KR20130132995A - 광학특성 측정장치 및 광학특성 측정방법 - Google Patents

광학특성 측정장치 및 광학특성 측정방법 Download PDF

Info

Publication number
KR20130132995A
KR20130132995A KR1020137025104A KR20137025104A KR20130132995A KR 20130132995 A KR20130132995 A KR 20130132995A KR 1020137025104 A KR1020137025104 A KR 1020137025104A KR 20137025104 A KR20137025104 A KR 20137025104A KR 20130132995 A KR20130132995 A KR 20130132995A
Authority
KR
South Korea
Prior art keywords
light
polarizing plate
component
polarizing
optical system
Prior art date
Application number
KR1020137025104A
Other languages
English (en)
Other versions
KR101590241B1 (ko
Inventor
이치로 이시마루
Original Assignee
고쿠리츠다이가쿠호우징 카가와다이가쿠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고쿠리츠다이가쿠호우징 카가와다이가쿠 filed Critical 고쿠리츠다이가쿠호우징 카가와다이가쿠
Publication of KR20130132995A publication Critical patent/KR20130132995A/ko
Application granted granted Critical
Publication of KR101590241B1 publication Critical patent/KR101590241B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0224Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using polarising or depolarising elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4535Devices with moving mirror

Abstract

편광자를 거쳐 시료(S)에 이른 직선편광은 시료(S)에 의해서 리타데이션이 부여된 후, 제1 편광판(9) 및 제2 편광판(11)을 거쳐 위상 쉬프터(13)의 가동 미러부(131) 및 고정 미러부(132)에 도달한다. 그리고, 이들 미러부에서 반사된 측정광은 검광자(15)를 거쳐 결상렌즈(17)에 의해 검출기(19)의 수광면에서 간섭상을 형성한다. 이 때, 가동 미러부(131)를 이동시키는 것에 의해 이 가동 미러부(131)에서 반사된 광속과 고정 미러부(132)에서 반사된 광속의 사이의 광로 길이차가 연속적으로 변화하기 때문에, 검출기(19)가 검출하는 간섭상의 결상강도는 연속적으로 변화하며, 인터페로그램과 유사한 합성파형을 취득할 수 있다. 이것을 푸리에 변환하는 것에 의해, 파장마다의 진폭과 파장마다의 복굴절 위상차를 얻을 수 있다.

