WO2012118079A1 - 光学特性測定装置及び光学特性測定方法 - Google Patents

光学特性測定装置及び光学特性測定方法 Download PDF

Info

Publication number
WO2012118079A1
WO2012118079A1 PCT/JP2012/054940 JP2012054940W WO2012118079A1 WO 2012118079 A1 WO2012118079 A1 WO 2012118079A1 JP 2012054940 W JP2012054940 W JP 2012054940W WO 2012118079 A1 WO2012118079 A1 WO 2012118079A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
polarizing plate
polarization
polarization component
optical system
Prior art date
Application number
PCT/JP2012/054940
Other languages
English (en)
French (fr)
Inventor
伊知郎 石丸
Original Assignee
国立大学法人香川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人香川大学 filed Critical 国立大学法人香川大学
Priority to RU2013143824/28A priority Critical patent/RU2544876C1/ru
Priority to KR1020137025104A priority patent/KR101590241B1/ko
Priority to CN201280010861.7A priority patent/CN103403528B/zh
Priority to EP12752388.4A priority patent/EP2682741B1/en
Priority to JP2013502369A priority patent/JP5721195B2/ja
Priority to US14/001,810 priority patent/US8830462B2/en
Publication of WO2012118079A1 publication Critical patent/WO2012118079A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0224Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using polarising or depolarising elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4535Devices with moving mirror

