(その3)である。 測定された応力分布から各特性値を導出した他の例を示す図(その2)である。 応力分布の測定で得られた各特性値を用いた品質判断のフローチャートの一例を示す図である。 応力分布の測定で得られた各特性値を用いた品質判断のフローチャートの他の例を示す図である。 リチウム含有ガラスに対して2回以上の強化をする場合の品質判断のフローチャートの一例(その1)である。 リチウム含有ガラスに対して2回以上の強化をする場合の品質判断のフローチャートの一例(その2)である。 ガラス表層側の応力分布とガラス深層側の応力分布の合成結果の一例である。 比較例1及び実施例1〜3で求めた応力分布である。 第3の実施の形態に係る応力測定装置を例示する図である。 光供給部材と強化ガラスとの界面を進むレーザ光Lの散乱光画像を例示する図である。 光供給部材と強化ガラスとの間に液体を挟むための構造部を例示した図である。 光供給部材と強化ガラスとの間に液体を挟むための構造部の第2例を示した図である。 光供給部材と強化ガラスとの間に液体を挟むための構造部の第3例を示した図である。 光供給部材と強化ガラスとの間に液体を挟むための構造部の第4例を示した図である。 光供給部材と強化ガラスとの間に液体を挟むための構造部の第5例を示した図である。 光供給部材と強化ガラスとの間に液体を挟むための構造部の第6例を示した図である。 光供給部材と強化ガラスとの間に液体を挟むための構造部の第7例を示した図である。 レーザ光Lが強化ガラス内に入射されていることを説明する図である。 図43の撮像素子の位置から撮影したレーザ軌跡の画像を説明する図である。 図43の光供給部材或いは強化ガラス内のレーザ光の角度、長さの定義を説明する図である。 図45の上面図、正面図、側面図である。 光供給部材及び強化ガラス中を進むレーザ光の概念図である。 強化ガラス中を進むレーザ光の概念図である。 入射余角Ψを求めるフローチャートの一例である。 強化ガラスの屈折率ngを求めるフローチャートの一例である。 入射余角Ψを求めるフローチャートの他の例である。 レーザ光が通る面と観測面が変わらないθLを求めるフローチャートの一例である。 強化ガラスの深さ方向の応力分布を例示する図である。 ガラス厚み測定装置を設置した応力測定装置を例示する図である。
以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
〈第1の実施の形態〉
図1は、第1の実施の形態に係る応力測定装置を例示する図である。図1に示すように、応力測定装置1は、レーザ光源10と、偏光部材20と、偏光位相差可変部材30と、光供給部材40と、光変換部材50と、撮像素子60と、演算部70と、光波長選択部材80とを有する。
200は、被測定体となる強化ガラスである。強化ガラス200は、例えば、化学強化法や風冷強化法等により強化処理が施されたガラスである。
レーザ光源10は、光供給部材40から強化ガラス200の表面層にレーザ光Lを入射するように配置されており、レーザ光源10と光供給部材40との間に、偏光位相差可変部材30が挿入されている。
レーザ光源10としては、例えば、半導体レーザ、ヘリウムネオンレーザ、アルゴンレーザを用いることができる。半導体レーザは通常偏光があり、405nm、520nm、630nm等の波長の半導体レーザが実用化されている。レーザ光の波長が短いほどビーム径を絞れ、空間分解能を高くできる。
強化ガラス200の深さ方向の分解能を上げるためには、レーザ光の最小ビーム径の位置が強化ガラス200のイオン交換層内にあり、最小ビーム径が20μm以下であることが好ましい。レーザ光の最小ビーム径の位置を、強化ガラス200の表面210とすると、更に好ましい。なお、レーザ光のビーム径が深さ方向の分解能となるため、必要な深さ方向の分解能以下のビーム径にする必要がある。ここで、ビーム径とはビーム中央の輝度が最大になる時の1/e(約13.5%)の幅を意味し、ビーム形状が楕円形状やシート状の場合、ビーム径は最小幅を意味する。但し、この場合は、ビーム径の最小幅がガラス深さ方向を向いている必要がある。
偏光部材20は、必要に応じて、レーザ光源10と偏光位相差可変部材30との間に挿入される。具体的には、レーザ光源10の出射するレーザ光Lが偏光でない場合、レーザ光源10と偏光位相差可変部材30との間に偏光部材20が挿入される。レーザ光源10の出射するレーザ光Lが偏光である場合、偏光部材20は挿入されても、挿入されなくてもよい。又、レーザ光Lの偏光面が強化ガラス200の表面210に対して45°になるよう、レーザ光源10、及び、偏光部材20が設置される。偏光部材20としては、例えば、回転可能な状態で配置された偏光板等を用いることができるが、同様の機能を備えた他の部材を用いてもよい。
光供給部材40は、被測定体である強化ガラス200の表面210に光学的に接触した状態で載置されている。光供給部材40は、レーザ光源10からの光を強化ガラス200に入射させる機能を備えている。光供給部材40としては、例えば、光学ガラス製のプリズムを用いることができる。この場合、強化ガラス200の表面210において、光線がプリズムを介して光学的に入射するために、プリズムの屈折率は強化ガラス200の屈折率とほぼ同じ(±0.2以内)にする必要がある。
光供給部材40と強化ガラス200との間に、強化ガラス200の屈折率とほぼ同じ屈折率を持つ液体を挟んでもよい。これにより、強化ガラス200内に、効率よくレーザ光Lを入射することができる。これについては、第3の実施の形態で詳しく説明する。
強化ガラス200を通過するレーザ光Lは、微量の散乱光Lを発生する。散乱光Lの輝度は、レーザ光Lの散乱する部分の偏光位相差で変化する。又、レーザ光Lの偏光方向が、強化ガラス200の表面210に対して図2のθs2が45°(±5°以内)になるように、レーザ光源10が設置されている。そのため、強化ガラス200の面内方向にかかる応力の光弾性効果により複屈折を起こし、レーザ光Lが強化ガラス中を進むにつれ、偏光位相差も変化し、その変化に伴い散乱光Lの輝度も変化する。なお、偏光位相差とは、複屈折により生じる位相差(retardation)である。
又、レーザ光Lは、強化ガラスの表面210に対して、θs1は10°以上30°以下に設定される。これは10°を下回ると、光導波効果によりレーザ光がガラス表面を伝播し、ガラス内部の情報を取ることができなくなるからである。逆に30°を超えると、レーザ光路長に対するガラス内部の深さ分解能が下がり、測定方法として好ましくない。よって、好ましくはθs1=15°±5°に設定する。
次に、撮像素子60について、図2を用いて説明する。図2は、第1の実施の形態に係る応力測定装置を図1のH方向から見た図であり、撮像素子60の位置関係を示す図である。レーザ光Lの偏光が強化ガラス200の表面210に対して45°の角度で入射するため、散乱光Lも強化ガラス200の表面210に対して45°角度で放射される。そのため、この強化ガラスの面に対して45°で放射される散乱光Lを捉えるために、撮像素子60が、図2において、強化ガラス200の表面210に対して45°の方向に設置されている。すなわち、図2において、θs2=45°である。
又、撮像素子60と、レーザ光Lの間に、レーザ光Lによる散乱光Lの画像を撮像素子60に結像するよう光変換部材50が挿入されている。光変換部材50としては、例えば、ガラス製の凸レンズや、複数の凸レンズや凹レンズを組み合わせたレンズを用いることができる。
又、複数のレンズを組み合わせたレンズについて、主光線が光軸に平行であるテレセントリックレンズにすることにより、レーザ光Lより四方に散乱する散乱光中、主に強化ガラス200のガラス表面に対して45°方向(撮像素子方向)に散乱する光のみで結像することができ、ガラス表面の乱反射等の不必要な光を低減する効果がある。
又、レーザ光Lと撮像素子60との間に、少なくともレーザ光の波長+100nm以上と、−100nm以下の波長の光を50%以上、好ましくは90%透過させない光波長選択部材80を挿入してもよい。光波長選択部材80を挿入することにより、レーザ光Lより発生した蛍光光や外来光を除去し、散乱光Lだけを撮像素子60に集めることができる。光波長選択部材80としては、例えば、誘電体膜を多層にしたバンドパスフィルタや、ショートパスフィルタを用いることができる。
撮像素子60としては、例えば、CCD(Charge Coupled Device)素子やCMOS(Complementary Metal Oxide Semiconductor)センサ素子を用いることができる。図1及び図2には図示していないが、CCD素子やCMOSセンサ素子は、その素子を制御し、素子から画像の電気信号を取出す制御回路、電気信号をデジタル画像データにするデジタル画像データ生成回路、デジタル画像データを複数枚記録するデジタル記録装置に接続されている。更に、デジタル画像データ生成回路、デジタル記録装置は、演算部70に接続されている。
演算部70は、撮像素子60、或いは、上記撮像素子60に接続された、デジタル画像データ生成回路、デジタル記録装置から画像データを取り込み、画像処理や数値計算をする機能を備えている。演算部70は、これ以外の機能(例えば、レーザ光源10の光量や露光時間を制御する機能等)を有する構成としてもよい。演算部70は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、メインメモリ等を含むように構成することができる。
この場合、演算部70の各種機能は、ROM等に記録されたプログラムがメインメモリに読み出されてCPUにより実行されることによって実現できる。演算部70のCPUは、必要に応じてRAMからデータを読み出したり、格納したりできる。但し、演算部70の一部又は全部は、ハードウェアのみにより実現されてもよい。又、演算部70は、物理的に複数の装置等により構成されてもよい。演算部70としては、例えば、パーソナルコンピュータを用いることができる。又、演算部70にデジタル画像データ生成回路、デジタル記録装置の機能を持たせても良い。
偏光位相差可変部材30は、強化ガラス200へ入射するときの偏光位相差を時間的に変化させる。変化させる偏光位相差は、レーザ光の波長λの1倍以上である。偏光位相差は、レーザ光Lの波面に対して均一でなければいけない。例えば、水晶楔は、楔の傾斜面のついた方向には偏光位相差が均一でないためレーザ光の波面は均一でない。そのため、偏光位相差可変部材30として水晶楔を用いることは好ましくない。
レーザ光の波面に均一で偏光位相差を電気的に1λ以上可変できる偏光位相差可変部材30としては、例えば、液晶素子を挙げることができる。液晶素子は、素子に印加する電圧により偏光位相差を可変することができ、例えば、レーザ光の波長が630nmである場合、3〜6波長の可変が可能である。液晶素子において、印加する電圧で可変できる偏光位相差の最大値は、セルギャップの寸法で決まる。
通常の液晶素子は、セルギャップが数μmであるため、最大の偏光位相差は1/2λ(数100nm)程度である。又、液晶を使ったディスプレイ等では、それ以上の変化は要求されない。これに対して、本実施の形態で使用する液晶素子は、レーザ光の波長が例えば630nmである場合、630nmの約3倍の約2000nmの偏光位相差を可変する必要があり、20〜50μmのセルギャップが必要となる。
液晶素子に印加する電圧と偏光位相差は比例しない。一例として、セルギャップが30μmの液晶素子の印加電圧と偏光位相差との関係を図3に示す。図3において、縦軸は偏光位相差(波長630nmに対しての波長数)、横軸は液晶素子に印加する電圧(対数で描かれている)である。
液晶素子に印加する電圧が0Vから10Vで、約8λ(5000nm)の偏光位相差を可変できる。しかし、液晶素子は、一般的に0Vから1Vまでの低電圧では液晶の配向が安定せず、温度変化等で偏光位相差が変動する。又、液晶素子に印加する電圧が5V以上では、電圧の変化に対して偏光位相差の変化が少ない。この液晶素子の場合、1.5Vから5Vの印加電圧で使用することで、4λ〜1λ、すなわち約3λの偏光位相差を安定に可変することができる。
偏光位相差可変部材30として液晶素子を用いる場合、偏光位相差可変部材30は液晶を制御する液晶制御回路に接続され、撮像素子60と同期して制御される。この際、偏光位相差を時間的に直線的に可変させ、撮像素子60の撮像のタイミングに同期することが必要である。
図3は、液晶素子の印加電圧と偏光位相差との関係を例示する図である。図3で示すように、液晶素子の印加電圧と偏光位相差は直線的な変化をしない。そのため、偏光位相差がある時間内で直線的に変化するような信号を発生させ、液晶素子への駆動電圧として印加する必要がある。
図4は、液晶素子に偏光位相差が時間的に直線的に変化するような駆動電圧を発生させる回路を例示する図である。
図4において、デジタルデータ記憶回路301には、使用する液晶素子の印加電圧と偏光位相差とを予め測定したデータに基づいて、偏光位相差を一定間隔で変化させるための、偏光位相差に対応する電圧値が、必要な偏光位相差変化の範囲でデジタルデータとしてアドレス順に記録されている。表1に、デジタルデータ記憶回路301に記録されるデジタルデータの一部を例示する。表1の電圧の列が、記録されるデジタルデータであり、偏光位相差10nmの変化毎の電圧値である。
クロック信号発生回路302は、水晶振動子等を使い、周波数が一定であるクロック信号を発生させる。クロック信号発生回路302の発生したクロック信号は、デジタルデータ記憶回路301とDAコンバータ303に入力される。
DAコンバータ303は、デジタルデータ記憶回路301からのデジタルデータをアナログ信号に変換する回路である。クロック信号発生回路302の発生したクロック信号に従って、デジタルデータ記憶回路301から順次記憶された電圧値のデジタルデータが読み出され、DAコンバータ303へ送られる。
DAコンバータ303では、一定時間間隔で読み出された電圧値のデジタルデータをアナログ電圧に変換する。DAコンバータ303から出力されるアナログ電圧は、電圧増幅回路304を通して、偏光位相差可変部材30として用いる液晶素子へ印加される。
なお、図4では図示していないが、この液晶素子の駆動回路は、図2の撮像素子60を制御する回路と同期がとられ、液晶素子への駆動電圧の印加の開始とともに、撮像素子60で時間的に連続な撮像を開始する。
図5は、撮像素子に結像されたレーザ光Lのある瞬間の散乱光像を例示する図である。図5では、上に行くほど強化ガラス200の表面210からの深さが深くなる。図5において、点Aは強化ガラス200の表面210であり、強化ガラス200の表面210の散乱光が強いため、散乱光像は楕円状に広がっている。
強化ガラス200の表面部には強い圧縮応力がかかっているため、光弾性効果による複屈折により、レーザ光Lの偏光位相差が深さとともに変化する。そのため、レーザ光Lの散乱光輝度も深さとともに変化する。なお、レーザ光の散乱光輝度が、強化ガラスの内部応力により変化する原理については、例えば、Yogyo-Kyokai-Shi(窯業協会誌)80{4}1972、等に説明されている。
偏光位相差可変部材30により、強化ガラス200に入射する前のレーザ光Lの偏光位相差を時間的に連続して変化させることができる。これにより、図5の散乱光像の各点において、偏光位相差可変部材30で変化させた偏光位相差に応じて散乱光輝度が変化する。