Description

광학특성 측정장치 및 광학특성 측정방법 {OPTICAL CHARACTERISTICS MEASURING APPARATUS, AND OPTICAL CHARACTERISTICS MEASURING METHOD}
본 발명은 물질의 분광(分光)특성 및 편광(偏光)특성의 양쪽을 측정 가능한 광학특성 측정장치 및 방법에 관한 것이다.
종래부터, 물질의 광학특성을 측정하는 것에 의해 당해 물질중의 미지의 성분을 추정하는 방법이 알려져 있다. 예를 들면 특허문헌 1에는, 측정대상이 되는 물질에 광을 투과시켰을 때의 투과광강도로부터 복굴절(複屈折) 위상차(리타데이션(retardation))를 구하고, 이 복굴절 위상차로부터 물질 고유의 복굴절률을 산출하는 것에 의해 미지의 성분을 추정하는 방법이 개시되어 있다. 복굴절이란, 이방성(異方性) 매체에 광이 입사할 때에 두 개의 굴절광이 나타나는 현상을 말한다. 복굴절 위상차는 복굴절률과 투과광로 길이의 곱으로 나타내기 때문에, 복굴절 위상차가 동일하더라도 광의 투과광로 길이이 다르면 복굴절률도 다르게 된다. 따라서, 정확한 복굴절률은 측정된 복굴절 위상차에 대해서 정확하게 정해진 투과광로 길이를 이용하여 구할 수 있다.
그렇지만, 측정대상에서 용이하게 투과광로 길이를 구할 수 없는 경우, 예를 들면 측정대상의 형상이 복잡한 경우에는 정확한 복굴절률을 구하는 것이 곤란하게 된다. 또, 측정대상이 눈의 망막과 같은 생체막의 경우는 측정대상을 인체로부터 잘라낼 수 없기 때문에, 그 두께, 즉 투과광로 길이를 측정할 수 없다.
또, 복굴절성 이외의 광학특성인 푸리에(fourier) 분광특성으로부터 물질중의 미지의 성분을 추정하는 방법이 있다. 상술한 바와 같이, 복굴절성은 물질이 이방성 매체일 때에 관찰되는 광학특성이기 때문에, 미지의 물질의 성분을 추정하는 경우에는 복굴절성과 푸리에 분광특성의 양쪽을 측정하는 것이 유효하다. 그런데, 종래의 장치에서는 푸리에 분광특성과 복굴절성의 양쪽을 동시에 측정할 수 없었다.
특허문헌 1 : 일본국 특개2001-141602호 공보
본 발명이 해결하고자 하는 과제는, 여러 가지 형상이나 성질의 물질의 푸리에 분광특성과 복굴절성을 동시에 측정할 수 있는 광학특성 측정장치 및 광학특성 측정방법을 제공하는 것이다.
상기 과제를 해결하기 위해서 이루어진 본 발명에 관한 광학특성 측정장치는,
a) 직선편광이 입사된 피측정물로부터 발(發)하게 되는 광을 제1 편광판 및 제2 편광판으로 유도하는 분할광학계와,
b) 상기 제1 편광판을 투과한 제1 편광성분과 상기 제2 편광판을 투과한 제2 편광성분의 합성성분 가운데, 소정의 편광방향의 광을 투과시키는 검광자(檢光子)와,
c) 상기 검광자를 투과한 광을 동일점으로 유도하여 간섭상(干涉像)을 형성하는 결상(結像)광학계와,
d) 상기 간섭상의 광강도를 검출하는 검출부와,
e) 상기 제1 편광판 및 제2 편광판으로부터 상기 검광자를 향하는 제1 편광성분 및 제2 편광성분의 광로 길이의 차를 변화시키는 것에 의해 당해 제1 편광성분과 제2 편광성분의 사이의 위상차를 변화시키는 위상차 부여수단과,
f) 상기 위상차의 변화에 수반하여 상기 검출부에서 검출되는 광강도의 변화의 데이터를 푸리에 변환하는 것에 의해 상기 피측정물로부터 발하게 되는 광의 파장마다의 진폭과 복굴절 위상차를 취득하는 처리부를 구비하는 것을 특징으로 한다.
또, 본 발명에 관한 광학특성 측정장치는,
a) 직선편광이 입사된 피측정물로부터 발하게 되는 광을 제1 편광판 및 제2 편광판으로 유도하는 분할광학계와,
b) 상기 제1 편광판을 투과한 제1 편광성분과 상기 제2 편광판을 투과한 제2 편광성분의 합성성분 중 소정의 편광방향의 광을 투과시키는 검광자와,
c) 상기 검광자를 투과한 광을, 상기 제1 편광성분 및 제2 편광성분의 광축과 다른 방향으로 연장하는 동일 직선상에 집광시켜 선 모양의 간섭상을 형성하는 결상광학계와,
d) 상기 제1 편광판 및 제2 편광판으로부터 상기 검광자를 향하는 제1 편광성분 및 제2 편광성분의 사이에 연속적인 광로 길이차 분포를 주는 것에 의해 당해 제1 편광성분과 제2 편광성분의 사이에 연속적인 위상변화를 주는 위상변화 부여수단과,
e) 상기 선 모양의 간섭상의 이 간섭상이 연장하는 방향에 따른 광강도분포를 검출하는 검출부와,
f) 상기 검출부에서 검출되는 상기 간섭상의 광강도분포를 나타내는 데이터를 푸리에 변환하는 것에 의해 상기 피측정물로부터 발하게 되는 광의 파장마다의 진폭과 복굴절 위상차를 취득하는 처리부를 구비하는 것을 특징으로 한다.
또한, 본 발명에 관한 광학특성 측정장치는,
a) 직선편광이 입사된 피측정물로부터 발하게 되는 광을 제1 편광판 및 제2 편광판으로 유도하는 분할광학계와,
b) 상기 제1 편광판을 투과한 제1 편광성분과 상기 제2 편광판을 투과한 제2 편광성분의 합성성분 가운데, 소정의 편광방향의 광을 투과시키는 검광자와,
c) 상기 검광자를 투과한 광을, 상기 제1 편광성분 및 제2 편광성분의 광축과 다른 방향으로 연장하는 동일 직선상에 집광시켜 선 모양의 간섭상을 형성하는 결상광학계와,
d) 상기 제1 편광판 및 제2 편광판으로부터 상기 검광자를 향하는 제1 편광성분 및 제2 편광성분의 사이에 연속적인 광로 길이차 분포를 주는 것에 의해 당해 제1 편광성분과 제2 편광성분의 사이에 연속적인 위상변화를 주는 위상변화 부여수단과,
e) 상기 선 모양의 간섭상을 파장분해하여 분광 스펙트럼을 형성하는 분광광학계와,
f) 상기 분광 스펙트럼의 광강도분포를 검출하는 검출부와,
g) 상기 검출부에서 검출되는 광강도분포로부터 상기 피측정물로부터 발하게 되는 광의 파장마다의 진폭과 복굴절 위상차를 취득하는 처리부를 구비하는 것을 특징으로 한다.
상기한 본 발명에 관한 광학특성 측정장치에 있어서는, 제1 편광성분과 제2 편광성분의 편광방향이 직교하고, 또한 상기 피측정물에 입사하는 직선편광의 전계(電界)성분에 대해서 제1 편광성분과 제2 편광성분의 편광방향이 45° 기울도록, 제1 편광판 및 제2 편광판이 배치되어 있는 것이 바람직하다.
또, 상기 본 발명에 관한 광학특성 측정장치에 있어서는,
상기 분할광학계가 상기 피측정물로부터 발(發)하게 되는 광을 평행광선화하여 제1 편광판 및 제2 편광판으로 유도하는 대물렌즈를 구비하고,
상기 처리부는 상기 피측정물 가운데 상기 대물렌즈의 합초점(合焦(focusing)点)으로부터 발하게 되는 광의 파장마다의 진폭과 복굴절 위상차(위상차량)를 구하도록 하면 된다.
이 경우, 상기 피측정물에 대한 상기 대물렌즈의 합초위치를 상대적으로 변경하는 합초위치 변경수단을 구비하는 것이 바람직하다.
또, 본 발명에 관한 광학특성 측정방법은,
a) 직선편광을 피측정물에 입사시키고,
b) 상기 직선편광이 입사된 피측정물로부터 발하게 되는 광을 분할광학계에 의해서 제1 편광판 및 제2 편광판으로 각각 유도하며,
c) 상기 제1 편광판을 투과한 제1 편광성분과 상기 제2 편광판을 투과한 제2 편광성분을, 이 제1 편광성분과 이 제2 편광성분의 광로 길이의 차를 변화시키면서 검광자를 통하여 결상광학계로 유도함과 아울러, 이 결상광학계에 의해서 동일점에 집광시켜 간섭상을 형성시키고,
d) 상기 간섭상의 광강도의 변화를 나타내는 데이터를 푸리에 변환하는 것에 의해 상기 피측정물로부터 발하게 되는 광의 파장마다의 진폭과 복굴절 위상차를 취득하는 것을 특징으로 한다.
또한, 본 발명에 관한 광학특성 측정방법은,
a) 직선편광을 피측정물에 입사시키고,
b) 상기 직선편광이 입사된 피측정물로부터 발하게 되는 광을 분할광학계에 의해서 제1 편광판과 제2 편광판으로 각각 유도하며,
c) 상기 제1 편광판을 투과한 제1 편광성분과 상기 제2 편광판을 투과한 제2 편광성분을, 이 제1 편광성분과 제2 편광성분의 사이에 연속적인 광로 길이차 분포를 부여하면서 검광자를 통하여 결상광학계로 유도함과 아울러, 이 결상광학계에 의해서 동일 직선상에 집광시켜 선 모양의 간섭상을 형성시키고,
d) 상기 선 모양의 간섭상의 이 간섭상이 연장하는 방향에 따른 광강도분포를 나타내는 데이터를 푸리에 변환하는 것에 의해 상기 피측정물로부터 발하게 되는 광의 파장마다의 진폭과 복굴절 위상차를 취득하는 것을 특징으로 한다.
더욱이 또한, 본 발명에 관한 광학특성 측정방법은,
a) 직선편광을 피측정물에 입사시키고,
b) 상기 직선편광이 입사된 피측정물로부터 발하게 되는 광을 분할광학계에 의해서 제1 편광판과 제2 편광판으로 각각 유도하며,
c) 상기 제1 편광판을 투과한 제1 편광성분과 상기 제2 편광판을 투과한 제2 편광성분을, 이 제1 편광성분과 제2 편광성분의 사이에 연속적인 광로 길이차 분포를 부여하면서 검광자를 통하여 결상광학계로 유도함과 아울러, 이 결상광학계에 의해서 동일 직선상에 집광시켜 선 모양의 간섭상을 형성시키고,
d) 상기 선 모양의 간섭상을 분광광학계에 의해서 파장분해하는 것에 의해 분광 스펙트럼을 취득하며,