Definitions

  • the present invention relates to an optical property measuring apparatus and method capable of measuring both the spectral property and polarization property of a substance.
  • a method for estimating an unknown component in a substance by measuring the optical characteristics of the substance is known.
  • a birefringence phase difference (retardation) is obtained from transmitted light intensity when light is transmitted through a substance to be measured, and a substance-specific birefringence is calculated from the birefringence phase difference.
  • Birefringence refers to a phenomenon in which two refracted lights appear when light enters an anisotropic medium.
  • the birefringence phase difference is expressed by the product of the birefringence and the transmitted optical path length, even if the birefringence phase difference is the same, the birefringence is different if the transmitted optical path length of light is different. Therefore, an accurate birefringence can be obtained by using a transmission optical path length accurately determined with respect to the measured birefringence phase difference.
  • the transmission optical path length cannot be easily obtained in the measurement object, for example, when the shape of the measurement object is complicated, it is difficult to obtain an accurate birefringence.
  • the measurement target is a biological membrane such as an eye retina, the measurement target cannot be cut out from the human body, and thus the thickness, that is, the transmitted optical path length cannot be measured.
  • birefringence is an optical property observed when a material is an anisotropic medium, so when estimating the components of an unknown material, both birefringence and Fourier spectroscopic properties are measured. It is effective to do.
  • the conventional apparatus cannot measure both the Fourier spectral characteristics and the birefringence at the same time.
  • the problem to be solved by the present invention is to provide an optical characteristic measuring apparatus and an optical characteristic measuring method capable of simultaneously measuring Fourier spectral characteristics and birefringence of substances having various shapes and properties.
  • An optical property measuring apparatus which has been made to solve the above problems, a) a splitting optical system that guides light emitted from the measurement object to which linearly polarized light is incident to the first polarizing plate and the second polarizing plate; b) an analyzer that transmits light in a predetermined polarization direction out of a combined component of the first polarization component transmitted through the first polarizing plate and the second polarization component transmitted through the second polarizing plate; c) an imaging optical system for guiding the light transmitted through the analyzer to the same point to form an interference image; d) a detection unit for detecting the light intensity of the interference image; e) By changing a difference in optical path length between the first polarization component and the second polarization component from the first polarization plate and the second polarization plate toward the analyzer, the difference between the first polarization component and the second polarization component is obtained.
  • a phase difference providing means for changing the phase difference f) Processing for obtaining an amplitude and a birefringence phase difference for each wavelength of light emitted from the object to be measured by Fourier-transforming data on the change in light intensity detected by the detection unit with the change in the phase difference And a section.
  • the optical property measuring apparatus is a) a splitting optical system that guides light emitted from the measurement object to which linearly polarized light is incident to the first polarizing plate and the second polarizing plate; b) an analyzer that transmits light in a predetermined polarization direction out of a combined component of the first polarized light component transmitted through the first polarizing plate and the second polarized light component transmitted through the second polarizing plate; c) an imaging optical system for condensing the light transmitted through the analyzer on the same straight line extending in a direction different from the optical axes of the first polarization component and the second polarization component to form a linear interference image; , d) By giving a continuous optical path length difference distribution between the first polarization component and the second polarization component from the first polarization plate and the second polarization plate toward the analyzer, the first polarization component and the second polarization Phase change applying means for giving a continuous phase change between the components; e) a detection optical path length difference distribution between the
  • the optical characteristic measuring device is a) a splitting optical system that guides light emitted from the measurement object to which linearly polarized light is incident to the first polarizing plate and the second polarizing plate; b) an analyzer that transmits light in a predetermined polarization direction out of a combined component of the first polarization component transmitted through the first polarizing plate and the second polarization component transmitted through the second polarizing plate; c) an imaging optical system for condensing the light transmitted through the analyzer on the same straight line extending in a direction different from the optical axes of the first polarization component and the second polarization component to form a linear interference image; , d) By giving a continuous optical path length difference distribution between the first polarization component and the second polarization component from the first polarization plate and the second polarization plate toward the analyzer, the first polarization component and the second polarization Phase change applying means for giving a continuous phase change between the components; e) a spectral optical system that guides light e
  • the first polarization component and the linear polarization electric field component incident on the object to be measured are orthogonal to each other.
  • the first polarizing plate and the second polarizing plate are preferably arranged so that the polarization direction of the second polarizing component is inclined by 45 °.
  • the splitting optical system includes an objective lens that converts the light emitted from the object to be measured into parallel rays and guides the light to the first polarizing plate and the second polarizing plate,
  • the processing unit may obtain an amplitude and a birefringence phase difference (phase difference amount) for each wavelength of light emitted from a focal point of the objective lens in the object to be measured.
  • a focusing position changing unit that relatively changes a focusing position of the objective lens with respect to the object to be measured is provided.
  • the optical property measuring method includes: a) Make linearly polarized light incident on the object to be measured, b) The light emitted from the object to be measured on which the linearly polarized light is incident is guided to the first polarizing plate and the second polarizing plate by the splitting optical system, c) The first polarized light component transmitted through the first polarizing plate and the second polarized light component transmitted through the second polarizing plate are detected while changing a difference in optical path length between the first polarized light component and the second polarized light component.
  • the imaging optical system In addition to being guided to the imaging optical system via photons, the imaging optical system focuses the light at the same point to form an interference image, d) The amplitude and the birefringence phase difference of each wavelength of the light emitted from the object to be measured are obtained by performing Fourier transform on the data indicating the change in the light intensity of the interference image.
  • the optical property measurement method includes: a) Make linearly polarized light incident on the object to be measured, b) The light emitted from the object to be measured on which the linearly polarized light is incident is guided to the first polarizing plate and the second polarizing plate by the splitting optical system, c) The first polarization component transmitted through the first polarizing plate and the second polarization component transmitted through the second polarizing plate have a continuous optical path length difference distribution between the first polarization component and the second polarization component.
  • the imaging optical system While being guided to the imaging optical system through the analyzer, the imaging optical system collects light on the same straight line to form a linear interference image, d) Obtaining the amplitude and birefringence phase difference of each wavelength of the light emitted from the object to be measured by Fourier transforming the data indicating the light intensity distribution along the direction in which the interference image extends in the linear interference image. It is characterized by doing.
  • the optical property measuring method is: a) Make linearly polarized light incident on the object to be measured, b) The light emitted from the object to be measured on which the linearly polarized light is incident is guided to the first polarizing plate and the second polarizing plate by the splitting optical system, c) The first polarization component transmitted through the first polarizing plate and the second polarization component transmitted through the second polarizing plate have a continuous optical path length difference distribution between the first polarization component and the second polarization component.
  • the imaging optical system While being guided to the imaging optical system through the analyzer, the imaging optical system collects light on the same straight line to form a linear interference image, d) A spectral spectrum is obtained by wavelength-resolving the linear interference image by a spectral optical system, e) obtaining an amplitude and a birefringence phase difference of each wavelength of light emitted from the object to be measured based on a light intensity distribution of the spectrum.
  • the light emitted from the measurement object on which the linearly polarized light is incident is guided to the first polarizing plate and the second polarizing plate by the splitting optical system, and the first polarized light After passing through the plate and the second polarizing plate, it enters the analyzer as a first polarization component and a second polarization component.
  • the light transmitted through the analyzer is guided to the same point or the same straight line by the imaging optical system to form an interference image.
  • the phase difference between the first polarization component and the second polarization component is changed temporally or spatially, the intensity of the interference light detected by the detection unit changes, and the synthesis is similar to an interferogram.
  • a waveform is acquired.
  • the processing unit When the composite waveform is Fourier transformed by the processing unit, the amplitude and the birefringence phase difference of each wavelength of the light emitted from the object to be measured are obtained, so that the Fourier spectral characteristics and the birefringence of the object to be measured are simultaneously obtained. Can be sought. In the case where two lights are guided to the same “point” and interfere with each other, strictly speaking, it is not “interference image” but “interference light”, but here it is formed by the interference of the two lights. All of them are called “interference images”.
  • the Fourier spectral characteristics and the birefringence of the object to be measured using the light. Sex can be determined at the same time. Therefore, not only products with relatively simple shapes such as optical elements and polymer films, but also substances with complicated shapes and biological membranes such as the retina of the eye can be measured objects, so that they can be used in a wide range of fields.
  • the light emitted from the object to be measured is separated into two parts using a Michelson interferometer, and the two parts are separated.
  • the light is guided to a common optical path to cause interference, and the interference light is detected by a detector. Since the light separated into two interferes on the common optical path, interference light of light emitted from various positions (depths) of the object to be measured is mixed on the light receiving surface of the detector.
  • the light emitted from the object to be measured is divided into the first polarization component and the second polarization component by the splitting optical system, and these polarization components are directed to the imaging optical system through separate optical paths.
  • the imaging optical system guides to the same point to cause interference. Since only the light emitted from the focusing surface interferes on the imaging surface of the imaging optical system, in the present invention, by positioning the light receiving surface of the detection unit on the imaging surface of the imaging optical system, Only the part of the object to be measured that corresponds to the focal plane, that is, the interference light of the light emitted from a specific depth in the object to be measured can be detected by the detector, and a clear interference image with little noise can be obtained. Obtainable.
  • FIG. 2 is a diagram for explaining the measurement principle of the optical characteristic measuring apparatus according to the first embodiment, and shows a linearly polarized light component and an electric field component obtained by vector decomposition of the linearly polarized light component into orthogonal components in the x direction and the y direction;
  • FIG. A diagram showing a combined vector when there is a phase difference of ⁇ / 2 between the electric field component in the x direction and the y direction, and the electric field component and the combined vector in the x and y directions viewed from the light traveling direction.
  • FIG. The figure (a) which shows the composite vector when giving the phase difference which cancels the unknown birefringence phase difference (retardation) given by the measuring object between the electric field component of x direction and y direction, and these x and y directions (B) which looked at the electric field component and synthetic
  • the figure which shows the relationship between phase shift amount and imaging intensity.
  • FIG. 5 is a diagram showing a schematic overall configuration of an optical characteristic measuring apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 is a diagram showing a schematic overall configuration of an optical characteristic measuring apparatus according to Embodiment 2 of the present invention.
  • FIG. 10 is a diagram illustrating an arrangement of optical elements from a measurement target to an imaging plane in the optical characteristic measurement apparatus according to the second embodiment.
  • FIG. 6 is a side view illustrating a state in which measurement light is collected on a light receiving surface by an imaging lens in the second embodiment.
  • FIG. 6 is a top view illustrating a state in which measurement light is collected on a light receiving surface by an imaging lens in the second embodiment.
  • FIG. 6 is a diagram illustrating a schematic overall configuration of an optical characteristic measuring apparatus according to Embodiment 3 of the present invention.
  • FIG. 6 is a perspective view of an imaging lens in Embodiment 3.
  • FIG. 10 is a diagram illustrating an interference image of a reference light beam and an inclined light beam in Example 3.
  • FIG. 6 is a diagram illustrating a schematic overall configuration of an optical characteristic measuring apparatus according to Embodiment 4 of the present invention.
  • the optical characteristic measuring apparatus 1 includes a light source 3, a polarizer 5, an objective lens 7, a first polarizing plate 9 and a second polarizing plate 11, a phase shifter 13, and an analyzer 15.
  • An imaging lens 17 and a detector 19 In this embodiment, the objective lens 7, the first polarizing plate 9, and the second polarizing plate 11 constitute a split optical system, and the imaging lens 17 constitutes an imaging optical system.
  • the phase shifter 13 functions as a phase difference providing unit.
  • the objective lens 7 is configured to be movable in the optical axis direction by the lens driving mechanism 21.
  • the lens driving mechanism 21 is for scanning the focus position of the objective lens 7 and corresponds to a focus position changing unit.
  • the lens driving mechanism 21 can be constituted by a piezo element, for example.
  • the polarizer 5 is disposed on the optical path of the light emitted from the light source 3, extracts only the linearly polarized light component in a specific direction from the light, and irradiates the sample S that is the object to be measured.
  • the light transmitted through the sample S (hereinafter also referred to as “measurement light”) enters the objective lens 7 and is converted into a parallel light beam.
  • 1 and 2 show a transmissive optical characteristic measuring apparatus 1 that measures light transmitted through the sample S.
  • a reflective optical characteristic measurement that measures light reflected from the inside of the sample S is shown. It may be a device. This is because both the light transmitted through the sample and the light reflected inside the sample have the birefringence and light absorption characteristics of the components in the sample.
  • the light beam after passing through the objective lens 7 does not have to be a perfect parallel light beam. As will be described later, it is sufficient that the measurement light can be expanded to such a degree that it can be divided into two or more. However, if the light beam is not a parallel light beam, an error is likely to occur in the phase difference amount generated according to the phase shift amount described later. Therefore, in order to obtain higher measurement accuracy, it is desirable to use a parallel beam as much as possible.
  • Both the first polarizing plate 9 and the second polarizing plate 11 are arranged, for example, vertically on the optical path of the parallel light flux that has passed through the objective lens 7.
  • the parallel light beam that has passed through the objective lens 7 reaches the phase shifter 13 via the first polarizing plate 9 and the second polarizing plate 11.
  • the first polarizing plate 9 and the second polarizing plate 11 have their polarization directions inclined by 45 ° with respect to the vibration direction of the electric field vector of the linearly polarized light component transmitted through the polarizer 5, and
  • the polarizing direction of the first polarizing plate 9 and the polarizing direction of the second polarizing plate 11 are installed so as to be orthogonal to each other.
  • the polarization direction of the first polarizing plate 9 is also referred to as the x direction
  • the polarization direction of the second polarizing plate 11 is also referred to as the y direction.
  • the light transmitted through the first polarizing plate 9 is referred to as first polarized light
  • the light transmitted through the second polarizing plate 11 is referred to as second polarized light.
  • the phase shifter 13 includes a rectangular plate-shaped movable mirror unit 131, a rectangular plate-shaped fixed mirror unit 132 disposed under the rectangular plate-shaped movable mirror unit 131, holding units 133 and 134 that hold the movable mirror unit 131 and the fixed mirror unit 132, and a movable mirror unit.
  • a drive stage 135 that moves the holding unit 133 of 131 is provided.
  • the first polarized light transmitted through the first polarizing plate 9 enters the movable mirror unit 131, and the second polarized light transmitted through the second polarizing plate 11 enters the fixed mirror unit 132.
  • the surfaces (reflection surfaces) of the movable mirror unit 131 and the fixed mirror unit 132 are optically flat and are optical mirror surfaces that can reflect the wavelength band of light to be measured by the apparatus 1. Further, the reflecting surfaces of the movable mirror part 131 and the fixed mirror part 132 have substantially the same size.
  • the light beam that reaches the reflecting surface of the movable mirror unit 131 from the first polarizing plate 9 and is reflected and reaches the analyzer 15 is moved to the moving light beam, and the reflecting surface of the fixed mirror unit 132 from the second polarizing plate 11.
  • the light beam that reaches and is reflected and reaches the analyzer 15 is also referred to as a fixed light beam.
  • the drive stage 135 is composed of, for example, a piezoelectric element having a capacitance sensor, and moves the holding unit 133 in the direction of arrow A in response to a control signal from the control unit 25.
  • the movable mirror part 131 moves in the arrow A direction with an accuracy according to the wavelength of light.
  • the phase shifter 13 corresponds to the optical path length difference expansion / contraction means
  • the movable mirror part 131 and the fixed mirror part 132 correspond to the first reflection part and the second reflection part, respectively.
  • the phase shifter 13 is arranged so that the reflecting surfaces of the movable mirror part 131 and the fixed mirror part 132 are inclined by 45 ° with respect to the optical axis of the parallel light flux from the objective lens 7.
  • the drive stage 135 moves the movable mirror 131 while maintaining the inclination of the reflecting surface of the movable mirror 131 with respect to the optical axis at 45 °.
  • the amount of movement of the movable mirror 131 in the optical axis direction is ⁇ 2 of the amount of movement of the drive stage 135.
  • the optical path length difference that gives a relative phase change between the two light beams of the fixed light beam and the movable light beam is twice the amount of movement of the movable mirror 131 in the optical axis direction.
  • the movable mirror part 131 and the fixed mirror part 132 are arranged obliquely in this way, a beam splitter for branching the light beam becomes unnecessary, and the utilization efficiency of the object light can be increased.
  • the analyzer 15 is installed in a so-called open Nicol state that transmits a linearly polarized light component in the same direction as the polarizer 5. Therefore, when the sample S does not have birefringence, the linearly polarized light component transmitted from the light source 3 through the polarizer 5 through the measurement object reaches the imaging lens 17 as it is unless the phase shift operation is performed.
  • the light receiving surface of the detector 19 is located at a position that becomes the image forming surface of the imaging lens 17, and the linearly polarized component that has reached the imaging lens 17 is condensed on the same point on the light receiving surface of the detector 19.
  • the analyzer 15 may be installed such that the polarization extraction angle with respect to the polarizer 5 is 45 °.
  • the direction of the polarization extraction angle of the analyzer 15 may be either.
  • the analyzer 15 is installed in this way, when the sample S does not have birefringence, the linearly polarized light component that has passed through the measurement object through the polarizer 5 does not pass through the analyzer 15 but the birefringence of the sample S.
  • the linearly polarized light component rotated by 45 ° by the nature passes through the analyzer 15.
  • the detector 19 is composed of, for example, a two-dimensional CCD camera, and the detection signal is input to the processing unit 23 and processed.
  • the processing unit 23, the lens driving mechanism 21, the driving stage 135, and the like are controlled by the control unit 25.
  • the x axis indicates the polarization direction of the first polarizing plate 9 and the y axis indicates the polarization direction of the second polarizing plate 11.
  • the z-axis is orthogonal to the x-axis and y-axis and indicates the traveling direction of light. 4 (a) and 4 (b), the vibration in the oblique direction indicated by the solid line L is the observed linearly polarized light, that is, the vibration of the electric field vector of the linearly polarized component irradiated to the sample S through the polarizer 5. .
  • the electric field component When viewed from the traveling direction, the electric field component linearly vibrates in an oblique 45 ° direction, which is called linearly polarized light. This is considered by vector decomposition into orthogonal components in the x and y directions. That is, it is considered that the electric field component indicated by the two-dot chain line Lx and the electric field component indicated by the one-dot chain line Ly vibrate synchronously, and the linearly polarized light of the solid line L is observed as a combined vector thereof.
  • the phase difference between the electric field oscillations in the x and y directions is ⁇ / 4 due to the birefringence of the substance.
  • the resultant vector is determined only by the x-direction component (two-dot chain line Lx).
  • the x-direction component two-dot chain line Lx
  • the combined vector is determined only by the y-direction component (one-dot chain line Ly).
  • the phase shifter 13 can give an arbitrary phase difference between the first polarized light transmitted through the first polarizing plate 9 and the second polarized light transmitted through the second polarizing plate 11. Therefore, when the movable mirror unit 131 is gradually moved to change the optical path length difference between the first polarized light and the second polarized light continuously and temporally, and the phase difference between the two is changed, the light source 3 If the light from the monochromatic light is monochromatic light, the imaging intensity transmitted through the analyzer 15 arranged in open Nicol with respect to the polarizer 5 is the highest when a phase difference amount for canceling retardation is given as shown in FIG. Become stronger.
  • phase difference amount ⁇ / 2 is further given to the phase difference amount, it becomes linearly polarized light in a direction orthogonal to the direction of linearly polarized light irradiated from the polarizer 5 to the sample S, so that it cannot pass through the analyzer 15 and forms an image.
  • the intensity is the smallest.
  • the phase difference amount ⁇ / 2 is given and the phase difference becomes one wavelength ( ⁇ )
  • the linearly polarized light in the same direction as the linearly polarized light irradiated from the polarizer 5 to the sample S is obtained again, so that the imaging intensity is the strongest.
  • a sinusoidal change in imaging intensity is repeated every time the amount of phase difference between the first polarization and the second polarization reaches one wavelength.
  • FIG. 10A a composite waveform similar to the interferogram of Fourier spectroscopy can be observed.
  • a general Fourier spectroscopic interferogram does not reflect birefringence, and therefore has a waveform in which light of all wavelengths is intensified at a position where the amount of phase difference is zero.
  • the processing unit 23 mathematically performs Fourier transform to simultaneously analyze the amplitude and phase difference amount for each wavelength. Can be obtained.
  • the spectral characteristic that is the relative intensity for each wavelength can be obtained in the same manner as Fourier spectroscopy.
  • the retardation for every wavelength can be acquired from the phase difference term calculated by Fourier transform. That is, spectral characteristics and birefringence can be measured simultaneously.
  • the optical system is an imaging optical system
  • two-dimensional measurement of spectral characteristics and birefringence becomes possible.
  • the retardation of the object light reflected from an arbitrary depth can be obtained. Since the retardation is a value obtained by adding the length of the path of the object light to the birefringence, the birefringence can be calculated from the retardation if the depth at which the object light is reflected is known.
  • FIG. 11 to FIG. 14 show the results of measuring the spectral characteristics of a stone made of granite by replacing the optical system of the optical characteristic measuring apparatus 1 shown in FIG. 1 with an oblique illumination optical system.
  • the amount of light captured using the oblique illumination optical system is significantly reduced, but as shown in FIG. 11, partially bright spots (indicated by symbols P1 to P3) were confirmed.
  • P1 to P3 were confirmed.
  • the surface of the stone used for observation is polished in a mirror shape, these bright portions P1 to P3 are considered to be portions where diffuse reflection components from the inside of the stone are observed.
  • FIG. 12 shows a spectrum in which the horizontal axis is wavelength (nm) and the vertical axis is intensity
  • FIG. 13 is a graph in which the horizontal axis is wavelength (nm) and the vertical axis is phase difference (deg.). It is a plot.
  • the amount of retardation changed greatly except for the peak wavelength of the light source spectrum, and was relatively stable near the peak wavelength (540 to 560 nm). The reason why the retardation amount greatly changes except for the peak wavelength is considered to be because phase measurement when the emission intensity is very low is not stable.
  • a characteristic reflection intensity was observed around a wavelength of 700 nm.
  • FIG. 14 shows the intensity distribution and phase distribution in the wavelength ranges 540 to 560 nm, 570 to 590 nm, and 670 to 720 nm, which are characteristic of the spectrum. From FIG. 14, a characteristic phase distribution was measured in the wavelength range of 540 to 560 nm, and a characteristic intensity distribution was measured in the wavelength range of 670 to 720 nm. Accordingly, it was confirmed that the spectral characteristic measuring apparatus 1 using the oblique illumination method can simultaneously measure both the spectral characteristic and the birefringence characteristic of the internal reflection component of the stone.
  • optical characteristic measuring apparatus 1 shows an optical characteristic measuring apparatus 1 according to the second embodiment.
  • the optical characteristic measuring apparatus 1 according to the second embodiment is greatly different from the first embodiment in the configuration of the phase shifter and the imaging optical system.
  • FIG. 12 for the sake of convenience, the illustration of the analyzer 15 disposed in front of the imaging lens 35 constituting the imaging optical system is omitted.
  • Example 2 the linearly polarized light component emitted from the light source 3 and transmitted through the polarizer 5 is applied to the linear measurement region S1 of the sample S.
  • a light beam irradiated on the measurement region S1 of the sample S and transmitted through the measurement region S1 enters the objective lens 7 and is converted into a parallel light beam, and then passes through the first polarizing plate 9 and the second polarizing plate 11, and then the phase shifter 31. To reach.
  • the phase shifter 31 includes a reference mirror unit 32, an inclined mirror unit 33, a holding unit (not shown) that holds the mirror units 32 and 33, and the like.
  • the surfaces (reflecting surfaces) of the reference mirror unit 32 and the inclined mirror unit 33 are optically flat and are rectangular optical mirror surfaces that can reflect the wavelength band of light to be measured by the apparatus 1. Further, the reflecting surfaces of the reference mirror part 32 and the inclined mirror part 33 have substantially the same size.
  • the objective lens 7, the first polarizing plate 9, and the second polarizing plate 11 correspond to a split optical system
  • the phase shifter 31 corresponds to a phase change applying unit.
  • the light beam that reaches the analyzer 15 from the first polarizing plate 9 and reaches the reflecting surface of the reference mirror portion 32 of the phase shifter 31 is reflected as a reference light beam, and the light beam from the second polarizing plate 11 to the phase shifter 31.
  • a light beam that reaches the reflection surface of the inclined mirror portion 33 and is reflected and reaches the analyzer 15 is also referred to as an inclined light beam.
  • the reference mirror section 32 is arranged such that the reflection surface is inclined by 45 °, for example, with respect to the optical axis of the parallel light flux from the objective lens 7. Further, the tilting mirror portion 33 is disposed so that the reflection surface is tilted by (45 + ⁇ ) ° with respect to the optical axis of the parallel light flux from the objective lens 7.
  • the objective lens 7 is used, but this function can also be configured by a reflection optical system. In this way, the influence of dispersion is completely eliminated, so that broadband spectral characteristics can be measured.
  • the tilt angle of the tilt mirror 33 with respect to the reference mirror 32 that is, ⁇ is set based on optical conditions such as the magnification of the imaging optical system, the measurement wavelength range, and the wave number resolution.
  • the measurement wavelength is changed from the visible region to the near infrared region (400 nm to 1000 nm)
  • the phase shift amount ⁇ 100 ⁇ m.
  • the number of pixels in one line is about 500 pixels.
  • the phase difference amount for each pixel is 200 nm, and measurement is possible from the sampling theorem to the wavelength of 400 nm.
  • the measurement wavelength is from the visible region to the near infrared region (400 nm to 1000 nm)
  • the sampling theorem on the short wavelength side is satisfied when the phase difference amount for each pixel is 200 nm.
  • the phase shift amount per line of a general CCD camera is 100 ⁇ m, 50 ⁇ m (100 ⁇ m ⁇ 2), which is half of that, may be set as the maximum width of the reference mirror section 32 and the tilt mirror section 33.
  • the inclination angle is about 1 deg.
  • the long wavelength region such as mid-infrared light
  • the envelope of the interference intensity change must be acquired in the long stroke phase shift region. This is also known from the fact that, as the principle of Fourier spectroscopy, in order to increase the wave number resolution, the phase shift amount must be increased.
  • the amount of phase shift needs to be about 50 mm, for example. Therefore, the length along the optical path direction may be increased to, for example, 100 mm to have a slope of 2.9 deg.
  • the imaging lens 35 is formed of a cylindrical lens, and is arranged so that the convex surface portion faces the phase shifter 31 side and the flat surface portion faces the light receiving surface 19 a side of the detector 19. Since the light receiving surface 19a of the detector 19 is located on the image forming surface of the image forming lens 35, it is emitted from one bright spot of the measurement region S1, reflected by the reflecting surfaces of the reference mirror unit 32 and the inclined mirror unit 33, and then connected.
  • the reference light beam and the tilted light beam incident on the image lens 35 are converged only in one direction by the imaging lens 35, and are focused on the same straight line on the light receiving surface 19a of the detector 19 to form an image.
  • the imaging lens 35 is arranged so that the direction of curvature of the convex portion (the direction indicated by the arrow B in FIG. 12) is parallel to the direction of the measurement region S1. .
  • the reference light beam and the inclined light beam incident on the imaging lens 35 are collected on a straight line on the light receiving surface 19a and orthogonal to the measurement region S1.
  • the reflecting surface of the reference mirror unit 32 and the reflecting surface of the inclined mirror unit 33 are accurate to such an extent that the light collecting positions of the two light beams do not deviate on the light receiving surface 19a (imaging surface) of the detector 19 (two-dimensional CCD camera). It is configured to be relatively parallel surfaces.
  • the measurement principle of this example will be described.
  • a description will be given based on an optical model in which the reference light beam is focused on a straight line as a wave whose phases are aligned on the light receiving surface 19 a of the detector 19 by the imaging lens 35.
  • the inclined light beam is focused on the light receiving surface 19a in a straight line as a wave whose phase is gradually shifted from the phase of the reference light beam.
  • the light beam that has passed through the measurement region S 1 of the sample S passes through the objective lens 7, the first polarizing plate 9, and the second polarizing plate 11, and reaches the surfaces of the reference mirror unit 32 and the tilting mirror unit 33 of the phase shifter 31. To reach. At this time, the light beam reaches the surface of the reference mirror part 32 and the surface of the inclined mirror part 33 by being divided into two parts in the vertical direction.
  • the surface area of both mirror portions 32 and 33 is such that the light flux reaching the surface of the reference mirror portion 32, that is, the reference light flux, and the light flux reaching the surface of the tilt mirror portion 33, that is, the amount of light of the tilted light flux are substantially equal.
  • it is also possible to equalize the light quantity by adjusting the relative light quantity difference by installing a neutral density filter in one or both optical paths of the reference light beam and the tilted light beam.
  • the light beams reflected by the surfaces of the reference mirror unit 32 and the inclined mirror unit 33 enter the imaging lens 35 as the reference light beam and the inclined light beam, respectively, and are collected on the same straight line on the light receiving surface 19a of the detector 19 and interfere. Form an image.
  • the reference light beam is configured to be condensed as a wave having a uniform phase on the light receiving surface 19a, which is the image forming surface, through the image forming lens 35. Therefore, as shown in FIG. Is parallel to the light receiving surface 19a of the detector 19.
  • the inclined light beam is incident on the imaging lens 35 with its optical axis inclined by 2 ⁇ ⁇ ° with respect to the optical axis of the reference light beam, so that the wave surface of the inclined light beam is slightly inclined with respect to the light receiving surface 19a. It becomes a state.
  • the optical path length difference between the two light beams gradually changes in the interference region between the light of the reference light beam and the light of the inclined light beam (see FIG. 14 is gradually increased from the right side to the left side). That is, in the first embodiment, the movable mirror 131 is gradually moved to give a continuously changing phase difference between the first polarized light and the second polarized light.
  • the reference mirror 32 is used. On the other hand, by arranging the mirror parts 32 and 33 in a state where the tilting mirror part 33 is tilted, a continuous phase difference change is given between the first polarized light and the second polarized light.
  • the phase difference changes with time, but in the second embodiment, the phase difference changes spatially. Since the light emitted from the measurement region S1 includes light of various wavelengths (and the initial phases of the light of each wavelength are not necessarily aligned), the optical path length difference between the reference light beam and the inclined light beam in the interference region is continuous. As a result, it is possible to observe a composite waveform similar to the interferogram as shown in FIG. 10A from the difference in retardation for each wavelength.
  • a light beam emitted from a bright spot (measurement point) a1 in the measurement region S1 is condensed on a straight line on the light receiving surface 19a (imaging plane), thereby forming a linear interference image.
  • b1 is obtained, and the light beam emitted from the bright spot (measurement point) a2 is condensed on a straight line on the light receiving surface 19a, whereby a linear interference image b2 is obtained.
  • the combined waveform of each interference image b1 and b2 is obtained from the received light intensity of a plurality of pixels lined up along the interference image. Therefore, in Example 2, in FIG.
  • the horizontal axis indicates the pixel numbers of the detectors 19 arranged along the linear interference image
  • the vertical axis indicates the imaging intensity (the received light intensity of each pixel). become.
  • the processing unit 23 can acquire the spectral characteristics and the retardation for each wavelength, which are the relative intensities for each wavelength of the light emitted from each bright spot in the measurement region S1, by performing Fourier transform on the combined waveform. If spectral characteristics can be obtained using all the pixels of the detector 19, one-dimensional spectroscopic measurement of the measurement region S1 is possible. Further, if the measurement region S1 irradiated with linearly polarized light is scanned, two-dimensional spectroscopic measurement of the measurement object S can be performed. Further, the measurement region S1 is scanned, and the objective lens 7 is moved to scan the in-focus surface (surface including the in-focus position), thereby enabling three-dimensional spectroscopic measurement.
  • the imaging lens 35 is composed of a reference lens unit 35 a and a tilted mirror unit 33 on which the reference light beam reflected by the reference mirror unit 32 is incident. It is divided into an inclined lens portion 35b on which the reflected inclined light beam is incident.
  • the reference lens part 35a and the inclined lens part 35b have a shape obtained by dividing the imaging lens 35 of the second embodiment into two parts, and maintain the inclination of the other optical axis with respect to one optical axis of the reference light beam and the inclined light beam.
  • the other optical axis is displaced along the linear interference image formed on the light receiving surface 19a (imaging surface) of the detector 19 as it is. That is, the reference lens part 35a and the inclined lens part 35b function as an imaging optical system and an optical axis position changing unit. With such a configuration, as shown in FIG. 21, it is possible to increase an area where the light of the reference light beam and the light of the inclined light beam overlap on the light receiving surface 19a, that is, the interference region.
  • FIG. 22 shows Embodiment 4 of the present invention.
  • a monochromatic light converting means 41 such as a fluorescent plate for converting the light intensity into monochromatic light is installed at the position of the imaging plane in the second embodiment, and the cylindrical lens 43 is disposed at a position where this is used as the object plane. It is arranged.
  • the detector 19 is arranged so that the light receiving surface 19 a of the detector 19 is positioned on the optical Fourier transform surface of the cylindrical lens 43.
  • the cylindrical lens 43 is arranged so that the direction having no curvature is orthogonal to the direction in which the linear interference image extends.
  • the interference image of the reference light beam and the inclined light beam transmitted through the imaging lens 35 is converted into a spatial brightness intensity distribution by the monochromatic light converting means 41. And it optically Fourier-transforms with the cylindrical lens 43, and a spectrum is formed in real time on an image formation surface. Since the light receiving surface 19a of the detector 19 is on the Fourier transform surface of the cylindrical lens 43, the resultant waveform obtained in the second embodiment is mathematically Fourier transformed by optically obtaining the light intensity distribution of the spectral spectrum. The same spectral characteristics and birefringence as those obtained are obtained.
  • the monochromatic light converting means 41 and the cylindrical lens 43 constitute a spectroscopic optical system.
  • the analyzer 15 disposed in front of the imaging lens 17 in the first embodiment may be disposed after the imaging lens 17.
  • the analyzer 15 it is preferable that the analyzer 15 be disposed in front of the imaging lens as in the first embodiment.

Abstract

 偏光子を経て試料Sに至った直線偏光は試料Sによってリタデーションを付与された後、第1偏光板9及び第2偏光板11を経て位相シフター13の可動ミラー部131及び固定ミラー部132に到達する。そして、これらミラー部で反射された測定光は、検光子15を経て結像レンズ17により検出器19の受光面で干渉像を形成する。このとき、可動ミラー部131を移動させることにより該可動ミラー部131で反射された光束と固定ミラー部132で反射された光束の間の光路長差が連続的に変化するため、検出器19が検出する干渉像の結増強度は連続的に変化し、インターフェログラムに似た合成波形を取得することができる。これをフーリエ変換することにより、波長毎の振幅と波長毎の複屈折位相差を得ることができる。

Description

光学特性測定装置及び光学特性測定方法
 本発明は、物質の分光特性及び偏光特性の両方を測定可能な光学特性測定装置及び方法に関する。
 従来から、物質の光学特性を測定することにより当該物質中の未知の成分を推定する方法が知られている。例えば特許文献1には、測定対象となる物質に光を透過させたときの透過光強度から複屈折位相差(リタデーション)を求め、該複屈折位相差から物質固有の複屈折率を算出することにより未知の成分を推定する方法が開示されている。複屈折とは、異方性媒体に光が入射するときに二つの屈折光が現れる現象をいう。複屈折位相差は複屈折率と透過光路長の積で表されるため、複屈折位相差が同じであっても光の透過光路長が異なれば複屈折率も異なることになる。従って、正確な複屈折率は、測定された複屈折位相差に対して正確に定まった透過光路長を用いて求めることができる。
 しかしながら、測定対象において容易に透過光路長を求めることができない場合、例えば測定対象の形状が複雑な場合には正確な複屈折率を求めることが困難になる。また、測定対象が眼の網膜といった生体膜の場合は測定対象を人体から切り出すことができないため、その厚み、即ち透過光路長を測定することができない。
 また、複屈折性以外の光学特性であるフーリエ分光特性から物質中の未知の成分を推定する方法がある。上述したように、複屈折性は物質が異方性媒体であるときに観察される光学特性であるため、未知の物質の成分を推定する場合には複屈折性とフーリエ分光特性の両方を測定することが有効である。ところが、従来の装置ではフーリエ分光特性と複屈折性の両方を同時に測定することができなかった。
特開2001-141602号公報
 本発明が解決しようとする課題は、様々な形状や性質の物質のフーリエ分光特性と複屈折性を同時に測定することができる光学特性測定装置および光学特性測定方法を提供することである。
 上記課題を解決するために成された本発明に係る光学特性測定装置は、
 a)直線偏光が入射された被測定物から発せられる光を第1偏光板及び第2偏光板に導く分割光学系と、
 b)前記第1偏光板を透過した第1偏光成分と前記第2偏光板を透過した第2偏光成分の合成成分のうち、所定の偏光方向の光を透過させる検光子と、
 c)前記検光子を透過した光を同一点に導き干渉像を形成する結像光学系と、
 d)前記干渉像の光強度を検出する検出部と、
 e)前記第1偏光板及び第2偏光板から前記検光子に向かう第1偏光成分及び第2偏光成分の光路長の差を変化させることにより当該第1偏光成分と第2偏光成分の間の位相差を変化させる位相差付与手段と、
 f)前記位相差の変化に伴い前記検出部で検出される光強度の変化のデータをフーリエ変換することにより前記被測定物から発せられる光の波長毎の振幅と複屈折位相差を取得する処理部と
 を備えることを特徴とする。
 また、本発明に係る光学特性測定装置は、
 a)直線偏光が入射された被測定物から発せられる光を第1偏光板及び第2偏光板に導く分割光学系と、
 b)前記第1偏光板を透過した第1偏光成分と前記第2偏光板を透過した第2偏光成分の合成成分のうち所定の偏光方向の光を透過させる検光子と、
 c)前記検光子を透過した光を、前記第1偏光成分及び第2偏光成分の光軸と異なる向きに延びる同一直線上に集光させて線状の干渉像を形成する結像光学系と、
 d)前記第1偏光板及び第2偏光板から前記検光子に向かう第1偏光成分及び第2偏光成分の間に連続的な光路長差分布を与えることにより当該第1偏光成分と第2偏光成分の間に連続的な位相変化を与える位相変化付与手段と、
 e)前記線状の干渉像の該干渉像の延びる方向に沿った光強度分布を検出する検出部と、
 f)前記検出部で検出される前記干渉像の光強度分布を示すデータをフーリエ変換することにより前記被測定物から発せられる光の波長毎の振幅と複屈折位相差を取得する処理部と
 を備えることを特徴とする。
 さらに、本発明に係る光学特性測定装置は、
 a)直線偏光が入射された被測定物から発せられる光を第1偏光板及び第2偏光板に導く分割光学系と、
 b)前記第1偏光板を透過した第1偏光成分と前記第2偏光板を透過した第2偏光成分の合成成分のうち、所定の偏光方向の光を透過させる検光子と、
 c)前記検光子を透過した光を、前記第1偏光成分及び第2偏光成分の光軸と異なる向きに延びる同一直線上に集光させて線状の干渉像を形成する結像光学系と、
 d)前記第1偏光板及び第2偏光板から前記検光子に向かう第1偏光成分及び第2偏光成分の間に連続的な光路長差分布を与えることにより当該第1偏光成分と第2偏光成分の間に連続的な位相変化を与える位相変化付与手段と、
 e)前記線状の干渉像を波長分解して分光スペクトルを形成する分光光学系と、
 f)前記分光スペクトルの光強度分布を検出する検出部と、
 g)前記検出部で検出される光強度分布から前記被測定物から発せられる光の波長毎の振幅と複屈折位相差を取得する処理部と
 を備えることを特徴とする。
 上記した本発明に係る光学特性測定装置においては、第1偏光成分と第2偏光成分の偏光方向が直交し、且つ前記被測定物に入射する直線偏光の電界成分に対して第1偏光成分と第2偏光成分の偏光方向が45°傾くように、第1偏光板及び第2偏光板が配置されていることが好ましい。
 また、上記本発明に係る光学特性測定装置においては、
 前記分割光学系が、前記被測定物から発せられた光を平行光線化して第1偏光板及び第2偏光板に導く対物レンズを備え、
 前記処理部は、前記被測定物のうち前記対物レンズの合焦点から発せられる光の波長毎の振幅と複屈折位相差(位相差量)を求めるようにすると良い。
 この場合、前記被測定物に対する前記対物レンズの合焦位置を相対的に変更する合焦位置変更手段を備えることが好ましい。
 また、本発明に係る光学特性測定方法は、
 a)直線偏光を被測定物に入射させ、
 b)前記直線偏光が入射された被測定物から発せられる光を分割光学系によって第1偏光板及び第2偏光板にそれぞれ導き、
 c)前記第1偏光板を透過した第1偏光成分と前記第2偏光板を透過した第2偏光成分を、該第1偏光成分と該第2偏光成分の光路長の差を変化させつつ検光子を介して結像光学系に導くと共に、該結像光学系によって同一点に集光させて干渉像を形成させ、
 d)前記干渉像の光強度の変化を示すデータをフーリエ変換することにより前記被測定物から発せられる光の波長毎の振幅と複屈折位相差を取得することを特徴とする。
 さらに、本発明に係る光学特性測定方法は、
 a)直線偏光を被測定物に入射させ、
 b)前記直線偏光が入射された被測定物から発せられる光を分割光学系によって第1偏光板と第2偏光板にそれぞれ導き、
 c)前記第1偏光板を透過した第1偏光成分と前記第2偏光板を透過した第2偏光成分を、該第1偏光成分と第2偏光成分の間に連続的な光路長差分布を付与しつつ検光子を介して結像光学系に導くと共に、該結像光学系によって同一直線上に集光させて線状の干渉像を形成させ、
 d)前記線状の干渉像の該干渉像が延びる方向に沿った光強度分布を示すデータをフーリエ変換することにより前記被測定物から発せられる光の波長毎の振幅と複屈折位相差を取得することを特徴とする。
 さらにまた、本発明に係る光学特性測定方法は、
 a)直線偏光を被測定物に入射させ、
 b)前記直線偏光が入射された被測定物から発せられる光を分割光学系によって第1偏光板と第2偏光板にそれぞれ導き、
 c)前記第1偏光板を透過した第1偏光成分と前記第2偏光板を透過した第2偏光成分を、該第1偏光成分と第2偏光成分の間に連続的な光路長差分布を付与しつつ検光子を介して結像光学系に導くと共に、該結像光学系によって同一直線上に集光させて線状の干渉像を形成させ、
 d)前記線状の干渉像を分光光学系によって波長分解することにより分光スペクトルを取得し、
 e)前記分光スペクトルの光強度分布に基づき前記被測定物から発せられる光の波長毎の振幅と複屈折位相差を取得することを特徴とする。
 本発明に係る光学特性測定装置及び方法によれば、直線偏光が入射された被測定物から発せられる光は、分割光学系によって第1偏光板及び第2偏光板に導かれ、該第1偏光板及び第2偏光板を透過した後、第1偏光成分及び第2偏光成分となって検光子に入射する。検光子を透過した光は、結像光学系によって同一点又は同一直線上に導かれて干渉像を形成する。このとき、第1偏光成分と第2偏光成分の間の位相差が時間的あるいは空間的に変化されるため、検出部で検出される干渉光の強度が変化し、インターフェログラムに似た合成波形が取得される。処理部によってこの合成波形をフーリエ変換すると、前記被測定物から発せられる光の波長毎の振幅と波長毎の複屈折位相差が得られるため、被測定物のフーリエ分光特性と複屈折性を同時に求めることができる。
 なお、2つの光が同一の「点」に導かれて干渉する場合は、厳密には「干渉像」ではなく「干渉光」であるが、ここでは、2つの光が干渉することにより形成されるものを全て「干渉像」と呼ぶこととする。
 また、本発明によれば、直線偏光が入射された被測定物から発せられる光が透過光及び反射光のいずれであっても、当該光を使って被測定物のフーリエ分光特性と複屈折率性を同時に求めることができる。従って、光学素子、高分子フィルムといった比較的形状が単純な製品はもちろん、形状が複雑な物質、及び眼の網膜といった生体膜も被測定物となりうるため、幅広い分野で利用できる。
 ところで、従来のフーリエ変換型赤外分光法(FTIR:Fourier Transform Infrared Spectroscopy)では、マイケルソン干渉計を用いて被測定物から発せられた光を2つに分離し、これら2つに分離された光を共通の光路に導いて干渉させ、その干渉光を検出器で検出する。2つに分離された光は共通光路上で干渉するため、検出器の受光面には、被測定物の様々な位置(深度)から発せられた光の干渉光が混在することになる。
 これに対して本発明では、被測定物から発せられた光を分割光学系によって第1偏光成分と第2偏光成分に分割し、これら偏光成分を別々の光路で結像光学系に向かわせた後、該結像光学系によって同一点に導いて干渉させる。合焦面から発せられた光のみが、結像光学系の結像面上で干渉するため、本発明では、結像光学系の結像面上に検出部の受光面を位置させることにより、被測定物のうち合焦面に相当する部分、つまり、被測定物内の特定の深度から発せられた光の干渉光のみを検出部で検出することができ、雑音の少ない明瞭な干渉像を得ることができる。
本発明の実施例1に係る光学特性測定装置の全体構成及び光学素子の配置を示す概略図。 光学特性測定装置の概略的な全体構成を示す図。 偏光子、第1偏光板及び第2偏光板、検光子の偏光方向を説明するための図。 実施例1に係る光学特性測定装置の測定原理を説明するための図であって、直線偏光成分とそれをx方向とy方向の直交成分にベクトル分解した電界成分を示す図(a)及びこれら直線偏光成分、x、y方向の電界成分を光の進行方向から見た図(b)。 x方向とy方向の電界成分の間にλ/4の位相差があるときの合成ベクトルを示す図(a)及び、これらx、y方向の電界成分と合成ベクトルを光の進行方向から見た図(b)。 x方向とy方向の電界成分の間にλ/2の位相差があるときの合成ベクトルを示す図(a)及び、これらx、y方向の電界成分と合成ベクトルを光の進行方向から見た図(b)。 x方向とy方向の電界成分の間に測定対象により与えられた未知の複屈折位相差(リタデーション)を打ち消す位相差を与えたときの合成ベクトルを示す図(a)及び、これらx、y方向の電界成分と合成ベクトルを光の進行方向から見た図(b)。 位相シフト量と結像強度の関係を示す図。 多波長光を照射したときの位相シフト量と結増強度との関係を示す図。 多波長光の結増強度の合成波形図(a)とそれをフーリエ変換して得られたスペクトルの波形図(b)及びリタデーション(複屈折位相差)を示す図。 石材の斜方照明型干渉計の観察画像。 石材のスペクトルを表すグラフ。 石材のリタデーション量と波長との関係を示すグラフ。 特定の波長範囲における石材の強度分布と位相分布を表す図。 本発明の実施例2に係る光学特性測定装置の概略的な全体構成を示す図。 実施例2に係る光学特性測定装置のうち測定対象から結像面までの光学素子の配置を示す図。 実施例2において結像レンズにより測定光が受光面に集光される様子を示す側面図。 実施例2において結像レンズにより測定光が受光面に集光される様子を示す上面図。 本発明の実施例3に係る光学特性測定装置の概略的な全体構成を示す図。 実施例3における結像レンズの斜視図。 実施例3における基準光束と傾斜光束の干渉像を示す図。 本発明の実施例4に係る光学特性測定装置の概略的な全体構成を示す図。
 以下、本発明のいくつかの具体的な実施例について図面を参照して説明する。
 図1及び図2は実施例1に係る光学特性測定装置を示す。これらの図に示すように、実施例1に係る光学特性測定装置1は、光源3、偏光子5、対物レンズ7、第1偏光板9及び第2偏光板11、位相シフター13、検光子15、結像レンズ17、検出器19を備えている。本実施例では、対物レンズ7、第1偏光板9、及び第2偏光板11が分割光学系を構成し、結像レンズ17が結像光学系を構成する。また、位相シフター13が位相差付与手段として機能する。
 前記対物レンズ7は、レンズ駆動機構21によって光軸方向に移動可能に構成されている。レンズ駆動機構21は、対物レンズ7の合焦位置を走査するためのものであり合焦位置変更手段に相当する。前記レンズ駆動機構21は、例えばピエゾ素子により構成することができる。
 偏光子5は、光源3から出射される光の光路上に配置されており、当該光から特定の方向の直線偏光成分のみを抽出して被測定物である試料Sに照射する。試料Sに光が照射されることによって、当該試料Sを透過してきた光(以下、「測定光」ともいう)は、対物レンズ7に入射し、平行光束へ変換される。
 なお、図1及び図2には、試料Sを透過した光を測定する透過型の光学特性測定装置1を示したが、試料Sの内部から反射してきた光を測定する反射型の光学特性測定装置でもよい。試料を透過してきた光、及び、試料の内部で反射してきた光は、いずれも試料中の成分の複屈折性と吸光特性を有するからである。
 また、対物レンズ7を透過した後の光束は完全な平行光束である必要はない。後述するように、測定光を2分割あるいはそれ以上に分割できる程度に広げることができればよい。ただし、平行光束でない場合は、後述の位相シフト量に応じて生じる位相差量に誤差を生じ易い。従って、より高い測定精度を得るためにはできるだけ平行光束とすることが望ましい。
 第1偏光板9及び第2偏光板11はいずれも対物レンズ7を透過してきた平行光束の光路上に例えば上下に並んで配置されている。対物レンズ7を透過してきた平行光束は第1偏光板9及び第2偏光板11を経て位相シフター13に到達する。
 図3に示すように、第1偏光板9及び第2偏光板11は、その偏光方向が偏光子5を透過してきた直線偏光成分の電界ベクトルの振動方向に対して45°傾くように、且つ、第1偏光板9の偏光方向と第2偏光板11の偏光方向が互いに直交するように設置される。以下の説明では、第1偏光板9の偏光方向をx方向、第2偏光板11の偏光方向をy方向ともいう。また、第1偏光板9を透過した光を第1偏光、第2偏光板11を透過した光を第2偏光という。
 位相シフター13は、矩形板状の可動ミラー部131、その下部に配置された矩形板状の固定ミラー部132、可動ミラー部131及び固定ミラー部132を保持する保持部133及び134、可動ミラー部131の保持部133を移動する駆動ステージ135を備えて構成されている。第1偏光板9を透過した第1偏光は可動ミラー部131に入射し、第2偏光板11を透過した第2偏光は固定ミラー部132に入射する。可動ミラー部131及び固定ミラー部132の表面(反射面)は光学的に平坦で且つ本装置1が測定対象とする光の波長帯域を反射可能な光学鏡面となっている。また、可動ミラー部131及び固定ミラー部132の反射面はほぼ同じ大きさを有している。
 なお、以下の説明では、第1偏光板9から可動ミラー部131の反射面に到達して反射され検光子15に至る光束を可動光束、第2偏光板11から固定ミラー部132の反射面に到達して反射され検光子15に至る光束を固定光束ともいう。
 駆動ステージ135は、例えば静電容量センサーを具備する圧電素子から構成されており、制御部25からの制御信号を受けて保持部133を矢印A方向に移動させる。これにより、可動ミラー部131は光の波長に応じた精度で矢印A方向に移動する。この結果、可動光束と固定光束の間に光路長差が生じ、これら2光束間に相対的な位相変化が与えられる。従って、本実施例では、位相シフター13が光路長差伸縮手段に相当し、可動ミラー部131及び固定ミラー部132がそれぞれ第1反射部及び第2反射部に相当する。分光測定能力にもよるが、例えば可視光領域では10nm程度の高精度な位置制御が必要となる。
 また、位相シフター13は、対物レンズ7からの平行光束の光軸に対して可動ミラー部131及び固定ミラー部132の反射面が45°傾くように配置されている。駆動ステージ135は、可動ミラー部131の反射面の光軸に対する傾きを45°に維持した状態で当該可動ミラー部131を移動する。このような構成により、可動ミラー部131の光軸方向の移動量は、駆動ステージ135の移動量の√2となる。また、固定光束と可動光束の2光束間の相対的な位相変化を与える光路長差は、可動ミラー部131の光軸方向の移動量の2倍となる。
 このように可動ミラー部131及び固定ミラー部132を斜めに配置すれば、光線を分岐するためのビームスプリッタが不要となるため、物体光の利用効率を高くすることができる。
 検光子15は、偏光子5と同じ方向の直線偏光成分を透過する、いわゆるオープンニコルの状態で設置されている。従って、試料Sが複屈折性を有しない場合は、位相シフト動作を行わなければ光源3から偏光子5を経て測定対象を透過した直線偏光成分はそのまま結像レンズ17に到達する。結像レンズ17の結像面となる位置に検出器19の受光面が位置しており、結像レンズ17に到達した直線偏光成分は検出器19の受光面の同一点上に集光する。なお、検光子15は偏光子5に対する偏光抽出角が45°となるように設置されていても良い。この場合、検光子15の偏光抽出角の向きはどちらでも良い。検光子15をこのように設置した場合、試料Sが複屈折性を有しない場合には偏光子5を経て測定対象を透過した直線偏光成分は検光子15を通過しないが、試料Sの複屈折性によって45°回転された直線偏光成分は検光子15を通過する。
 検出器19は例えば二次元CCDカメラから構成されており、その検出信号は処理部23に入力されて処理される。また、処理部23、レンズ駆動機構21、駆動ステージ135等は制御部25によって制御される。
 ここで、本実施例に係る光学特性測定装置1の測定原理について図4~図10を用いて説明する。図4(a)、(b)中、x軸は第1偏光板9の偏光方向を、y軸は第2偏光板11の偏光方向を示す。また、z軸は、x軸及びy軸に直交しており光の進行方向を示す。図4(a)、(b)中、実線Lで示す斜め方向の振動が、観察される直線偏光、つまり、偏光子5を経て試料Sに照射される直線偏光成分の電界ベクトルの振動である。進行方向から眺めると、斜め45°の方向に電界成分が直線的に振動することから直線偏光と呼ばれる。これを、x方向とy方向の直交成分にベクトル分解して考える。つまり、二点鎖線Lxで示す電界成分と一点鎖線Lyで示す電界成分が同期して振動しており、その合成ベクトルとして、実線Lの直線偏光が観察されると考える。
 物質の複屈折性により、例えばx方向とy方向の電界振動の位相差がλ/4であるとする。この場合、図5(a)に示すように、T1の時点では、y方向ベクトル(一点鎖線Ly)は節であることから、その合成ベクトルはx方向成分(二点鎖線Lx)のみで決定される。T2の時点では、逆にx方向成分(二点鎖線Lx)が節となるため、y方向成分(一点鎖線Ly)のみにより合成ベクトルが決まる。このように、直交分解したベクトル成分のリタデーションがλ/4の場合、合成ベクトル(実線L1~L4)は、進行方向からみて回転する、いわゆる円偏光になる(図5(b)参照)。
 一方、図6(a)に示すように、x方向とy方向の電界振動の位相差がλ/2の場合、その合成ベクトルは、もとの直線偏光と直交する方向の直線偏光(図6(b)の点線)になる。このとき、偏光子5に対して検光子15がオープンニコルの状態で設置されている場合、合成ベクトルは検光子15を透過することができない。
 図7に示すように、試料Sの有する複屈折性により未知のリタデーションが直交する2方向の電界ベクトル成分Lx、Lyに付加されたとする。このような2方向の電界成分に対して試料Sにより与えられたリタデーションを打ち消す位相差を与える。図7では試料Sによりリタデーションが与えられた電界ベクトル成分をLx、Lyとし、当該リタデーションを打ち消す位相差が与えられた電界ベクトル成分をLx、Ly'とする。すると、リタデーションを打ち消す位相差を与えられた電界ベクトル成分LxとLy'の合成ベクトルLは、試料Sに照射された直線偏光と同様の直線偏光に戻る。
 本実施例では、位相シフター13により、第1偏光板9を透過した第1偏光と第2偏光板11を透過した第2偏光の間に任意の位相差を与えることができる。そこで、可動ミラー部131を徐々に移動させて第1偏光と第2偏光の間の光路長の差を連続的に且つ時間的に変化させ、両者の間の位相差を変化させると、光源3からの光が単色光の場合、偏光子5に対してオープンニコルで配置された検光子15を透過する結像強度は、図8に示すようにリタデーションを打ち消す位相差量を与えた時点で最も強くなる。その位相差量に更に位相差量λ/2を与えると、偏光子5から試料Sに照射される直線偏光の方向と直交する方向の直線偏光になるため検光子15を透過できなくなり、結像強度は最も小さくなる。更に位相差量λ/2を与えて位相差が1波長(λ)になると、再び偏光子5から試料Sに照射される直線偏光と同じ方向の直線偏光になるため、結像強度が最も強くなる。このように、第1偏光と第2偏光の間の位相差量が1波長となるごとに明暗が繰り返される正弦波状の結像強度変化を示すことになる。多波長の光を照射すると、波長毎のリタデーション量の違いと、波長の違いが図9のように重なり合う。
 この結果、図10(a)に示すように、フーリエ分光のインターフェログラムと似た、合成波形を観察することができる。一般的なフーリエ分光のインターフェログラムは、複屈折性が反映されないことから、位相差量が0の位置において全ての波長の光が強め合う波形になる。一方、本実施例の場合、波長毎にリタデーションが異なれば、図10(a)に示すように、明確なピーク位置を観察できない合成波形になる。しかし、この合成波形は多様な周波数の正弦波形の重なりにより形成されている波形であることから、処理部23にて数学的にフーリエ変換することにより、波長毎の振幅と位相差量を同時に解析的に得ることができる。フーリエ変換により求められる振幅項から相対強度を算出すれば、フーリエ分光と同様に、波長毎の相対強度である分光特性を取得することができる。また、フーリエ変換により算出される位相差項からは波長毎のリタデーションを取得することができる。つまり、分光特性と複屈折性を同時に測定することができる。
 本実施例では、光学系が結像光学系であるため、分光特性及び複屈折性の2次元測定が可能となる。また、レンズ駆動機構21によって対物レンズ7の合焦位置を深さ方向に走査することにより、任意の深さから反射してくる物体光のリタデーションを求めることができる。リタデーションは、複屈折率に物体光の経路の長さを積算した値であることから、物体光が反射してくる深さが分かれば、リタデーションから複屈折率を算出することができる。
 図1に示した光学特性測定装置1の光学系を斜方照明光学系に代えて、花崗岩からなる石材の分光特性を測定した結果を図11~図14に示す。垂直落射照明光学系に比べると斜方照明光学系を用いて撮影される光量は著しく減退するが、図11に示すように、部分的に明るい箇所(記号P1~P3で示す)が確認された。観察に用いた石材は表面が鏡面状に研磨されていることから、これらの明るい箇所P1~P3が、石材の内部からの拡散反射成分が観察された箇所であると思われる。
 そこで、図11に示した3箇所P1~P3の分光データと位相データを求めた。その結果を図12及び図13に示す。図12は横軸を波長(nm)、縦軸を強度とするスペクトルを示し、図13は横軸を波長(nm)、縦軸を位相差(deg.)とするグラフで、レターデーション量をプロットしたものである。図12に示すように、P1~P3の3箇所における発光強度には大きな差があるが、どの箇所でも光源の輝線スペクトルを確認できた。
 一方、図13に示すように、レターデーション量は、光源スペクトルのピーク波長以外では大きく変化し、ピーク波長(540~560nm)付近では、比較的安定していた。ピーク波長以外でリタデーション量が大きく変化している理由は、発光強度が非常に低いときの位相計測が安定しないためと考えられる。なお、P2及びP3の箇所では、波長700nm近辺に特徴的な反射強度が観察された。
 次に、スペクトルに特徴のある波長範囲540~560nm、570~590nm、670~720nmの強度分布と位相分布を図14に示す。図14から、波長範囲540~560nmにおいて特徴的な位相分布が測定され、波長範囲670~720nmにおいて特徴的な強度分布が測定された。これにより、斜方照明法を用いた分光特性測定装置1においても、石材の内部反射成分の分光特性と複屈折特性の両方を同時に測定可能であることが確認された。
 図15~図18は実施例2に係る光学特性測定装置1を示している。実施例2に係る光学特性測定装置1は、位相シフター及び結像光学系の構成が実施例1と大きく異なっている。尚、図12では、便宜上、結像光学系を構成する結像レンズ35の前段に配置される検光子15の図示を省略している。
 実施例2では、光源3から出射され、偏光子5を透過した直線偏光成分は、試料Sの線状の測定領域S1に照射される。試料Sの測定領域S1に照射され、該測定領域S1を透過した光線は対物レンズ7に入射し、平行光束に変換された後、第1偏光板9及び第2偏光板11を経て位相シフター31に到達する。
 位相シフター31は、基準ミラー部32、傾斜ミラー部33、これらミラー部32,33を保持する保持部(図示せず)等を備えて構成されている。基準ミラー部32及び傾斜ミラー部33の表面(反射面)は光学的に平坦で且つ本装置1が測定対象とする光の波長帯域を反射可能な矩形状の光学鏡面となっている。また、基準ミラー部32及び傾斜ミラー部33の反射面はほぼ同じ大きさを有している。
 物体のテクスチャーがある一方向に偏っている場合は、物体を光学的に構成する各輝点から生じる光(物体光)は特定の方向にのみ向かう。このため、位相シフター31に到達する平行光束の光量分布に偏りが生じ、結像面である検出器19の受光面19a上に一様な光量分布が得られないおそれがある。一方、物体のテクスチャーが比較的ランダムな場合は、位相シフター31に一様な光量分布で物体光が到達する。そこで、以下の説明では、試料Sのテクスチャーが比較的ランダムであることとし、位相シフター31には一様な光量分布で光束が到達し、基準ミラー部32及び傾斜ミラー部33の反射面にはそれぞれ同量の光束が照射されることとする。
 本実施例では、対物レンズ7、第1偏光板9及び第2偏光板11が分割光学系に相当し、位相シフター31が位相変化付与手段に相当する。
 なお、以下の説明では、第1偏光板9から位相シフター31の基準ミラー部32の反射面に到達して反射され、検光子15に至る光束を基準光束、第2偏光板11から位相シフター31の傾斜ミラー部33の反射面に到達して反射され、検光子15に至る光束を傾斜光束ともいう。
 前記基準ミラー部32は、対物レンズ7からの平行光束の光軸に対して反射面が例えば45°傾くように配置されている。また、傾斜ミラー部33は、対物レンズ7からの平行光束の光軸に対して反射面が(45+Δθ)°傾くように配置されている。このように基準ミラー部32及び傾斜ミラー部33を対物レンズ7からの平行光束に対して斜めに配置すれば、光束を分岐するためのビームスプリッタが不要となる。本実施例では対物レンズ7を用いているが、反射光学系でこの機能を構成することもできる。このようにすれば、分散の影響が全く無くなることから、広帯域の分光特性を計測できる。
 また、基準ミラー部32に対する傾斜ミラー部33の傾斜角度、つまりΔθは結像光学系の倍率、測定波長範囲、波数分解能等の光学条件に基づき設定される。例えば、測定波長を可視領域から近赤外領域(400nm~1000nm)とした場合、波長分解能:λ2/Δλ=5nmを得るためには、中心波長λ=700nmであることから、位相シフト量Δλ=100μmになる。検出器19(受光素子)としてCCDカメラを用いた場合、およそ1ラインの画素数は500画素程度である。このことから、1ラインあたりの位相シフト量が100μmの場合、1画素毎の位相差量は200nmになり、サンプリング定理から波長400nmまで測定可能となる。上述したように、測定波長は可視域から近赤外領域(400nm~1000nm)であるから、1画素毎の位相差量が200nmであれば、短波長側のサンプリング定理を満たす。
 また、一般的なCCDカメラの1ラインあたりの位相シフト量が100μmであることから、その半分の50μm(100μm÷2)を基準ミラー部32と傾斜ミラー部33の最大幅とすればよく、例えば各ミラー部32,33の、光路方向(各ミラー部の傾斜方向)に沿う長さが約3mmのとき、傾斜角度は約1deg.となる。
 また、特に、中赤外光などの長波長領域においては、インターフェログラムの干渉強度変化だけでなく、干渉強度変化の包絡線を長ストロークの位相シフト領域において取得しなくてはならない。これは、フーリエ分光の原理として、波数分解能を高くするためには位相シフト量を長くしなくてはならないことからも知られている。このように、長ストロークに渡ってインターフェログラムの包絡線を検出するためには、傾斜ミラー部33に大きな傾斜角を設けなくてはならない。この場合、インターフェログラムの干渉強度変化を検出するためと、包絡線を検出するための2段階程度の傾き切り替え機構を設ければよい。中赤外領域で包絡線を計測する場合、位相シフト量が例えば50mm程度が必要になることから、光路方向に沿う長さを例えば100mmに長くして2.9deg.の傾きにすればよい。
 位相シフター31に到達し、基準ミラー部32及び傾斜ミラー部33の反射面で反射された基準光束及び傾斜光束は、それぞれ検光子15を透過した後、結像レンズ35に入射する。本実施例では、結像レンズ35はシリンドリカルレンズから成り、その凸面部が位相シフター31側を向き、平面部が検出器19の受光面19a側を向くように配置されている。検出器19の受光面19aは結像レンズ35の結像面に位置するため、測定領域S1の一輝点から発せられ、基準ミラー部32及び傾斜ミラー部33の反射面で反射された後、結像レンズ35に入射した基準光束及び傾斜光束は、該結像レンズ35により一方向にのみ収束され、検出器19の受光面19a上の同一直線上に集光することにより結像する。なお、本実施例では、結像レンズ35は、その凸面部の曲率を有する方向(図12に矢印Bで示す方向)が測定領域S1の方向と平行になるように配置されているものとする。このような配置により、結像レンズ35に入射した基準光束及び傾斜光束は、受光面19a上であって測定領域S1と直交する直線上に集光する。
 基準ミラー部32の反射面と傾斜ミラー部33の反射面は、検出器19(二次元CCDカメラ)の受光面19a(結像面)で2つの光束の集光位置がずれない程度の精度で、相対的に平行な面となるように構成されている。
 本実施例の測定原理について説明する。ここでは、基準光束が結像レンズ35によって検出器19の受光面19aで位相が揃った波として一直線上に集光する光学モデルに基づいて説明する。このとき、傾斜光束はその位相が基準光束の位相と徐々にずれた波として受光面19aに一直線上に集光する。
 前述したように、試料Sの測定領域S1を透過した光束は、対物レンズ7、第1偏光板9及び第2偏光板11を経て位相シフター31の基準ミラー部32及び傾斜ミラー部33の表面に到達する。このとき、基準ミラー部32の表面及び傾斜ミラー部33の表面に光束が上下に二分割されて到達する。なお、基準ミラー部32の表面に到達した光束即ち基準光束と、傾斜ミラー部33の表面に到達した光束、即ち傾斜光束の光量がほぼ等しくなるように、両ミラー部32,33の表面の面積は設定されているが、基準光束及び傾斜光束の一方或いは両方の光路に減光フィルタを設置して相対的な光量差を調整し、光量の均等化を行うことも可能である。
 基準ミラー部32及び傾斜ミラー部33の表面で反射された光束は、それぞれ基準光束及び傾斜光束として結像レンズ35に入射し、検出器19の受光面19aにおいて同一直線上に集光し、干渉像を形成する。このとき、基準光束は結像レンズ35を経て結像面である受光面19a上で位相が揃った波として集光するように構成されているため、図14に示すように、基準光束の波面は検出器19の受光面19aと平行な状態となる。一方、傾斜光束は、その光軸が基準光束の光軸に対して2×Δθ°傾いた状態で結像レンズ35に入射するため、傾斜光束は、その波面が受光面19aに対してやや傾いた状態となる。
 このとき、基準光束の波面に対して傾斜光束の波面が傾斜していることから、基準光束の光と傾斜光束の光の干渉領域では、両光束の間の光路長差が徐々に変化する(図14では、右側から左側に向かって徐々に大きくなる)ことになる。つまり、実施例1では可動ミラー部131を徐々に移動させることで第1偏光と第2偏光との間に連続的に変化する位相差を与えているが、本実施例では、基準ミラー部32に対して傾斜ミラー部33が傾斜した状態で両ミラー部32,33を配置することで第1偏光と第2偏光との間に連続的な位相差変化を与えている。しかも、実施例1では時間的に位相差が変化するが、実施例2では空間的に位相差が変化することになる。
 測定領域S1から発せられる光束には様々な波長の光が含まれる(且つ各波長の光の初期位相が必ずしも揃っていない)ことから、干渉領域の基準光束と傾斜光束の間の光路長差が連続的に変化することにより、また、波長毎のリタデーションの違いから、図10(a)に示すようなインターフェログラムと似た合成波形を観察することができる。
 例えば、図16に示すように、測定領域S1の輝点(測定点)a1から発せられた光束は、受光面19a(結像面)上の一直線上に集光することで線状の干渉像b1が得られ、輝点(測定点)a2から発せられた光束は、受光面19a上の一直線上に集光することで線状の干渉像b2が得られる。各干渉像b1、b2の合成波形は、それぞれ干渉像に沿って並ぶ複数の画素の受光強度から得られる。従って、実施例2では、図10(a)において、横軸は線状の干渉像に沿って並ぶ検出器19の画素番号を、縦軸は結像強度(各画素の受光強度)を示すことになる。この画素番号を、画素ごとの位相シフト量により換算することにより、横軸が位相シフト量である合成波形が得られる。
 処理部23は、この合成波形をフーリエ変換することにより、測定領域S1の各輝点から発せられた光の波長毎の相対強度である分光特性及び波長毎のリタデーションを取得することができる。検出器19の全ての画素を用いて分光特性を得ることができれば、測定領域S1の1次元分光計測が可能となる。また、直線偏光が照射される測定領域S1を走査すれば、被測定物Sの2次元分光計測が可能となる。さらに、測定領域S1を走査すると共に、対物レンズ7を移動させて合焦面(合焦位置を含む面)を走査することにより3次元分光計測が可能となる。
 図19~図21は本発明の実施例3を示している。図19及び図20に示すように、本実施例の分光特性測定装置1では、結像レンズ35が、基準ミラー部32で反射された基準光束が入射する基準レンズ部35aと傾斜ミラー部33で反射された傾斜光束が入射する傾斜レンズ部35bとに分割されている。基準レンズ部35aと傾斜レンズ部35bは、実施例2の結像レンズ35を2分割した形状を有しており、基準光束及び傾斜光束の一方の光軸に対する他方の光軸の傾きを維持したまま、検出器19の受光面19a(結像面)上に形成される線状の干渉像に沿って他方の光軸がずれるようにそれぞれ配置されている。つまり、これら基準レンズ部35a及び傾斜レンズ部35bは結像光学系及び光軸位置変更手段として機能する。
 このような構成により、図21に示すように、受光面19a上において基準光束の光と傾斜光束の光が重複する領域、つまり干渉領域を大きくすることができる。
 図22は本発明の実施例4を示している。この実施例4では、実施例2の結像面の位置に光強度を単色光に変換する、例えば蛍光板などの単色光変換手段41を設置し、これを物体面とした位置にシリンドリカルレンズ43を配置している。そして、前記シリンドリカルレンズ43の光学的フーリエ変換面に検出器19の受光面19aが位置するように該検出器19を配置している。シリンドリカルレンズ43はその曲率を有しない方向が、線状の干渉像が延びる方向と直交するように配置されている。
 この実施例4では、結像レンズ35を透過した基準光束と傾斜光束の干渉像が、単色光変換手段41により空間的な明るさ強度分布に変換される。そして、シリンドリカルレンズ43によって光学的にフーリエ変換され、結像面上に分光スペクトルがリアルタイムに形成される。検出器19の受光面19aがシリンドリカルレンズ43のフーリエ変換面上にあるため、前記分光スペクトルの光強度分布を光学的に求めることにより、実施例2で得られた合成波形を数学的にフーリエ変換した場合と同じ分光特性及び複屈折性が得られる。すなわち、本実施例ではフーリエ変換処理をしなくても直接的に分光特性及び複屈折性が得られるので、より短時間に分光特性を得ることができる。なお、この実施例4では、単色光変換手段41、シリンドリカルレンズ43が分光光学系を構成する。
 尚、本発明は上記した実施例に限定されるものではなく、適宜の変更が可能である。例えば、実施例1において結像レンズ17の前に配置した検光子15を当該結像レンズ17の後に配置しても良い。ただし、結像レンズ17の後に検光子15を配置すると結像特性が劣化するため、実施例1のように結像レンズの前に配置することが好ましい。
1…光学特性測定装置
3…光源
5…偏光子
7…対物レンズ
9…第1偏光板
11…第2偏光板
13、31…位相シフター
15…検光子
17…結像レンズ
19…検出器
 19a…受光面
21…レンズ駆動機構
23…処理部
25…制御部
32…基準ミラー部
33…傾斜ミラー部
35…結像レンズ
 35a…基準レンズ部
 35b…傾斜レンズ部
41…単色光変換手段
43…シリンドリカルレンズ
131…可動ミラー部
132…固定ミラー部

Claims (9)

  1.  a)直線偏光が入射された被測定物から発せられる光を第1偏光板及び第2偏光板に導く分割光学系と、
     b)前記第1偏光板を透過した第1偏光成分と前記第2偏光板を透過した第2偏光成分の合成成分のうち、所定の偏光方向の光を透過させる検光子と、
     c)前記検光子を透過した光を同一点に導き干渉像を形成する結像光学系と、
     d)前記干渉像の光強度を検出する検出部と、
     e)前記第1偏光板及び第2偏光板から前記検光子に向かう第1偏光成分及び第2偏光成分の光路長の差を変化させることにより当該第1偏光成分と第2偏光成分の間の位相差を変化させる位相差付与手段と、
     f)前記位相差の変化に伴い前記検出部で検出される光強度の変化のデータをフーリエ変換することにより前記被測定物から発せられる光の波長毎の振幅と複屈折位相差を取得する処理部と
     を備えることを特徴とする光学特性測定装置。
  2.  a)直線偏光が入射された被測定物から発せられる光を第1偏光板及び第2偏光板に導く分割光学系と、
     b)前記第1偏光板を透過した第1偏光成分と前記第2偏光板を透過した第2偏光成分の合成成分のうち所定の偏光方向の光を透過させる検光子と、
     c)前記検光子を透過した光を、前記第1偏光成分及び第2偏光成分の光軸と異なる向きに延びる同一直線上に集光させて線状の干渉像を形成する結像光学系と、
     d)前記第1偏光板及び第2偏光板から前記検光子に向かう第1偏光成分及び第2偏光成分の間に連続的な光路長差分布を与えることにより当該第1偏光成分と第2偏光成分の間に連続的な位相変化を与える位相変化付与手段と、
     e)前記線状の干渉像の該干渉像の延びる方向に沿った光強度分布を検出する検出部と、
     f)前記検出部で検出される前記干渉像の光強度分布を示すデータをフーリエ変換することにより前記被測定物から発せられる光の波長毎の振幅と複屈折位相差を取得する処理部と
     を備えることを特徴とする光学特性測定装置。
  3.  a)直線偏光が入射された被測定物から発せられる光を第1偏光板及び第2偏光板に導く分割光学系と、
     b)前記第1偏光板を透過した第1偏光成分と前記第2偏光板を透過した第2偏光成分の合成成分のうち、所定の偏光方向の光を透過させる検光子と、
     c)前記検光子を透過した光を、前記第1偏光成分及び第2偏光成分の光軸と異なる向きに延びる同一直線上に集光させて線状の干渉像を形成する結像光学系と、
     d)前記第1偏光板及び第2偏光板から前記検光子に向かう第1偏光成分及び第2偏光成分の間に連続的な光路長差分布を与えることにより当該第1偏光成分と第2偏光成分の間に連続的な位相変化を与える位相変化付与手段と、
     e)前記線状の干渉像を波長分解して分光スペクトルを形成する分光光学系と、
     f)前記分光スペクトルの光強度分布を検出する検出部と、
     g)前記検出部で検出される光強度分布から前記被測定物から発せられる光の波長毎の振幅と複屈折位相差を取得する処理部と
     を備えることを特徴とする光学特性測定装置。
  4.  第1偏光成分と第2偏光成分の偏光方向が直交し、且つ前記被測定物に入射する直線偏光の電界成分に対して第1偏光成分と第2偏光成分の偏光方向が45°傾くように、第1偏光板及び第2偏光板が配置されていることを特徴とする請求項1~3のいずれかに記載の光学特性測定装置。
  5.  前記分割光学系が、前記被測定物から発せられた光を平行光線化して第1偏光板及び第2偏光板に導く対物レンズを備え、
     前記処理部は、前記被測定物のうち前記対物レンズの合焦点から発せられた光の波長毎の振幅と複屈折位相差を求めることを特徴とする請求項1~4のいずれかに記載の光学特性測定装置。
  6.  前記被測定物に対する前記対物レンズの合焦位置を相対的に変更する合焦位置変更手段を備えることを特徴とする請求項5に記載の光学特性測定装置。
  7.  a)直線偏光を被測定物に入射させ、
     b)前記直線偏光が入射された被測定物から発せられる光を分割光学系によって第1偏光板及び第2偏光板にそれぞれ導き、
     c)前記第1偏光板を透過した第1偏光成分と前記第2偏光板を透過した第2偏光成分を、該第1偏光成分と該第2偏光成分の光路長の差を変化させつつ検光子を介して結像光学系に導くと共に、該結像光学系によって同一点に集光させて干渉像を形成させ、
     d)前記干渉像の光強度の変化を示すデータをフーリエ変換することにより前記被測定物から発せられる光の波長毎の振幅と複屈折位相差を取得することを特徴とする光学特性測定方法。
  8.  a)直線偏光を被測定物に入射させ、
     b)前記直線偏光が入射された被測定物から発せられる光を分割光学系によって第1偏光板と第2偏光板にそれぞれ導き、
     c)前記第1偏光板を透過した第1偏光成分と前記第2偏光板を透過した第2偏光成分を、該第1偏光成分と第2偏光成分の間に連続的な光路長差分布を付与しつつ検光子を介して結像光学系に導くと共に、該結像光学系によって同一直線上に集光させて線状の干渉像を形成させ、
     d)前記線状の干渉像の該干渉像が延びる方向に沿った光強度分布を示すデータをフーリエ変換することにより前記被測定物から発せられる光の波長毎の振幅と複屈折位相差を取得することを特徴とする光学特性測定方法。
  9.  a)直線偏光を被測定物に入射させ、
     b)前記直線偏光が入射された被測定物から発せられる光を分割光学系によって第1偏光板と第2偏光板にそれぞれ導き、
     c)前記第1偏光板を透過した第1偏光成分と前記第2偏光板を透過した第2偏光成分を、該第1偏光成分と第2偏光成分の間に連続的な光路長差分布を付与しつつ検光子を介して結像光学系に導くと共に、該結像光学系によって同一直線上に集光させて線状の干渉像を形成させ、
     d)前記線状の干渉像を分光光学系によって波長分解することにより分光スペクトルを取得し、
     e)前記分光スペクトルの光強度分布に基づき前記被測定物から発せられる光の波長毎の振幅と複屈折位相差を取得することを特徴とする光学特性測定方法。
PCT/JP2012/054940 2011-02-28 2012-02-28 光学特性測定装置及び光学特性測定方法 WO2012118079A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2013143824/28A RU2544876C1 (ru) 2011-02-28 2012-02-28 Устройство измерения оптических характеристик и способ измерения оптических характеристик
KR1020137025104A KR101590241B1 (ko) 2011-02-28 2012-02-28 광학특성 측정장치 및 광학특성 측정방법
CN201280010861.7A CN103403528B (zh) 2011-02-28 2012-02-28 光学特性测量装置以及光学特性测量方法
EP12752388.4A EP2682741B1 (en) 2011-02-28 2012-02-28 Optical characteristics measuring apparatus, and optical characteristics measuring method
JP2013502369A JP5721195B2 (ja) 2011-02-28 2012-02-28 光学特性測定装置及び光学特性測定方法
US14/001,810 US8830462B2 (en) 2011-02-28 2012-02-28 Optical characteristic measurement device and optical characteristic measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-043170 2011-02-28
JP2011043170 2011-02-28

Publications (1)

Publication Number Publication Date
WO2012118079A1 true WO2012118079A1 (ja) 2012-09-07

Family

ID=46758010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054940 WO2012118079A1 (ja) 2011-02-28 2012-02-28 光学特性測定装置及び光学特性測定方法

Country Status (7)

Country Link
US (1) US8830462B2 (ja)
EP (1) EP2682741B1 (ja)
JP (1) JP5721195B2 (ja)
KR (1) KR101590241B1 (ja)
CN (1) CN103403528B (ja)
RU (1) RU2544876C1 (ja)
WO (1) WO2012118079A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016049570A1 (en) * 2014-09-25 2016-03-31 Hinds Instruments, Inc. Unambiguous retardance measurement
JP2017512998A (ja) * 2014-03-24 2017-05-25 カール・ツァイス・エスエムティー・ゲーエムベーハー 偏光パラメータを測定するための測定装置
JP2017156245A (ja) * 2016-03-02 2017-09-07 国立大学法人 香川大学 分光測定装置
JP2017207447A (ja) * 2016-05-20 2017-11-24 アオイ電子株式会社 反射光検出装置及び反射光検出方法
JP2019215262A (ja) * 2018-06-13 2019-12-19 国立大学法人 香川大学 分光測定装置及び分光測定方法
CN113670852A (zh) * 2016-05-13 2021-11-19 苏州高迎检测技术有限公司 检查装置及检查方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5827507B2 (ja) * 2011-07-12 2015-12-02 国立大学法人宇都宮大学 偏光解析システム
US9291500B2 (en) 2014-01-29 2016-03-22 Raytheon Company Configurable combination spectrometer and polarizer
CN105874165B (zh) * 2014-03-07 2019-09-06 哈利伯顿能源服务公司 在多变量光学计算装置中使用偏振器的波长相关的光强调制
CN105511093B (zh) * 2015-06-18 2018-02-09 广州优视网络科技有限公司 3d成像方法及装置
EP3317651A1 (en) * 2015-06-30 2018-05-09 Corning Incorporated Interferometric roll-off measurement using a static fringe pattern
KR102436474B1 (ko) * 2015-08-07 2022-08-29 에스케이하이닉스 주식회사 반도체 패턴 계측 장치, 이를 이용한 반도체 패턴 계측 시스템 및 방법
US20170078540A1 (en) * 2015-09-02 2017-03-16 Sick Ag Camera for Recording Image Data From a Detection Zone
JP2017131550A (ja) * 2016-01-29 2017-08-03 キヤノン株式会社 画像処理装置及び画像処理方法
JP6830606B2 (ja) * 2016-09-26 2021-02-17 有限会社折原製作所 強化ガラスの応力測定装置、強化ガラスの応力測定方法、強化ガラスの製造方法
FR3063542A1 (fr) * 2017-03-01 2018-09-07 Maf Agrobotic Procede et dispositif d'analyse optique de fruits ou legumes et dispositif de tri automatique
KR102358353B1 (ko) 2017-04-25 2022-02-04 한국전자통신연구원 위상광학 이미지 획득 장치 및 방법
RU185308U1 (ru) * 2018-06-06 2018-11-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский государственный университет" (ФГБОУ ВО "ИГУ") Устройство позиционирования распыляющей системы
CN112567196B (zh) * 2018-09-03 2023-07-11 株式会社岛津制作所 干涉仪移动镜位置测定装置和傅里叶变换红外分光光谱仪
JP7206525B2 (ja) * 2019-05-31 2023-01-18 日本電信電話株式会社 画像処理装置、画像処理方法及びプログラム
CN110672550B (zh) * 2019-09-10 2021-11-19 中国科学院上海技术物理研究所 一种微区重要生物资源像谱分析仪
US11513058B2 (en) 2020-05-19 2022-11-29 Becton, Dickinson And Company Methods for modulating an intensity profile of a laser beam and systems for same
CN112557344B (zh) * 2020-11-30 2022-04-08 华中科技大学 一种双折射率的测定装置和测定方法
CN112433383B (zh) * 2020-12-21 2024-04-05 江西万骏光电有限公司 一种远红外光偏振态的转换装置及实现方法
JP2022125549A (ja) * 2021-02-17 2022-08-29 株式会社島津製作所 フーリエ変換赤外分光光度計
CN114384020B (zh) * 2022-01-20 2024-01-30 深圳铭毅智造科技有限公司 一种大视野显微成像方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141602A (ja) 1999-11-12 2001-05-25 Unie Opt:Kk 複屈折評価装置および複屈折評価方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1746264A1 (ru) * 1990-02-02 1992-07-07 Всесоюзный научно-исследовательский институт "Электронстандарт" Устройство дл контрол полупроводниковых материалов
DE4416298A1 (de) * 1994-05-09 1995-11-16 Abb Research Ltd Verfahren und Vorrichtung zur optischen Ermittlung einer physikalischen Größe
US5825492A (en) * 1996-04-26 1998-10-20 Jaton Systems Incorporated Method and apparatus for measuring retardation and birefringence
JPH09329424A (ja) * 1996-06-12 1997-12-22 Toyo Commun Equip Co Ltd 光学式膜厚測定方法および装置
RU2149382C1 (ru) * 1997-10-23 2000-05-20 Физико-технологический институт Российской академии наук Способ определения эллипсометрических параметров объекта (варианты)
US6052188A (en) * 1998-07-08 2000-04-18 Verity Instruments, Inc. Spectroscopic ellipsometer
JP2003247934A (ja) * 2002-02-25 2003-09-05 Sony Corp 複屈折測定方法及び複屈折測定装置
US7061613B1 (en) 2004-01-13 2006-06-13 Nanometrics Incorporated Polarizing beam splitter and dual detector calibration of metrology device having a spatial phase modulation
JP3855080B2 (ja) 2004-02-27 2006-12-06 株式会社新潟ティーエルオー 液晶素子の光学特性測定方法及び液晶素子の光学特性測定システム
JP2006214856A (ja) * 2005-02-03 2006-08-17 Canon Inc 測定装置及び方法
US20090033936A1 (en) * 2005-06-13 2009-02-05 National University Corporation Tokyo University Agriculture And Technology Optical characteristic measuring apparatus and optical characteristic measuring method
JP5078004B2 (ja) * 2007-06-15 2012-11-21 国立大学法人 香川大学 分光計測装置及び分光計測方法
JP5140451B2 (ja) 2008-02-05 2013-02-06 富士フイルム株式会社 複屈折測定方法及び装置並びにプログラム
CN101666626B (zh) * 2008-09-03 2012-02-29 睿励科学仪器(上海)有限公司 一种椭偏测量的方法及其装置
US8125641B2 (en) 2009-03-27 2012-02-28 N&K Technology, Inc. Method and apparatus for phase-compensated sensitivity-enhanced spectroscopy (PCSES)

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141602A (ja) 1999-11-12 2001-05-25 Unie Opt:Kk 複屈折評価装置および複屈折評価方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIROAKI KOBAYASHI ET AL.: "Henko Keisoku Gijutsu o Mochiita Sekizai no Hinshitsu Hyoka Shuho", CHINO MECHATRONICS WORKSHOP KOEN RONBUNSHU, 12 January 2011 (2011-01-12), XP008172422 *
TOMOHIRO URAKI ET AL.: "One Shot Jitsujikan Fourier Bunko Imaging Hoshiki no Teian", OPTICS & PHOTONICS JAPAN KOEN YOKOSHU, 8 November 2010 (2010-11-08), pages 84 - 85, XP008170256 *
TOSHITAKA WAKAYAMA ET AL.: "Bunko Kansho ni yoru Nijigen Fukukussetsu Bunsan Keisoku", JAPAN SOCIETY FOR LASER MICROSCOPY KOENKAI RONBUNSHU, 5 July 2002 (2002-07-05), pages 77 - 81, XP008172414 *
YUKITOSHI OTANI: "Polarimetry and interferometry", OPTRONICS, 9 August 2010 (2010-08-09), pages 111 - 116, XP008172421 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017512998A (ja) * 2014-03-24 2017-05-25 カール・ツァイス・エスエムティー・ゲーエムベーハー 偏光パラメータを測定するための測定装置
WO2016049570A1 (en) * 2014-09-25 2016-03-31 Hinds Instruments, Inc. Unambiguous retardance measurement
US9841372B2 (en) 2014-09-25 2017-12-12 Hinds Instruments, Inc. Unambiguous retardance measurement
JP2017156245A (ja) * 2016-03-02 2017-09-07 国立大学法人 香川大学 分光測定装置
WO2017150062A1 (ja) * 2016-03-02 2017-09-08 国立大学法人香川大学 分光測定装置
CN113670852A (zh) * 2016-05-13 2021-11-19 苏州高迎检测技术有限公司 检查装置及检查方法
JP2017207447A (ja) * 2016-05-20 2017-11-24 アオイ電子株式会社 反射光検出装置及び反射光検出方法
JP2019215262A (ja) * 2018-06-13 2019-12-19 国立大学法人 香川大学 分光測定装置及び分光測定方法
JP7182243B2 (ja) 2018-06-13 2022-12-02 国立大学法人 香川大学 分光測定装置及び分光測定方法

Also Published As

Publication number Publication date
CN103403528A (zh) 2013-11-20
US8830462B2 (en) 2014-09-09
EP2682741A4 (en) 2017-11-15
EP2682741B1 (en) 2019-02-20
KR101590241B1 (ko) 2016-01-29
EP2682741A1 (en) 2014-01-08
JPWO2012118079A1 (ja) 2014-07-07
RU2013143824A (ru) 2015-04-10
US20130335740A1 (en) 2013-12-19
CN103403528B (zh) 2015-05-13
RU2544876C1 (ru) 2015-03-20
KR20130132995A (ko) 2013-12-05
JP5721195B2 (ja) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5721195B2 (ja) 光学特性測定装置及び光学特性測定方法
US7483147B2 (en) Apparatus and method for measuring thickness and profile of transparent thin film using white-light interferometer
CN104040308B (zh) 用于光谱分析的光谱仪器和方法以及用于光学相干层析成像的系统
CN107430264B (zh) 用于试样的光片显微镜检测的方法和装置
JP5918658B2 (ja) 光学装置
US20080158550A1 (en) Spectral Imaging Camera and Applications
JP2008157710A (ja) 光コヒーレンストモグラフィー装置
US11493323B2 (en) Infrared-optical hybrid imaging technology for all-digital histopathology
EP3514599A1 (en) Spatial frequency reproducing method and optical distance measuring apparatus
JP2013517465A (ja) 小型干渉分光計
EP2653830A2 (en) Distance measurement system
US10274371B2 (en) Spectral imaging camera and applications
US8610900B2 (en) Apparatus for low coherence optical imaging
WO2021155363A1 (en) Method and apparatus for high performance wide field photothermal infrared spectroscopy and imaging
JPWO2020017017A1 (ja) 光計測装置および試料観察方法
JP7233536B2 (ja) 各々入力光フィールドの入力位相及び/又は入力振幅を測定する方法、干渉計及び信号処理装置
CN107923735B (zh) 用于推导物体表面的形貌的方法和设备
EP2743634A1 (en) Interference measuring apparatus and interference measuring method
US9924115B2 (en) Apparatus and method for three-dimensional infrared imaging of surfaces
JP3934131B2 (ja) 同軸型空間光干渉断層画像計測装置
US20110242649A1 (en) Wavefront measurement method, wavefront measurement apparatus, and microscope
JP2007093288A (ja) 光計測装置及び光計測方法
JPH09229861A (ja) 蛍光顕微鏡
KR101727832B1 (ko) 헤테로다인 간섭을 이용한 초고분해능 촬영 장치
JP2009079933A (ja) 大型サンプル測定用干渉計装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752388

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502369

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14001810

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137025104

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013143824

Country of ref document: RU

Kind code of ref document: A