図6は、図5の点Bと点Cでの散乱光の輝度(散乱光輝度)の時間的な変化を例示する図である。散乱光輝度の時間的な変化は、偏光位相差可変部材30の変化させた偏光位相差に応じ、レーザ光の波長λの周期で、周期的に変化する。例えば、図6において、点Bと点Cでは、散乱光輝度の変化の周期は同じであるが、位相が異なっている。これは、レーザ光Lが点Bから点Cへ進むときに、強化ガラス200中の応力による複屈折で更に偏光位相差が変化したためである。点Bと点Cとの位相差δは、点Bから点Cへレーザ光Lが進んだときに変化した偏光位相差を行路差で表現したものをq、レーザ光の波長をλとすると、δ=q/λとなる。
局所的に考えると、レーザ光L上の任意の点Sでの、偏光位相差可変部材30の時間的な偏光位相差の変化に伴う、周期的な散乱光輝度の変化の位相Fを、レーザ光Lに沿った位置sで表した関数F(s)に対して、sに対する微分値dF/dsが強化ガラス200の面内応力により発生した複屈折量である。強化ガラス200の光弾性定数Cと、dF/dsから、下記の式1(数1)により、点Sでの強化ガラス200の面内方向の応力σを計算することができる。
本特許では、レーザ光Lがガラスに対して斜めに入射しているため、ガラス表面から垂直方向の深さに対する応力分布を求める場合は、点sから深さ方向への変換が必要で、後述の式8(数8)に示す。
一方、偏光位相差可変部材30は、ある時間内に時間的に連続に偏光位相差を1波長以上変化させる。その時間内に、撮像素子60により、複数枚の時間的に連続したレーザ光Lによる散乱光像を記録する。そして、この連続撮影をした散乱光像の各点における時間的な輝度の変化を測定する。
この散乱光像の各点の散乱光の変化は周期的であり、その周期は場所によらず一定である。そこで、その周期Tをある点の散乱光輝度の変化から測定する。或いは、複数の点での周期の平均を周期Tとしてもよい。
偏光位相差可変部材30では偏光位相差を1波長以上(1周期以上)変化させるため、散乱光輝度も1周期以上変化する。そのため、複数のピークやバレーの差、或いは、振幅の中点を通る時刻の差等から周期Tの測定が可能である。なお、1周期以下でのデータでは、1周期を知ることは原理的に不可能である。
ある点での散乱光の周期的な変化のデータにおいて、上記で決めた周期Tを基に、三角関数の最小二乗法やフーリエ積分により、その点での位相Fを正確に求めることができる。
予め既知である周期Tでの三角関数の最小二乗法やフーリエ積分では、既知である周期Tでの位相成分だけが抽出され、他の周期のノイズを除去可能である。又、その除去能力は、データの時間的変化が長ければ長いほど高くなる。通常、散乱光輝度は弱く、又、実際に変化する位相量も小さいため、数λの偏光位相差の可変によるデータでの測定が必要となる。
撮像素子60により撮影した画像上のレーザ光Lに沿った散乱光像の各点での散乱光の時間的変化のデータを測定し、それぞれについて、上記と同様の方法で位相Fを求めると、レーザ光Lに沿った、散乱光輝度の位相Fを求めることができる。図7は、ガラス深さに応じた散乱光変化の位相の例である。
このレーザ光Lに沿った散乱光輝度の位相Fにおいて、レーザ光L上の座標での微分値を計算し、式1により、レーザ光L上の座標sでの応力値を求めることができる。更に、座標sをガラス表面からの距離に換算すれば、強化ガラスの表面からの深さに対する応力値を算出することができる。図8は、図7の散乱光変化の位相データを基に、式1より応力分布を求めた例である。
図9は、異なる時刻t1、t2の実際の散乱光像の例であり、図9の点Aは強化ガラスの表面であり、強化ガラスの表面の荒れにより、表面散乱光が映っている。この表面散乱光像の中心が強化ガラスの表面に相当する。
図9において、レーザ光の散乱光像が各点で輝度が異なっていることがわかり、又、同じ点であっても、時刻t2での輝度分布は、時刻t1での輝度分布と同じでないことが分かる。これは、周期的な散乱光輝度変化の位相がずれているためである。
応力測定装置1において、レーザ光Lの入射面は、強化ガラス200の表面210に対して45°傾いた状態とすることが好ましい。これについて、図10及び図11を参照しながら説明する。
図10は、強化ガラス中のレーザ光Lの入射面の好ましくない設計例を示す図である図10では、強化ガラス200中のレーザ光Lの入射面250が強化ガラスの表面210に対して垂直である。
図10(b)は図10(a)の方向Hから見た図である。図10(b)に示すように、撮像素子60は、強化ガラス200の表面210に対して45°傾けて設置されており、レーザ光Lを斜め45°から観察する。図10の場合、レーザ光L上の異なる2点、点A、点Bから撮像素子60までの距離を距離A、距離Bとすると、その距離が異なる。すなわち、点Aと点Bとで同時にピントを合わせることができず、必要な領域のレーザ光Lの散乱光像を良好な画像として取得することができない。
図11は、強化ガラス中のレーザ光Lの入射面の好ましい設計例を示す図である。図11では、強化ガラス200中のレーザ光Lの入射面250が強化ガラス200の表面210に対して45°傾いている。
図11(b)は図11(a)の方向Hから見た図である。図11(b)に示すように、撮像素子60は、強化ガラス200の表面210に対して45°傾けて設置されているが、レーザ光Lの通る面である入射面250も同様に45°傾いている。そのため、レーザ光L上のどの点においても撮像素子60までの距離(距離Aと距離B)が同じとなり、必要な領域のレーザ光Lの散乱光像を、良好な画像として取得することができる。
特に、最小ビーム径が20μm以下であるレーザ光を用いる場合、焦点深度が浅く、せいぜい数10μm程度であるため、強化ガラス200中のレーザ光Lの入射面250を強化ガラス200の表面210に対して45°傾け、レーザ光L上のどの点においても撮像素子60までの距離を同じにすることは、良好な画像を取得する上で極めて重要である。
(測定のフロー)
次に、図12及び図13を参照しながら測定のフローについて説明する。図12は、応力測定装置1の測定方法を例示するフローチャートである。図13は、応力測定装置1の演算部70の機能ブロックを例示する図である。
まず、ステップS401では、偏光のあるレーザ光源10、或いは偏光をかけたレーザ光源10からのレーザ光の偏光位相差を、偏光位相差可変部材30により、時間的に連続してレーザ光の波長に対して1波長以上可変する(偏光位相差可変工程)。
次に、ステップS402では、偏光位相差が可変されたレーザ光を、光供給部材40を介して、被測定体である強化ガラス200内に表面210に対して斜めに入射させる(光供給工程)。
次に、ステップS403では、撮像素子60は、強化ガラス200中を進む偏光位相差が可変されたレーザ光による散乱光を、所定の時間間隔で複数回撮像し、複数の画像を取得する(撮像工程)。
次に、ステップS404では、演算部70の輝度変化測定手段701は、撮像工程で得られた散乱光の時間的に間隔を置いた複数の画像を用いて、偏光位相差可変工程により可変された偏光位相差の時間的変化に伴う散乱光の周期的な輝度変化を測定する(輝度変化測定工程)。
次に、ステップS405では、演算部70の位相変化算出手段702は、強化ガラス200中に入射されたレーザ光に沿った、散乱光の周期的な輝度変化の位相変化を算出する(位相変化算出工程)。
次に、ステップS406では、演算部70の応力分布算出手段703は、強化ガラス200中に入射されたレーザ光に沿った、散乱光の周期的な輝度変化の位相変化に基づいて、強化ガラス200の表面210からの深さ方向の応力分布を算出する(応力分布算出工程)。なお、算出した応力分布を、表示装置(液晶ディスプレイ等)に表示させてもよい。
このように、応力測定装置1では、表面の導波光を利用した応力測定装置とは異なり、強化ガラスの屈折率分布に依存した応力測定を行わず、散乱光に基づいた測定を行う。そのため、強化ガラスの屈折率分布にかかわらず(強化ガラスの屈折率分布とは無関係に)、強化ガラスの応力分布を、強化ガラスの最表面から従来よりも深い部分まで測定可能となる。例えば、ある深さから、深さとともに屈折率が高くなる特徴を持つリチウム・アルミノシリケート系の強化ガラス等についても、応力測定が可能である。
又、レーザ光の偏光位相差を、偏光位相差可変部材30により、時間的に連続してレーザ光の波長に対して1波長以上可変する。そのため、散乱光の周期的な輝度変化の位相を、三角関数の最小二乗法や、フーリエ積分により求めることが可能となる。三角関数の最小二乗法やフーリエ積分では、従来のように波のピークやバレーの位置の変化により位相を検知する方法とは異なり、波の全データが扱われ、又、予め分かっている周期に基づいているため、他の周期のノイズを除去可能である。その結果、散乱光の周期的な輝度変化の位相を容易かつ正確に求めることが可能となる。
〈第1の実施の形態の変形例1〉
第1の実施の形態の変形例1では、第1の実施の形態とは構成の異なる応力測定装置の例を示す。なお、第1の実施の形態の変形例1において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
図14は、第1の実施の形態の変形例1に係る応力測定装置を例示する図である。図14(a)に示すように、応力測定装置1Aは、光波長選択部材80、光変換部材50、及び撮像素子60が、強化ガラス200に対して、光供給部材41とは反対側に配置され、更に、強化ガラス200の裏面220と接するように光取出し部材42が配置された点が、応力測定装置1(図1参照)と相違する。なお、図14において、演算部の図示は省略している。
応力測定装置1Aでは、強化ガラス200の裏面220側で生じた散乱光LS2を、プリズム等である光取出し部材42、光波長選択部材80、及び光変換部材50を介して、撮像素子60に入射させ、撮像素子60で一定時間内、時間的に間隔を置き複数撮像する。これ以外の構成及び動作は、第1の実施の形態と同様である。
なお、光供給部材41を設けることで、レーザ光Lの強化ガラス200の表面210での反射を低減できるが、レーザ光Lの強化ガラス200の表面210での反射が問題ない程度であれば、光供給部材41を設けずに、レーザ光Lを直接強化ガラス200に入射してもよい。
強化ガラス200は、一般に、表裏面側が同一の応力分布であるため、第1の実施の形態のように、強化ガラス200の表面210側(レーザ光Lの入射側)の散乱光Lsを検出してもよいし、第1の実施の形態の変形例1のように、強化ガラス200の裏面220側(レーザ光Lの出射側)の散乱光LS2を検出してもよい。
なお、強化ガラス200の裏面220側の散乱光LS2を検出する場合において、強化ガラス200中のレーザ光が全反射の条件を満たしていることが好ましい。強化ガラス200の裏面220においてレーザ光を全反射させると、強化ガラス200の裏面220での乱反射を低減でき、撮像素子60に不要光が入射することを防止できるためである。強化ガラス200へのレーザ光の入射角度を調整することで、強化ガラス200の裏面220で、レーザ光が全反射の条件を満たすことができる。
或いは、図14(b)に示す応力測定装置1Bのように、強化ガラス200の表面210側で生じて裏面220側に出射した散乱光LS3を、プリズム等である光取出し部材42、光波長選択部材80、及び光変換部材50を介して、撮像素子60に入射させ、撮像素子60で一定時間内、時間的に間隔を置き複数撮像してもよい。これ以外の構成及び動作は、第1の実施の形態と同様である。
なお、応力測定装置1Aと同様に、光供給部材41を設けることで、レーザ光Lの強化ガラス200の表面210での反射を低減できるが、レーザ光Lの強化ガラス200の表面210での反射が問題ない程度であれば、光供給部材41を設けずに、レーザ光Lを直接強化ガラス200に入射してもよい。
応力測定装置1A及び1Bの何れの場合にも、応力測定装置1と同様に、強化ガラス200中に入射されたレーザ光Lに沿った、散乱光の周期的な輝度変化の位相変化から、強化ガラス200の裏面220からの深さ方向の応力分布を算出することができる。
特に、応力測定装置1Bによれば、ガラス板厚に依存することなくレーザの焦点がガラス表層から同じ位置に設定されるため、同じような応力分布を有する強化ガラスを測定するときでも、レーザの焦点位置を調整する必要がなくなったり、微調整で済んだりするため、測定時間が短かったり繰り返し精度がより向上したりするという効果を奏する。
〈第1の実施の形態の変形例2〉
第1の実施の形態の変形例2では、第1の実施の形態とは構成の異なる応力測定装置の他の例を示す。なお、第1の実施の形態の変形例2において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
図15は、第1の実施の形態の変形例2に係る応力測定装置を例示する図である。図15に示すように、応力測定装置1Cは、光波長選択部材80A、光変換部材50A、及び撮像素子60Aが、強化ガラス200に対して、光供給部材40とは反対側に配置され、更に、強化ガラス200の裏面220と接するように光取出し部材42が配置された点が、応力測定装置1(図1参照)と相違する。なお、図15において、演算部の図示は省略している。
応力測定装置1Cでは、応力測定装置1と同様に、強化ガラス200の表面210側から出射した散乱光Lを検出できる。更に、応力測定装置1Cでは、強化ガラス200の裏面220側から出射した散乱光LS2を、プリズム等である光取出し部材42、光波長選択部材80A、及び光変換部材50Aを介して、撮像素子60Aに入射させ、撮像素子60Aで一定時間内、時間的に間隔を置き複数撮像する。これ以外の動作は、第1の実施の形態と同様である。
応力測定装置1Cでは、図15の構成により、強化ガラス200の表面210からの深さ方向の応力分布、及び強化ガラス200の裏面220からの深さ方向の応力分布を同時に算出することができる。表裏面側が同一の応力分布でない強化ガラスを測定する場合や、任意の強化ガラスにおいて表裏面側が同一の応力分布であるか否かを確認したい場合等に有効である。
〈第1の実施の形態の変形例3〉
第1の実施の形態の変形例3では、第1の実施の形態とは構成の異なる偏光位相差可変部材の例を示す。なお、第1の実施の形態の変形例3において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
偏光位相差可変部材として、透明材料の光弾性効果を利用し、加圧により偏光位相差を可変することもできる。図16は、光弾性効果を利用した偏光位相差可変部材の説明図である。
図16に示す偏光位相差可変部材30Aにおいて、略直方体の偏光位相差発生材料310の一面が固定治具311で固定され、偏光位相差発生材料310の反対面がピエゾ素子312の一面に接し、ピエゾ素子312の反対面が固定治具313で固定されている。
偏光位相差発生材料310のピエゾ素子312に接している面と直角方向の対向する2つの面310a及び310bは鏡面に加工してあり、偏光のある光線Qが通過できるようなっている。偏光位相差発生材料310としては、透明で光弾性効果が大きな材料、例えば、ガラスでは石英ガラス、樹脂ではポリカーボネートを用いることができる。
ピエゾ素子312は、電圧が印加されると電圧印加方向に伸び縮みする。伸びるか縮むかは電圧の正負で決まる。図16には図示していないが、ピエゾ素子312に印加する電圧を制御するピエゾ素子駆動電圧発生回路がピエゾ素子312に接続されている。