e) 상기 분광 스펙트럼의 광강도분포에 근거하여 상기 피측정물로부터 발하게 되는 광의 파장마다의 진폭과 복굴절 위상차를 취득하는 것을 특징으로 한다.
본 발명에 관한 광학특성 측정장치 및 방법에 의하면, 직선편광이 입사된 피측정물로부터 발하게 되는 광은, 분할광학계에 의해서 제1 편광판 및 제2 편광판으로 유도되고, 이 제1 편광판 및 제2 편광판을 투과한 후, 제1 편광성분 및 제2 편광성분이 되어 검광자에 입사한다. 검광자를 투과한 광은 결상광학계에 의해서 동일점 또는 동일 직선상으로 유도되어 간섭상을 형성한다. 이 때, 제1 편광성분과 제2 편광성분의 사이의 위상차가 시간적 혹은 공간적으로 변화되기 때문에, 검출부에서 검출되는 간섭광의 강도가 변화하고, 인터페로그램(interferogram)과 유사한 합성파형이 취득된다. 처리부에 의해서 이 합성파형을 푸리에 변환하면, 상기 피측정물로부터 발하게 되는 광의 파장마다의 진폭과 파장마다의 복굴절 위상차가 얻어지기 때문에, 피측정물의 푸리에 분광특성과 복굴절성을 동시에 구할 수 있다.
또한, 2개의 광이 동일한 「점」으로 유도되어 간섭하는 경우는, 엄밀하게는 「간섭상」은 아니고 「간섭광」이지만, 여기에서는, 2개의 광이 간섭하는 것에 의해 형성되는 것을 모두 「간섭상」이라고 부르는 것으로 한다.
또, 본 발명에 의하면, 직선편광이 입사된 피측정물로부터 발하게 되는 광이 투과광 및 반사광 중 어느 하나라도, 당해 광을 사용하여 피측정물의 푸리에 분광특성과 복굴절률성을 동시에 구할 수 있다. 따라서, 광학소자, 고분자필름과 같은 비교적 형상이 단순한 제품은 물론, 형상이 복잡한 물질 및 눈의 망막이라고 하는 생체막도 피측정물이 될 수 있기 때문에, 폭넓은 분야에서 이용할 수 있다.
그런데, 종래의 푸리에 변환형 적외분광법(FTIR : Fourier Transform Infrared Spectroscopy)에서는, 마이켈슨 간섭계(Michelson interferometer)를 이용하여 피측정물로부터 발하게 되는 광을 2개로 분리하고, 이들 2개로 분리된 광을 공통의 광로로 유도하여 간섭시켜고, 그 간섭광을 검출기에서 검출한다. 2개로 분리된 광은 공통광로상에서 간섭하기 때문에, 검출기의 수광면에는 피측정물의 여러 가지 위치(심도(深度))로부터 발하게 되는 광의 간섭광이 혼재하게 된다.
이것에 대해서 본 발명에서는, 피측정물로부터 발하게 되는 광을 분할광학계에 의해서 제1 편광성분과 제2 편광성분으로 분할하고, 이들 편광성분을 다른 광로에서 결상광학계로 향하게 한 후, 이 결상광학계에 의해서 동일점으로 유도하여 간섭시킨다. 합초면으로부터 발하게 되는 광만이 결상광학계의 결상면상에서 간섭하기 때문에, 본 발명에서는 결상광학계의 결상면상에 검출부의 수광면을 위치시키는 것에 의해, 피측정물 가운데 합초면에 상당하는 부분, 즉, 피측정물 내의 특정의 심도로부터 발하게 되는 광의 간섭광만을 검출부에서 검출할 수 있어, 잡음이 적은 명료한 간섭상을 얻을 수 있다.
도 1은 본 발명의 실시예 1에 관한 광학특성 측정장치의 전체 구성 및 광학소자의 배치를 나타내는 개략도.
도 2는 광학특성 측정장치의 개략적인 전체 구성을 나타내는 도면.
도 3은 편광자, 제1 편광판 및 제2 편광판, 검광자의 편광방향을 설명하기 위한 도면.
도 4는 실시예 1에 관한 광학특성 측정장치의 측정원리를 설명하기 위한 도면으로서, 직선편광성분과 그것을 x방향과 y방향의 직교성분으로 벡터 분해한 전계성분을 나타내는 도 4의 (a) 및 이들 직선편광성분, x, y방향의 전계성분을 광의 진행방향에서 본 도 4의 (b).
도 5는 x방향과 y방향의 전계성분의 사이에 λ/4의 위상차가 있을 때의 합성벡터를 나타내는 도 5의 (a) 및 이들 x, y방향의 전계성분과 합성벡터를 광의 진행방향에서 본 도 5의 (b).
도 6은 x방향과 y방향의 전계성분의 사이에 λ/2의 위상차가 있을 때의 합성벡터를 나타내는 도 6의 (a) 및 이들 x, y방향의 전계성분과 합성벡터를 광의 진행방향에서 본 도 6의 (b).
도 7은 x방향과 y방향의 전계성분의 사이에 측정대상에 의해 주어진 미지의 복굴절 위상차(리타데이션)를 상쇄하는 위상차를 주었을 때의 합성벡터를 나타내는 도 7의 (a) 및 이들 x, y방향의 전계성분과 합성벡터를 광의 진행방향에서 본 도 7의 (b).
도 8은 위상 쉬프트량과 결상강도의 관계를 나타내는 도면.
도 9은 다파장광을 조사했을 때의 위상 쉬프트량과 결상강도와의 관계를 나타내는 도면.
도 10은 다파장광의 결상강도의 합성파형도인 도 10의 (a)와 그것을 푸리에 변환하여 얻어진 스펙트럼의 파형도인 도 10의 (b) 및 리타데이션(복굴절 위상차)을 나타내는 도면.
도 11은 석재(石材)의 사방(斜方) 조명형 간섭계의 관찰화상.
도 12는 석재의 스펙트럼을 나타내는 그래프.
도 13은 석재의 리타데이션량과 파장과의 관계를 나타내는 그래프.
도 14는 특정의 파장범위에서의 석재의 강도분포와 위상 분포를 나타내는 도면.
도 15는 본 발명의 실시예 2에 관한 광학특성 측정장치의 개략적인 전체 구성을 나타내는 도면.
도 16은 실시예 2에 관한 광학특성 측정장치 중 측정대상으로부터 결상면까지의 광학소자의 배치를 나타내는 도면.
도 17은 실시예 2에서 결상렌즈에 의해 측정광이 수광면에 집광되는 모습을 나타내는 측면도.
도 18은 실시예 2에서 결상렌즈에 의해 측정광이 수광면에 집광되는 모습을 나타내는 상면도.
도 19는 본 발명의 실시예 3에 관한 광학특성 측정장치의 개략적인 전체 구성을 나타내는 도면.
도 20은 실시예 3에서의 결상렌즈의 사시도.
도 21은 실시예 3에서의 기준광속(基準光束)과 경사(傾斜)광속의 간섭상을 나타내는 도면.
도 22는 본 발명의 실시예 4에 관한 광학특성 측정장치의 개략적인 전체 구성을 나타내는 도면.
이하, 본 발명의 몇 개의 구체적인 실시예에 대해서 도면을 참조하여 설명한다.
실시예 1
도 1 및 도 2는 실시예 1에 관한 광학특성 측정장치를 나타낸다. 이들 도에 나타내는 바와 같이, 실시예 1에 관한 광학특성 측정장치(1)는 광원(3), 편광자(5), 대물렌즈(7), 제1 편광판(9) 및 제2 편광판(11), 위상 쉬프터(13), 검광자(15), 결상렌즈(17), 검출기(19)를 구비하고 있다. 본 실시예에서는, 대물렌즈(7), 제1 편광판(9) 및 제2 편광판(11)이 분할광학계를 구성하고, 결상렌즈(17)가 결상광학계를 구성한다. 또, 위상 쉬프터(13)가 위상차 부여수단으로서 기능한다.
상기 대물렌즈(7)는 렌즈구동기구(21)에 의해서 광축방향으로 이동 가능하게 구성되어 있다. 렌즈구동기구(21)는 대물렌즈(7)의 합초위치를 주사(走査)하기 위한 것으로 합초위치 변경수단에 상당한다. 상기 렌즈구동기구(21)는, 예를 들면 피에조(piezo) 소자에 의해 구성할 수 있다.
편광자(5)는 광원(3)으로부터 출사되는 광의 광로상에 배치되어 있고 당해 광으로부터 특정의 방향의 직선편광성분만을 추출하여 피측정물인 시료(S)에 조사한다. 시료(S)에 광이 조사되는 것에 의해서, 당해 시료(S)를 투과해 온 광(이하, 「측정광」이라고도 함)은 대물렌즈(7)에 입사하여, 평행광속으로 변환된다.
또한, 도 1 및 도 2에는 시료(S)를 투과한 광을 측정하는 투과형의 광학특성 측정장치(1)를 나타냈지만, 시료(S)의 내부로부터 반사해 온 광을 측정하는 반사형의 광학특성 측정장치라도 된다. 시료를 투과해 온 광 및 시료의 내부에서 반사해 온 광은 모두 시료 중의 성분의 복굴절성과 흡광(吸光)특성을 가지기 때문이다.
또, 대물렌즈(7)를 투과한 후의 광속은 완전한 평행광속일 필요는 없다. 후술하는 바와 같이, 측정광을 2분할 혹은 그 이상으로 분할할 수 있는 정도로 넓힐 수 있으면 된다. 단, 평행광속이 아닌 경우는, 후술의 위상 쉬프트량에 따라 발생하는 위상차량에 오차를 일으키기 쉽다. 따라서, 보다 높은 측정 정밀도를 얻기 위해서는 가능한 한 평행광속으로 하는 것이 바람직하다.
제1 편광판(9) 및 제2 편광판(11)은 모두 대물렌즈(7)를 투과해 온 평행광속의 광로상에 예를 들면 상하로 나란히 배치되어 있다. 대물렌즈(7)를 투과해 온 평행광속은 제1 편광판(9) 및 제2 편광판(11)을 거쳐 위상 쉬프터(13)에 도달한다.
도 3에 나타내는 바와 같이, 제1 편광판(9) 및 제2 편광판(11)은 그 편광방향이 편광자(5)를 투과해 온 직선편광성분의 전계벡터의 진동방향에 대해서 45° 기울어지도록, 또한, 제1 편광판(9)의 편광방향과 제2 편광판(11)의 편광방향이 서로 직교하도록 설치된다. 이하의 설명에서는, 제1 편광판(9)의 편광방향을 x방향, 제2 편광판(11)의 편광방향을 y방향이라고도 한다. 또, 제1 편광판(9)을 투과한 광을 제1 편광, 제2 편광판(11)을 투과한 광을 제2 편광이라 한다.
위상 쉬프터(13)는 직사각형 판 모양의 가동 미러부(131), 그 하부에 배치된 직사각형 판 모양의 고정 미러부(132), 가동 미러부(131) 및 고정 미러부(132)를 유지하는 유지부(133 및 134), 가동 미러부(131)의 유지부(133)를 이동하는 구동 스테이지(135)를 구비하여 구성되어 있다. 제1 편광판(9)을 투과한 제1 편광은 가동 미러부(131)에 입사하고, 제2 편광판(11)을 투과한 제2 편광은 고정 미러부(132)에 입사한다. 가동 미러부(131) 및 고정 미러부(132)의 표면(반사면)은 광학적으로 평탄하고 또한 본 장치(1)가 측정대상으로 하는 광의 파장 대역을 반사 가능한 광학경면(光學鏡面)으로 되어 있다. 또, 가동 미러부(131) 및 고정 미러부(132)의 반사면은 거의 동일한 크기를 가지고 있다.
또한, 이하의 설명에서는, 제1 편광판(9)으로부터 가동 미러부(131)의 반사면에 도달하여 반사되어 검광자(15)에 이르는 광속을 가동광속, 제2 편광판(11)으로부터 고정 미러부(132)의 반사면에 도달하여 반사되어 검광자(15)에 이르는 광속을 고정광속이라고도 한다.
구동 스테이지(135)는, 예를 들면 정전용량센서를 구비하는 압전소자로 구성되어 있고, 제어부(25)로부터의 제어신호를 받아 유지부(133)를 화살표 A방향으로 이동시킨다. 이것에 의해, 가동 미러부(131)는 광의 파장에 따른 정밀도로 화살표 A방향으로 이동한다. 이 결과, 가동광속과 고정광속의 사이에 광로 길이차가 생기고, 이들 2광속 사이에 상대적 위상변화가 주어진다. 따라서, 본 실시예에서는, 위상 쉬프터(13)가 광로 길이차 신축수단에 상당하며, 가동 미러부(131) 및 고정 미러부(132)가 각각 제1 반사부 및 제2 반사부에 상당한다. 분광측정능력에도 의하지만, 예를 들면 가시광선영역에서는 10㎚ 정도의 고정밀의 위치제어가 필요하다.
또, 위상 쉬프터(13)는 대물렌즈(7)로부터의 평행광속의 광축에 대해 가동 미러부(131) 및 고정 미러부(132)의 반사면이 45° 기울어지도록 배치되어 있다. 구동 스테이지(135)는 가동 미러부(131)의 반사면의 광축에 대한 기울기를 45°로 유지한 상태에서 당해 가동 미러부(131)를 이동한다. 이와 같은 구성에 의해, 가동 미러부(131)의 광축방향의 이동량은 구동 스테이지(135)의 이동량의 √2가 된다. 또, 고정광속과 가동광속의 2광속 사이의 상대적 위상변화를 주는 광로 길이차는 가동 미러부(131)의 광축방향의 이동량의 2배가 된다.
이와 같이 가동 미러부(131) 및 고정 미러부(132)를 기울어지게 배치하면, 광선을 분기(分岐)하기 위한 빔 스플리터(beam splitter)가 불필요하게 되기 때문에, 물체광의 이용효율을 높게 할 수 있다.
검광자(15)는 편광자(5)와 같은 방향의 직선편광성분을 투과하는, 이른바 오픈 니콜(open nicol) 상태로 설치되어 있다. 따라서, 시료(S)가 복굴절성을 가지지 않는 경우는, 위상 쉬프트 동작을 행하지 않으면 광원(3)으로부터 편광자(5)를 거쳐 측정대상을 투과한 직선편광성분은 그대로 결상렌즈(17)에 도달한다. 결상렌즈(17)의 결상면이 되는 위치에 검출기(19)의 수광면이 위치하고 있고, 결상렌즈(17)에 도달한 직선편광성분은 검출기(19)의 수광면의 동일점상에 집광한다. 또한, 검광자(15)는 편광자(5)에 대한 편광 추출각이 45°가 되도록 설치되어 있어도 된다. 이 경우, 검광자(15)의 편광 추출각의 방향은 어디라도 된다. 검광자(15)를 이와 같이 설치했을 경우, 시료(S)가 복굴절성을 가지지 않는 경우에는 편광자(5)를 거쳐 측정대상을 투과한 직선편광성분은 검광자(15)를 통과하지 않지만, 시료(S)의 복굴절성에 의해서 45° 회전된 직선편광성분은 검광자(15)를 통과한다.
검출기(19)는 예를 들면 이차원 CCD 카메라로 구성되어 있고, 그 검출신호는 처리부(23)에 입력되어 처리된다. 또, 처리부(23), 렌즈구동기구(21), 구동 스테이지(135) 등은 제어부(25)에 의해서 제어된다.
여기서, 본 실시예에 관한 광학특성 측정장치(1)의 측정원리에 대해서 도 4 ~ 도 10을 이용하여 설명한다. 도 4의 (a), (b) 중, x축은 제1 편광판(9)의 편광방향을, y축은 제2 편광판(11)의 편광방향을 나타낸다. 또, z축은 x축 및 y축과 직교하고 있으며, 광의 진행방향을 나타낸다. 도 4의 (a), (b) 중, 실선(L)으로 나타내는 경사방향의 진동이, 관찰되는 직선편광, 즉, 편광자(5)를 거쳐 시료(S)에 조사되는 직선편광성분의 전계벡터의 진동이다. 진행방향으로부터 바라보면, 기울기 45°의 방향으로 전계성분이 직선적으로 진동하기 때문에 직선편광으로 불린다. 이것을 x방향과 y방향의 직교성분에 벡터 분해하여 고려한다. 즉, 이점쇄선(二点鎖線)(Lx)으로 나타내는 전계성분과 일점쇄선(一点鎖線)(Ly)으로 나타내는 전계성분이 동기하여 진동하고 있고, 그 합성벡터로서, 실선(L)의 직선편광이 관찰된다고 생각할 수 있다.
물질의 복굴절성에 의해, 예를 들면 x방향과 y방향의 전계진동의 위상차가 λ/4이라고 한다. 이 경우, 도 5의 (a)에 나타내는 바와 같이, T1의 시점에서는, y방향 벡터(일점쇄선(Ly))는 절(節, 마디)이기 때문에, 그 합성벡터는 x방향 성분(이점쇄선(Lx))만으로 결정된다. T2의 시점에서는, 반대로 x방향 성분(이점쇄선(Lx))이 절(마디)이기 되기 때문에, y방향 성분(일점쇄선(Ly))에 의해서만 합성벡터가 정해진다. 이와 같이, 직교 분해한 벡터 성분의 리타데이션이 λ/4인 경우, 합성벡터(실선(L1 ~ L4))는 진행방향에서 보아 회전하는, 이른바 원(圓)편광이 된다(도 5의 (b) 참조).
한편, 도 6의 (a)에 나타내는 바와 같이, x방향과 y방향의 전계진동의 위상차가 λ/2인 경우, 그 합성벡터는 원래의 직선편광과 직교하는 방향의 직선편광(도 6의 (b)의 점선)이 된다. 이 때, 편광자(5)에 대해서 검광자(15)가 오픈 니콜의 상태로 설치되어 있는 경우, 합성벡터는 검광자(15)를 투과할 수 없다.
도 7에 나타내는 바와 같이, 시료(S)가 가지는 복굴절성에 의해 미지의 리타데이션이 직교하는 2방향의 전계벡터 성분(Lx, Ly)에 부가된 것으로 한다. 이와 같은 2방향의 전계성분에 대해서 시료(S)에 의해 주어진 리타데이션을 상쇄하는 위상차를 준다. 도 7에서는 시료(S)에 의해 리타데이션이 주어진 전계벡터 성분을 Lx, Ly로 하고, 당해 리타데이션을 상쇄하는 위상차가 주어진 전계벡터 성분을 Lx, Ly'로 한다. 그러면, 리타데이션을 상쇄하는 위상차가 주어진 전계벡터 성분 Lx와 Ly'의 합성벡터 L은 시료(S)에 조사된 직선편광과 같은 직선편광으로 돌아온다.
본 실시예에서는, 위상 쉬프터(13)에 의해, 제1 편광판(9)을 투과한 제1 편광과 제2 편광판(11)을 투과한 제2 편광의 사이에 임의의 위상차를 줄 수 있다. 그래서, 가동 미러부(131)를 서서히 이동시켜 제1 편광과 제2 편광의 사이의 광로 길이의 차를 연속적으로 또한 시간적으로 변화시키고, 양자의 사이의 위상차를 변화시키면, 광원(3)으로부터의 광이 단색광인 경우, 편광자(5)에 대해서 오픈 니콜로 배치된 검광자(15)를 투과하는 결상강도는, 도 8에 나타내는 바와 같이 리타데이션을 상쇄하는 위상차량을 준 시점에서 가장 강하게 된다. 그 위상차량에 더욱 위상차량 λ/2를 주면, 편광자(5)로부터 시료(S)에 조사되는 직선편광의 방향과 직교하는 방향의 직선편광이 되기 때문에 검광자(15)를 투과할 수 없게 되어, 결상강도는 가장 작아진다. 또한 위상차량 λ/2를 주어 위상차가 1파장(λ)이 되면, 다시 편광자(5)로부터 시료(S)에 조사되는 직선편광과 동일한 방향의 직선편광이 되기 때문에, 결상강도가 가장 강하게 된다. 이와 같이, 제1 편광과 제2 편광의 사이의 위상차량이 1파장이 될 때마다 명암이 반복되는 정현파(正弦波) 모양의 결상강도 변화를 나타내게 된다. 다파장의 광을 조사하면, 파장마다의 리타데이션량의 차이와 파장의 차이가 도 9와 같이 서로 겹친다.
이 결과, 도 10의 (a)에 나타내는 바와 같이, 푸리에 분광의 인터페로그램과 유사한, 합성파형을 관찰할 수 있다. 일반적인 푸리에 분광의 인터페로그램은 복굴절성이 반영되지 않기 때문에, 위상차량이 0인 위치에서 모든 파장의 광이 서로 강하게 하는 파형이 된다. 한편, 본 실시예의 경우, 파장마다 리타데이션이 다르면, 도 10의 (a)에 나타내는 바와 같이, 명확한 피크 위치를 관찰할 수 없는 합성파형이 된다. 그러나, 이 합성파형은 다양한 주파수의 정현파형의 겹침에 의해 형성되어 있는 파형이기 때문에, 처리부(23)에서 수학적으로 푸리에 변환하는 것에 의해, 파장마다의 진폭과 위상차량을 동시에 해석적으로 얻을 수 있다. 푸리에 변환에 의해 구해지는 진폭항으로부터 상대 강도를 산출하면, 푸리에 분광과 마찬가지로, 파장마다의 상대 강도인 분광특성을 취득할 수 있다. 또, 푸리에 변환에 의해 산출되는 위상차항으로부터는 파장마다의 리타데이션을 취득할 수 있다. 즉, 분광특성과 복굴절성을 동시에 측정할 수 있다.