ピエゾ素子312は、ピエゾ素子駆動電圧発生回路によりピエゾ素子312が伸びる電圧が印加されると、電圧が印加される方向に長さが伸びようとするが、その伸びる方向に偏光位相差発生材料310が位置されるようピエゾ素子312が配置されている。
ピエゾ素子駆動電圧発生回路によりピエゾ素子312が伸びる方向の電圧が印加されると、ピエゾ素子312は偏光位相差発生材料310の方向に伸びる。固定治具311及び313で固定されているので、偏光位相差発生材料310が縮み圧縮応力がかかる。偏光位相差発生材料310の圧縮応力により、光線Qが通過する方向に複屈折が生じ、光線Qには偏光位相差が発生する。その偏光位相差の量はピエゾ素子312に印加する電圧に比例し、ピエゾ素子312に駆動電圧を印加するピエゾ素子駆動電圧発生回路で偏光位相差を制御することが可能である。
例えば、偏光位相差発生材料310として、10mmの立方体のポリカーボネートを使用する。ポリカーボネートの光弾性定数は約700nm/cm/MPa、ヤング率は約2.5GPaである。
ピエゾ素子312としては、例えば、ピエゾ効果の大きなチタン酸ジルコン酸鉛等のペロブスカイト結晶構造を有する高誘電体セラミックを電極と交互に積み重ねた積層ピエゾ素子を用いることができる。例えば、積層ピエゾ素子において、1層の厚みが200μmで100層、長さ20mm程度にすることで、印加電圧100Vで10μm以上の伸びを得ることができる。
ピエゾ素子312の材料であるチタン酸ジルコン酸鉛のヤング率はポリカーボネートに比べて10倍以上あるので、ピエゾ素子312の伸びは、ほぼ全てポリカーボネートの圧縮になり、ピエゾ素子312が10μm伸びると、10mmの立方体のポリカーボネートは0.1%圧縮され、その時の圧縮応力は2.5MPaとなる。10mmの偏光位相差発生材料310を光線Qが通過すると、1750nmの偏光位相差が発生し、波長630nmであれば、2.8λの偏光位相差を可変できる。
例えば、偏光位相差発生材料310として、10mmの立方体の石英ガラスを使用する。石英ガラスの光弾性定数は約35nm/cm/MPa、ヤング率は約70GPaである。ピエゾ素子312の材料であるチタン酸ジルコン酸鉛のヤング率は石英とほぼ同じレベルなので、ピエゾ素子312の伸びは、ほぼ半分が石英ガラスの圧縮になり、ピエゾ素子312が10μm伸びると、10mmの立方体のポリカーボネートは約0.05%圧縮され、その時の圧縮応力は約35MPaとなる。10mmの偏光位相差発生材料310を光線Qが通過すると、1225nmの偏光位相差が発生し、波長630nmであれば、1.9λの偏光位相差を可変できる。
このように材料を変形させて偏光位相差を作る場合は、光弾性定数とヤング率を乗じた値が重要で、ポリカーボネートの場合0.18(単位無し)、石英の場合0.26(単位無し)となる。つまり、この値を0.1以上の透明部材を偏光位相差発生材料310として用いることが重要になる。
このように、偏光位相差可変部材は液晶素子に限定されるものではなく、強化ガラス200へ入射するときの偏光位相差を時間的に変化させることができ、かつ、変化させる偏光位相差がレーザ光の波長λの1倍以上であることを実現できれば、ピエゾ素子を応用した形態であってもよいし、それ以外の任意の形態であってもよい。
〈第2の実施の形態〉
第2の実施の形態では、第1の実施の形態に係る応力測定装置と組み合わせて用いる応力測定装置の例を示す。なお、第2の実施の形態において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
図17は、第2の実施の形態に係る応力測定装置を例示する図である。例えば、Yogyo-Kyokai-Shi(窯業協会誌)87{3}1979等で説明されている。図17に示すように、応力測定装置2は、光源15と、光供給部材25と、光取出し部材35と、光変換部材45と、偏光部材55と、撮像素子65と、演算部75とを有する。応力測定装置2は、図1に示す応力測定装置1と組み合わせて用いることができる。応力測定装置2は、図14に示す応力測定装置1A及び1Bや、図15に示す応力測定装置1Cと組み合わせて用いてもよい。
応力測定装置2において、光源15は、光供給部材25から強化ガラス200の表面層に光線Laを入射するように配置されている。干渉を利用するため、光源15の波長は、単純な明暗表示になる単波長であることが好ましい。
光源15としては、例えば、容易に単波長の光が得られるNaランプを用いることができ、この場合の波長は589.3nmである。又、光源15として、Naランプより短波長である水銀ランプを用いてもよく、この場合の波長は、例えば水銀I線である365nmである。但し、水銀ランプは多くの輝線があるので、365nmラインだけを透過させるバンドパスフィルタを通して使用することが好ましい。
又、光源15としてLED(Light Emitting Diode)を用いてもよい。近年、多くの波長のLEDが開発されているが、LEDのスペクトル幅は半値幅で10nm以上あり、単波長性が悪く、温度により波長が変化する。そのため、バンドパスフィルタを通して使用することが好ましい。
光源15をLEDにバンドパスフィルタを通した構成にした場合、Naランプや水銀ランプほど単波長性はないが、紫外域から赤外域まで任意の波長を使うことができる点で好適である。なお、光源15の波長は、応力測定装置2の測定の基本原理には影響しないため、上に例示した波長以外の光源を用いても構わない。
但し、光源15として紫外線を照射する光源を用いることで、測定の分解能を向上できる。すなわち、応力測定装置2で測定する強化ガラス200の表面層は数μm程度の厚さであるため、光源15として紫外線を照射する光源を用いることにより適度な本数の干渉縞が得られ、分解能が向上する。一方、光源15として紫外線よりも長波長の光を照射する光源を用いると、干渉縞の本数が減るため分解能が低下する。
光供給部材25及び光取出し部材35は、被測定体である強化ガラス200の表面210に光学的に接触した状態で載置されている。光供給部材25は、光源15からの光を強化ガラス200に入射させる機能を備えている。光取出し部材35は、強化ガラス200の表面層を伝播した光を強化ガラス200の外に出射させる機能を備えている。
光供給部材25及び光取出し部材35としては、例えば、光学ガラス製のプリズムを用いることができる。この場合、強化ガラス200の表面210において、光線がこれらプリズムを介して光学的に入射及び出射するために、これらプリズムの屈折率は強化ガラス200の屈折率よりも大きくする必要がある。又、各プリズムの傾斜面において、入射光及び出射光が略垂直に通過するような屈折率を選ぶ必要がある。
例えば、プリズムの傾斜角が60°で、強化ガラス200の屈折率が1.52の場合は、プリズムの屈折率は1.72とすることができる。なお、光供給部材25及び光取出し部材35として、プリズムに代えて、同様の機能を備えた他の部材を用いてもよい。又、光供給部材25及び光取出し部材35を一体構造としてもよい。又、安定に光学的な接触をさせるために、光供給部材25及び光取出し部材35と強化ガラス200の間に、光供給部材25及び光取出し部材35の屈折率と強化ガラス200の屈折率の間の値となる屈折率の液体(ゲル状でもよい)を充填することもある。
光取出し部材35から出射された光の方向には撮像素子65が配置されており、光取出し部材35と撮像素子65との間に、光変換部材45と偏光部材55が挿入されている。
光変換部材45は、光取出し部材35から出射された光線を輝線列に変換して撮像素子65上に集光する機能を備えている。光変換部材45としては、例えば、凸レンズを用いることができるが、同様の機能を備えた他の部材を用いてもよい。
偏光部材55は、強化ガラス200と光取出し部材35との境界面に対して平行及び垂直に振動する二種の光成分のうち一方を選択的に透過する機能を備えている光分離手段である。偏光部材55としては、例えば、回転可能な状態で配置された偏光板等を用いることができるが、同様の機能を備えた他の部材を用いてもよい。ここで、強化ガラス200と光取出し部材35との境界面に対して平行に振動する光成分はS偏光であり、垂直に振動する光成分はP偏光である。
なお、強化ガラス200と光取出し部材35との境界面は、光取出し部材35を介して強化ガラス200の外に出射した光の出射面と垂直である。そこで、光取出し部材35を介して強化ガラス200の外に出射した光の出射面に対して垂直に振動する光成分はS偏光であり、平行に振動する光成分はP偏光であると言い換えてもよい。
撮像素子65は、光取出し部材35から出射され、光変換部材45及び偏光部材55を経由して受光した光を電気信号に変換する機能を備えている。撮像素子65としては、例えば、撮像素子60と同様の素子を用いることができる。
演算部75は、撮像素子65から画像データを取り込み、画像処理や数値計算をする機能を備えている。演算部75は、これ以外の機能(例えば、光源15の光量や露光時間を制御する機能等)を有する構成としてもよい。演算部75は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、メインメモリ等を含むように構成することができる。
この場合、演算部75の各種機能は、ROM等に記録されたプログラムがメインメモリに読み出されてCPUにより実行されることによって実現できる。演算部75のCPUは、必要に応じてRAMからデータを読み出したり、格納したりできる。但し、演算部75の一部又は全部は、ハードウェアのみにより実現されてもよい。又、演算部75は、物理的に複数の装置等により構成されてもよい。演算部75としては、例えば、パーソナルコンピュータを用いることができる。
応力測定装置2では、光源15から光供給部材25を通して強化ガラス200の表面層に入射した光線Laは表面層内を伝播する。そして、光線Laが表面層内を伝播すると、光導波効果によりモードが発生し、幾つかの決まった経路を進んで光取出し部材35により、強化ガラス200の外へ取出される。
そして、光変換部材45及び偏光部材55により、撮像素子65上に、モード毎にP偏光及びS偏光の輝線となって結像される。撮像素子65上に発生したモードの数のP偏光及びS偏光の輝線の画像データは、演算部75へと送られる。演算部75では、撮像素子65から送られた画像データから、撮像素子65上のP偏光及びS偏光の輝線の位置を算出する。
このような構成により、応力測定装置2では、P偏光及びS偏光の輝線の位置に基づいて、強化ガラス200の表面層における表面から深さ方向の、P偏光及びS偏光の夫々の屈折率分布を算出することができる。又、算出したP偏光及びS偏光の夫々の屈折率分布の差と、強化ガラス200の光弾性定数とに基づいて、強化ガラス200の表面層における表面から深さ方向の応力分布を算出することができる。
このように、応力測定装置2は、強化ガラスの表面層の導波光を利用した測定装置である。ここで、ガラス表面の導波光は、強化ガラス200の屈折率が表面から深くなるほど低くなる層で発生する。深くなるにつれ、屈折率が高くなる層では導波光は発生しない。例えば、リチウム・アルミノシリケート系ガラスにおいて、ガラスの最表面付近のみ、屈折率が深くなるにつれ低くなりが、ある深さから、深さとともに屈折率が高くなる。このような強化ガラスの場合、屈折率が深くなるにつれ低くなる最表面層だけに導波光が発生し、その部分すなわち、屈折率分布が反転する深さまでは応力分布が測定できる。
一方、第1の実施形態1の図9に示した散乱光の画像で、図9中の点Aはガラス表面であり、表面散乱光が強く周囲に広がっている。この広がった表面散乱光は、表面点の情報を反映している。表面点Aでは、正しい情報であるが、例えば、表面点Aから少しガラスの深い部分でのレーザ光Lの散乱光は、本来のその点でのガラスの応力を反映した散乱光に表面点Aでの応力を反映した散乱光が混じっている状態であり、表面散乱光が重なっている部分については、正しく応力を測定することが困難である。
この表面散乱光が重なる部分の深さはガラスの質や、ガラスの表面状態で異なるが、通常10μm程度である。強化ガラスの強化層深さが深く、最表面付近、例えば、深さ数10μm程度の表面領域において、応力の深さ方向の変化が緩やかな、表面応力値が低い、或いは、強化層が深い強化ガラスでは、正確に測定されない深さ10μm以内でも、それより深い部分の応力の分布をガラス表面へ外挿しても正確な応力を推定することができる。
しかし、強化ガラス200の応力分布が、最表面近傍、例えば、強化ガラス200の表面と深さ10μmの間で急に応力が高くなるような強化ガラスにおいては、外挿による最表面付近の応力値の推定値に大きな誤差が生じる。特に、最表面の応力値は誤差が大きい。しかし、この表面散乱光が邪魔をする領域以外では、絶対値として、正確に応力分布を測定することが可能である。
最表面の応力値、或いは最表面付近の応力分布を応力測定装置2で測定した応力値、或いは応力分布と、応力測定装置1で測定した応力分布のうち、表面散乱光で邪魔をされない最表面から十分深い部分の応力分布を合わせることにより、全体の応力分布を精度よく測定することができる。
応力測定装置1の十分信頼がおける深さ領域と応力測定装置2の測定が可能な深さ領域が不連続の場合には、強化ガラスにおいて、理論的に予想される応力分布関数を使い、最小二乗法で、近似計算をすることにより、不連続な領域の応力も正確に推定することが可能である。
図18は、応力測定装置1及び2で測定した応力分布を同じグラフに示した図である。より具体的には、表面から深さ10μm付近に応力の傾きが急に変化する領域を有するような、2段階で化学強化された応力分布を持つ強化ガラスを、応力測定装置2で測定した最表面付近の応力分布(領域A)と、応力測定装置1で測定した十分信頼がおける領域での応力分布(領域C)とを同じグラフに示している。
図18の例では、中間に、応力測定装置1でも応力測定装置2でも測定されない領域Bが存在する。領域A及びCの応力分布に基づいて、領域Bにおいて予想される応力分布の関数で最小二乗法で求めた曲線を点線で示す。この場合、屈曲点が含まれる領域の実データがなくとも、最小二乗法で求められた曲線から、屈曲点位置も推定することが可能である。
(測定のフロー)
次に、図19及び図20を参照しながら測定のフローについて説明する。図19は、応力測定装置2の測定方法を例示するフローチャートである。図20は、応力測定装置2の演算部75の機能ブロックを例示する図である。
まず、ステップS407では、強化ガラス200の表面層内に光源15からの光を入射させる(光供給工程)。次に、ステップS408では、強化ガラス200の表面層内を伝播した光を強化ガラス200の外へ出射させる(光取出工程)。
次に、ステップS409では、光変換部材45及び偏光部材55は、出射された光の、出射面に対して平行及び垂直に振動する二種の光成分(P偏光とS偏光)について、夫々少なくとも2本以上の輝線を有する二種の輝線列として変換する(光変換工程)。
次に、ステップS410では、撮像素子65は、光変換工程により変換された二種の輝線列を撮像する(撮像工程)。次に、ステップS411では、演算部75の位置測定手段751は、撮像工程で得られた画像から二種の輝線列の各輝線の位置を測定する(位置測定工程)。