본 실시예에서는, 광학계가 결상광학계이기 때문에, 분광특성 및 복굴절성의 2차원 측정이 가능하게 된다. 또, 렌즈구동기구(21)에 의해서 대물렌즈(7)의 합초위치를 깊이 방향으로 주사하는 것에 의해, 임의의 깊이로부터 반사해 오는 물체광의 리타데이션을 구할 수 있다. 리타데이션은 복굴절률에 물체광의 경로의 길이를 적산한 값이기 때문에, 물체광이 반사해 오는 깊이를 알 수 있으면, 리타데이션으로부터 복굴절률을 산출할 수 있다.
도 1에 나타낸 광학특성 측정장치(1)의 광학계를 사방 조명광학계에 대신하여, 화강암으로 이루어지는 석재의 분광특성을 측정한 결과를 도 11 ~ 도 14에 나타낸다. 수직낙사(垂直落射) 조명광학계에 비하면 사방 조명광학계를 이용하여 촬영되는 광량은 현저하게 감퇴하지만, 도 11에 나타내는 바와 같이, 부분적으로 밝은 개소(기호 P1 ~ P3로 나타냄)가 확인되었다. 관찰에 이용한 석재는 표면이 경면(鏡面) 모양으로 연마되어 있기 때문에, 이들 밝은 개소(P1 ~ P3)가 석재의 내부로부터의 확산반사성분이 관찰된 개소인 것으로 생각된다.
그래서, 도 11에 나타낸 3개소(P1 ~ P3)의 분광 데이터와 위상 데이터를 구했다. 그 결과를 도 12 및 도 13에 나타낸다. 도 12는 가로축을 파장(㎚), 세로축을 강도로 하는 스펙트럼을 나타내며, 도 13은 가로축을 파장(㎚), 세로축을 위상차(deg.)로 하는 그래프이고, 리타데이션량을 플롯(plot)한 것이다. 도 12에 나타내는 바와 같이, P1 ~ P3의 3개소에서의 발광강도에는 큰 차이가 있지만, 어느 개소에서도 광원의 휘선(輝線) 스펙트럼을 확인할 수 있었다.
한편, 도 13에 나타내는 바와 같이, 리타데이션량은 광원 스펙트럼의 피크 파장 이외에서는 크게 변화하며, 피크 파장(540 ~ 560㎚) 부근에서는, 비교적 안정되어 있었다. 피크 파장 이외에서 리타데이션량이 크게 변화하고 있는 이유는, 발광강도가 매우 낮을 때의 위상 계측이 안정되지 않기 때문이라고 생각된다. 또한, P2 및 P3의 개소에서는 파장 700㎚ 부근에 특징적인 반사 강도가 관찰되었다.
다음으로, 스펙트럼에 특징이 있는 파장범위 540 ~ 560㎚, 570 ~ 590㎚, 670 ~ 720㎚의 강도분포와 위상 분포를 도 14에 나타낸다. 도 14로부터, 파장범위 540 ~ 560㎚에서 특징적인 위상 분포가 측정되고, 파장범위 670 ~ 720㎚에서 특징적인 강도분포가 측정되었다. 이것에 의해, 사방 조명법을 이용한 분광특성 측정장치(1)에서도, 석재의 내부 반사성분의 분광특성과 복굴절 특성의 양쪽을 동시에 측정 가능하다는 것이 확인되었다.
실시예 2
도 15 ~ 도 18은 실시예 2에 관한 광학특성 측정장치(1)를 나타내고 있다. 실시예 2에 관한 광학특성 측정장치(1)는 위상 쉬프터 및 결상광학계의 구성이 실시예 1과 크게 차이가 난다. 또한, 도 12에서는, 편의상, 결상광학계를 구성하는 결상렌즈(35)의 전단(前段)에 배치되는 검광자(15)의 도시를 생략하고 있다.
실시예 2에서는, 광원(3)으로부터 출사되고, 편광자(5)를 투과한 직선편광성분은 시료(S)의 선 모양의 측정영역(S1)에 조사된다. 시료(S)의 측정영역(S1)에 조사되고, 이 측정영역(S1)을 투과한 광선은 대물렌즈(7)에 입사하며, 평행광속으로 변환된 후, 제1 편광판(9) 및 제2 편광판(11)을 거쳐 위상 쉬프터(31)에 도달한다.
위상 쉬프터(31)는 기준 미러부(32), 경사 미러부(33), 이들 미러부(32, 33)를 유지하는 유지부(도시생략) 등을 구비하여 구성되어 있다. 기준 미러부(32) 및 경사 미러부(33)의 표면(반사면)은 광학적으로 평탄하고 또한 본 장치(1)가 측정대상으로 하는 광의 파장 대역을 반사 가능한 직사각형 모양의 광학경면으로 되어 있다. 또, 기준 미러부(32) 및 경사 미러부(33)의 반사면은 거의 동일한 크기를 가지고 있다.
물체의 텍스쳐(texture)가 있는 한 방향에 치우쳐 있는 경우는, 물체를 광학적으로 구성하는 각 휘점(輝點)으로부터 발생하는 광(물체광)은 특정의 방향으로만 향한다. 이 때문에, 위상 쉬프터(31)에 도달하는 평행광속의 광량분포에 치우침이 생기고, 결상면인 검출기(19)의 수광면(19a)상에 일정한 광량분포이 얻어지지 않을 우려가 있다. 한편, 물체의 텍스쳐가 비교적 랜덤한 경우는, 위상 쉬프터(31)에 일정한 광량분포로 물체광이 도달한다. 그래서, 이하의 설명에서는, 시료(S)의 텍스쳐가 비교적 랜덤한 것으로 하고, 위상 쉬프터(31)에는 일정한 광량분포로 광속이 도달하며, 기준 미러부(32) 및 경사 미러부(33)의 반사면에는 각각 동량의 광속이 조사되는 것으로 한다.
본 실시예에서는, 대물렌즈(7), 제1 편광판(9) 및 제2 편광판(11)이 분할광학계에 상당하고, 위상 쉬프터(31)가 위상변화 부여수단에 상당한다.
또한, 이하의 설명에서는, 제1 편광판(9)으로부터 위상 쉬프터(31)의 기준 미러부(32)의 반사면에 도달하여 반사되고, 검광자(15)에 이르는 광속을 기준광속, 제2 편광판(11)으로부터 위상 쉬프터(31)의 경사 미러부(33)의 반사면에 도달하여 반사되고, 검광자(15)에 이르는 광속을 경사광속이라고도 한다.
상기 기준 미러부(32)는 대물렌즈(7)로부터의 평행광속의 광축에 대해 반사면이 예를 들면 45° 기울어지도록 배치되어 있다. 또, 경사 미러부(33)는 대물렌즈(7)로부터의 평행광속의 광축에 대해 반사면이 (45+Δθ)° 기울어지도록 배치되어 있다. 이와 같이 기준 미러부(32) 및 경사 미러부(33)를 대물렌즈(7)로부터의 평행광속에 대해서 기울어지게 배치하면, 광속을 분기하기 위한 빔 스플리터가 불필요하게 된다. 본 실시예에서는 대물렌즈(7)를 이용하고 있지만, 반사광학계에서 이 기능을 구성할 수도 있다. 이와 같이 하면, 분산의 영향이 완전히 없게 되기 때문에, 광대역의 분광특성을 계측할 수 있다.
또, 기준 미러부(32)에 대한 경사 미러부(33)의 경사각도, 즉 Δθ는 결상광학계의 배율, 측정파장범위, 파수(波數)분해가능 등의 광학조건에 근거하여 설정된다. 예를 들면, 측정파장을 가시영역으로부터 근적외영역(400㎚ ~ 1000㎚)으로 했을 경우, 파장분해가능 : λ2/Δλ=5㎚를 얻기 위해서는, 중심파장 λ=700㎚인 것으로부터, 위상 쉬프트량 Δλ=100㎛가 된다. 검출기(19)(수광소자)로서 CCD 카메라를 이용했을 경우, 대략 1라인의 화소수는 500화소 정도이다. 이것으로부터, 1라인당 위상 쉬프트량이 100㎛인 경우, 1화소마다의 위상차량은 200㎚가 되고, 샘플링 정리로부터 파장 400㎚까지 측정 가능하게 된다. 상술한 바와 같이, 측정파장은 가시영역으로부터 근적외영역(400㎚ ~ 1000㎚)이기 때문에, 1화소마다의 위상차량이 200㎚이면, 단파장 측의 샘플링 정리를 만족한다.
또, 일반적인 CCD 카메라의 1라인당 위상 쉬프트량이 100㎛이기 때문에, 그 반인 50㎛(100㎛÷2)를 기준 미러부(32)와 경사 미러부(33)의 최대 폭으로 하면 되고, 예를 들면 각 미러부(32, 33)의, 광로방향(각 미러부의 경사방향)에 따른 길이가 약 3㎜일 때, 경사각도는 약 1deg.가 된다.
또, 특히, 중적외광 등의 장파장영역에서는, 인터페로그램의 간섭강도변화뿐만이 아니라, 간섭강도변화의 포락선(包絡線)을 긴 스트로크의 위상 쉬프트 영역에서 취득해야 한다. 이것은 푸리에 분광의 원리로서, 파수 분해가능을 높게 하기 위해서는 위상 쉬프트량을 길게 하지 않으면 안 되기 때문이라고도 알려져 있다. 이와 같이, 긴 스트로크에 걸쳐 인터페로그램의 포락선을 검출하기 위해서는, 경사 미러부(33)에 큰 경사각을 마련해야 한다. 이 경우, 인터페로그램의 간섭강도변화를 검출하기 위한, 그리고, 포락선을 검출하기 위한 2단계 정도의 기울기 전환기구를 마련하면 된다. 중적외영역에서 포락선을 계측하는 경우, 위상 쉬프트량이 예를 들면 50㎜ 정도가 필요하게 되기 때문에, 광로방향에 따른 길이를 예를 들면 100㎜로 길게 하여 2.9deg.의 기울기로 하면 된다.
위상 쉬프터(31)에 도달하고, 기준 미러부(32) 및 경사 미러부(33)의 반사면에서 반사된 기준광속 및 경사광속은, 각각 검광자(15)를 투과한 후, 결상렌즈(35)에 입사한다. 본 실시예에서는, 결상렌즈(35)는 실린드리컬(cylindrical) 렌즈로 이루어지며, 그 볼록면부가 위상 쉬프터(31) 측을 향하여, 평면부가 검출기(19)의 수광면(19a) 측을 향하도록 배치되어 있다. 검출기(19)의 수광면(19a)은 결상렌즈(35)의 결상면상에 위치하기 때문에, 측정영역(S1)의 일휘점으로부터 발하게 되고, 기준 미러부(32) 및 경사 미러부(33)의 반사면에서 반사된 후, 결상렌즈(35)에 입사한 기준광속 및 경사광속은 이 결상렌즈(35)에 의해 한 방향으로만 수속(收束)되며, 검출기(19)의 수광면(19a)상의 동일 직선상에 집광하는 것에 의해 결상한다. 또한, 본 실시예에서는, 결상렌즈(35)는 그 볼록면부의 곡률을 가지는 방향(도 12에 화살표 B로 나타내는 방향)이 측정영역(S1)의 방향과 평행하게 되도록 배치되어 있는 것으로 한다. 이와 같은 배치에 의해, 결상렌즈(35)에 입사한 기준광속 및 경사광속은 수광면(19a)상에 있어서 측정영역(S1)과 직교하는 직선상에 집광한다.
기준 미러부(32)의 반사면과 경사 미러부(33)의 반사면은 검출기(19)(이차원 CCD 카메라)의 수광면(19a)(결상면)에서 2개의 광속의 집광위치가 어긋나지 않는 정도의 정밀도로, 상대적으로 평행한 면이 되도록 구성되어 있다.
본 실시예의 측정원리에 대해서 설명한다. 여기에서는, 기준광속이 결상렌즈(35)에 의해서 검출기(19)의 수광면(19a)에서 위상이 고르게 된 파로서 일직선상에 집광하는 광학 모델에 근거하여 설명한다. 이 때, 경사광속은 그 위상이 기준광속의 위상과 서서히 어긋난 파로서 수광면(19a)에 일직선상에 집광한다.
상술한 바와 같이, 시료(S)의 측정영역(S1)을 투과한 광속은 대물렌즈(7), 제1 편광판(9) 및 제2 편광판(11)을 거쳐 위상 쉬프터(31)의 기준 미러부(32) 및 경사 미러부(33)의 표면에 도달한다. 이 때, 기준 미러부(32)의 표면 및 경사 미러부(33)의 표면에 광속이 상하로 2분할되어 도달한다. 또한, 기준 미러부(32)의 표면에 도달한 광속 즉 기준광속과, 경사 미러부(33)의 표면에 도달한 광속, 즉 경사광속의 광량이 거의 같게 되도록, 양 미러부(32, 33)의 표면의 면적은 설정되어 있지만, 기준광속 및 경사광속의 한쪽 혹은 양쪽의 광로에 감광필터를 설치하여 상대적 광량차를 조정하여, 광량의 균등화를 행하는 것도 가능하다.
기준 미러부(32) 및 경사 미러부(33)의 표면에서 반사된 광속은, 각각 기준광속 및 경사광속으로서 결상렌즈(35)에 입사하고, 검출기(19)의 수광면(19a)에서 동일 직선상에 집광하여, 간섭상을 형성한다. 이 때, 기준광속은 결상렌즈(35)를 거쳐 결상면인 수광면(19a)상에서 위상이 고르게 된 파로서 집광하도록 구성되어 있기 때문에, 도 14에 나타내는 바와 같이, 기준광속의 파면은 검출기(19)의 수광면(19a)과 평행한 상태가 된다. 한편, 경사광속은 그 광축이 기준광속의 광축에 대해 2×Δθ° 기운 상태에서 결상렌즈(35)에 입사하기 때문에, 경사광속은 그 파면이 수광면(19a)에 대해서 약간 기울어진 상태가 된다.
이 때, 기준광속의 파면에 대해서 경사광속의 파면이 경사져 있기 때문에, 기준광속의 광과 경사광속의 광의 간섭영역에서는, 양 광속의 사이의 광로 길이차가 서서히 변화하게(도 14에서는, 우측에서 좌측을 향하여 서서히 커지게) 된다. 즉, 실시예 1에서는 가동 미러부(131)를 서서히 이동시킴으로써 제1 편광과 제2 편광과의 사이에 연속적으로 변화하는 위상차를 주고 있지만, 본 실시예에서는, 기준 미러부(32)에 대해서 경사 미러부(33)가 경사진 상태에서 양 미러부(32, 33)를 배치함으로써 제1 편광과 제2 편광과의 사이에 연속적인 위상차 변화를 주고 있다. 게다가, 실시예 1에서는 시간적으로 위상차가 변화하지만, 실시예 2에서는 공간적으로 위상차가 변화하게 된다.
측정영역(S1)으로부터 발하게 되는 광속에는 여러 가지 파장의 광이 포함되기(또한 각 파장의 광의 초기 위상이 반드시 고르게 되어 있지 않기) 때문에, 간섭영역의 기준광속과 경사광속의 사이의 광로 길이차가 연속적으로 변화하는 것에 의해, 또, 파장마다의 리타데이션의 차이로부터, 도 10의 (a)에 나타내는 인터페로그램과 유사한 합성파형을 관찰할 수 있다.
예를 들면, 도 16에 나타내는 바와 같이, 측정영역(S1)의 휘점(측정점)(a1)으로부터 발하게 되는 광속은 수광면(19a)(결상면)상의 일직선상에 집광함으로써 선 모양의 간섭상(b1)이 얻어지고, 휘점(측정점)(a2)으로부터 발하게 되는 광속은 수광면(19a)상의 일직선상에 집광함으로써 선 모양의 간섭상(b2)이 얻어진다. 각 간섭상(b1, b2)의 합성파형은 각각 간섭상을 따라서 늘어선 복수의 화소의 수광강도로부터 얻어진다. 따라서, 실시예 2에서는, 도 10의 (a)에 있어서, 가로축은 선 모양의 간섭상을 따라서 늘어서는 검출기(19)의 화소번호를, 세로축은 결상강도(각 화소의 수광강도)를 나타내게 된다. 이 화소번호를 화소마다의 위상 쉬프트량에 의해 환산하는 것에 의해, 가로축이 위상 쉬프트량인 합성파형이 얻어진다.
처리부(23)는 이 합성파형을 푸리에 변환하는 것에 의해, 측정영역(S1)의 각 휘점으로부터 발하게 되는 광의 파장마다의 상대 강도인 분광특성 및 파장마다의 리타데이션을 취득할 수 있다. 검출기(19)의 모든 화소를 이용하여 분광특성을 얻을 수 있으면, 측정영역(S1)의 1차원 분광계측이 가능하게 된다. 또, 직선편광이 조사되는 측정영역(S1)을 주사하면, 피측정물(S)의 2차원 분광계측이 가능하게 된다. 또한, 측정영역(S1)을 주사함과 아울러, 대물렌즈(7)를 이동시켜 합초면(합초위치를 포함하는 면)을 주사하는 것에 의해 3차원 분광계측이 가능하게 된다.
실시예 3
도 19 ~ 도 21은 본 발명의 실시예 3을 나타내고 있다. 도 19 및 도 20에 나타내는 바와 같이, 본 실시예의 분광특성 측정장치(1)에서는, 결상렌즈(35)가 기준 미러부(32)에서 반사된 기준광속이 입사하는 기준 렌즈부(35a)와 경사 미러부(33)에서 반사된 경사광속이 입사하는 경사 렌즈부(35b)로 분할되어 있다. 기준 렌즈부(35a)와 경사 렌즈부(35b)는 실시예 2의 결상렌즈(35)를 2분할한 형상을 가지고 있으며, 기준광속 및 경사광속의 한쪽의 광축에 대한 다른 쪽의 광축의 기울기를 유지한 채로, 검출기(19)의 수광면(19a)(결상면)상에 형성되는 선 모양의 간섭상에 따라서 다른 쪽의 광축이 어긋나도록 각각 배치되어 있다. 즉, 이들 기준 렌즈부(35a) 및 경사 렌즈부(35b)는 결상광학계 및 광축위치 변경수단으로서 기능한다.
이와 같은 구성에 의해, 도 21에 나타내는 바와 같이, 수광면(19a)상에서 기준광속의 광과 경사광속의 광이 중복하는 영역, 즉 간섭영역을 크게 할 수 있다.
실시예 4
도 22는 본 발명의 실시예 4를 나타내고 있다. 이 실시예 4에서는, 실시예 2의 결상면의 위치에 광강도를 단색광으로 변환한다, 예를 들면 형광판 등의 단색광 변환수단(41)을 설치하고, 이것을 물체면으로 한 위치에 실린드리컬 렌즈(43)를 배치하고 있다. 그리고, 상기 실린드리컬 렌즈(43)의 광학적 푸리에 변환면에 검출기(19)의 수광면(19a)이 위치하도록 이 검출기(19)를 배치하고 있다. 실린드리컬 렌즈(43)는 그 곡률을 가지지 않는 방향이, 선 모양의 간섭상이 연장하는 방향과 직교하도록 배치되어 있다.
이 실시예 4에서는, 결상렌즈(35)를 투과한 기준광속과 경사광속의 간섭상이, 단색광 변환수단(41)에 의해 공간적인 밝기 강도분포로 변환된다. 그리고, 실린드리컬 렌즈(43)에 의해서 광학적으로 푸리에 변환되며, 결상면상에 분광 스펙트럼이 리얼타임으로 형성된다. 검출기(19)의 수광면(19a)이 실린드리컬 렌즈(43)의 푸리에 변환면상에 있기 때문에, 상기 분광 스펙트럼의 광강도분포를 광학적으로 구하는 것에 의해, 실시예 2에서 얻어진 합성파형을 수학적으로 푸리에 변환했을 경우와 동일한 분광특성 및 복굴절성이 얻어진다. 즉, 본 실시예에서는 푸리에 변환처리를 하지 않아도 직접적으로 분광특성 및 복굴절성이 얻어지므로, 보다 단시간에 분광특성을 얻을 수 있다. 또한, 이 실시예 4에서는, 단색광 변환수단(41), 실린드리컬 렌즈(43)가 분광광학계를 구성한다.
또한, 본 발명은 상기한 실시예에 한정되는 것이 아니고, 적절히 변경이 가능하다. 예를 들면, 실시예 1에서 결상렌즈(17)의 앞에 배치한 검광자(15)를 당해 결상렌즈(17)의 뒤에 배치해도 된다. 단, 결상렌즈(17)의 뒤에 검광자(15)를 배치하면 결상 특성이 열화(劣化)하기 때문에, 실시예 1과 같이 결상렌즈의 앞에 배치하는 것이 바람직하다.
1 … 광학특성 측정장치 3 … 광원
5 … 편광자 7 … 대물렌즈
9 … 제1 편광판 11 … 제2 편광판
13, 31 … 위상 쉬프터 15 … 검광자
17 … 결상렌즈 19 … 검출기
19a … 수광면 21 … 렌즈구동기구
23 … 처리부 25 … 제어부
32 … 기준 미러부 33 … 경사 미러부
35 … 결상렌즈 35a … 기준 렌즈부
35b … 경사 렌즈부 41 … 단색광 변환수단
43 … 실린드리컬 렌즈 131 … 가동 미러부
132 … 고정 미러부