次に、ステップS412では、演算部75の応力分布算出手段752は、二種の輝線列の夫々少なくとも2本以上の輝線の位置から、二種の光成分に対応した強化ガラス200の表面から深さ方向にわたる屈折率分布を算出する。そして、二種の光成分の屈折率分布の差とガラスの光弾性定数とに基づいて、強化ガラス200の表面から深さ方向にわたる応力分布を算出する(応力分布算出工程)。
次に、ステップS413では、演算部75の合成手段753は、ステップS412で算出した応力分布と、応力測定装置1の演算部70の応力分布算出手段703が算出した応力分布とを合成する。
応力測定装置1の十分信頼がおける深さ領域と応力測定装置2の測定が可能な深さ領域が不連続の場合には、演算部75の合成手段753は、例えば、図18に示したように、応力測定装置2の演算部75の応力分布算出手段752が算出した領域Aの応力分布と、応力測定装置1の演算部70の応力分布算出手段703が算出した領域Cの応力分布に基づいて、最小二乗法等で領域Bの応力分布を算出する。
なお、演算部75は、図20の構成に加えて、CT値を算出するCT値算出手段や、DOL_Zero値を算出するDOL_Zero値算出手段等を備えていてもよい。この場合、合成手段753が算出した応力分布に基づいて、CT値やDOL_Zero値を算出することができる。
次に、応力分布の各特性値の導出例について説明する。図21は、強化ガラスの深さ方向の応力分布を例示する図である。図21において、CS2は最表面の応力値、CS_TPは応力分布が屈曲する位置の応力値、CTはガラス最深部における応力値、DOL_TPは応力分布が屈曲する位置のガラス深さ、DOL_zeroは応力値がゼロになるガラス深さ、DOL_tailは応力値がCTと同じ値になるガラス深さである。
図22に示すように、ステップS501において応力分布を測定し、ステップS502においてステップS501で測定した応力分布に基づいて特性値を導出することができる。以下により詳しく説明する。
図23は、測定された応力分布から各特性値を導出した例を示している。例えば、図24のステップS601において、応力分布の全分布(図23に示す実線全体)を応力測定装置1で測定する。そして、ステップS604で各特性値を導出する。
ステップS604では、例えば、以下のようにして、各特性値を導出する。すなわち、図23に示すように、CS2を通る線分、及びDOL_zeroを通る線分の2つの線分を考える。そして、2つの線分と測定した応力分布との差が最小になるようにしたとき、2つの線分の交点をCS_TP及びDOL_TPとする。又、DOL_zeroを通る線分とCTとの交点をDOL_tailとする。
この手法は、例えば、リチウム・アルミノシリケート系強化ガラス、硝酸ナトリウムと硝酸カリウムとの混合塩を使って1回の化学強化を行った強化ガラス、硝酸ナトリウムが入った溶融塩と硝酸カリウムが入った溶融塩とをそれぞれ1回以上使って化学強化を行った強化ガラス、風冷強化と化学強化の両方を行った強化ガラス等に適用可能である。
図25は、測定された応力分布から各特性値を導出した他の例を示している。例えば、図26のステップS601では、応力分布の全分布を応力測定装置1で測定する。次に、ステップS602では、DOL_TPよりもガラス表層側を応力測定装置2で測定する。なお、応力測定装置2でDOL_TPよりも深層側を測定することは困難である。ステップS601とステップS602とは順不同である。
次に、ステップS603では、ステップS602で測定した部分と、それより深層側のステップS601で測定した部分とを合成する。これにより、図25の応力分布が得られる。その後、例えば、図24のステップS604と同様にして、各特性値を導出することができる。
或いは、ステップS602は上記と同様とし、ステップS601ではDOL_zeroとCTを測定する。そして、ステップS603では、図27に示すように、ステップS602で得られたCS_TPとDOL_TPの交点からステップS601で得られたDOL_zeroを通過する直線を引き、CTになるまでを応力分布としてもよい。
応力分布の測定で得られた各特性値を用いて品質判断を行うことができる。図28は、応力分布の測定で得られた各特性値を用いた品質判断のフローチャートの一例である。図28では、まず、図26と同様にステップS601〜S603を実行する。次に、ステップS604では、ステップS601及びS602で得られたデータに基づいて、CS2、CS_TP、CT、DOL_TP、DOL_zero、DOL_tailの6つの特性値(以下、単に6つの測定値と称する場合がある)を導出する。次に、ステップS605では、ステップS604で導出した6つの特性値が、事前の要求仕様に定められた許容範囲に入っているか否かを判断する。この方法では、1回の品質判断に、ステップS601及びS602の2回の測定が必要となる。
図29は、応力分布の測定で得られた各特性値を用いた品質判断のフローチャートの他の例である。図29(a)では、まず、ステップS600で予備データを取得する。具体的には、例えば、1ロットにつき、所定の数量について、応力測定装置1及び2を用いて、6つの特性値を導出する。そして、製品の要求仕様と導出した特性値とに基づいて、特性値の許容範囲を決める。
次に、ステップS601では、DOL_TPよりもガラス深層側を応力測定装置1で測定する。そして、ステップS604では、ステップS600の応力測定装置2のデータとステップS601の応力測定装置1のデータに基づいて、6つの特性値を再度導出する。
次に、ステップS605では、ステップS604で測定した6つの特性値が、ステップS600で決めた許容範囲に入るか否かを判断する。この方法では、予備工程で測定した数量以外については、1回の品質判断に、ステップS601の1回の測定のみが必要となる。よって、図28の場合よりも品質管理フローを簡素化できる。
又、図29(b)のようにしてもよい。図29(b)では、図29(a)と同様に、まず、ステップS600で予備データを取得し、特性値の許容範囲を決める。
次に、ステップS602では、DOL_TPよりもガラス表層側を応力測定装置2で測定する。そして、ステップS604では、ステップS600の応力測定装置1のデータとステップS602の応力測定装置2のデータに基づいて、6つの特性値を再度導出する。
次に、ステップS605では、ステップS604で測定した6つの特性値が、ステップS600で決めた許容範囲に入るか否かを判断する。この方法では、予備工程で測定した数量以外については、1回の品質判断に、ステップS602の1回の測定のみが必要となる。よって、この場合も、図29(a)と同様に、図28の場合よりも品質管理フローを簡素化できる。
図30は、リチウム・アルミノシリケート系強化ガラスのようなリチウム含有ガラス(リチウムが2wt%以上含まれるガラス)に対して2回以上の強化をする場合の品質判断のフローチャートの一例である。図30では、最終回以外の強化に係る強化ガラスを応力測定装置1の測定結果に基づいて合否判定し、最終回の強化に係る強化ガラスを応力測定装置2の測定結果に基づいて合否判定する。
具体的には、まず、ステップS650で1回目の化学強化を行う。そして、ステップS651で、DOL_TPよりもガラス深層側の応力分布(以降、第1の応力分布と称する場合がある)を応力測定装置1で測定する。ステップS651での測定結果に問題があれば(NGの場合)、その強化ガラスは出荷対象外となる。一方、ステップS651での測定結果に問題がなければ(OKの場合)、ステップS652に移行し2回目の化学強化を行う。ステップS651における合否判定(OK/NGの判定)は、応力測定装置1の測定結果から導出した6つの特性値の全部又は一部(例えば、CTとDOL_zero)に基づいて行うことができる。
次に、ステップS653で、DOL_TPよりもガラス表層側の応力分布(以降、第2の応力分布と称する場合がある)を応力測定装置2で測定する。ステップS653での測定結果に問題があれば(NGの場合)、その強化ガラスは出荷対象外となる。一方、ステップS653での測定結果に問題がなければ(OKの場合)、ステップS654の次工程へ進む。ステップS653における合否判定(OK/NGの判定)の具体的な方法については、後述する。
次工程としては、例えば、タッチポリッシュ工程が挙げられる。タッチポリッシュ工程は、例えば、強化カラス200の表面を比較的低い面圧で研磨する仕上げ研磨の工程である。但し、タッチポリッシュ工程を設けることは必須ではなく、ステップS653が最終工程であってもよい。
又、ステップS653の後に、3回目の化学強化及び合否判定を行ってもよい。この場合には、ステップS653において2回目の強化に係る強化ガラスをステップS651と同様に応力測定装置1の測定結果に基づいて合否判定し、3回目の強化(最終回の強化)に係る強化ガラスを応力測定装置2の測定結果に基づいて合否判定する。
強化の回数が更に増えた場合も同様であり、最終回以外の強化に係る強化ガラスを応力測定装置1の測定結果に基づいて合否判定し、最終回の強化に係る強化ガラスを応力測定装置2の測定結果に基づいて合否判定する。これにより、測定再現性を維持しつつ、評価時間を短縮することが可能になる。
ここで、ステップS653における合否判定(OK/NGの判定)の具体的な方法について説明する。
(評価用データ導出)
まず、事前に評価用データ導出を行う。具体的には、図31に示すように、ステップS660で1回目の化学強化を行う。そして、ステップS661で、DOL_TPよりもガラス深層側を応力測定装置1により測定する(1回目の測定)。続いて、ステップS662で2回目の化学強化を行う。そして、ステップS663で、DOL_TPよりもガラス深層側を応力測定装置1により測定する(2回目の測定)。そして、ステップS664で、ステップS661で得られた1回目の測定結果、ステップS663で得られた2回目の測定結果の一方又は双方に基づいて評価用データ(第1の応力分布)を導出する。
なお、評価用データ導出は、1ロットにつき所定の数量のみを用いて行う。又、評価用データ導出における1回目の化学強化及び2回目の化学強化は、量産時の1回目の化学強化及び2回目の化学強化と同一条件で行う。
(ステップS653における合否判定の方法)
まず、ステップS653で得られた測定結果と、化学強化するガラスの板厚tと、図31のように求めた評価用データとに基づいて、DOL_TPよりもガラス表層側の応力分布(第2の応力分布)と、DOL_TPよりもガラス深層側の応力分布(第1の応力分布)とを合成する。例えば、図32のような結果が得られる。
図32において、実線で示したFSMはDOL_TPよりもガラス表層側の応力分布(第2の応力分布)を示し、破線で示したSLPはDOL_TPよりもガラス深層側の応力分布(第1の応力分布)を示している。又、t/2はガラスの板厚中心を示している。又、CSは第1の応力分布(SLP)を強化ガラスの表面側に延長したときの表面の応力値を示している。
次に、合成後の応力分布からCTを見つけて各特性値を導出し、各特性値が許容範囲に入っているか否かにより合否判定(出荷判断)を行う。
この時、第2の応力分布(図32のFSM)は関数近似してもよい。関数近似の一例としては、下記の式2(数2)で直線近似することが挙げられる。
式2において、σf(x)は第2の応力分布、aは傾き、CS2は最表面の応力値である。
関数近似の他の例としては、下記の式3(数3)で曲線近似することが挙げられる。
式3において、σf(x)は第2の応力分布、aは傾き、CS2は最表面の応力値、erfcは式4(数4)に示す誤差関数である。
関数近似の更に他の例としては、多項式近似することが挙げられる。
又、第1の応力分布(図32のSLP)を図32の上下方向(応力値軸方向)に移動させてもよい。具体的には、例えば、図32に示す合成後の応力分布において、第1の応力分布(SLP)を応力値軸方向に移動させ、合成後の応力分布の積分値がゼロになるCTを見つけて各特性値を導出する。そして、各特性値が許容範囲に入っているか否かにより合否判定(出荷判断)を行うことができる。
又、合成後の応力分布σ(x)を下記の式5(数5)で近似し、σ(x)の積分値(x=0〜t/2:tはガラスの板厚)がゼロになるCTを見つけて各特性値を導出する。そして、各特性値が許容範囲に入っているか否かにより合否判定(出荷判断)を行ってもよい。
式5において、σ(x)は合成後の応力分布、σf(x)は第2の応力分布、tは強化ガラスの板厚、CS及びcは第1の応力分布に基づいて導出されるパラメータである。
式5において、tは既知である。又、CS及びcは、評価用データ導出における応力測定装置1の測定結果から得ることができる。
CS及びcは、強化条件に基づいたシミュレーションから得てもよい。
或いは、CS及びcは、量産における最終回の1回前の強化に係る強化ガラスの応力測定装置1の測定結果から導出したCS’及びc’並びに下記の式6(数6)及び式7(数7)により得てもよい。
式6において、A1は比例定数である。
式7において、A2は比例定数である。
ここで、A1及びA2は、評価用データ導出における応力測定装置1の測定結果から得てもよいし、シミュレーションにより得てもよい。
なお、σ(x)の近似は式5には限定されず、例えば、多項式近似としてもよい。
[実施例]
実施例1では、2回の化学強化を行った強化ガラスの応力分布の特性値であるCS_TP(MPa)を、図28で説明した方法により同一サンプルについて3回導出し、評価時間と測定再現性を調べた。
実施例2では、2回の化学強化を行った強化ガラスの応力分布の特性値であるCS_TP(MPa)を、図30〜図32で説明した方法により同一サンプルについて3回導出し、評価時間と測定再現性を調べた。具体的には、図30のステップS653で得られた測定結果と、化学強化するガラスの板厚tと、図31のように求めた評価用データとに基づいて、第2の応力分布(FSM)と第1の応力分布(SLP)とを合成する際に、第1の応力分布(SLP)を応力値軸方向に移動させ、合成後の応力分布の積分値がゼロになるCTを見つけてCS_TPを導出した。
実施例3では、2回の化学強化を行った強化ガラスの応力分布の特性値であるCS_TP(MPa)を、図30〜図32で説明した方法により同一サンプルについて3回導出し、評価時間と測定再現性を調べた。具体的には、図30のステップS653で得られた測定結果と、化学強化するガラスの板厚tと、図31のように求めた評価用データとに基づいて、第2の応力分布(FSM)と第1の応力分布(SLP)とを合成する際に、合成後の応力分布σ(x)を式5で近似し、σ(x)の積分値(x=0〜t/2:tはガラスの板厚)がゼロになるCTを見つけてCS_TPを導出した。
比較例1として、2回の化学強化を行った強化ガラスの応力分布の特性値であるCS_TP(MPa)を、特許文献4に記載の方法により同一サンプルについて3回導出し、評価時間(分)と測定再現性(最大値と最小値との差)を調べた。
比較例1及び実施例1〜3で求めた応力分布を図33に、結果のまとめを表2に示す。なお、図33において、応力分布が屈曲する位置の応力値がCS_TPである。
表2より、比較例1では、同一サンプルについて3回導出したCS_TPの値が毎回ばらついており、測定再現性が良くない。これに対して、実施例1〜3では、同一サンプルについて3回導出したCS_TPの値のばらつきが少なく、比較例1に比べて測定再現性が大幅に向上している。特に、実施例2及び3では、測定再現性が優れている。又、実施例1は評価時間が長いが、実施例2及び3では応力測定装置1による測定回数が減ったため、評価時間が短く、かつ測定再現性に優れていることが確認できた。
〈第3の実施の形態〉
第3の実施の形態では、光供給部材と強化ガラスとの間に液体を挟む例を示す。なお、第3の実施の形態において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
図34は、第3の実施の形態に係る応力測定装置を例示する図であり、光供給部材と強化ガラスとの界面近傍の断面を図示している。
図34に示すように、本実施の形態では、光供給部材40と強化ガラス200との間に、強化ガラス200の屈折率とほぼ同じ屈折率を持つ液体90を挟んでいる。これは強化ガラス200の屈折率は強化ガラスの種類によって若干異なるため、光供給部材40の屈折率と完全に一致させるには、強化ガラスの種類ごとに光供給部材40を取り換える必要がある。しかしこの交換作業は非効率なので、光供給部材40と強化ガラス200との間に強化ガラス200の屈折率とほぼ同じ屈折率を持つ液体90を挟むことにより、強化ガラス200内に、効率よくレーザ光Lを入射することができる。
液体90としては、例えば、1−ブロモナフタレン(n=1.64)とキシレン(n=1.50)との混合液を用いることができる。液体90として、互いに構造の異なる複数のシリコンオイルの混合液を用いても良い。例えば、ジメチルシリコンオイル(n=1.38〜1.41)やメチルフェニルシリコンオイル(n=1.43〜1.57)は、それぞれのメチル基やフェニル基の鎖状長さを変えることにより屈折率を調整することができる。このように屈折率を調整した複数のシリコンオイルの混合液を液体90として用いても良い。液体90の屈折率は、それぞれの混合比で決まるため、容易に強化ガラス200の屈折率と同じ屈折率にすることができる。
このとき、強化ガラス200と液体90との屈折率差は±0.03以下にすることが好ましく、±0.02以下にすることがより好ましく、±0.01以下にすることが更に好ましい。液体90が無い場合、強化ガラス200と光供給部材の間には散乱光が発生し、約20μm程度の範囲でデータが取れない。
液体90の厚みは、10μm以上にすると、散乱光が10μm程度又はそれ以下に抑制されるため、10μm以上にすることが好ましい。原理上、液体90の厚みはいくらあっても良いが液体の取扱いを考えると500μm以下とすることが好ましい。
図35は、光供給部材40と強化ガラス200との界面を進むレーザ光Lの散乱光画像を例示する図である。図35において、点Aは強化ガラスの表面散乱光であり、点Dは光供給部材40の表面の表面散乱光である。点Aと点Dとの間は液体90からの散乱光である。
液体90の厚みが薄いと点Aと点Dとはほぼ同じ点となり、強化ガラス200の表面散乱と光供給部材40の表面散乱が加わった表面散乱光となる。光供給部材40は、多くの強化ガラス200を測定していくと、表面の傷付が多く発生してしまう。そうすると、非常に大きな表面散乱光が発生する。
しかし、図35のように、液体90を挟むことで、光供給部材40と強化ガラス200との間隔を保つことにより、光供給部材40の表面散乱光が強化ガラス200の最表面層付近の表面散乱光に重なることを防ぐことができる。
図36は、光供給部材40と強化ガラス200との間に液体90を挟むための構造部を例示した図である。図36(a)のように、光供給部材40の表面に研磨やエッチングにより10μm以上の窪み40xを形成し、窪み40x内に液体90を充填することで、液体90の厚みを安定して10μm以上とすることができる。窪み40xの深さは、原理上いくらあっても良いが、加工のしやすさを考えると500μm以下が好ましい。
又、光供給部材40の表面に窪み40xを形成する代わりに、図36(b)のように真空蒸着やスパッタ等の薄膜形成技術等で、光供給部材40の表面に、金属、酸化物、樹脂等により厚み10μm以上のランド部材100を形成し、ランド部材100に保持された液体90のランドを形成してもよい。ランド部材100で液体90を保持することで、液体90の厚みを安定して10μm以上とすることができる。ランド部材100の厚さは、原理上いくらあっても良いが、加工のしやすさを考えると500μm以下が好ましい。
〈第3の実施の形態の変形例〉
第3の実施の形態の変形例では、光供給部材40と強化ガラス200との間に液体90を挟むための構造部の図36とは異なる例を示す。なお、第3の実施の形態の変形例において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
図37は、光供給部材40と強化ガラス200との間に液体90を挟むための構造部の第2例を示した図である。図37に示すように、光供給部材40の表面に形成する窪み40xの底は平坦でなくてもよい。窪み40xは、例えば、凹レンズと同様の球面状の窪みとすることができる。
窪み40xの深さは、例えば、10μm以上500μm以下とすることができる。一例として、窪みの深さを50μm、窪みの周囲の直径を10mmとした場合には、曲率半径Rは200mmとすることができる。
窪み40xは、凹レンズと同じ製法により、容易に球面状の窪みに形成することができる。窪み40xに充填される液体90は光供給部材40の屈折率と同じであるため、球面状の窪み中の液体90によるレンズの効果はなく、レーザ光の軌跡や、散乱光を撮像するカメラの像に影響はない。
図38は、光供給部材40と強化ガラス200との間に液体90を挟むための構造部の第3例を示した図である。図38に示すように、光供給部材40の強化ガラス200側の表面に、突起部である片凹レンズ43が取り付けられている。片凹レンズ43は、強化ガラス200と接する。
片凹レンズ43は、光供給部材40を介して強化ガラス200内に入射するレーザ光の光路の一部となる。片凹レンズ43には、例えば球面状の窪み43xが形成されている。窪み43xの深さは、例えば、10μm以上500μm以下とすることができる。
光供給部材40と片凹レンズ43は、それぞれ別体として形成され、光供給部材40及び片凹レンズ43と屈折率がほぼ同じである光学接着材により接着されている。
一般的な光学素子の加工において、平面だけで形成されるプリズム形成工程と、球面を形成するレンズ形成工程とは、技術が異なり、球面形状の窪みを持ったプリズムを形成するのは難しく、多くの工程が必要で、生産性が悪く、製造コストが非常に高価になる。すなわち、プリズムである光供給部材40と片凹レンズ43とを一体構造とすることは困難である。
しかし、プリズムである光供給部材40、片凹レンズ43単独では、それぞれの加工技術で容易に形成することができる。又、光供給部材40と片凹レンズ43との間に、光供給部材40及び片凹レンズ43と屈折率がほぼ同じであるガラス板が挿入されてもよい。このガラス板は、光供給部材40を応力測定装置本体に取り付けるために使うことができる。
図39は、光供給部材40と強化ガラス200との間に液体90を挟むための構造部の第4例を示した図である。図39に示すように、片凹レンズ43の周囲に平坦な外縁部43eを形成してもよい。図39に示す構造では、平坦な外縁部43eが強化ガラス200と接する面となるため、強化ガラス200を光供給部材40に接触させる際に、精度よく平行にすることができ、又、強化ガラス200への傷等のダメージをなくすことができる。
図40は、光供給部材40と強化ガラス200との間に液体90を挟むための構造部の第5例を示した図である。図40に示すように、光供給部材40と片凹レンズ43とを光学的な接着材で固定せず、液体90のような屈折率が同じである液体を挟み、取り外しが可能な支持体44を用いて動かないように外周側面から固定してもよい。
支持体44をばね等を用いて開閉自在に構成することで、片凹レンズ43だけを容易に交換可能となる。例えば、強化ガラス200との接触等により片凹レンズ43に破損や傷が生じた場合、或いは、他の形状の窪みを備えた片凹レンズ43に変更する場合等、片凹レンズ43を複数作製し、交換するだけで良い。
なお、片凹レンズ43を交換自在に保持できれば、支持体44の形状や構造は如何なるものであっても構わない。
図41は、光供給部材40と強化ガラス200との間に液体90を挟むための構造部の第6例を示した図である。図41に示すように、片凹レンズ43の周囲に形成した平坦な外縁部43eに、液体90を排出する溝43yを形成してもよい。溝43yは、窪み43xと連通している。
液体90を窪み43xに滴下し、強化ガラス200を載せると、窪み43x内に泡が残ることがある。窪み43xの周囲に液体90を排出する溝43yを設けることにより、液体90を窪み43xに滴下し、強化ガラス200を載せる際に、溝43yから液体90と共に泡も排出されるため、窪み43x内に泡を残り難くすることができる。
図42に示すように、光供給部材40の強化ガラス200と接する側の面に、窪み43xと連通する溝40yを形成してもよい。図41の場合と同様に、窪み40xの周囲に液体90を排出する溝40yを設けることにより、液体90を窪み40xに滴下し、強化ガラス200を載せる際に、溝40yから液体90と共に泡も排出されるため、窪み40x内に泡を残り難くすることができる。
なお、図37〜図42において、窪み40xや43x内に描かれた交差する曲線や、片凹レンズ43の側面に描かれた縦線は、図面を視易くするために便宜上描いたものであり、実在する線(細い溝や突起等)を示すものではない。
又、以上では、窪み40xや43xを球面状の窪みとして説明したが、窪み40xや43xは球面状には限定されず、湾曲している部分を備えた面であれば良い。窪み40xや43xは、例えば、非球面状等の窪みであっても構わない。又、溝40yや43yの溝形状や個数は、任意に設定して構わない。
〈第4の実施の形態〉
第4の実施の形態では、強化ガラスの屈折率を考慮した応力測定方法の例を示す。なお、第4の実施の形態において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
レーザ光の深さDにおける偏光位相差Rtから応力Stを求める式は、強化ガラスの光弾性定数をC、レーザ光の強化ガラス200の表面210とのなす角、すなわち入射余角(屈折角)をΨとすると、下記の式8(数8)のようになる。
式8において、最後のΨの項は、応力による複屈折のレーザ光への寄与分の補正である。すなわち、強化ガラス200の強化による内部応力は表面210と平行であり、一方レーザ光は表面210に対し斜めに入射する。そのため、応力による複屈折のレーザ光への寄与分の補正が必要であり、式8の最後のΨの項が補正分となる。なお、この式でStを用いているが、式1とは応力分布の座標系が異なるため、便宜上別の記号を用いている。
図43は、レーザ光Lが強化ガラス200内に入射されていることを説明する図である。図43では、光供給部材40の上面に強化ガラス200の表面が接しており、光供給部材40の上面及び光供給部材40の上面と接する強化ガラス200の表面をXZ平面とするxyz座標に位置している。そして、レーザ光Lが光供給部材40の入射端面に入射し、光供給部材40の上面と強化ガラス200の表面の境界を通り、強化ガラス200内に入射されている。撮像素子60は斜め45°下からレーザ軌跡(レーザ光Lの軌跡)を撮影している。
図44は、図43の撮像素子60の位置から撮影したレーザ軌跡の画像を説明する図である。撮像素子60が撮影した画像上のレーザ軌跡をCpass、長さをPc、レーザ軌跡の画像上の角度をχ、画像上の横方向の距離をLx、画像上の縦方向の距離をVとする。応力測定装置1では、レーザ光L(正しくはレーザ光Lからの散乱光)の撮像素子60からの画像から画像解析をして最終的に強化ガラス200中の応力を測定する。
しかし、撮像素子60の取得する画像は斜め45°下からの画像であるため、画像上のレーザ軌跡Cpassの長さPcと、レーザ光Lの実際の長さとは同じとは限らず、また画像上の角χも、実際の入射余角Ψではない。そのため、レーザ光Lの画像から、式8を使って応力を求めるためには、実際のレーザ光Lの距離Pや、入射余角Ψを求める換算式が必要である。
図45は、図43の光供給部材40或いは強化ガラス200内のレーザ光の角度、長さの定義を説明する図である。ここでは、頂点がabcdefghである直方体を考える。辺bfの長さをLx、辺abの長さをH、辺fgの長さをDとする。Dは、光供給部材40或いは強化ガラス200の深さと同じである。図45では、レーザ光Lは頂点cから頂点eへ進んでおり、Passはレーザ光Lの軌跡を示している。
上面abfeは、図43の光供給部材40の上面、及び強化ガラス200の表面と平行であるとする。レーザ光の軌跡Passの長さceをPとし、Ψは強化ガラス200の表面に対する入射余角とする。又、面acgeはレーザ光Lの入射面と同等である。
図46は、図45の上面図、正面図、側面図である。レーザ光Lの上面から見た軌跡をUpass、長さをPu、正面から見た軌跡をFpass、長さをPf、側面から見た軌跡をLpass、長さをPlとする。側面から見たレーザ光Lの軌跡Lpassの角度ωはレーザ光Lの入射面角となる。φはレーザ光LのZ軸回転角、θはY軸回転角である。
図45で、H=Dの場合、ωは45°となり、レーザ光Lの入射面は45°となる。H=Dの場合、図46でレーザ光LのZ軸回転角φとY軸回転角θとは等しいので、強化ガラス200中でのレーザ光Lの入射面を45°にするためには、レーザ光LのZ軸及びY軸の回転角を等しくすれば良いことが分かる。
又、レーザ光の軌跡Passの長さはPは、下記の式9(数9)となる。
又、Lxを単位長さ、例えば1とすると、φ、θより、D、H、Puは求まり、レーザ光の強化ガラス表面に対する入射余角ΨはPassとUpassの角であるので、これらより、レーザ光Lの長さP、強化ガラス200の表面に対する入射余角Ψは容易に求まる。
(光供給部材の屈折率np=強化ガラスの屈折率ngの場合)
光供給部材40の屈折率npと強化ガラス200の屈折率ngが同じであれば、光供給部材40中、強化ガラス200中も、これらのレーザの角度や、その関係は同じである。例えば、光供給部材40中、或いは強化ガラス200中のレーザのY軸回転角θ=15°、Z軸回転角φ=15°、強化ガラス200の屈折率ng=1.516で、光供給部材40の屈折率も強化ガラスと同じnp=1.516であれば、強化ガラス200中の入射面角ω=45°となり、入射余角Ψ=14.5°である。
図44より、入射面が45°であれば、画像は入射面に垂直に見た画像となり、図44に示すレーザの軌跡Cpassの距離Pcは実際のレーザの軌跡Passの距離Pと同じになり、画像上の深さVから実際の深さDは、下記の式10(数10)により求めることができる。
これらより、レーザ光の撮像素子60の画像より、強化ガラスの応力を算出することが可能である。
(光供給部材40の屈折率np≠強化ガラス200の屈折率ngの場合)
以上の説明は、光供給部材40と強化ガラス200が同じ屈折率の場合であり、光供給部材40と強化ガラス200との境界面で屈折せずにレーザ光が進み、光供給部材40と強化ガラス200の中のレーザ光は平行である。しかし、実際には必ずしも光供給部材40と強化ガラス200の屈折率は同じではない。
光供給部材40と強化ガラス200の屈折率が異なると、レーザ光のZ軸回転角は変わらず、Y軸回転角のみが変わる。そのため、光供給部材40と強化ガラス200の屈折率が同じ条件の時に強化ガラス200中のレーザ光の入射面が45°であっても、強化ガラス200の屈折率が光供給部材40の屈折率と異なると、強化ガラス200のレーザ光の入射面は45°からずれる。そうすると、図44に示すレーザの軌跡Cpassの距離Pcは実際のレーザの軌跡Passの距離Pと異なり(Pc≠P)、又、式10も成り立たない。
強化ガラス中のレーザ光の入射余角Ψ、入射面角ωを直接測定することは困難である。そこで、光供給部材40の屈折率np、強化ガラス200の屈折率ngが異なる場合の、レーザ光の軌跡を考えてみる。
又、レーザ光は空気中から光供給部材40に入射するために、レーザ光の光供給部材40へ入射する前の角度と光供給部材40のレーザ光が入射する入射端面のレーザ光となす角により、レーザ光は屈折し、光供給部材40に入射する。そのため、レーザ光の光供給部材40に入射する前の入射余角、光供給部材40の入射端面の角も考慮し、必要な強化ガラス200中のレーザ光の入射余角、入射面角を考える。
図46のφ、θを、強化ガラス200中と分けるため、強化ガラス200中をφg、θg、光供給部材40中をφp、θp、光供給部材40に入射する前をφL、θLとする。又、光供給部材40のレーザが入射する入射端面のZ軸回転角β、Y軸回転角αとする。又、光供給部材40の屈折率をnp、強化ガラス200の屈折率をngとする。
npとngが異なる、或いは、β、αがφL、θLと異なる場合は、Z軸回転角、φL、φp、β、及び、φp、φg、Y軸回転角、θL、θp、α、及び、θp、θgは、それぞれ、スネルの法則が成り立ち、レーザ光の光供給部材40に入射する前の角度、φL、θL、光供給部材40の入射端面の角度、α、β、屈折率ng、npが、予め既知であれば、測定に必要なパラメータである、強化ガラス200中のレーザ光の回転角、φg、θg及び、入射余角Ψ、入射面角ωを容易に計算することができる。
ここで、レーザ光の光供給部材40の入射する前の回転角φL、θL、光供給部材40のレーザ光が入射する入射端面の回転角β、α、光供給部材40の屈折率npは、装置設計で決まり、既知である。強化ガラス200の屈折率は、一般的な屈折率測定装置により知ることが可能である。
そこで、他の手段により測定した、強化ガラス200の屈折率と、装置設計で決まる、φL、θL、α、β、npと、強化ガラス200の屈折率から強化ガラス200中のレーザ光のφg、θg及び、入射余角Ψ、入射面角ωを求め、レーザ光の撮像素子60の画像のPc、χから、強化ガラス200中のレーザ光の入射余角Ψ、入射面角ωへの換算式を得て、式8より強化ガラス内の応力分布を測定することが可能である。以下に具体例を示す。
図47は、光供給部材及び強化ガラス中を進むレーザ光の概念図である。なお、実際は3次元的な角度になっているが、図47では便宜上2次元的に示している。図48は、強化ガラス中を進むレーザ光の概念図であり、215は撮像素子60から観測される観測面を梨地模様で模式的に示している。
図47及び48において、θLはレーザ光源10より光供給部材40に入射するレーザ光と光供給部材40の入射面40aの法線となす角(レーザ側)である。又、θP1はレーザ光源10より光供給部材40に入射するレーザ光と光供給部材40の入射面40aの法線となす角(光供給部材40側)、θP2は光供給部材40から強化ガラス200に入射するレーザ光と光供給部材40の出射面40bの法線となす角(光供給部材40側)である。なお、光供給部材40の入射面40aと光供給部材40の出射面40bは実際には直角ではないため、θP1+θP2=90°とは限らない。
又、θgは光供給部材40から強化ガラス200に入射するレーザ光と光供給部材40の出射面40bの法線となす角(強化ガラス200側)、Ψは強化ガラス200の表面210(評価面)と強化ガラス200中のレーザ光とのなす入射余角(90−θg)である。又、χは撮像素子60から観測されるレーザ光の傾きである。なお、θやΨ等を3次元で考えるときは、図46に示したように分けて考えて良い。
入射余角Ψは、例えば、図49に示すフローチャートに従って求めることができる。すなわち、まず、ステップS701において、θLとnpからθP1を導出する。θP1は、θLとnpからスネルの式により求めることができる。
次に、ステップS702において、θP1からθP2を導出する。θP2は、光供給部材40の形状に基づいてθP1から求めることができる。次に、ステップS703において、θP2、np、ngからθgを導出する。θgは、θP2、np、ngからスネルの式により求めることができる。
次に、ステップS704において、θgからΨを導出する。Ψは、幾何学的な計算によりθgから求めることができる。すなわち、Ψ=90−θgである。
光供給部材40の屈折率npと強化ガラス200の屈折率ngは同じにすることが理想であるが、強化ガラスは多種あり、屈折率が異なる。しかし、光供給部材40を形成する光学ガラスは、必ずしも強化ガラスと全く同じ屈折率のガラスではない。
例えば、一番多く使われる光学ガラスS−BSL7(オハラ社製)はnp=1.516で、下はS−FSL5(オハラ社製)のnp=1.487、上はS−TIL6(オハラ社製)のnp=1.5317等が入手できる。
そのため、ある範囲の屈折率の強化ガラスを測定する場合、その範囲に近い屈折率の光学ガラスで形成された光供給部材40を用いて測定する必要がある。例えば、強化ガラスの屈折率ng=1.51の場合、強化ガラス中の入射余角Ψは13.7°、入射面角ωは43°となる。これから、換算式を得て、式8により、正確な応力を求めることができる。
又、撮像素子60のレーザ画像の角度χから、逆に強化ガラス200の屈折率ngを算出することも可能である。すなわち、強化ガラス200の屈折率ngは、撮像素子60で取得したレーザ光の画像に基づいて導出してもよい。
具体的には、まず、図50に示すフローチャートのステップS711において、図48に示す入射余角Ψと角度χとの関係を導出する。入射余角Ψと角度χとの関係は、幾何学的な計算により求めることができる。次に、ステップS712において、撮像素子60(カメラ)で角度χを測定する。
次に、ステップS713において、ステップS712で測定した角度χを用いてステップS711で導出した関係から入射余角Ψを求める。更に、θg=90−Ψを求め、既知のθP2、np、θgからスネルの式によりngを導出することができる。
このように、撮像素子60のレーザ画像の角度χより、強化ガラス200の屈折率ngを求め、その強化ガラス200の屈折率ngを元に、換算式を得て、強化ガラス200の応力分布を測定することも可能である。
但し、光供給部材40に強化ガラス200を搭載する際の傾き等により、図50の方法で導出した強化ガラス200の屈折率ngの値には誤差が生じる。そのため、強化ガラス内の応力分布を高い精度で安定的に測定したい場合には、強化ガラス200の屈折率ngを他の方法(屈折率測定装置での測定等)で予め測定しておくことが好ましい。
又、撮像素子60のレーザ画像の角度χより、入射余角Ψを校正することも可能である。例えば、図51に示すフローチャートのステップS711において図50の場合と同様にして入射余角Ψと角度χとの関係を導出し、ステップS712において図50の場合と同様にして撮像素子60で角度χを測定する。そして、ステップS714において、ステップS712で測定した角度χを用いてステップS711で導出した関係から入射余角Ψを導出する。ステップS714で導出した入射余角Ψを式8に適用することで、正確な応力を求めることができる。
又、予め強化ガラス200の屈折率ngの値が既知である場合、強化ガラス200の屈折率ngの値を考慮して、最適な光供給部材40を設計することも有効である。
強化ガラス200中の入射余角Ψや入射面角ωは計算により知ることができるが、強化ガラス200の屈折率ngと光供給部材40の屈折率npとの差が大きくなると、入射面角Ψの45°からのずれが多くなる。これにより、撮像素子60のレンズの焦点深度を超えると、ピントがずれ、空間分解が下がり、正しい応力分布を測定することができなくなる。
例えば、強化ガラス200の屈折率ng=1.49の場合、強化ガラス200中のレーザ光の入射余角Ψは10.3°、入射面角ωは35°となる。この場合、入射余角Ψに対しては計算で補正できるが、入射面角ωは45°から10°もずれており、計算での補正だけでは、測定精度維持ができない。
そこで、強化ガラス200に入射するレーザ光の入射面が強化ガラス200の表面に対して45±5°になるように、光供給部材40のレーザ光が入射する面の角度を設定することが好ましい。
例えば、レーザ軌跡の距離が300μmの場合、入射面角ωが10°ずれると、撮像素子60から強化ガラス200中のレーザ光への距離の差は52μmにもなり、撮像素子60に像を結ぶレンズの焦点深度を超え、撮像素子60に撮像されるレーザ軌跡の全距離でピントが均一で合わなくなり、測定精度を劣化させる。
そこで、例えば、図52に示すフローチャートのステップS721において、対象の強化ガラス200の屈折率ngの値を得る。次に、ステップS722において、強化ガラス200の屈折率ngと光供給部材40の屈折率npを固定し、レーザ光が通る面と観測面が変わらないθLを求める。
例えば、強化ガラス200の屈折率ng=1.49の場合、レーザ光のY回転角θL=15°、Z回転角φL=15°は同じで、光供給部材40の入射端面の回転角β=15°、Z回転角α=24.5°に形成すれば、強化ガラス200中では、レーザ光は入射余角14.4°、入射面角44.8°と、ほぼ設計通りの角度にすることができる。そのため、測定精度を劣化させることがない。
この仕様の光供給部材40を作製し、レーザ光源10の設置はそのままで、光供給部材40のみを交換するだけで、光供給部材40の屈折率npと大きく異なる屈折率ngの強化ガラス200の応力分布を正確に測定することが可能となる。又、レーザ光源10への戻り光をなくすために、強化ガラス200と、レーザ光が光供給部材40に入射する面を若干(0.5〜1°程度)ずらす場合、式8で補正をすることが可能である。
〈第5の実施の形態〉
第5の実施の形態では、ガラス厚みを測定する機能を備えた応力測定装置の例を示す。なお、第5の実施の形態において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
薄い板状の強化ガラスでは、強化のために表面に圧縮応力を形成する。そうすると、全体として、応力バランスをとるために、内部では引っ張り応力が発生する。
図53は、強化ガラスの深さ方向の応力分布を例示する図である。表面に形成された圧縮応力に対して、中心部分では引っ張り応力が発生し、原理的に、全体として、応力は0となる。すなわち、深さ方向に表面から裏面まで、応力分布の積分値(応力エネルギー)は0となる。
別な表現を使えば、表面の圧縮応力の積分値(圧縮エネルギー)と、中心部の引っ張り応力の積分値(引張りエネルギー)は等しくなる。又、通常、化学強化工程では、ガラスの両面の化学強化が同条件で行われるため、応力分布はガラスの中心に対して、対称となっている。そのため、深さ方向に表面からガラス中点までの積分も0となる。
応力測定装置1では、ガラス深さと散乱光強度の変化の位相値(例えば、図7)の微分値と光弾性定数により応力値を求める(第1の実施の形態参照)。そのため、図7のガラス深さと散乱光強度の変化の位相は、応力値の積分値と同じである。すなわち、図7において、強化ガラスの中心点と、強化ガラスの最表面の位相値は同じである。
応力測定装置1では、レーザ光が強化ガラスの最表面で乱反射し、乱反射光が発生すると、強化ガラスの最表面の散乱強度変化の位相値を正しく測定できない欠点がある。
そこで、強化ガラスの中心点の位相値を使い、最表面の散乱強度変化の位相値、或いはその補正に使用する。これにより、例えば、強化ガラス最表面及び最表面付近の応力値、並びに応力分布を正確に測定することが可能である。又、測定された位相値が強化ガラスの中心まで達していない場合、測定された位相値を強化ガラスの中心まで外挿し、強化ガラスの中心の位相値としても良い。
このように、強化ガラスの厚みが既知である場合、算出された応力分布及び強化ガラスの厚みに基づいて、応力バランスがとれるような強化ガラスの最表面の位相変化量を推定し、表面応力値を補正することができる。
図54は、ガラス厚み測定装置を設置した応力測定装置を例示する図である。図54に示す応力測定装置3は、応力測定装置1にガラス厚み測定装置120を設置した構成である。
ガラス厚み測定装置120は、図示しないレーザ光源と受光部と演算部とを有している。ガラス厚み測定装置120のレーザ光源から出射されたレーザ光Lgは、強化ガラス200の表面210及び裏面220で反射し、ガラス厚み測定装置120の受光部により受光される。ガラス厚み測定装置120の演算部は、受光部で受光した光に基づいて、強化ガラス200の厚みを測定する。ガラス厚み測定装置120としては、例えば、市販のガラス厚み計を用いることができる。
応力測定装置3では、レーザ光源10からのレーザ光による強化ガラス200中の散乱光強度変化から、強化ガラス200中の表面から深さ方向に位相値を応力測定装置1により測定することができる。それと同時に、応力測定装置3では、強化ガラス200の厚みをガラス厚み測定装置120により測定をすることができる。
ガラス厚み測定装置120で測定された強化ガラス200の厚みと深さ方向の位相値から、強化ガラス200の中心の位相値を測定、或いは外挿により得ることができる。そして、その位相値に基づいて、強化ガラス200の最表面の位相値にする、或いは補正をし、最表面が補正された深さ方向の位相値から、応力分布を求めることができる。
このように、強化ガラスの厚みを測定する手段を備えた応力測定装置3では、応力分布及び強化ガラスの厚みを測定し、測定した強化ガラスの厚みに基づいて、強化ガラスの最表面の位相変化量を推定することができる。
以上、好ましい実施の形態について詳説したが、上述した実施の形態に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態に種々の変形及び置換を加えることができる。
例えば、上記の各実施の形態では、応力測定装置1及び2において、光源を構成要素として説明したが、応力測定装置1及び2は光源を有していない構成としてもよい。光源は、応力測定装置1及び2の使用者が適宜なものを用意して使用することができる。
本国際出願は2016年9月26日に出願した日本国特許出願2016−187489号、及び2017年2月23日に出願した日本国特許出願2017−032730号に基づく優先権を主張するものであり、日本国特許出願2016−187489号、及び日本国特許出願2017−032730号の全内容を本国際出願に援用する。
1、1A、1B、1C、2、3 応力測定装置
10 レーザ光源
15 光源
20、55 偏光部材
25、40、41 光供給部材
30、30A 偏光位相差可変部材
35、42 光取出し部材
40a 光供給部材の入射面
40b 光供給部材の出射面
40x、43x 窪み
40y、43y 溝
43 突起部
43e 外縁部
44 支持体
45、50、50A 光変換部材
60、60A、65 撮像素子
70、75 演算部
80、80A 光波長選択部材
90 液体
100 ランド部材
120 ガラス厚み測定装置
200 強化ガラス
210 強化ガラスの表面
215 観測面
220 強化ガラスの裏面
250 レーザ光の入射面
301 デジタルデータ記憶回路
302 クロック信号発生回路
303 DAコンバータ
304 電圧増幅回路
310 偏光位相差発生材料
311、313 固定治具
312 ピエゾ素子
701 輝度変化測定手段
702 位相変化算出手段
703 応力分布算出手段
751 位置測定手段
752 応力分布算出手段
753 合成手段

Claims (44)

  1. レーザ光の偏光位相差を、前記レーザ光の波長に対して1波長以上可変する偏光位相差可変部材と、
    前記偏光位相差を可変されたレーザ光が強化ガラスに入射されたことにより発する散乱光を、所定の時間間隔で複数回撮像し、複数の画像を取得する撮像素子と、
    前記複数の画像を用いて前記散乱光の周期的な輝度変化を測定し、前記輝度変化の位相変化を算出し、前記位相変化に基づき前記強化ガラスの表面からの深さ方向の応力分布を算出する演算部と、を有することを特徴とする、強化ガラスの応力測定装置。
  2. 前記偏光位相差可変部材が液晶素子であることを特徴とする、請求項1に記載の強化ガラスの応力測定装置。
  3. 前記偏光位相差可変部材は、光弾性定数とヤング率とを乗じた値が0.1以上であって、加圧により前記偏光位相差を発生する透明部材であることを特徴とする、請求項1に記載の強化ガラスの応力測定装置。
  4. 前記透明部材は、石英ガラス又はポリカーボネートであることを特徴とする、請求項3に記載の強化ガラスの応力測定装置。
  5. 前記レーザ光の最小ビーム径の位置は、前記強化ガラスのイオン交換層内にあり、
    前記最小ビーム径は、20μm以下であることを特徴とする、請求項1乃至4の何れか一項に記載の強化ガラスの応力測定装置。
  6. 前記強化ガラスに入射する前記レーザ光の入射面が前記強化ガラスの表面に対して45±5°であることを特徴とする、請求項1乃至5の何れか一項に記載の強化ガラスの応力測定装置。
  7. 前記偏光位相差が可変された前記レーザ光を、被測定体である強化ガラス内にガラス表面に対して斜めに入射させる光供給部材を有し、
    前記強化ガラスに入射する前記レーザ光の入射面が前記強化ガラスの表面に対して45±5°になるように、前記光供給部材の前記レーザ光が入射する面の角度を設定したことを特徴とする、請求項6に記載の強化ガラスの応力測定装置。
  8. 前記偏光位相差が可変された前記レーザ光を、被測定体である強化ガラス内にガラス表面に対して斜めに入射させる光供給部材を有し、
    前記光供給部材と前記強化ガラスとの間に、前記強化ガラスの屈折率との屈折率差が0.03以下である液体を備え、
    前記液体の厚みは、10μm以上500μm以下であることを特徴とする、請求項1乃至7の何れか一項に記載の強化ガラスの応力測定装置。
  9. 前記光供給部材の前記強化ガラスに接する面には、深さが10μm以上500μm以下の窪みが形成され、
    前記窪み内に前記液体が充填されていることを特徴とする、請求項8に記載の強化ガラスの応力測定装置。
  10. 前記光供給部材の表面に、前記強化ガラスと接する突起部が設けられ、
    前記突起部は、前記光供給部材を介して前記強化ガラス内に入射する前記レーザ光の光路の一部となり、
    前記突起部の前記強化ガラスに接する側には、深さが10μm以上500μm以下の窪みが形成され、
    前記窪み内に前記液体が充填されていることを特徴とする、請求項8に記載の強化ガラスの応力測定装置。
  11. 前記突起部は、前記光供給部材の表面に交換自在に保持されていることを特徴とする、請求項10に記載の強化ガラスの応力測定装置。
  12. 前記窪みの周囲に平坦な外縁部が形成され、前記平坦な外縁部が前記強化ガラスと接する面となることを特徴とする、請求項10又は11に記載の強化ガラスの応力測定装置。
  13. 前記窪みは、湾曲している部分を備えた面からなることを特徴とする、請求項9乃至12の何れか一項に記載の強化ガラスの応力測定装置。
  14. 前記窪みの周囲に前記液体を排出する溝が形成されていることを特徴とする、請求項9乃至13の何れか一項に記載の強化ガラスの応力測定装置。
  15. 前記光供給部材の屈折率と前記強化ガラスの屈折率とが異なる場合、
    前記強化ガラスの屈折率を取得し、
    前記強化ガラスの屈折率に基づいて求めた前記強化ガラス中の前記レーザ光の軌跡と、前記撮像素子で取得した前記レーザ光の画像との関係から、前記レーザ光が前記強化ガラスに入射する際の入射余角を導出し、
    前記入射余角の値に基づいて、前記強化ガラスの表面からの深さ方向の応力分布を補正することを特徴とする、請求項9乃至14の何れか一項に記載の強化ガラスの応力測定装置。
  16. 前記強化ガラスの屈折率は、前記撮像素子で取得した前記レーザ光の画像に基づいて導出することを特徴とする、請求項15に記載の強化ガラスの応力測定装置。
  17. 前記強化ガラスの厚みが既知である場合、算出された前記応力分布及び前記強化ガラスの厚みに基づいて、応力バランスがとれるような前記強化ガラスの最表面の位相変化量を推定し、表面応力値を補正することを特徴とする、請求項1乃至16の何れか一項に記載の強化ガラスの応力測定装置。
  18. 前記強化ガラスの厚みを測定する手段を備え、
    前記応力分布及び前記強化ガラスの厚みを測定し、測定した前記強化ガラスの厚みに基づいて、前記強化ガラスの最表面の位相変化量を推定することを特徴とする、請求項1乃至17の何れか一項に記載の強化ガラスの応力測定装置。
  19. 前記強化ガラスの前記レーザ光の出射側において、前記強化ガラス中の前記レーザ光が全反射の条件を満たしていることを特徴とする、請求項1乃至18の何れか一項に記載の強化ガラスの応力測定装置。
  20. 前記強化ガラスの圧縮応力層を有する表面層内に、第2の光源からの光を入射させる第2の光供給部材と、
    前記表面層内を伝播した光を、前記強化ガラスの外へ出射させる光取出し部材と、
    前記光取出し部材を介して出射した光に含まれる、前記強化ガラスと前記光取出し部材との境界面に対して平行及び垂直に振動する二種の光成分を、夫々が2本以上の輝線を有する二種の輝線列に変換する光変換部材と、
    前記二種の輝線列を撮像する第2の撮像素子と、
    前記第2の撮像素子で得られた画像から前記二種の輝線列の夫々の2本以上の輝線の位置を測定する位置測定手段と、を有し、
    前記演算部は、前記位置測定手段の測定結果に基づいて算出した前記二種の光成分に対応した前記強化ガラスの表面から深さ方向にわたる第1の領域の応力分布と、前記位相変化に基づいて算出した前記第1の領域以外の応力分布と、を合成することを特徴とする、請求項1乃至19の何れか一項に記載の強化ガラスの応力測定装置。
  21. 前記レーザ光が前記撮像素子に入射する光路上に、前記レーザ光の波長+100nm以上と、−100nm以下の波長の光を50%以上透過させない光波長選択部材が挿入されていることを特徴とする、請求項1乃至20の何れか一項に記載の強化ガラスの応力測定装置。
  22. レーザ光の偏光位相差を、前記レーザ光の波長に対して1波長以上可変する偏光位相差可変工程と、
    前記偏光位相差を可変されたレーザ光が強化ガラスに入射されたことにより発する散乱光を、所定の時間間隔で複数回撮像し、複数の画像を取得する撮像工程と、
    前記複数の画像を用いて前記散乱光の周期的な輝度変化を測定し、前記輝度変化の位相変化を算出し、前記位相変化に基づき前記強化ガラスの表面からの深さ方向の第1の応力分布を算出する演算工程と、を有することを特徴とする、強化ガラスの応力測定方法。
  23. 偏光位相差可変工程では、液晶素子により前記偏光位相差を可変することを特徴とする、請求項22に記載の強化ガラスの応力測定方法。
  24. P偏光及びS偏光の輝線の位置に基づいて各々の屈折率分布を算出し、前記P偏光と前記S偏光の屈折率分布差と強化ガラスの光弾性定数とに基づいて第2の応力分布を求める工程を備えたことを特徴とする、請求項22又は23に記載の強化ガラスの応力測定方法。
  25. 同じ製造工程で作られた複数の強化ガラスのうち、少なくとも1枚以上の強化ガラスについて、請求項24に記載の強化ガラスの応力測定方法で求めた前記第1の応力分布と前記第2の応力分布を合成して応力分布を得、残りの強化ガラスについて、前記第1の応力分布及び前記第2の応力分布の何れか一方のみを測定して応力分布を得ることを特徴とする、強化ガラスの応力測定方法。
  26. レーザ光の偏光位相差を、前記レーザ光の波長に対して1波長以上可変する偏光位相差可変工程と、前記偏光位相差を可変されたレーザ光が強化ガラスに入射されたことにより発する散乱光を、所定の時間間隔で複数回撮像し、複数の画像を取得する撮像工程と、前記複数の画像を用いて前記散乱光の周期的な輝度変化を測定し、前記輝度変化の位相変化を算出し、前記位相変化に基づき前記強化ガラスの表面からの深さ方向の第1の応力分布を算出する演算工程と、を有する強化ガラスの応力測定方法で得られた応力値から特性値を求め、特性値が管理値内に入っているか確認してから出荷判断をすることを特徴とする、強化ガラスの製造方法。
  27. 前記偏光位相差可変工程では、液晶素子により前記偏光位相差を可変することを特徴とする、請求項26に記載の強化ガラスの製造方法。
  28. P偏光及びS偏光の輝線の位置に基づいて各々の屈折率分布を算出し、前記P偏光と前記S偏光の屈折率分布差と強化ガラスの光弾性定数とに基づいて第2の応力分布を求める工程を備えたことを特徴とする、請求項26又は27に記載の強化ガラスの製造方法。
  29. 同じ製造工程で作られた複数の強化ガラスのうち、少なくとも1枚以上の強化ガラスについて、前記応力測定方法で求めた前記第1の応力分布と前記第2の応力分布を合成して応力分布を得、残りの強化ガラスについて、前記第1の応力分布及び前記第2の応力分布の何れか一方のみを測定して応力分布を得ることを特徴とする、請求項28に記載の強化ガラスの製造方法。
  30. リチウム含有ガラスを強化した強化ガラスを作製して該強化ガラスの出荷判断を行う強化工程を2回以上含み、
    前記各強化工程は、前記応力測定方法で得られた前記第1の応力分布に基づいて前記出荷判断を行うことを特徴とする、請求項26又は27に記載の強化ガラスの製造方法。
  31. 最終回の前記強化工程では、前記応力測定方法がP偏光及びS偏光の輝線の位置に基づいて各々の屈折率分布を算出し、前記P偏光と前記S偏光の屈折率分布差と強化ガラスの光弾性定数とに基づいて第2の応力分布を求める工程を備え、前記応力測定方法で得られた第2の応力分布に基づいて出荷判断を行うことを特徴とする、請求項30に記載の強化ガラスの製造方法。
  32. 最終回を除く前記強化工程では、前記第1の応力分布から導出したガラス最深部における応力値(CT)、及び応力値がゼロになるガラス深さ(DOL_zero)に基づいて、前記出荷判断を行うことを特徴とする、請求項31に記載の強化ガラスの製造方法。
  33. 最終回の前記強化工程では、前記第2の応力分布を関数近似して、前記出荷判断を行うことを特徴とする、請求項31又は32に記載の強化ガラスの製造方法。
  34. 前記関数近似を下記の式(2)で行うことを特徴とする、請求項33に記載の強化ガラスの製造方法。
    但し、σf(x)は第2の応力分布、aは傾き、CS2は最表面の応力値である。
  35. 前記関数近似を下記の式(3)で行うことを特徴とする、請求項33に記載の強化ガラスの製造方法。
    但し、σf(x)は第2の応力分布、aは傾き、CS2は最表面の応力値、erfcは誤差関数である。
  36. 最終回を除く前記強化工程では、該強化工程で得られた第2の応力分布と、強化ガラスの板厚tと、事前に測定した同一条件の強化ガラスの第1の応力分布とを用いて、前記第1の応力分布と前記第2の応力分布を合成し、合成後の応力分布からガラス最深部における応力値(CT)を見つけて特性値を導出し、特性値が許容範囲に入っているか否かにより前記出荷判断を行うことを特徴とする、請求項31乃至35の何れか一項に記載の強化ガラスの製造方法。
  37. 最終回を除く前記強化工程では、該強化工程で得られた第2の応力分布と、強化ガラスの板厚tと、事前に測定した同一条件の強化ガラスの第1の応力分布とを用いて、前記第1の応力分布と前記第2の応力分布を合成し、合成後の応力分布の積分値がゼロになるガラス最深部における応力値(CT)を見つけて特性値を導出し、特性値が許容範囲に入っているか否かにより前記出荷判断を行うことを特徴とする、請求項31乃至36の何れか一項に記載の強化ガラスの製造方法。
  38. 最終回を除く前記強化工程では、該強化工程で得られた第2の応力分布と、強化ガラスの板厚tと、事前に測定した同一条件の強化ガラスの第1の応力分布とを用いて、前記第1の応力分布と前記第2の応力分布を合成し、合成後の応力分布を下記の式(5)で近似し、σ(x)の積分値(x=0〜t/2)がゼロになるガラス最深部における応力値(CT)を見つけて特性値を導出し、特性値が許容範囲に入っているか否かにより前記出荷判断を行うことを特徴とする、請求項31乃至36の何れか一項に記載の強化ガラスの製造方法。
    但し、σ(x)は合成後の応力分布、σf(x)は第2の応力分布、tは強化ガラスの板厚、CS及びcは第1の応力分布に基づいて導出されるパラメータである。
  39. 前記CS及びcを、事前に測定した同一条件の強化ガラスの第1の応力分布に基づいて導出することを特徴とする、請求項38に記載の強化ガラスの製造方法。
  40. 前記CS及びcを、最終回の1回前の強化工程で得られた前記第1の応力分布から導出したCS0’及びc’並びに下記の式(6)及び式(7)に基づいて導出することを特徴とする、請求項38に記載の強化ガラスの製造方法。
    但し、A1及びA2は比例定数である。
  41. A1及びA2は、事前に測定した同一条件の強化ガラスの第1の応力分布に基づいて導出することを特徴とする、請求項40に記載の強化ガラスの製造方法。
  42. 請求項26乃至41の何れか一項に記載の強化ガラスの製造方法で製造されたことを特徴とする、強化ガラス。
  43. リチウムが2wt%以上含まれるガラスが化学強化されたことを特徴とする、請求項42に記載の強化ガラス。
  44. 風冷強化された後に化学強化されて製造されたことを特徴とする、請求項42に記載の強化ガラス。
JP2018540987A 2016-09-26 2017-09-12 強化ガラスの応力測定装置、強化ガラスの応力測定方法、強化ガラスの製造方法 Active JP6830606B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2016187489 2016-09-26
JP2016187489 2016-09-26
JP2017032730 2017-02-23
JP2017032730 2017-02-23
PCT/JP2017/032901 WO2018056121A1 (ja) 2016-09-26 2017-09-12 強化ガラスの応力測定装置、強化ガラスの応力測定方法、強化ガラスの製造方法、強化ガラス

Publications (2)

Publication Number Publication Date
JPWO2018056121A1 true JPWO2018056121A1 (ja) 2019-07-04
JP6830606B2 JP6830606B2 (ja) 2021-02-17

Family

ID=61690325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018540987A Active JP6830606B2 (ja) 2016-09-26 2017-09-12 強化ガラスの応力測定装置、強化ガラスの応力測定方法、強化ガラスの製造方法

Country Status (6)

Country Link
US (1) US11274981B2 (ja)
JP (1) JP6830606B2 (ja)
KR (1) KR102345803B1 (ja)
CN (1) CN109906365B (ja)
TW (1) TW201814273A (ja)
WO (1) WO2018056121A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11419231B1 (en) 2016-09-22 2022-08-16 Apple Inc. Forming glass covers for electronic devices
US11535551B2 (en) 2016-09-23 2022-12-27 Apple Inc. Thermoformed cover glass for an electronic device
US10800141B2 (en) 2016-09-23 2020-10-13 Apple Inc. Electronic device having a glass component with crack hindering internal stress regions
US11565506B2 (en) 2016-09-23 2023-01-31 Apple Inc. Thermoformed cover glass for an electronic device
JP7255594B2 (ja) * 2018-07-03 2023-04-11 Agc株式会社 化学強化ガラスおよびその製造方法
US20200049619A1 (en) * 2018-08-08 2020-02-13 GM Global Technology Operations LLC Polarized light filter vision system to detect level of temper in glass
CN112534228B (zh) * 2018-08-29 2022-08-16 Agc株式会社 强化玻璃的应力分布的取得方法及强化玻璃的制造方法
US11420900B2 (en) 2018-09-26 2022-08-23 Apple Inc. Localized control of bulk material properties
CN113167720A (zh) 2018-10-31 2021-07-23 康宁股份有限公司 使用光散射偏振测定来表征玻璃基样品的光学阻滞
JP7158017B2 (ja) * 2018-11-06 2022-10-21 有限会社折原製作所 応力測定装置、応力測定方法
CN109443921B (zh) * 2018-12-03 2024-05-28 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 环境-拉力耦合试验装置和系统
WO2020198016A1 (en) * 2019-03-22 2020-10-01 Corning Incorporated Hybrid systems and methods for characterizing stress in chemically strengthened transparent substrates
CN110220622B (zh) * 2019-06-26 2021-01-05 江苏省特种设备安全监督检验研究院 一种远距离激光应力检测方法及检测仪
US11680010B2 (en) * 2019-07-09 2023-06-20 Apple Inc. Evaluation of transparent components for electronic devices
US11573078B2 (en) * 2019-11-27 2023-02-07 Corning Incorporated Apparatus and method for determining refractive index, central tension, or stress profile
KR20210080654A (ko) * 2019-12-20 2021-07-01 삼성디스플레이 주식회사 유리 제품 및 이를 포함하는 디스플레이 장치
US11460892B2 (en) 2020-03-28 2022-10-04 Apple Inc. Glass cover member for an electronic device enclosure
CN113453458B (zh) 2020-03-28 2023-01-31 苹果公司 用于电子设备壳体的玻璃覆盖构件
US11666273B2 (en) 2020-05-20 2023-06-06 Apple Inc. Electronic device enclosure including a glass ceramic region
TWI731721B (zh) * 2020-06-16 2021-06-21 逢甲大學 用於檢測大面積薄膜殘留應力之系統
KR20220027761A (ko) 2020-08-27 2022-03-08 에이지씨 가부시키가이샤 강화 유리의 응력 측정 장치, 강화 유리의 응력 측정 방법, 강화 유리
WO2022140541A1 (en) 2020-12-23 2022-06-30 Apple Inc. Laser-based cutting of transparent components for an electronic device
TW202240142A (zh) 2021-04-01 2022-10-16 美商康寧公司 用於改進的光散射偏振量測的光源強度控制系統和方法
CN113480197B (zh) * 2021-08-02 2023-03-21 四川虹科创新科技有限公司 锂硅酸盐玻璃的强化工艺和强化玻璃
CN113820051B (zh) * 2021-08-19 2022-11-11 南京大学 材料的互补干涉应力测量装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916677B1 (ja) * 1968-12-20 1974-04-24
JPS5533675A (en) * 1978-09-01 1980-03-08 Toshiba Corp Stress measurment method of air-cooled reinforced glass
JP2001348245A (ja) * 2000-06-02 2001-12-18 Hoya Corp 強化ガラス、その製造方法およびディスプレイ用ガラス
WO2012128184A1 (ja) * 2011-03-18 2012-09-27 旭硝子株式会社 ガラスの表面応力測定装置およびガラスの表面応力測定方法
JP2014028730A (ja) * 2012-07-31 2014-02-13 Asahi Glass Co Ltd 化学強化ガラスの製造方法およびガラスの応力測定方法
US20140368808A1 (en) * 2013-06-17 2014-12-18 Corning Incorporated Prism Coupling Methods With Improved Mode Spectrum Contrast for Double Ion-Exchanged Glass
JP2016024002A (ja) * 2014-07-18 2016-02-08 日本電気硝子株式会社 透明物品の応力測定方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2217299C3 (de) 1972-04-11 1975-12-18 Bayer Ag, 5090 Leverkusen Verfahren und Vorrichtung für die Beschickung von Wirbel- und Drehrohröfen mit körnigen Rohstoffen
JPS5937451B2 (ja) 1977-05-04 1984-09-10 株式会社東芝 化学強化ガラスの表面応力測定装置
IT1175776B (it) 1984-02-13 1987-07-15 Siv Soc Italiana Vetro Apparecchiatura per la misurazione automatica di tensioni in un corpo trasparente mediante luce diffusa
JPH0674941U (ja) * 1993-03-29 1994-10-21 貫 岸井 ガラス製品用表面応力測定装置
SG99350A1 (en) * 2000-02-17 2003-10-27 Hoya Corp Glass for cathode-ray tube, strengthened glass, method for the production thereof and use thereof
KR20180015272A (ko) 2008-08-08 2018-02-12 코닝 인코포레이티드 강화 유리 제품 및 제조방법
CN101738369B (zh) * 2008-11-24 2011-09-14 财团法人工业技术研究院 相位差检测装置
WO2012118079A1 (ja) * 2011-02-28 2012-09-07 国立大学法人香川大学 光学特性測定装置及び光学特性測定方法
CN103940537A (zh) * 2014-04-10 2014-07-23 中国科学院半导体研究所 材料的微区应力测试系统
JP6419595B2 (ja) 2015-01-30 2018-11-07 有限会社折原製作所 表面応力測定方法、表面応力測定装置
JP6694448B2 (ja) 2015-06-04 2020-05-13 コーニング インコーポレイテッド イオン交換により化学強化されたリチウム含有ガラスを特徴付ける方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916677B1 (ja) * 1968-12-20 1974-04-24
JPS5533675A (en) * 1978-09-01 1980-03-08 Toshiba Corp Stress measurment method of air-cooled reinforced glass
JP2001348245A (ja) * 2000-06-02 2001-12-18 Hoya Corp 強化ガラス、その製造方法およびディスプレイ用ガラス
WO2012128184A1 (ja) * 2011-03-18 2012-09-27 旭硝子株式会社 ガラスの表面応力測定装置およびガラスの表面応力測定方法
JP2014028730A (ja) * 2012-07-31 2014-02-13 Asahi Glass Co Ltd 化学強化ガラスの製造方法およびガラスの応力測定方法
US20140368808A1 (en) * 2013-06-17 2014-12-18 Corning Incorporated Prism Coupling Methods With Improved Mode Spectrum Contrast for Double Ion-Exchanged Glass
JP2016024002A (ja) * 2014-07-18 2016-02-08 日本電気硝子株式会社 透明物品の応力測定方法

Also Published As

Publication number Publication date
JP6830606B2 (ja) 2021-02-17
WO2018056121A1 (ja) 2018-03-29
KR20190059903A (ko) 2019-05-31
TW201814273A (zh) 2018-04-16
US11274981B2 (en) 2022-03-15
US20190219463A1 (en) 2019-07-18
CN109906365B (zh) 2021-09-14
KR102345803B1 (ko) 2022-01-03
CN109906365A (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
JP6830606B2 (ja) 強化ガラスの応力測定装置、強化ガラスの応力測定方法、強化ガラスの製造方法
KR102659463B1 (ko) 강화 유리의 평가 장치, 강화 유리의 평가 방법, 강화 유리의 제조 방법, 강화 유리
JP6419595B2 (ja) 表面応力測定方法、表面応力測定装置
CN108700511B (zh) 表面折射率测定方法及利用了该方法的表面应力测定方法
CN103983609A (zh) 基于光谱干涉的透明材料折射率及厚度测量装置和测量方法
CN103543129A (zh) 光学玻璃光学均匀性的测量装置及测量方法
TWI580930B (zh) Tilt angle and distance measurement method
JP2016109670A (ja) 屈折率分布計測方法、屈折率分布計測装置、及び光学素子の製造方法
JP7284512B2 (ja) 強化ガラスの応力測定装置、強化ガラスの応力測定方法
CN114112131A (zh) 强化玻璃的应力测定装置、强化玻璃的应力测定方法、强化玻璃
CN108726894B (zh) 化学强化玻璃
JP7437750B2 (ja) 強化ガラスの表面屈折率測定装置及び表面屈折率測定方法、強化ガラスの表面応力測定装置及び表面応力測定方法
CN203455277U (zh) 光学玻璃光学均匀性的测量装置
JP2011106920A (ja) 回転・傾斜計測装置および方法
JP7158017B2 (ja) 応力測定装置、応力測定方法
JP2024021419A (ja) 強化ガラスの測定方法、強化ガラスの測定装置
CN204832011U (zh) 大口径单轴晶体光吸收系数测量装置
JP2022039955A (ja) 強化ガラスの応力測定装置、強化ガラスの応力測定方法、強化ガラス
JP2016109592A (ja) 屈折率分布計測方法、屈折率分布計測装置、及び光学素子の製造方法
JP2005214865A (ja) スリット幅測定装置及びスリット幅測定方法及びプログラム
JP2009085820A (ja) ミラーの反射特性評価方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210108

R150 Certificate of patent or registration of utility model

Ref document number: 6830606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250