Claims (9)

  1. a) 직선편광이 입사된 피측정물로부터 발(發)하게 되는 광을 제1 편광판 및 제2 편광판으로 유도하는 분할광학계와,
    b) 상기 제1 편광판을 투과한 제1 편광성분과 상기 제2 편광판을 투과한 제2 편광성분의 합성성분 가운데, 소정의 편광방향의 광을 투과시키는 검광자(檢光子)와,
    c) 상기 검광자를 투과한 광을 동일점으로 유도하여 간섭상(干涉像)을 형성하는 결상(結像)광학계와,
    d) 상기 간섭상의 광강도를 검출하는 검출부와,
    e) 상기 제1 편광판 및 제2 편광판으로부터 상기 검광자를 향하는 제1 편광성분 및 제2 편광성분의 광로 길이의 차를 변화시키는 것에 의해 당해 제1 편광성분과 제2 편광성분의 사이의 위상차를 변화시키는 위상차 부여수단과,
    f) 상기 위상차의 변화에 수반하여 상기 검출부에서 검출되는 광강도의 변화의 데이터를 푸리에(fourier) 변환하는 것에 의해 상기 피측정물로부터 발하게 되는 광의 파장마다의 진폭과 복굴절(複屈折) 위상차를 취득하는 처리부를 구비하는 것을 특징으로 하는 광학특성 측정장치.
  2. a) 직선편광이 입사된 피측정물로부터 발하게 되는 광을 제1 편광판 및 제2 편광판으로 유도하는 분할광학계와,
    b) 상기 제1 편광판을 투과한 제1 편광성분과 상기 제2 편광판을 투과한 제2 편광성분의 합성성분 중 소정의 편광방향의 광을 투과시키는 검광자와,
    c) 상기 검광자를 투과한 광을, 상기 제1 편광성분 및 제2 편광성분의 광축과 다른 방향으로 연장하는 동일 직선상에 집광시켜 선 모양의 간섭상을 형성하는 결상광학계와,
    d) 상기 제1 편광판 및 제2 편광판으로부터 상기 검광자를 향하는 제1 편광성분 및 제2 편광성분의 사이에 연속적인 광로 길이차 분포를 주는 것에 의해 당해 제1 편광성분과 제2 편광성분의 사이에 연속적인 위상변화를 주는 위상변화 부여수단과,
    e) 상기 선 모양의 간섭상의 이 간섭상이 연장하는 방향에 따른 광강도분포를 검출하는 검출부와,
    f) 상기 검출부에서 검출되는 상기 간섭상의 광강도분포를 나타내는 데이터를 푸리에 변환하는 것에 의해 상기 피측정물로부터 발하게 되는 광의 파장마다의 진폭과 복굴절 위상차를 취득하는 처리부를 구비하는 것을 특징으로 하는 광학특성 측정장치.
  3. a) 직선편광이 입사된 피측정물로부터 발하게 되는 광을 제1 편광판 및 제2 편광판으로 유도하는 분할광학계와,
    b) 상기 제1 편광판을 투과한 제1 편광성분과 상기 제2 편광판을 투과한 제2 편광성분의 합성성분 가운데, 소정의 편광방향의 광을 투과시키는 검광자와,
    c) 상기 검광자를 투과한 광을, 상기 제1 편광성분 및 제2 편광성분의 광축과 다른 방향으로 연장하는 동일 직선상에 집광시켜 선 모양의 간섭상을 형성하는 결상광학계와,
    d) 상기 제1 편광판 및 제2 편광판으로부터 상기 검광자를 향하는 제1 편광성분 및 제2 편광성분의 사이에 연속적인 광로 길이차 분포를 주는 것에 의해 당해 제1 편광성분과 제2 편광성분의 사이에 연속적인 위상변화를 주는 위상변화 부여수단과,
    e) 상기 선 모양의 간섭상을 파장분해하여 분광 스펙트럼을 형성하는 분광광학계와,
    f) 상기 분광 스펙트럼의 광강도분포를 검출하는 검출부와,
    g) 상기 검출부에서 검출되는 광강도분포로부터 상기 피측정물로부터 발하게 되는 광의 파장마다의 진폭과 복굴절 위상차를 취득하는 처리부를 구비하는 것을 특징으로 하는 광학특성 측정장치.
  4. 청구항 1 내지 3 중 어느 한 항에 있어서,
    제1 편광성분과 제2 편광성분의 편광방향이 직교하고, 또한 상기 피측정물에 입사하는 직선편광의 전계(電界)성분에 대해서 제1 편광성분과 제2 편광성분의 편광방향이 45° 기울어지도록, 제1 편광판 및 제2 편광판이 배치되어 있는 것을 특징으로 하는 광학특성 측정장치.
  5. 청구항 1 내지 4 중 어느 한 항에 있어서,
    상기 분할광학계가 상기 피측정물로부터 발하게 되는 광을 평행광선화하여 제1 편광판 및 제2 편광판으로 유도하는 대물렌즈를 구비하고,
    상기 처리부는 상기 피측정물 가운데 상기 대물렌즈의 합초점(合焦点)으로부터 발하게 되는 광의 파장마다의 진폭과 복굴절 위상차를 구하는 것을 특징으로 하는 광학특성 측정장치.
  6. 청구항 5에 있어서,
    상기 피측정물에 대한 상기 대물렌즈의 합초위치를 상대적으로 변경하는 합초위치 변경수단을 구비하는 것을 특징으로 하는 광학특성 측정장치.
  7. a) 직선편광을 피측정물에 입사시키고,
    b) 상기 직선편광이 입사된 피측정물로부터 발하게 되는 광을 분할광학계에 의해서 제1 편광판 및 제2 편광판으로 각각 유도하며,
    c) 상기 제1 편광판을 투과한 제1 편광성분과 상기 제2 편광판을 투과한 제2 편광성분을, 이 제1 편광성분과 이 제2 편광성분의 광로 길이의 차를 변화시키면서 검광자를 통하여 결상광학계로 유도함과 아울러, 이 결상광학계에 의해서 동일점에 집광시켜 간섭상을 형성시키고,
    d) 상기 간섭상의 광강도의 변화를 나타내는 데이터를 푸리에 변환하는 것에 의해 상기 피측정물로부터 발하게 되는 광의 파장마다의 진폭과 복굴절 위상차를 취득하는 것을 특징으로 하는 광학특성 측정방법.
  8. a) 직선편광을 피측정물에 입사시키고,
    b) 상기 직선편광이 입사된 피측정물로부터 발하게 되는 광을 분할광학계에 의해서 제1 편광판과 제2 편광판으로 각각 유도하며,
    c) 상기 제1 편광판을 투과한 제1 편광성분과 상기 제2 편광판을 투과한 제2 편광성분을, 이 제1 편광성분과 제2 편광성분의 사이에 연속적인 광로 길이차 분포를 부여하면서 검광자를 통하여 결상광학계로 유도함과 아울러, 이 결상광학계에 의해서 동일 직선상에 집광시켜 선 모양의 간섭상을 형성시키고,
    d) 상기 선 모양의 간섭상의 이 간섭상이 연장하는 방향에 따른 광강도분포를 나타내는 데이터를 푸리에 변환하는 것에 의해 상기 피측정물로부터 발하게 되는 광의 파장마다의 진폭과 복굴절 위상차를 취득하는 것을 특징으로 하는 광학특성 측정방법.
  9. a) 직선편광을 피측정물에 입사시키고,
    b) 상기 직선편광이 입사된 피측정물로부터 발하게 되는 광을 분할광학계에 의해서 제1 편광판과 제2 편광판으로 각각 유도하며,
    c) 상기 제1 편광판을 투과한 제1 편광성분과 상기 제2 편광판을 투과한 제2 편광성분을, 이 제1 편광성분과 제2 편광성분의 사이에 연속적인 광로 길이차 분포를 부여하면서 검광자를 통하여 결상광학계로 유도함과 아울러, 이 결상광학계에 의해서 동일 직선상에 집광시켜 선 모양의 간섭상을 형성시키고,
    d) 상기 선 모양의 간섭상을 분광광학계에 의해서 파장분해하는 것에 의해 분광 스펙트럼을 취득하며,
    e) 상기 분광 스펙트럼의 광강도분포에 근거하여 상기 피측정물로부터 발하게 되는 광의 파장마다의 진폭과 복굴절 위상차를 취득하는 것을 특징으로 하는 광학특성 측정방법.
KR1020137025104A 2011-02-28 2012-02-28 광학특성 측정장치 및 광학특성 측정방법 KR101590241B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2011-043170 2011-02-28
JP2011043170 2011-02-28
PCT/JP2012/054940 WO2012118079A1 (ja) 2011-02-28 2012-02-28 光学特性測定装置及び光学特性測定方法

Publications (2)

Publication Number Publication Date
KR20130132995A true KR20130132995A (ko) 2013-12-05
KR101590241B1 KR101590241B1 (ko) 2016-01-29

Family

ID=46758010

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137025104A KR101590241B1 (ko) 2011-02-28 2012-02-28 광학특성 측정장치 및 광학특성 측정방법

Country Status (7)

Country Link
US (1) US8830462B2 (ko)
EP (1) EP2682741B1 (ko)
JP (1) JP5721195B2 (ko)
KR (1) KR101590241B1 (ko)
CN (1) CN103403528B (ko)
RU (1) RU2544876C1 (ko)
WO (1) WO2012118079A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160134810A (ko) * 2014-03-24 2016-11-23 칼 짜이스 에스엠테 게엠베하 편광 파라미터를 결정하기 위한 측정 디바이스

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5827507B2 (ja) * 2011-07-12 2015-12-02 国立大学法人宇都宮大学 偏光解析システム
US9291500B2 (en) * 2014-01-29 2016-03-22 Raytheon Company Configurable combination spectrometer and polarizer
AU2014385273B2 (en) * 2014-03-07 2017-06-15 Halliburton Energy Services, Inc. Wavelength-dependent light intensity modulation in multivariate optical computing devices using polarizers
WO2016049570A1 (en) * 2014-09-25 2016-03-31 Hinds Instruments, Inc. Unambiguous retardance measurement
CN105511093B (zh) * 2015-06-18 2018-02-09 广州优视网络科技有限公司 3d成像方法及装置
WO2017003983A1 (en) * 2015-06-30 2017-01-05 Corning Incorporated Interferometric roll-off measurement using a static fringe pattern
KR102436474B1 (ko) * 2015-08-07 2022-08-29 에스케이하이닉스 주식회사 반도체 패턴 계측 장치, 이를 이용한 반도체 패턴 계측 시스템 및 방법
US20170078540A1 (en) * 2015-09-02 2017-03-16 Sick Ag Camera for Recording Image Data From a Detection Zone
JP2017131550A (ja) * 2016-01-29 2017-08-03 キヤノン株式会社 画像処理装置及び画像処理方法
JP6744005B2 (ja) * 2016-03-02 2020-08-19 国立大学法人 香川大学 分光測定装置
KR101855816B1 (ko) * 2016-05-13 2018-05-10 주식회사 고영테크놀러지 생체 조직 검사 장치 및 그 방법
JP6531295B2 (ja) * 2016-05-20 2019-06-19 国立大学法人 香川大学 反射光検出装置及び反射光検出方法
KR102345803B1 (ko) * 2016-09-26 2022-01-03 오리하라 인더스트리얼 컴퍼니 리미티드 강화 유리의 응력 측정 장치, 강화 유리의 응력 측정 방법, 강화 유리의 제조 방법, 강화 유리
FR3063542A1 (fr) * 2017-03-01 2018-09-07 Maf Agrobotic Procede et dispositif d'analyse optique de fruits ou legumes et dispositif de tri automatique
KR102358353B1 (ko) 2017-04-25 2022-02-04 한국전자통신연구원 위상광학 이미지 획득 장치 및 방법
RU185308U1 (ru) * 2018-06-06 2018-11-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский государственный университет" (ФГБОУ ВО "ИГУ") Устройство позиционирования распыляющей системы
JP7182243B2 (ja) * 2018-06-13 2022-12-02 国立大学法人 香川大学 分光測定装置及び分光測定方法
CN112567196B (zh) * 2018-09-03 2023-07-11 株式会社岛津制作所 干涉仪移动镜位置测定装置和傅里叶变换红外分光光谱仪
CN110672550B (zh) * 2019-09-10 2021-11-19 中国科学院上海技术物理研究所 一种微区重要生物资源像谱分析仪
CN116209888A (zh) * 2020-05-19 2023-06-02 贝克顿·迪金森公司 用于调制激光束的强度分布的方法及其系统
CN112557344B (zh) * 2020-11-30 2022-04-08 华中科技大学 一种双折射率的测定装置和测定方法
CN112433383B (zh) * 2020-12-21 2024-04-05 江西万骏光电有限公司 一种远红外光偏振态的转换装置及实现方法
JP2022125549A (ja) * 2021-02-17 2022-08-29 株式会社島津製作所 フーリエ変換赤外分光光度計
CN114544559A (zh) * 2022-01-14 2022-05-27 华中科技大学 一种测量分子转动温度和排列光强度的方法和系统
CN114384020B (zh) * 2022-01-20 2024-01-30 深圳铭毅智造科技有限公司 一种大视野显微成像方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141602A (ja) 1999-11-12 2001-05-25 Unie Opt:Kk 複屈折評価装置および複屈折評価方法
JP2005242234A (ja) * 2004-02-27 2005-09-08 Niigata Tlo:Kk 液晶素子の光学特性測定方法及び液晶素子の光学特性測定システム
US7061613B1 (en) * 2004-01-13 2006-06-13 Nanometrics Incorporated Polarizing beam splitter and dual detector calibration of metrology device having a spatial phase modulation
JP2009186256A (ja) * 2008-02-05 2009-08-20 Fujifilm Corp 複屈折測定方法及び装置並びにプログラム
US20100245819A1 (en) * 2009-03-27 2010-09-30 Guoguang Li Method and apparatus for phase-compensated sensitivity-enhanced spectroscopy (PCSES)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1746264A1 (ru) * 1990-02-02 1992-07-07 Всесоюзный научно-исследовательский институт "Электронстандарт" Устройство дл контрол полупроводниковых материалов
DE4416298A1 (de) * 1994-05-09 1995-11-16 Abb Research Ltd Verfahren und Vorrichtung zur optischen Ermittlung einer physikalischen Größe
US5825492A (en) * 1996-04-26 1998-10-20 Jaton Systems Incorporated Method and apparatus for measuring retardation and birefringence
JPH09329424A (ja) * 1996-06-12 1997-12-22 Toyo Commun Equip Co Ltd 光学式膜厚測定方法および装置
RU2149382C1 (ru) * 1997-10-23 2000-05-20 Физико-технологический институт Российской академии наук Способ определения эллипсометрических параметров объекта (варианты)
US6052188A (en) * 1998-07-08 2000-04-18 Verity Instruments, Inc. Spectroscopic ellipsometer
JP2003247934A (ja) * 2002-02-25 2003-09-05 Sony Corp 複屈折測定方法及び複屈折測定装置
JP2006214856A (ja) * 2005-02-03 2006-08-17 Canon Inc 測定装置及び方法
JP4926957B2 (ja) * 2005-06-13 2012-05-09 国立大学法人宇都宮大学 光学特性計測装置及び光学特性計測方法
JP5078004B2 (ja) * 2007-06-15 2012-11-21 国立大学法人 香川大学 分光計測装置及び分光計測方法
CN101666626B (zh) * 2008-09-03 2012-02-29 睿励科学仪器(上海)有限公司 一种椭偏测量的方法及其装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141602A (ja) 1999-11-12 2001-05-25 Unie Opt:Kk 複屈折評価装置および複屈折評価方法
US7061613B1 (en) * 2004-01-13 2006-06-13 Nanometrics Incorporated Polarizing beam splitter and dual detector calibration of metrology device having a spatial phase modulation
JP2005242234A (ja) * 2004-02-27 2005-09-08 Niigata Tlo:Kk 液晶素子の光学特性測定方法及び液晶素子の光学特性測定システム
JP2009186256A (ja) * 2008-02-05 2009-08-20 Fujifilm Corp 複屈折測定方法及び装置並びにプログラム
US20100245819A1 (en) * 2009-03-27 2010-09-30 Guoguang Li Method and apparatus for phase-compensated sensitivity-enhanced spectroscopy (PCSES)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160134810A (ko) * 2014-03-24 2016-11-23 칼 짜이스 에스엠테 게엠베하 편광 파라미터를 결정하기 위한 측정 디바이스

Also Published As

Publication number Publication date
EP2682741A4 (en) 2017-11-15
US20130335740A1 (en) 2013-12-19
CN103403528A (zh) 2013-11-20
JP5721195B2 (ja) 2015-05-20
RU2544876C1 (ru) 2015-03-20
EP2682741A1 (en) 2014-01-08
US8830462B2 (en) 2014-09-09
KR101590241B1 (ko) 2016-01-29
WO2012118079A1 (ja) 2012-09-07
RU2013143824A (ru) 2015-04-10
EP2682741B1 (en) 2019-02-20
CN103403528B (zh) 2015-05-13
JPWO2012118079A1 (ja) 2014-07-07

Similar Documents

Publication Publication Date Title
KR101590241B1 (ko) 광학특성 측정장치 및 광학특성 측정방법
US7483147B2 (en) Apparatus and method for measuring thickness and profile of transparent thin film using white-light interferometer
EP1873481B1 (en) Oblique incidence interferometer
US9062957B2 (en) Multi-wavelength interferometer, measurement apparatus, and measurement method
US20070013918A1 (en) Optical measuring system and optical measuring method
US20080024767A1 (en) Imaging optical coherence tomography with dynamic coherent focus
KR102341678B1 (ko) 광학 특성 측정 장치 및 광학 특성 측정 방법
EP1887312A1 (en) Imaging optical coherence tomography with dynamic coherent Focus
KR101001853B1 (ko) 병렬 3차원 공초점 표면형상 측정기 및 이를 이용한 표면형상 측정방법
JP2013545113A (ja) イメージマップ光干渉断層法
KR20130039005A (ko) 3차원 형상 및 두께 측정 장치
US20230063843A1 (en) Method and apparatus for high performance wide field photothermal imaging and spectroscopy
US20160153904A1 (en) Optical tomographic observation device
KR101251292B1 (ko) 편광을 이용한 3차원 형상 및 두께 측정 장치
JPWO2020017017A1 (ja) 光計測装置および試料観察方法
US9924115B2 (en) Apparatus and method for three-dimensional infrared imaging of surfaces
JP2010164574A (ja) 多重化スペクトル干渉光コヒーレンストモグラフィー
CN107923735B (zh) 用于推导物体表面的形貌的方法和设备
CN114341602B (zh) 分光测定装置
US20110242649A1 (en) Wavefront measurement method, wavefront measurement apparatus, and microscope
JP2006064610A (ja) 同軸型空間光干渉断層画像計測装置
JPH0484704A (ja) 多波長型干渉計
KR100726459B1 (ko) 3차원 형상측정장치
KR20100111908A (ko) 고속카메라와 연속위상주사 방법을 이용한 진동둔감 간섭계
JP2009079933A (ja) 大型サンプル測定用干渉計装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee