JPWO2017002519A1 - 充電装置 - Google Patents

充電装置 Download PDF

Info

Publication number
JPWO2017002519A1
JPWO2017002519A1 JP2017526235A JP2017526235A JPWO2017002519A1 JP WO2017002519 A1 JPWO2017002519 A1 JP WO2017002519A1 JP 2017526235 A JP2017526235 A JP 2017526235A JP 2017526235 A JP2017526235 A JP 2017526235A JP WO2017002519 A1 JPWO2017002519 A1 JP WO2017002519A1
Authority
JP
Japan
Prior art keywords
charging
fan
case
battery pack
cooling air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017526235A
Other languages
English (en)
Other versions
JP6399479B2 (ja
Inventor
政樹 並木
政樹 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57609473&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPWO2017002519(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Publication of JPWO2017002519A1 publication Critical patent/JPWO2017002519A1/ja
Application granted granted Critical
Publication of JP6399479B2 publication Critical patent/JP6399479B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0044Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction specially adapted for holding portable devices containing batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20145Means for directing air flow, e.g. ducts, deflectors, plenum or guides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

電池パックを効率良く冷却する充電装置を提供するため、充電装置1は、底部と、底部と対向する上部と、底部と上部とを連結する側面部とを有するケース2と、ケース内に設けられた複数のファン5、6と、ケース内に設けられて電池パック3を充電するように構成され、電池パック3の充電に伴い発熱する発熱素子を有する充電回路部4と、を備える。複数のファンは、前記側面部に沿って配置される。

Description

本発明は、ニッケル・カドミウム電池やニッケル・水素電池、リチウムイオン電池などの二次電池からなる電池パックを充電する充電装置に関する。
従来、電動工具等の電源として電池パックが用いられ、電池パックは専用の充電装置により充電が行われる。電動工具等に使用される電池パックは、電池容量が大きくまた放電電圧の高いものが使用され、また、近年、電池パックの高容量化が進んでいる。電池容量が大きく且つ放電電圧が高い電池パックを短時間で充電するために、充電装置の出力の大きいものを使用することが主流となっている。
しかしながら、出力の大きい充電装置は、充電時間を短くできる反面、充電装置内部の電気素子の温度が上昇するという問題がある。また、充電装置の出力が大きいと、電池パックそのものの発熱も大きくなる。また、高出力の電動工具で使用された直後の電池パックを充電する場合、電池パックそのものの温度が高温であるため、充電を行うことができないという問題もある。
そこで、冷却ファンを使って充電装置内部及び電池パックを強制的に冷却する充電装置が提案されている(例えば、特許文献1)。この充電装置では、冷却ファンによる風を電池パック内部と充電装置内部とに送り込むことによって、電池パック及び充電装置内の発熱部品を空冷して発熱を抑えている。
特開2015−019535号公報
本発明は、斯かる実情に鑑み、充電装置内部を効率良く冷却可能な充電装置を提供しようとするものである。
本発明の充電装置は、底部と、前記底部と対向する上部と、前記底部と前記上部とを連結する側面部とを有するケースと、前記ケース内に設けられた複数のファンと、前記ケース内に設けられて電池パックを充電するように構成され、前記電池パックの充電に伴い発熱する発熱素子を有する充電回路部と、を有し、前記複数のファンは前記側面部に沿って配置される。
当該構成により、複数のファンにより発熱素子の冷却効率を高めることができる。また、充電回路部のための空間をケース内に広く設けることができる。
好ましくは、前記ケースは略直方体形状を有し、前記複数のファンは、第1ファンと第2ファンを有し、前記第1ファンと前記第2ファンとは、前記側面部の一の角部近傍に配置されている。
当該構成により、第1ファン及び第2ファンによる冷却風のケース内の通過領域を広く取ることができるとともに、充電回路部のための空間をケース内に広く設けることができる。
好ましくは、前記第1ファンは、第1の側面部に沿って配置され、前記第2ファンは、前記一の角部を介して前記第1の側面部に連結された第2の側面部に沿って配置される。
当該構成により、第1ファン及び第2ファンによる冷却風のケース内の通過領域を広く取ることができるとともに、充電回路部のための空間をケース内に広く設けることができる。
好ましくは、前記第1ファン及び前記第2ファンは、同一の前記側面部に沿って配置される。
当該構成により、冷却風が通過する風路の進行方向に交差する断面領域を広く取ることができ、充電回路部を効率良く冷却することができる。従って、充電装置の温度上昇を抑制することができる。
好ましくは、前記第1ファンは、第1の側面部に沿って配置され、前記第2ファンは、前記第1の側面部と対向する第3の側面部に沿って配置される。
好ましくは、前記ケースは、空気を前記ケース内に取りこむ吸気口と、前記空気を前記ケース外に排気する排気口とを有し、前記第1ファン及び前記第2ファンは、それぞれ前記排気口の近傍に配置され、前記発熱素子は、前記吸気口の近傍に配置される。
当該構成により、ケース内に取りこまれた空気は、最初に発熱素子の傍を通過して発熱素子を冷却し、その後第1及び第2ファンにより排気口よりケース外に排気される。すなわち、発熱素子は、ケース内に取りこまれた直後の排熱により温度が上昇する前の空気で冷却される。発熱素子の冷却が効率良く行われるので、充電装置の温度上昇を抑制することができる。
好ましくは、前記吸気口及び前記排気口は前記側面部に設けられる。
また、本発明の充電装置は、ケースと、前記ケース内に第1冷却風を発生させる第1ファンと、前記ケース内に第2冷却風を発生させる第2ファンと、前記ケースに装着される電池パックを充電するように構成され、前記電池パックの充電に伴い発熱する発熱素子を有する充電回路部と、を有し、前記ケースは、空気を前記ケース内に取りこむ吸気口と、前記第1冷却風及び前記第2冷却風を前記ケース外に排気する排気口とを有し、前記第1ファン及び前記第2ファンは、それぞれ前記排気口の近傍に配置され、前記発熱素子は、前記吸気口の近傍に配置されて前記第1及び第2冷却風の少なくとも一方により冷却される。
当該構成により、第1及び第2ファンの駆動により吸気口よりケース内に取りこまれた空気は、最初に発熱素子の傍を通過して発熱素子を冷却し、その後第1及び第2ファンにより排気口よりケース外に排気される。すなわち、発熱素子は、ケース内に取りこまれた直後の排熱により温度が上昇する前の空気で冷却される。発熱素子の冷却が効率良く行われるので、充電装置の温度上昇を抑制することができる。
好ましくは、前記ケースは、底部と、前記底部と対向する上部と、前記底部と前記上部とを連結するように設けられた側面部とを有し、前記排気口は前記側面部に設けられて、前記第1ファン及び前記第2ファンが近接する。
当該構成により、単位時間あたり大量の空気を吸気口を介してケース内に取りこむことができ、また、排熱により温度上昇した第1及び第2冷却風を効率良く排気することができる。従って、充電装置の温度上昇を抑制することができる。
好ましくは、前記ケースは略直方体形状を有し、前記第1ファンと前記第2ファンとは、前記側面部の一の角部近傍に配置されている。
当該構成により、第1冷却風及び第2冷却風のケース内の通過領域を広く取ることができるとともに、充電回路部のための空間をケース内に広く設けることができる。
好ましくは、前記充電回路部は、前記発熱素子に取り付けられた放熱部材をさらに有し、前記放熱部材は、前記第1及び第2冷却風が通過する風路の一部を画成する。
当該構成により、発熱素子のみならず放熱部材も、第1及び第2冷却風によって冷却されるので、発熱素子の冷却がより効率良く行われる。従って、充電装置の温度上昇を抑制することができる。
好ましくは、前記第1ファンは、第1回転軸を有し、前記第2ファンは、第2回転軸を有し、前記第1ファン及び前記第2ファンは、互いに近接すると共に前記第1回転軸の延長線と前記第2回転軸の延長線とが交差するように配置されている。
当該構成により、第1冷却風及び第2冷却風がケース内を通過する領域を広く取ることができるので、充電回路部を効率良く冷却して充電装置の温度上昇を抑制することができる。
前記ケースは、充電中の電池パックを冷却するための風が通過可能な開口を有し、前記第1ファン及び前記第2ファンは、前記開口の近傍に配置される。
当該構成により、電池パックを通過する空気を、開口を介してケース内に取りこみ、充電中の電池パックの冷却を効率良く行うことができ、電池パックの温度上昇を抑制できる。
本発明の充電装置は、ケースと、前記ケース内に設けられた第1ファンと、前記ケース内に設けられた第2ファンと、前記ケース内に装着される電池パックを充電するように構成された充電回路部と、を有し、前記ケースは、空気の出入りが可能な通気口と、前記空気を排気する排気口とを有し、前記通気口は、前記第1ファンが近傍に配置される第1通気口と、前記第2ファンが近傍に配置される第2通気口とを有し、前記第1ファンの回転速度が前記第2ファンの回転速度よりも大きいことにより、前記第1通気口より吸い込む空気の一部を、前記第2通気口を介して前記ケースの外に排気する第1の通気動作を行い、前記充電回路部による充電動作中は、前記第1及び第2ファンは、前記第1及び第2通気口より空気を前記ケース内に取りこむように構成されている。
当該構成により、第1の通気動作により、第1通気口を介して吸い込まれる空気の一部が、第2通気口を介してケースの外に排気される。これにより、第2通気口を通過する空気の流れが充電動作中とは逆になるので、充電動作中に生じた第2通気口の埃等による目詰まりを解消することができる。
本発明の充電装置は、電池電圧及び定格容量が異なる複数の電池パックを選択的に充電可能な充電装置であって、前記電池パックが装着されるケースと、前記ケース内に設けられたファンと、前記ケース内に設けられて前記電池パックを充電するように構成され、前記電池パックの充電に伴い発熱する発熱素子を有する充電回路部と、を有し、前記電池パックを10A以上の充電電流で充電可能であって、前記ファンの風量、又は前記ファンによって前記ケース内に発生する風量が13m^3/hr以上である。
当該構成により、電池パックを大電流(10A以上)で充電しても発熱素子を効果的に冷却することができる。
本発明の充電装置は、空気を取りこむ吸気口と冷却風を排気する排気口とが形成されると共に、底部と、前記底部と対向する上部とを有し、電池パックが装着可能なケースと、前記ケース内に冷却風を発生させるファンと、前記ケース内に設けられると共に前記電池パックを充電するように構成され、前記電池パックの充電に伴い発熱する発熱素子を有する充電回路部と、前記ケース内に前記冷却風が通過する冷却風路を画成する風路画成部材と、を有し、前記風路画成部材は、前記上部と前記発熱素子との間に延在する板状部を備える。
当該構成により、風路画成部材によって発熱素子の冷却がより効率良く行われ、充電装置の温度上昇を抑制することができる。
好ましくは、前記発熱素子は、複数の発熱素子を含み、前記風路画成部材は、前記上部と交差する第1方向に延びる第1画成部と、前記第1画成部から前記第1方向と交差する第2方向に延びて、前記第1方向において前記上部と前記複数の発熱素子のうちの少なくとも1つの発熱素子との間に位置する第2画成部とを備え、前記ファンの駆動により前記冷却風を前記発熱素子に導き、前記発熱素子を冷却可能とするように構成されている。
当該構成により、ファンの駆動により吸気口より取りこまれた空気は、冷却風として、第2画成部によって風路画成部材によって画成された冷却風路から逸脱することを抑えられながら、冷却風路に沿って冷却風路内を通過する。これにより、冷却風路内に配置された発熱素子は、冷却風により冷却される。従って、充電装置全体の発熱を抑制して、発熱素子を温度上昇から保護する。
好ましくは、前記風路画成部材は、前記複数の発熱素子のうちの少なくとも1つの発熱素子の放熱用に設けられた放熱部材を備える。また、好ましくは、前記放熱部材は、前記冷却風の進行方向と交差する断面が略L字形状を有する。
当該構成により、発熱素子のみならず放熱部材も、冷却されるので、発熱素子の冷却がより効率良く行われる。また、断面が略L字形状のため、冷却風が冷却風路から逸れないので、発熱素子の冷却が効率良く行われ、充電装置の温度上昇を抑制することができる。
好ましくは、前記充電回路部は、前記複数の発熱素子が実装された回路基板を有し、前記第1画成部は、前記回路基板と前記上部とのうちの一方から他方に向けて立設され、前記冷却風路は、前記回路基板及び前記風路画成部材によって画成される。
当該構成により、ファンの駆動により吸気口から取りこまれた空気は、冷却風として風路画成部材によって画成された冷却風路を通過する。従って、冷却風路に置かれた発熱素子は効率良く冷却されて、充電装置の温度上昇を防止できる。
好ましくは、前記複数の発熱素子のうちの少なくとも1の発熱素子を前記吸気口の近傍に配置する。当該構成により、吸気口から取りこまれた直後の空気により発熱素子は冷却されるので、効率良く冷却が行われる。
好ましくは、前記複数の発熱素子は、ダイオード、FET、トランス及びコイルのうちの少なくとも1つである。
好ましくは、前記板状部材は、前記発熱素子と対応する位置に、前記発熱素子の外形に応じて形成された開口と、前記開口の縁部近傍から前記上部とは反対側に延びて前記発熱素子と共に前記冷却風路の一部を画成する案内片部とを有し、前記冷却風路は、前記吸気口から、前記発熱素子と前記案内片部との間と前記開口とを通過して前記排気口に至るように設けられる。
当該構成により、ファンの駆動により吸気口より取りこまれた空気は、冷却風として、風路画成部材の案内片部と発熱素子とによって画成された風路を通過して、開口を通過して排気口に流れる。従って、発熱素子は冷却風により冷却され、充電装置全体の発熱を抑制して、発熱素子を温度上昇から保護する。
好ましくは、前記発熱素子は、前記吸気口の近傍に配置される。当該構成により、吸気口から取りこまれた直後の空気により発熱素子は冷却されるので、効率良く冷却が行われる。
好ましくは、前記発熱素子は、ダイオード、FET、トランス及びコイルのうちの少なくとも1つである。
本発明の充電装置は、空気を取りこむ吸気口と冷却風を排気する排気口とが形成されると共に、底部と、前記底部と対向する上部とを有し、電池パックが装着可能なケースと、前記ケース内に冷却風を発生させるファンと、前記ケース内に設けられると共に前記電池パックを充電するように構成され、前記電池パックの充電に伴い発熱する複数の発熱素子を有する充電回路部と、を有し、前記発熱素子はトランスを含み、前記トランスを前記吸気口の近傍に配置した。当該構成により、発熱素子の1つであるトランスを効率良く冷却することができる。
好ましくは、前記ケース内に前記冷却風が通過する冷却風路を画成する風路画成部材を有し、前記風路画成部材は、前記上部と交差する第1方向に延びる第1画成部と、前記第1画成部から前記第1方向と交差する第2方向に延びて、前記第1方向において前記上部と前記複数の発熱素子のうちの少なくとも1つの発熱素子との間に位置する第2画成部と、を備え、前記トランスは前記風路画成部材で画成された前記冷却風路内に配置される。当該構成により、発熱素子の1つであるトランスを効率良く冷却することができる。
好ましくは、前記風路画成部材は発熱素子に取り付けられた放熱部材であり、前記ファンの駆動により前記冷却風を前記放熱部材に沿って流れるように構成した。当該構成により、トランスに加え、放熱部材が取り付けられた発熱素子を効率良く冷却することができる。当該構成により、発熱素子を効率良く冷却することができる。
本発明の充電装置は、空気を取りこむ吸気口と冷却風を排気する排気口とが形成されると共に電池パックが装着可能なケースと、前記ケース内に冷却風を発生させるファンと、前記ケース内に設けられると共に前記電池パックを充電するように構成され、前記電池パックの充電に伴い発熱する複数の発熱素子を有する充電回路部と、前記ケース内に前記冷却風が通過する冷却風路を画成する風路画成部材と、を有し、前記風路画成部材で画成した前記冷却風路内に前記複数の発熱素子を配置した。当該構成により、発熱素子を効率良く冷却することができる。
本発明の充電装置は、空気を取りこむ吸気口と冷却風を排気する排気口とが形成されると共に、電池パックが装着可能なケースと、前記ケース内に冷却風を発生させるファンと、前記ケース内に設けられると共に前記電池パックを充電するように構成され、前記電池パックの充電に伴い発熱する複数の発熱素子を有する充電回路部と、前記ケース内に前記冷却風が通過する冷却風路を画成する風路画成部材と、を有し、前記風路画成部材は前記複数の発熱素子を取り囲むように構成されている。当該構成により、発熱素子を効率良く冷却することができる。
本発明の充電装置によれば、電池パックを大電流により短時間で充電するときに、充電回路部の発熱素子を効率良く冷却して当該発熱素子の発熱を防止して、充電回路の温度上昇を抑制できる。また、本発明の充電装置によれば、吸気口から取りこまれた空気は冷却風として、風路画成部材によって画成される冷却風路から逸れることを抑えられながら冷却風路に沿って流れる。従って、電池パックを大電流で急速充電を行うときに、発熱素子を効率良く冷却して、充電装置の温度上昇を抑制することができるという優れた効果を奏し得る。
本発明の第1の実施の形態による充電装置の外観図。 図1に示す充電装置の上面図。 図1に示す充電装置の側面図。 図1に示す充電装置のケース内の充電回路部を示す平面図。 電池パックを充電する図1に示す充電装置の側面図。 図1に示す充電装置内部の放熱部材、充電回路部、第1及び第2ファンを示す斜視図。 電池パックを充電する図1に示す充電装置の正面図。 放熱部材と冷却風との関係を説明する図であり、(a)は第2放熱部が無いときの冷却風の流れ、(b)は第2放熱部があるときの冷却風の流れを説明する図。 図1に示されている充電装置の電気的構成を示すブロック図を含む回路図であり、電池装着部に電池パックが装着されている状態を示す図。 図9に示す電池パックが備える第1遮断素子が有する第1遮断特性曲線を示す図。 図9に示す電池パックが備える第2遮断素子が有する第2遮断特性曲線を示す図。 図9に示す充電装置の充電制御部による充電処理を示すフローチャート。 図9に示す充電装置の充電制御部による充電処理を示すフローチャート。 図9に示す充電装置の充電制御部が電池パックを充電する場合に用いる目標電流値を決定するためのテーブル。 (a)及び(b)は、図9に示す充電装置の充電制御部による充電制御を行った場合の電池温度、充電電圧、充電電流の時間変化を示すタイムチャート。(c)は、従来の充電装置による充電制御を行った場合の電池温度、充電電圧、充電電流の時間変化を示すタイムチャート。 第1の実施の形態の変形例を示す充電装置の内部を示す平面図。 図16に示す変形例における放熱プレートの斜視図。 図16に示す放熱プレートと画成される風路との関係を示す斜視図。 電池パックを充電するときの図16に示す充電装置内の冷却風の流れを説明する図。 電池パックを充電するときの図16に示す充電装置内の冷却風の流れを説明する図。 本発明の第2の実施の形態による充電装置のケース内の充電回路部を示す平面図。 図21に示す充電装置の側面図。 第2の実施の形態の変形例を示す上面図。 第2の実施の形態の変形例を示す上面図。 第2の実施の形態の変形例を示す側面図。 第2の実施の形態の変形例を示す側面図。 第2の実施の形態の変形例を示す上面図。 第2の実施の形態の変形例を示す上面図。 本発明の第3の実施の形態による充電装置の平面図。 本発明の第3の実施の形態による充電装置の第1の充電動作を示すフローチャート。 図29に示す充電装置において第1ファンのみを駆動するときに生じる第1冷却風を説明する図。 図29に示す充電装置において第2ファンのみを駆動するときに生じる第2冷却風を説明する図。 図29に示す充電装置が電池パックを充電するときにケース内に生じる第1及び第2の冷却風を示す平面図。 本発明の第3の実施の形態による充電装置の第2の充電動作を示すフローチャート。 図29に示す充電装置において第1ファンの回転数が第2ファンの回転数よりも大きいときのケース内に流れる冷却風を説明する図。 図29に示す充電装置において第2ファンの回転数が第1ファンの回転数よりも大きいときにケース内に生じる冷却風を説明する図。 本発明の第4の実施の形態による充電装置の内部を示す側面断面図。 図37に示す充電装置の平面図。 本発明の第5の実施の形態による充電装置の平面図。
本発明の実施の形態による充電装置を図面を参照して説明する。なお、以下の説明においては、充電装置に電池パックが装着される面が向いている方向を上方向とし、その反対方向を下方向と規定する。また、左右方向及び前後方向については、特段の記載が無い限り、図面に示す方向とする。
本発明の第1の実施の形態による充電装置1は、電池パック3及び33を含む複数種類の電池パック、すなわち、互いに電池種(電池パックの電圧、公称容量)の異なる複数の電池パックを充電可能に構成されている。以下の説明では、充電装置1に電池パック3が装着される場合を主に説明し、適宜、電池パック3の説明と併せて電池パック33についても説明する。
図1から図5を参照すると、充電装置1は、ケース2の内部に、電池パック3を充電するための充電回路部4と、充電回路部4及び電池パック3を冷却するための複数のファンとなる第1ファン5及び第2ファン6とを備える。
ケース2は、略直方体形状であり、上部としての上面21には前方側に電池パック3が充電のために装着される電池装着部7が設けられている。電池装着部7には、電池パック3を充電するための複数の端子70が設けられると共に、電池パック3を冷却するための風が通過する開口71が設けられている。さらに、ケース2は、上面21を囲む4つの側面22、23、24、25と、上面21とは反対側に位置する底部としての底面27とを有し、互いに隣接する側面22、23は角部26にて連結されている。また、側面22、24は互いに対向し、側面23、25は互いに対向する。ケース2において、底面27から上面21に向かう方向を充電装置1の上方向、すなわち上面と交差する第1方向とする。
第1ファン5は、図4に示すように、ケース2内に、角部26と開口71とに近接するとともに側面22に近接して配置される。第1ファン5は、第1回転軸5aを有する。また、第1ファン5が対向する側面22の部分には、複数の通気窓からなる第1排気口22aが形成される。第1ファン5は、駆動されると、第1回転軸5aの方向に第1冷却風を発生させる。第1冷却風は、第1排気口22aに向かい、第1排気口22aを介してケース2から排気される。
第2ファン6は、図4に示すように、ケース2内に、角部26と開口71とに近接するとともに側面23に近接して配置される。第2ファン6は、第2回転軸6aを有する。また、第2ファン6は、第2回転軸6aの延長方向が第1ファン5の第1回転軸5aの延長方向と交差するように配置される。第2ファン6が対向する側面23の部分には、複数の通気窓からなる第2排気口23aが形成されている。第2ファン6は、駆動されると、第2回転軸6aの方向に第2冷却風を発生させる。第2冷却風は、第2排気口23aに向かい、第2排気口23aを介してケース2から排気される。従って、複数のファン(第1ファン5及び第2ファン6)により充電装置1内の発熱素子の冷却効率を高めることができる。さらに、ファン5及び6をケース2の側面(具体的には側面22及び23)に沿って配置することで、回路基板としての基板40のケース2内での設置スペースを確保でき、基板40を有効活用することができる。特にケース2の側面を連結する角部近傍に設けることが効果的である。
ケース2には、側面22と反対側の側面24に、所定範囲に亘って複数の通気窓が吸気口24aとして形成される。従って、第1ファン5及び第2ファン6が駆動されると、吸気口24aから空気がケース2内に取りこまれ、取りこまれた空気は第1及び第2冷却風としてケース2の内部を冷却風路に沿って通過し、第1及び第2排気口22a、23aを介してケース2の外部に排気される。なお、冷却風路の詳細については後述する。
充電回路部4は、ケース2内で、吸気口24aの近傍に配置された基板40に、主に、ダイオード41と、トランス42と、FET43と、温度検出素子44と、充電制御部45とが実装されて構成される。充電回路部4は、充電制御部45の制御により、例えば商用交流電源Pから供給される電力を用いて端子70を介して電池パック3を充電する。大電流且つ急速充電、いわゆる2C充電のために、単位時間あたり多量の電流を充電回路部4に流すと、ダイオード41、トランス42、FET43は、発熱する傾向がある。これらの部品を発熱から保護して放熱を促すために、ダイオード41及びFET43にそれぞれ放熱部材46、47を取り付けている。
また、ダイオード41、トランス42、及びFET43を、吸気口24a近傍に配置して、吸気口24aからケース2内に導入される空気に直接晒されるようにしている。特に、トランス42を冷却風路の最上流側、すなわち吸気口24aの近傍に配置している。
放熱部材46は、熱伝導率の高い金属から形成され、図5に示すように、基板40から上面21に向けて、すなわち第1方向に延びてダイオード41が固定される板状の第1放熱部46Aと、第1放熱部46Aの先端から上面21と略平行に、放熱部材47に向けて延びる板状の第2放熱部46Bとからなる。第2放熱部46Bが延びる方向は、第1方向に交差する方向、すなわち第2方向である。従って、放熱部材46は、断面の形状が側面視で略L字形状に形成される。
放熱部材47も、同様に、熱伝導率の高い金属から形成され、図5に示すように、基板40から上面21に向けて第1方向に延びてFET43が固定される板状の第1放熱部47Aと、第1放熱部47Aの先端から上面21と略平行に、放熱部材46に向けて第2方向に延びる板状第2放熱部47Bとからなる。従って、放熱部材47は、断面の形状が側面視で略L字形状に形成される。
図6に示すように、放熱部材46、47は、基板40に実装されたときに、第1放熱部46Aと第1放熱部47Aとの各々の一端部が互いに離間して吸気口24aの近傍に配置される。また、第2放熱部46B、47Bがトランス42を間に挟むようにトランス42から規格で定まる所定距離を離して配置される。さらに、図5に示されているように、第2放熱部46Bと第2放熱部47Bとは、板状部として、第1方向において、ダイオード41及びFET43と上面21との間に位置する。なお、放熱部材46の第1及び第2放熱部46A、46Bと、放熱部材47の第1及び第2放熱部47A、47Bとは、トランス42と適切な絶縁距離をとるような寸法に形成されている。
また、放熱部材46、47は、基板40に実装されると、基板40とともに、吸気口24aからケース2内に取りこまれた空気の風路を画成すると共に、この風路内にダイオード41、トランス42、及びFET43を含むように配置される。
温度検出素子44は、例えばサーミスタからなり、ケース2内部の温度を検出する。
充電制御部45は、電池パック3の温度をモニタしつつ、充電回路部4による電池パック3の充電を制御すると共に、第1及び第2ファン5、6の回転を制御する。
充電装置1では、図7に示すように電池パック3が電池装着部7に取り付けられると、第1ファン5及び第2ファン6を駆動する。ファンの駆動により、ケース2内に第1冷却風及び第2冷却風を発生させて、吸気口24aから第1排気口22a及び第2排気口23aまでの冷却風路を形成する。
冷却風路は、吸気口24a近傍においては、放熱部材46、47の第1放熱部46A、47A及び第2放熱部46B、47Bと、基板40とによって、図6に示すように、上面の一部が開口するダクト状に画成される。従って、第1冷却風及び第2冷却風は、第1放熱部46A、47Aの各々の吸気口24aに近い一端部側から、排気口22a、23aに近い他端部側に向けて冷却風路内を進行する。
冷却風は、一般に、吸気口24aから排気口22a、23aに向けて最短距離で通過する傾向がある。このため、第2放熱部46Bが設けられていない場合、図8(b)に示すように、冷却風の多くは、放熱部材46の一端部から他端部に向かって流れずに放熱部材46を超えて直接排気口22a、23aに到達する。このため、放熱部材46、47間に配置したダイオード41、トランス42、及びFET43の傍を第1冷却風又は第2冷却風が通過せず、ダイオード41、トランス42、及びFET43を十分に冷却することができないことになる。
これに対し、本発明実施の形態では、第1放熱部46A、47Aの各々の先端部から第2方向に延びる第2放熱部46B、47Bによって、図8(a)に示すように、冷却風が、第1放熱部46Aを超えて排気口22a、23aへと流れるのが阻止される。このため、冷却風は、第1放熱部46A、47Aの各々の一端部から他端部側に向けて流れるので、放熱部材46、47間に配置したダイオード41、トランス42、及びFET43の傍を通過して、ダイオード41、トランス42、及びFET43を十分に冷却することができる。
なお、図4、5、6に示す放熱部材46、47によって画成される冷却風路内のダイオード41、トランス42、及びFET43の配置は一例であって、第1冷却風及び第2冷却風が素子の傍らを通過するのであれば適宜の配置を取ることができる。また、冷却風は、第1ファン5及び第2ファン6に近接して設けた排気口22a、23aを吸気口とし、吸気口24aを排気口として、これらファン5、6によって空気をケース2内に取りこむ構成としてもよい。但し、この場合には、冷却風を発熱素子に吹き付ける構成となるため、第1ファン5及び第2ファン6によってケース2外に風を排出する構成よりも冷却効果が低くなってしまうが、吸気口24a(排気口として使用)付近では冷却風が集束されるため高い風量で吸気口24a近傍に配置した発熱素子(トランス42等)を冷却することができる。また、第1ファン5及び第2ファン6によって空気と共に粉塵が吸い込まれ排気口(22a、23a)に詰まってしまう可能性がある。従って、第1ファン5及び第2ファン6によってケース2外に風を排出する構成とすることで、発熱素子の冷却効率を高めることができると共に、排気口(22a、23a)の目詰まりを抑制することができる。
また、電池パック3を冷却するために、図7に示すダクト90によって、開口71と第1排気口22a及び第2排気口23aとの間にも風路が形成される。ダクト90によって電池パック3の冷却風路と充電装置1の冷却風路とを分けている。すなわち、電池パック3の吸気口から電池パック3内に取り込まれ、開口71を介して充電装置1に取り込まれた空気は、ダクト90の上側を通り第1排気口22a及び第2排気口23aから排出される。一方、吸気口24aから充電装置1に取り込まれた空気はダクト90によって電池パック3側に流れることなくダクト90の下側を通り第1排気口22a及び第2排気口23aから排出される。なお、図5においてダクト90は省略している。
ここで、図9を参照しながら、第1の実施の形態による充電装置1及び充電装置1に接続される電池パック3及び33の電気的構成について説明する。電池パック3及び電池パック33は、互いに電池種が異なり、遮断素子、電池組の許容充電電流値及び内部抵抗(公称容量)等が異なるが、基本的構成、充電装置との接続関係及び充電装置1との通信方法等は同一である。このため、電池パック3を例にとって説明し、電池パック33については相違点のみを説明する。図9は、充電装置1、電池パック3及び33の電気的構成を示すブロック図を含む回路図であり、電池装着部7に電池パック3又は33が装着されている状態を示している。
先に、電池パック3の電気的構成について説明する。電池パック3は、ハンマドリル、携帯用丸鋸等の電動工具に着脱可能に構成され、当該電動工具の駆動用電源として用いられる高容量(公称容量5Ah以上)の電池パックである。図9に示されているように、電池パック3は、電池組3Aと、接続端子部3B、保護IC3Cと、電池側電源回路3Dと、電池温度検出回路3Eと、第1遮断素子3Fと、電池側制御部3Gとを備えている。なお、電池容量は定格容量であってもよい。
電池組3Aは、電池セル3aを直列に4セル接続した構成である。本実施の形態において、例えば、電池セル3aはリチウムイオン電池であり、公称電圧は3.6V、最大充電電圧は4.2Vであり、電池組3Aとしての最大充電電圧は16.8V(4.2V/セル×4セル)である。また、電池組3Aの公称容量は6Ah、許容充電電流値は12A(又は2C)程度であり、電動工具用の駆動電源としては高容量である。なお、許容充電電流値とは、電池組3Aの劣化、故障の虞がなく充電可能な充電電流の最大値であり、12A(2C)は一例に過ぎず、それ以上であってもよい。例えば高性能の電池セルであれば12A(2C)以上の許容充電電流値でもよい。
接続端子部3Bは、プラス接続端子3b及びマイナス接続端子3cを有している。プラス接続端子3bは、最も電位の高い電池セル3aのプラス端子に第1遮断素子3Fを介して接続されている。マイナス接続端子3cは、最も電位の低い電池セル3aのマイナス端子に接続されている。電池パック3が充電装置1の電池装着部7に装着された場合、プラス接続端子3b及びマイナス接続端子3cのそれぞれは、充電装置1の複数の端子70のうちの所定の端子に接続され、電池組3Aと充電装置1とが接続される。
保護IC3Cは、4個の電池セル3aのそれぞれの電圧を個別に監視し、その中の一セルでも通常状態ではない状態、例えば、過充電状態や過放電状態となった場合に異常信号を電池側制御部3Gに出力する。電池側電源回路3Dは、電池組3Aの電圧を変圧し、その電力を電池側制御部3Gに供給する回路である。
電池温度検出回路3Eは、電池組3Aの温度(電池温度)を検出する回路であり、電池組3Aに隣接して設けられた図示せぬサーミスタ等の感温素子を備えている。電池温度検出回路3Eは、サーミスタ等の感温素子を用いて電池温度を検出し、当該検出温度を電圧信号に変換して電池側制御部3Gに出力する。
第1遮断素子3Fは、電池組3A(電池セル3a)の保護のためにプラス接続端子3bと電池組3Aとの間に設けられた、例えば、サーマルプロテクタ、ヒューズ等である。第1遮断素子3Fは、充電電流を遮断する条件を規定する遮断特性を有しており、当該遮断特性を満たしている場合、電池組3A(電池セル3a)に充電電流が流れることを許容し、当該遮断特性を満たしていない場合に充電電流を遮断する。より具体的には、第1遮断素子3Fは、図10に示されている第1遮断特性曲線A(充電電流−周囲温度カーブ)を有している。
図10は、第1遮断素子3Fが有する第1遮断特性曲線Aを示す図である。第1遮断特性曲線Aは、第1遮断素子3Fが開状態となり充電電流を遮断する状態と第1遮断素子3Fが閉状態で充電電流を許容する状態との境界を示す曲線であり、図10のグラフ上において第1遮断特性曲線Aよりも上の領域は、第1遮断素子3Fが開状態となり充電電流を遮断する領域である、すなわち、遮断特性を満たしていない領域である。なお、図10に示されている周囲温度Ta〜Te及びT1〜T6は、T1<Ta<T2<Tb<T3<Tc<T4<Td<T5<Te<T6を満たしており、充電電流I1〜I5は、I5<I4<I3<I2<I1を満たしている。
第1遮断素子3Fの第1遮断特性曲線Aは、充電電流が大きくなるに従って、許容される周囲温度の最高値(許容最高温度)が低くなる、言い換えれば、周囲温度が高くなるに従って、許容される充電電流の最大値(許容最大電流値)が小さくなるように設定されている。
例えば、充電電流がI4の場合、許容最高温度はTdであり、周囲温度がTdに達するまでは充電電流を流すことが許容され、周囲温度がTd以上となると充電電流は遮断される。言い換えれば、充電電流がI4の場合、許容最高温度はTdであり、周囲温度がTdに達するまでは遮断特性を満たした状態であり、周囲温度がTd以上となると遮断特性を満たしていない状態となる。
一方、充電電流がI4よりも大きいI3の場合、許容最高温度は、充電電流I4の場合のTdよりも低いTcとなり、周囲温度がTc以上となった場合、充電電流は遮断される。また、別の観点で見れば、周囲温度がTcの場合、許容最大電流値はI3であり、充電電流がI3以上となると充電電流は遮断される。一方、周囲温度がTcよりも高いTdとなると、許容最大電流値はI3よりも小さいI4となる。
なお、T6は、充電電流が流れていない場合であっても、第1遮断素子3Fが開状態となる周囲温度である。本実施の形態においては、第1遮断素子3Fは、電池組3Aに接触して設置されており、周囲温度は電池温度と略同一となる。このため、第1遮断素子3Fは、充電電流を制限又は遮断する役割だけでなく、電池温度が所定値より高い場合に充電開始できないようにする役割も果たしている。
電池側制御部3Gは、ROM、RAM、演算機能等を有するマイコンであり、情報通信ポート3Hを備えている。情報通信ポート3Hは、充電装置1に電池パック3が接続された場合に充電装置1の複数の端子70のうちの所定の端子に接続される。電池側制御部3Gと充電装置1との間の通信は、情報通信ポート3Hを介して行われる。
電池側制御部3Gは、充電の際に情報通信ポート3Hから充電装置1に電池種を送信する。電池種は、電池パック3が有する特性による分類であり、充電装置1は、電池側制御部3Gから電池種を受信することによって、充電制御に必要な電池パック3の特性を特定することができる。電池種から特定可能な電池パック3の特性としては、例えば、電池組3Aを構成する電池セル3aのセル数、接続構成(直列数、並列数)、電池セル3aの最大充電電圧、電池組3Aの公称容量、電池パック3の第1遮断素子3Fが有する遮断特性(第1遮断特性曲線A)、電池組3A全体を適正に充電するための目標充電電圧(本実施の形態においては最大充電電圧と同一)、許容充電電流値、充電を終了させる判断基準となる終止電流値等である。本実施の形態において、電池パック3の電池種は、例えば、Cである。また、電池側制御部3Gは、保護IC3Cから異常信号が入力された場合には、充電装置1に情報通信ポート3Hを介して充電停止信号を出力する。
次に、電池パック3とは電池種の異なる電池パック33について説明する。電池パック33は、電池組3Aとは特性の異なる電池組33Aを備えている。電池組33Aは、電池組3Aと同一の公称容量(6Ah)を有しているが、許容充電電流値は異なっており、例えば、12A(2C)以上である。電池セルのメーカや性能等によって許容充電電流値は異なるため、この電流値に限るものではない。電池パック33は、電池組3Aとは異なる許容充電電流値を有する電池組33Aを備えているため、第1遮断素子3Fとは遮断特性が異なる第2遮断素子33Fを備えている。より具体的には、第2遮断素子33Fは、図11に示されている第2遮断特性曲線Bを有している。なお、本実施の形態において、電池パック33の電池種は、例えば、Dであり、充電装置1は、電池パック33が装着された場合、電池パック33の電池側制御部3Gから電池種としてDを受信することによって、電池パック33の第2遮断素子33Fの遮断特性、すなわち第2遮断特性曲線B、目標充電電圧等を特定することができる。
図11は、第2遮断素子33Fが有する第2遮断特性曲線Bを示す図である。なお、図11に示されている周囲温度T1〜T5及び充電電流I1〜I5は、図10に示されている周囲温度T1〜T5及び充電電流I1〜I5と同一の値であり、周囲温度T5、T6及びTf〜jは、T5<Tf<Tg<Th<Ti<Tj<T6を満たしている。
図11に示されているように第2遮断素子33Fの第2遮断特性曲線Bは、図10の第1遮断特性曲線Aと同様に、充電電流が大きくなるに従って、許容最高温度が低くなっている。第2遮断素子33F(第2遮断特性曲線B)においては、充電電流I1〜I5に対応する許容最高温度はそれぞれTf〜Tjであり、Tf〜Tjのうちの最も低い許容最高温度であるTfであっても、T5及び第1遮断素子3F(第1遮断特性曲線A)における充電電流I1〜I5のそれぞれに対応する許容最高温度Ta〜Teよりも高い。
本実施の形態においては上述したように電池温度は周囲温度と略同一であり、一般に電池温度は、充電電流が大きくなるに従って且つ充電電流が流れている時間が長くなるに従って、高くなる傾向にある。上記に鑑みると、電池パック3の第1遮断素子3Fよりも許容最高温度が高い第2遮断素子33Fを備える電池パック33は、電池パック3と比較してより長時間、より大きな充電電流を流すことができる。例えば、電池パック3と電池パック33とを充電電流I1で充電する場合で比較すると、電池パック3では電池温度(周囲温度)は、Ta(<Tf)までしか許容されないが、電池パック33ではTf(>Ta)まで許容される。このため、周囲温度Taに達した場合、電池パック3では充電電流(I1)は遮断されるが、電池パック33では遮断されず、その後も充電電流を流すことが可能である。このように、電池パック33では充電電流I1を電池パック3よりも長時間流すことが可能である。
次に、充電装置1の電気的構成について説明をする。図9に示されているように、充電装置1は、電力供給回路48と、補助電源回路53と、スイッチング電源回路54と、充電制御部45と、電圧設定制御回路55と、電流設定回路56と、電流制御回路57と、第1制御信号伝達部61と、第2制御信号伝達部62と、ファン部58と、温度検出素子44と、電圧検出回路59と、表示回路60とを備えており、電池パック3を装着した状態で電池パック3の電池組3A(電池セル3a)を定電流定電圧制御により充電する。
定電流定電圧制御とは、充電が開始されると目標電流値を設定し、充電電流が目標電流値になるように充電電流を制御しながら充電し(定電流制御)、電池組3A全体の電圧が所定の目標充電電圧に達した後は、充電電圧を当該目標充電電圧に保ちながら充電を継続し(定電圧制御)、定電圧制御下で充電電流が所定の終止電流値以下となった場合に充電を終了させる充電制御である。
電力供給回路48は、電池パック3に電力を供給する回路であり、第1整流平滑回路50と、スイッチング回路51と、充電プラスライン48Aと、充電マイナスライン48Bと、第2整流平滑回路52とを備えている。
第1整流平滑回路50は、全波整流回路50Aと平滑用コンデンサ50Bとを備えており、商用交流電源Pから供給される交流電圧を全波整流回路50Aで全波整流し、平滑用コンデンサ50Bで平滑して直流電圧を出力する。商用交流電源Pは、例えば、AC100Vの外部電源等である。
スイッチング回路51は、第1整流平滑回路50に接続されており、トランス42と、FET43と、PWM制御IC51Aとを備えている。PWM制御IC51Aは、FET43の駆動パルス幅を変え、FET43は、当該駆動パルス幅に応じてスイッチングを行い、第1整流平滑回路50からの直流出力をパルス列波形の電圧とする。パルス列波形の電圧はトランス42の一次巻線に印加され、トランス42によって降圧(若しくは昇圧)され第2整流平滑回路52に出力される。
第2整流平滑回路52は、2個のダイオード41と、平滑用コンデンサ52Aと、放電用抵抗52Bとを備えている。トランス42の二次巻線から得られる出力電圧を整流及び平滑して直流電圧を出力する。当該直流電圧は、電池パック3のプラス接続端子3b及びマイナス接続端子3cのそれぞれと接続される所定の端子(複数の端子70)から出力されるように構成されている。
充電プラスライン48A及び充電マイナスライン48Bは、電池パック3を充電する場合に充電電流が流れる電路である。充電プラスライン48Aは、電池パック3が電池装着部7に接続された状態で、プラス接続端子3bに接続される端子70とトランス42の二次巻線の一端とを接続する。充電マイナスライン48Bは、電池パック3が電池装着部7に接続された状態で、マイナス接続端子3cに接続される端子70とトランス42の二次巻線の他端とを接続する。また、充電マイナスライン48B上には、電流検出抵抗48Cが設けられている。
電流検出抵抗48Cは、電池パック3に流れる充電電流を検出するためのシャント抵抗であって、充電マイナスライン48B上において第2整流平滑回路52とGNDとの間に設けられている。充電電流の検出は、電流検出抵抗48Cの電圧降下分を電流制御回路57で反転増幅し、充電制御部45に入力することで行う。
補助電源回路53は、充電制御部45、後述のオペアンプ55E、57A等の各種回路に安定化した基準電圧Vccを供給するための定電圧電源回路である。補助電源回路53は、第1整流平滑回路50に接続されており、コイル53a、53b及び53cと、スイッチング素子53Aと、制御素子53Bと、整流ダイオード53Cと、3端子レギュレータ53Dと、発振防止用コンデンサ53E及び53Fと、リセットIC53Gとを備えている。なお、リセットIC53Gは、充電制御部45に対してリセット信号を出力し、充電制御部45をリセットするICである。
スイッチング電源回路54は、PWM制御IC51Aに電力を供給する回路であり、コイル54aと、整流ダイオード54bと、平滑コンデンサ54cとを有している。
充電制御部45は、ROM、RAM、演算部を備えたマイコンであり、A/D入力ポート部45Aと、第1出力ポート部45Bと、第2出力ポート部45Cと、デジタル通信ポート部45Dと、リセットポート部45Eとを備えている。充電制御部45は、A/D入力ポート部45A及びデジタル通信ポート部45Dに入力される各種信号を演算部で処理し、当該処理結果に基づく各種信号を第1出力ポート部45B、第2出力ポート部45C、デジタル通信ポート部45Dから電流設定回路56、ファン部58等に出力して、充電対象となった電池パックの充電を制御する。
ROMには、充電制御に必要な各種制御プログラム、充電可能な複数種類の電池パックの電池種、当該電池種に対応する特性(上述した遮断特性、目標充電電圧等)、後述の図14に示されているテーブルが記憶されている。充電制御部45は、端子70に接続された電池パックから電池種を受信し、受信した電池種から当該接続された電池パックの特性を特定する。
A/D入力ポート部45Aは、電流制御回路57、温度検出素子44、電圧検出回路59に接続されている。A/D入力ポート部45Aには、電流制御回路57から充電電流を示す電圧信号、温度検出素子44からは充電回路部4の温度を示す電圧信号、電圧検出回路59からは充電電圧を示す電圧信号が入力される。
第1出力ポート部45Bは、複数のポートを有しており、当該複数のポートのそれぞれは、電流設定回路56又はファン部58に接続されている。充電制御部45は、第1出力ポート部45Bから目標電流値を設定するための信号を電流設定回路56に、第1ファン5及び第2ファン6を制御するためのファン制御信号をファン部58に出力する。
第2出力ポート部45Cは、複数のポートを有しており、当該複数のポートのそれぞれは、表示回路60又は第2制御信号伝達部62に接続されている。充電制御部45は、第2出力ポート部45Cから表示回路を制御する信号を表示回路60に、充電開始/停止を制御する信号を第2制御信号伝達部62に出力する。
デジタル通信ポート部45Dは、電池パック3が電池装着部7に接続された場合に電池パック3の情報通信ポート3Hと接続され、双方向に通信可能に構成されている。充電制御部45は、デジタル通信ポート部45Dを介して、充電制御に必要な電池パック3の情報、すなわち、電池温度、電池種を取得する。リセットポート部45Eは、補助電源回路53と接続されており、リセットIC53Gから出力されるリセット信号を受信する。
電圧設定制御回路55は、目標充電電圧を設定し、充電電圧が目標充電電圧になるように制御する回路である。電圧設定制御回路55は、分圧抵抗55A〜55Dと、オペアンプ55Eと、ダイオード55Fとを備えている。
分圧抵抗55A及び55Bは、充電プラスライン48AとGNDとの間に直列に接続されており、分圧抵抗55A及び55Bの接続点は、オペアンプ55Eの反転入力端子に接続されている。充電プラスライン48Aに現れる充電電圧は、分圧抵抗55A及び55Bによって分圧され、当該分圧値は、比較用電圧値としてオペアンプ55Eの反転入力端子に出力される。
分圧抵抗55C及び55Dは、基準電圧VccとGNDとの間に直列に接続されており、分圧抵抗55C及び55Dの接続点は、オペアンプ55Eの非反転入力端子に接続されている。基準電圧Vccは、分圧抵抗55C及び55Dによって分圧され、当該分圧値は、目標充電電圧を設定するための基準値としてオペアンプ55Eの非反転入力端子に出力される。
オペアンプ55Eは、上述の比較用電圧値と基準値とを比較する素子であり、その出力端子は、ダイオード55Fを介して第1制御信号伝達部61に接続されている。
電流設定回路56は、目標電流値を選択的に設定する回路であり、分圧抵抗56A〜56Fを備えている。分圧抵抗56A及び56Bは、基準電圧VccとGNDとの間に直列に接続されており、分圧抵抗56C〜56Fは、分圧抵抗56A及び56Bの接続点56aと充電制御部45の第1出力ポート部45Bとの間に並列に接続されている。また、接続点56aは、電流制御回路57に接続されており、接続点56aに現れる電圧(分圧値)は、目標電流値を設定する場合の基準値として電流制御回路57に出力される。本実施の形態においては、分圧抵抗56C〜56Fに第1出力ポート部45Bからロー信号を出力する、又は、出力しないことで、目標電流値をI1〜I5の5種類の電流値から選択的に設定することができる。
詳細には、第1出力ポート部45Bのいずれのポートからもロー信号を出力せず、基準電圧Vccを分圧抵抗56A及び56Bによって分圧した場合の接続点56aに現れる分圧値は、目標電流値をI1に設定する場合の基準値となる。本実施の形態においてI1は、例えば、12Aである。
また、第1出力ポート部45Bの分圧抵抗56Cと接続されているポートからロー信号を出力し、分圧抵抗56B及び56Cの並列抵抗と分圧抵抗56Aとで基準電圧Vccを分圧した場合の接続点56aに現れる分圧値は、目標電流値をI2に設定する場合の基準値となる。本実施の形態においてI2は、例えば、10Aである。
同様に、第1出力ポート部45Bの分圧抵抗56Dと接続されているポートからロー信号を出力した場合の接続点56aに現れる分圧値は、目標電流値をI3に設定する場合の基準値となり、第1出力ポート部45Bの分圧抵抗56Eと接続されているポートからロー信号を出力した場合の接続点56aに現れる分圧値は、目標電流値をI4に設定する場合の基準値となり、第1出力ポート部45Bの分圧抵抗56Fと接続されているポートからロー信号を出力した場合の接続点56aに現れる分圧値は、目標電流値をI5に設定する場合の基準値となる。本実施の形態においては、例えば、I3は9A、I4は8A、I5は6Aである。
なお、目標電流値として設定されるI1〜I5は、電池パック3の電池種(公称電圧、セル数等)によって異なる値が設定されるように構成してもよい。言い換えれば、電池パックの種類(電池種)が異なれば、I1、I2、I3、I4及びI5の組み合わせも異なるようにしてもよい。また、分圧抵抗56C〜56Fに接続されている第1出力ポート部45Bの4つのポートのうちの2以上のポートから同時にロー信号を出力するようにしてもよく、この場合には目標電流値として6種類以上を設定することが可能となる。
電流制御回路57は、オペアンプ57A及び57Bと、抵抗57C〜57Gと、ダイオード57Hとを備えている。オペアンプ57Aの出力端子は、充電制御部45のA/D入力ポート部45Aに接続され、反転入力端子は、電流検出抵抗48Cに抵抗57Cを介して接続され、非反転入力端子は、GNDに接続されている。オペアンプ57Bの出力端子は、抵抗57G及びダイオード57Hを介して第1制御信号伝達部61に接続され、反転入力端子は、抵抗57Eを介してオペアンプ57Aの出力端子に接続され、非反転入力端子は、電流設定回路56の接続点56aに接続されている。
電流制御回路57は、オペアンプ57Aの反転入力端子に入力された充電電流に対応する比較用電圧をオペアンプ57Aで反転増幅させてオペアンプ57Bの反転入力端子に入力し、当該比較用電圧と電流設定回路56からオペアンプ57Bの非反転入力端子に入力された目標電流値に対応する基準値とを比較し、当該比較結果に応じた電圧信号をオペアンプ57Bの出力端子から出力することで充電電流を制御する。
第1制御信号伝達部61は、フォトカプラ61Aを備えている。フォトカプラ61Aは、電圧設定制御回路55及び電流制御回路57に接続されており、電圧設定制御回路55のオペアンプ55Eの出力端子及び電流制御回路57のオペアンプ57Bの出力端子から出力される信号に応じてPWM制御IC51Aに帰還信号を出力する。
ファン部58は、第1ファン5と、第2ファン6と、定電圧回路58Aと、第1ファン制御回路5Aと、第2ファン制御回路6Aとを備えている。定電圧回路58Aは、第2整流平滑回路52の出力電圧を変換して第1ファン5及び第2ファン6に供給する回路である。第1ファン制御回路5A及び第2ファン制御回路6Aは、充電制御部45の第1出力ポート部45Bに接続されている。第1出力ポート部45Bから出力されるファン制御信号に応じて、第1ファン制御回路5Aは、第1ファン5の駆動/停止及び風量を制御し、第2ファン制御回路6Aは、第2ファン6の駆動/停止及び風量を制御する。
温度検出素子44は、充電制御部45のA/D入力ポート部45Aに接続されており、ケース2内部の温度、すなわち、充電回路部4の温度を検出し、当該検出された温度を示す電圧信号をA/D入力ポート部45Aに出力する。
電圧検出回路59は、充電電圧を検出する回路であり、分圧抵抗59A及び59Bを備えている。分圧抵抗59A及び59Bは、充電装置1の充電プラスライン48AとGNDとの間に直列に接続されており、分圧抵抗59A及び59Bの接続点は、充電制御部45のA/D入力ポート部45Aに接続されている。充電プラスライン48Aに現れる充電電圧は、分圧抵抗59A及び59Bによって分圧され、当該分圧値は充電電圧を示す電圧信号として充電制御部45のA/D入力ポート部45Aに入力される。充電制御部45は、当該電圧信号を読み取ることで充電電圧を検出する。
表示回路60は、充電の状態を表示するための回路であり、LED60Aと、抵抗60B及び60Cを備えている。LED60Aは、抵抗60B及び60Cを介して充電制御部45の第2出力ポート部45Cに接続されている。充電制御部45が第2出力ポート部45Cの抵抗60Bと接続されているポートからハイ信号を出力した場合、LED60Aは赤色に点灯し、第2出力ポート部45Cの抵抗60Cと接続されているポートからハイ信号を出力した場合、LED60Aは緑色に点灯し、第2出力ポート部45Cの抵抗60Bと接続されているポート及び抵抗60Cと接続されているポートの両ポートからハイ信号を出力した場合には、LED60Aは橙色に点灯する。本実施の形態では、充電制御部45は、電池パック3の未接続や充電待機時等の充電を行う前の状態ではLED60Aを赤色に点灯させ、充電中にはLED60Aを橙色に点灯させ、充電終了後にはLED60Aの緑色を点灯させる。
第2制御信号伝達部62は、フォトカプラ62A及びFET62Bを備えている。フォトカプラ62Aは、PWM制御IC51Aに起動/停止を制御する信号を伝達する。FET62Bは、フォトカプラ62Aを構成する発光素子とGNDとの間に接続されており、FET62Bのゲートは第2出力ポート部45Cに接続されている。充電制御部45の第2出力ポート部45CのうちのFET62Bに接続されているポートからハイ信号が出力されると、FET62Bがオンし、フォトカプラ62Aがオンする。これにより、PWM制御IC51Aが起動して充電が開始される。また、第2出力ポート部45CのうちFET62Bに接続されるポートからロー信号を出力された場合は、FET62Bがオフし、フォトカプラ62Aがオフする。これによりPWM制御IC51Aが停止し、充電が停止(終了)される。
次に、充電装置1の充電制御部45による充電制御について説明する。本実施の形態による充電装置1の充電制御部45は、充電時間の短縮化を目的とした充電制御を行う、特に、高容量(公称容量5Ah以上)の電池パックに対して、2C以上の充電電流で充電する、いわゆる、2C充電を行うことで、充電時間を短縮する制御を行う。
従来の充電装置においては、充電時間を短縮すべく、高容量の電池パックを公称容量に対して比較的大きな充電電流(2C以上の充電電流)で充電しようとした場合、充電対象となっている電池パックの遮断素子が短時間で動作し、充電が中断されるため、結果として充電時間が長時間化してしまうという問題があった。
上記問題点に鑑みて、本実施の形態では、電池パックの公称容量(5Ah以上)に対して2C以上の充電電流(公称容量が5Ahの場合は10A以上、6Ahの場合は12A以上、すなわち10A以上)で充電を開始するとともに、電池パックが有する遮断素子の遮断特性(遮断特性曲線)を考慮して当該遮断素子が動作しない範囲(遮断特性を満たす範囲、図10及び図11の遮断特性曲線よりも下の領域)において、できるだけ大きな充電電流で充電するように順次、目標電流値を変更しながら充電する制御を行う。また、上記制御に加え、高容量の電池パックの公称容量に対して2C以上の充電電流で充電を開始し、2C以上の充電電流を流しても、充電対象となっている電池パックの遮断素子が動作しない場合は、充電開始から充電電圧が目標充電電圧に達するまで2C以上の充電電流で充電し、充電時間を短縮する制御を行う。なお、充電時間の短縮と充電電流に起因する電池パックの劣化、故障とのバランスを考慮すると、充電電流は2C以上3C以下(又は10A以上15A以下)がより好ましい。但し、上限は3C以下に限るものではなく、電池セルのメーカや性能により異なるため、3C(15A)以上であってもよい。また、充電装置1は5Ah以上の電池パックを2C(10A)以上の充電電流で充電可能に加え、5Ah未満の電池パックについても2C以上の充電電流で充電可能である。従って、従来の電池パックも充電時間を短縮することができる。更に、充電装置1は直列に4セル接続した電池パックだけでなく、異なる電圧(直列に5セル以上、3セル以下)の電池パックも充電可能である。この場合、電圧設定制御回路55は、異なる電圧を有する電池パックに対応できるよう複数の目標充電電圧を設定可能に構成すればよい。
次に、図12乃至図14を参照しながら充電装置1による充電処理の一例について説明する。図12及び図13は、充電装置1の充電制御部45による充電処理を示すフローチャートである。図14は、充電制御部45が電池パック3を充電する場合に用いる目標電流値を決定するためのテーブルである。
充電装置1を商用交流電源Pに接続すると、図12に示されているように、S1にて、充電制御部45が充電制御を開始し、S2にて、充電待機状態であることを示すため表示回路60を赤色に点灯させる。表示回路60を赤色に点灯させるには、第2出力ポート部45Cの複数のポートのうちの抵抗60Bに接続されているポートからハイ信号を出力し、LED60Aを赤色に点灯させる。
S2において、LED60Aを赤色に点灯させた後に、S3にて、電池装着部7(端子70)に電池パックが装着されているか否かを判断する。電池パックが装着されているか否かの判断は、電池パックの電池側制御部3Gと充電制御部45とが情報通信ポート3H及びデジタル通信ポート部45Dを介して通信を行うことによって判別する。電池パックが装着されていない場合(S3:No)、S2に戻る。すなわち、電池パックが装着されるまでS2及びS3を繰り返しながら充電待機状態を維持する。
S3にて、電池装着部7に電池パックが装着されていると判断した場合(S3:Yes)、S4において電池種を判別する。電池種の判別は、電池パックとの通信によって行われる。本実施の形態においては、電池パック3が電池装着部7(端子70)に装着された場合、充電制御部45は、電池種としてCを受信し、電池パック33が装着された場合は、電池種としてDを受信する。なお、本実施の形態においては、電池パックとの通信によって電池種を判別したが、電池パックに電池種判別のための判別抵抗が設けられている場合には、充電装置に当該判別抵抗と接続可能な判別端子を設け、当該判別抵抗の抵抗値を読み取ることで電池種を判別する構成であってもよい。
S4にて、電池種を判別した後は、S5において目標電流値をI1に設定し、S6にて、2C以上の充電電流、すなわち、I1で充電を開始する。充電開始は、第2出力ポート部45Cの複数のポートのうちの第2制御信号伝達部62のFET62Bと接続されたポートからハイ信号を出力し、PWM制御IC51Aを稼動状態にすることによって行われる。
S6において充電が開始されると、S7にて、充電中であることを示すため表示回路60を橙色に点灯させる。表示回路60を橙色に点灯させるには、第2出力ポート部45Cの複数のポートのうちの抵抗60Bと接続されているポート及び抵抗60Cと接続されているポートの両ポートからハイ信号を出力し、LED60Aを橙色に点灯させる。
また、S7にて、表示回路60を橙色に点灯させるとともに、S8にて、第1及び第2ファン5、6を駆動させる。第1及び第2ファン5、6の駆動は、第1出力ポート部45Bから第1ファン制御回路5A及び第2ファン制御回路5Bにファン制御信号を出力することで行われる。第1及び第2ファン5、6は、第1及び第2冷却風を発生させ、空気が吸気口24aを介してケース2内に取りこまれる。これにより、第1及び第2排気口22a、23aに向かう充電装置1の冷却風路が形成される。また、開口71から第1及び第2排気口22a、23aに向かう電池パックの冷却風路も形成される。
第1及び第2ファン5、6の駆動の後、S9にて、電池種がCであるか否かを判断する。電池種がCである場合(S9:Yes)、充電装置1には電池パック3が接続されていると判断し、S10にて、電池温度(周囲温度)に応じた目標電流値を図14に示されているテーブルに従って再設定(変更)する。なお、電池温度の検出は、電池種の判別と同様に電池パック3との通信によって行われる。
図14に示されているテーブルは、第1遮断素子3Fが動作しない範囲内(充電電流を遮断しない範囲内、遮断特性を満たす範囲)において、できるだけ大きな充電電流で充電するために、第1遮断素子3Fが有する遮断特性すなわち第1遮断特性曲線Aを考慮して定められた、電池温度と目標電流値との対応表である。
図14に示されているように、電池温度(周囲温度)がT1未満の場合は、目標電流値はI1に再設定(変更)される。図10に示されているように、T1は、第1遮断特性曲線Aにおける充電電流I1に対応する許容最高温度Taよりも僅かに低い値である。また、電池温度がT1以上T2未満の場合は、目標電流値はI2に変更される。T2は、第1遮断特性曲線Aにおける充電電流I1に対応する許容最高温度Taと充電電流I2に対応する許容最高温度Tbとの間の温度であり(Ta<T2<Tb)、Tbよりも僅かに低い値である。
なお、第1遮断特性曲線Aに従うと、電池温度がTaに達するまでは、充電装置1が設定可能な目標電流値のうちの最大の電流値であるI1を目標電流値とすることができるが、充電電流I1が流れている状態で電池温度がT1よりも僅かに上昇しTaに達すると、第1遮断素子3Fが開状態となり充電電流が遮断され充電が中断されてしまうため、電池温度がTaよりも僅かに低いT1に達した時点で目標電流値をI1よりも低いI2に変更することとしている。これにより、第1遮断素子3Fが充電電流を遮断することを確実に回避することができる。
また、図14に示されているように電池温度がT2以上T3未満の場合は、目標電流値はI3に設定され、T3以上T4未満の場合は、目標電流値はI4に設定され、T4以上の場合は、目標電流値はI5に設定される。上記のT1及びT2が定められた趣旨と同趣旨により、T3は、Tb<T3<Tcを満たすように決定され、T4は、Tc<T4<Tdを満たすように決定され、T5は、Td<T5<Teを満たすように決定されている。T1〜T5を上記のように定め、現在設定されている目標電流値(充電電流)に対応する許容最高温度よりも僅かに低い温度で順次、目標電流値(充電電流)をより小さい値に変更することで、第1遮断素子3Fが動作しない範囲において、できるだけ大きな充電電流で充電することができ、且つ、第1遮断素子3Fが開状態となることを確実に回避し、充電を継続することができる。これにより、高容量の電池パックの充電時間を短縮することがきる。
図12に戻り、S10で上述のように目標電流値が再設定(変更)された後は、S11にて、満充電に達したか否かを判別する。満充電の判別は、例えば、リチウムイオン電池を充電する方法として一般的な定電流定電圧制御における定電圧制御下において、充電電流が所定の終止電流値以下にまで降下した時を満充電と判断すればよい。但し、満充電を判別する方法はこれに限るものではない。
満充電であると判断された場合(S11:Yes)、S13にて、充電を終了する。充電停止の処理は、第2出力ポート部45Cの複数のポートのうちのFET62Bに接続されているポートからロー信号を出力し、PWM制御IC51Aを停止することによって行われる。
一方、満充電でないと判断された場合(S11:No)、S12にて、電池温度がT5以上であるか否かを判別する。T5は、充電電流I5で充電を行っている状態においては、通常、達することのない、電池組3Aにとっては充電に適しない高い温度であるものとし、電池温度がT5以上の達した場合、充電を停止すべくS13において、充電停止の処理を行う。
S12において、電池温度がT5以上でないと判断された場合は、S10に戻り、再度、電池温度に応じた目標電流値に変更される。すなわち、S11で満充電であると判断されるか、又は、S12で電池温度がT5以上であると判断されるまで、S9、S10、S11、S12を繰り返しながら、電池温度が設定されている目標電流値に対応する許容最高温度よりも僅かに低い温度に達する毎に、順次、目標電流値が段階的により低い電流値に変更されながら、定電流定電圧制御で電池パック3は充電される。なお、電池温度が降下した場合にも、降下した後の電池温度に応じて目標電流値は変更される。例えば、電池温度がT3以上T4未満の範囲からT2以上T3未満の範囲に降下した場合には、目標電流値はI4からI4よりも大きいI3に変更される。
S9に戻り、電池種がCでない、すなわち電池種がDであると判断された場合(S9:No)、電池パック33が充電装置1に装着されていると判断し、S11、S12の処理に進む。すなわち、S10における遮断特性を考慮した目標電流値の変更処理を行わない。これは、電池パック33が備える第2遮断素子33Fにおいては、図11に示されているように、電池温度がTf以下の範囲であれば、充電装置1が設定可能な目標電流値I1〜I5のいずれであっても充電電流を遮断することがなく、第2遮断素子33Fが動作しない範囲において、充電開始から充電電圧が目標充電電圧に達するまで、設定可能な目標電流値のうちの最大の電流値I1で充電可能であり、目標電流値を変更する必要がないからである。
なお、電池パック33の第2遮断素子33Fは、Tf以下の範囲であれば、充電電流を遮断することはないが、電池パック33の劣化、故障の抑制のため、Tfよりも低いT5以上となった場合(S12:Yes)、充電を終了する。このように、電池パック33が充電装置1に装着された場合には、S9、S11、S12を繰り返しながら電池温度がT5以上とならない限りにおいて、2Cの充電電流すなわちI1で充電開始から充電電圧が目標充電電圧に達するまで充電される。
S13で充電終了の処理が行われた後は、図13に示されるように、S14にて、充電終了状態であることを示すため表示回路60を緑色に点灯させる。表示回路60を緑色に点灯させるには、第2出力ポート部45Cの複数のポートのうちの抵抗60Cに接続されているポートからハイ信号を出力し、LED60Aを緑色に点灯させる。
S14にて、表示回路60を緑色に点灯させた後は、S15にて、電池温度が40度以上であるか否かを判別する。電池温度が40度以上であれば(S15:Yes)、第1及び第2ファンの駆動を継続しながらS15を繰り返し、電池温度が40度未満となるまで、電池パック3の冷却を継続する。
電池温度が40度未満となった場合、(S15:No)、S16にて、充電回路部4の温度が40度以上であるか否かを判別する。充電回路部4の温度の検出は、温度検出素子44からA/D入力ポート部45Aに出力された充電回路部4の温度を示す電圧信号を読み取ることで行う。充電回路部4の温度が40度以上であれば(S16:Yes)、S15に戻り、S15、S16を繰り返しながら充電回路部4の温度が40度未満となるまで、第1及び第2ファンの駆動を継続して、充電回路部4の冷却を継続する。充電回路部4の温度が40度未満となると(S16:No)、S17にて、第1及び第2ファン5、6の駆動を停止する。
S6〜13において電池パック3又は33の充電が行われているとき、ケース2内では、吸気口24aから第1及び第2排気口22a、23aに向かう風路が形成される。ダイオード41、トランス42、FET43は、吸気口24aの近傍に配置されているので、吸気口24aから吸い込まれた直後の温められる前の空気を冷却風として冷却されるので、効率良く冷却される。
また、放熱部材46、47が、ダイオード41、トランス42、FET43を風路内に含むように風路を画定するので、冷却が必要なダイオード41、トランス42、FET43を効率的に冷却できる。さらに、ダイオード41とFET43とは放熱部材46、47にそれぞれ取り付けられているので、ダイオード41とFET43とは、放熱部材46、47に沿って流れる冷却風に晒されて効率良く冷却される。さらに、トランス42は放熱部材46、47で画定した風路の最上流側(吸気口24aの近傍)に位置するため、温められる前の空気によって効率良く冷却される。
充電処理の説明に戻り、S17で第1及び第2ファン5、6の駆動を停止した後は、S18で電池パックが充電装置1から離脱されたか否かを判断する。離脱されていないと判断した場合(S18:No)、S18を繰り返しながら、電池パックが充電装置1から離脱されるまで、充電終了状態を維持する。一方、離脱されたと判断した場合(S18:Yes)、S2に戻り、再度、電池パックが充電装置1に装着されるまで充電待機状態が維持される。このように、本実施の形態の充電装置1によれば、商用交流電源Pから直接、高容量(5Ah以上)の電池パック3又は33を大電流(2C以上又は10A以上)で充電することができ、充電時間を短縮することができる。
次に、図15(a)及び(b)を参照しながら、上記の充電処理を行った場合の、電池パック3及び33の電池温度、充電電圧、充電電流の時間変化について説明する。図15(a)及び(b)は、充電装置1による充電制御を行った場合の電池温度、充電電圧、充電電流の時間変化を示すタイムチャートである。
図15(a)に示されているように、本実施の形態による充電装置1で電池パック3を充電した場合、時刻t0にて、充電制御部45によって目標電流値がI1(本実施の形態においては、12A)、すなわち、電池パック3の公称容量6Ahに対して2Cの充電電流に設定され(S5に相当)、充電電流I1で充電が開始される(S6に相当)。充電が開始されると、電池パック3は、定電流制御にて、充電電流がI1に維持された状態で、充電される(S9、S10、S11及びS12の繰り返しに相当)。時刻t0以降、充電に伴い、電池温度及び充電電圧は上昇していき、時刻t1にて、電池温度がT1に達する。
時刻t1にて、電池温度がT1に達すると、充電制御部45によって目標電流値はI1からI2に変更(再設定)され、充電電流はI1からI2に降下する(S10に相当)。充電電流がI2に降下した後は、定電流制御にて充電電流はI2に維持された状態で、充電が継続される(S9、S10、S11及びS12の繰り返しに相当)。充電電圧は、時刻t1にて、充電電流の降下に伴い一度降下するが、時刻t1以降は充電継続に伴い再び上昇する。また、電池温度は、時刻t1以降、上昇していき、時刻t2にて、T2に達する。
時刻t2にて、電池温度がT2に達すると、充電制御部45によって目標電流値はI2からI3に変更(再設定)され、充電電流はI2からI3に降下する(S10に相当)。充電電流がI3に降下した後は、定電流制御にて充電電流はI3に維持された状態で、充電が継続される(S9、S10、S11及びS12の繰り返しに相当)。充電電圧は、時刻t2にて、充電電流の降下に伴い再び降下するが、時刻t2以降は充電継続に伴いさらに上昇する。また、電池温度は、時刻t2以降、さらに上昇していき、時刻t3にて、T3に達する。
時刻t3にて、電池温度がT3に達すると、充電制御部45によって目標電流値はI3からI4に変更(再設定)され、充電電流はI3からI4に降下する(S10に相当)。充電電流がI4に降下した後は、定電流制御にて充電電流はI4に維持された状態で、充電が継続される(S9、S10、S11及びS12の繰り返しに相当)。充電電圧は、時刻t3にて、充電電流の降下に伴い再び降下するが、時刻t3以降は充電継続に伴いさらに上昇していき、時刻t5にて、所定の目標充電電圧に達する。充電電圧が目標充電電圧に達すると、充電制御部45によって定電圧制御に移行され、時刻t5以降、充電電圧は目標充電電圧に維持された状態で充電が継続される(S9、S10、S11及びS12の繰り返しに相当)。一方、電池温度は、時刻t3以降、さらに上昇していくが、時刻t5においては、目標電流値の変更に用いられる次の温度閾値であるT4には達していない。
定電圧制御に移行された時刻t5以降、充電電圧が目標充電電圧に維持された状態で充電が継続されるが、充電電流は低下していくとともに、電池温度も充電電流の低下及び第1ファン5及び第2ファン6の駆動に起因して低下していく(S9、S10、S11及びS12の繰り返しに相当)。その後、時刻t7にて、充電電流が所定の終止電流値以下となると、充電制御部45によって満充電であると判断され(S10:Yesに相当)、充電は終了される(S13に相当)。なお、図15(a)では充電電圧(電池電圧)とは無関係に電池温度が所定値に達した時点で充電電流を切り替えている。
図15(b)に示されているように、本実施の形態による充電装置1で電池パック33を充電した場合、時刻t0にて、充電制御部45によって目標電流値がI1(本実施の形態においては、12A)、すなわち、電池パック33の公称容量6Ahに対して2Cの充電電流に設定され(S5に相当)、充電電流I1で充電が開始される(S6に相当)。電池パック33が充電される場合、電池パック3が充電される場合とは異なり、電池温度に応じた目標電流値の変更は行われず(S9:No、S10の処理は行わない)、充電開始から充電電圧が目標充電電圧に達するまで(定電流制御の間)、常に、充電電流はI1に維持された状態で充電される(S9、S11及びS12の繰り返しに相当)。これは上述したように、電池パック3及び33はともに公称容量6Ahであるが、許容充電電流値が互いに異なり、且つ、遮断特性の異なる遮断素子を有しているためである。電池温度及び充電電圧は共に、時刻t0以降、充電に伴って上昇していき、時刻t4にて、所定の目標充電電圧に達する。
充電電圧が目標充電電圧に達した時刻t4以降、充電電圧が目標充電電圧に維持された状態で充電が継続されるが、充電電流は低下していくとともに、電池温度も充電電流の低下及び第1ファン5及び第2ファン6の駆動に起因して低下していく(S9、S11及びS12の繰り返しに相当)。その後、時刻t6にて、充電電流が所定の終止電流値以下となると、充電制御部45によって満充電であると判断され(S10:Yesに相当)、充電は終了される(S13に相当)。
このように、電池パック33の充電は、充電開始から定電圧制御に移行するまで2Cの充電電流で行われるため、電池パック33の充電終了は、電池パック3の充電終了時刻t7よりも早い時刻の時刻t6となっている。なお、本実施の形態においては、時刻t0〜時刻t6までの時間、すなわち充電装置1による電池パック33の充電時間は略30分であり、時刻t0〜時刻t7までの時間、すなわち、充電装置1による電池パック3の充電時間は略40分である。
ここで、従来の充電装置による充電制御を行った場合の電池パックの電池温度、充電電圧、充電電流の時間変化について説明する。図15(c)は、従来の充電装置による充電制御を行った場合の電池温度、充電電圧、充電電流の時間変化を示すタイムチャートである。
図15(c)に示されているように、従来の充電装置においては、本実施の形態で行っている充電対象となった電池パックの遮断素子が有する遮断特性(遮断特性曲線)を考慮した充電電流の切替制御を行っていない(図12のS10に相当する処理を行っていない)。また、従来の充電装置においては、充電電流を2C以上で充電すると遮断素子が短時間で動作し、充電が中断又は終了してしまうため、充電電流を2C未満としている。すなわち、従来の充電装置においては遮断素子が動作しないように充電電流を8Aとしている。図15(c)は、従来の充電装置を用いて、本実施の形態の電池パック3及び33と同一の公称容量の電池パックを、例示的に8A(2C未満の充電電流)で充電する場合を示している。
従来の充電装置においては、時刻t0で充電が開始されると、目標充電電圧に達する時刻はt7、充電終了時刻はt8であり、充電時間は略45分である。充電装置1と従来の充電装置とを同一容量の電池パックに対する充電時間で比較すると、充電装置1で電池パック33を充電する場合は略30分、充電装置1で電池パック3を充電する場合は略40分、従来の充電装置における充電時間は略45分である。このように、充電装置1による電池パック3の充電時間及び電池パック33の充電時間はともに、従来の充電装置における充電時間よりも短くなっている。
このように、本発明の第1の実施の形態における充電装置1は、電池セル3aを有する電池組3Aを備える電池パック3を商用交流電源Pから直接充電可能であり、公称容量が6Ah(5Ah以上)の電池パック3を2Cの充電電流(好ましくは2C以上3C以下の充電電流)で充電可能に構成されている。言い換えれば、公称容量がα(αは、5以上の実数)Ah以上の該電池パックを2αA以上の充電電流(好ましくは2α以上3α以下の充電電流)で充電可能に構成されている。このため、略30分程度という短時間で高容量の電池パックを充電することができる。
また、充電装置1は、遮断特性を満たしている場合、電池セル3aに充電電流が流れることを許容し、遮断特性を満たしていない場合、充電電流を遮断する第1遮断素子3F(第2遮断素子33F)を備える電池パック3(電池パック33)を充電可能である。さらに、電池パック3(電池パック33)と接続可能な複数の端子70と、第1遮断素子3F(第2遮断素子33F)の遮断特性すなわち、第1遮断特性曲線A(第2遮断特性曲線B)を特定し、遮断特性を満たすように充電制御を行う充電制御部45を備えている。このため、第1遮断素子3F(第2遮断素子33F)によって充電電流が遮断されず、充電が中断又は終了することがない。これにより、高容量の電池パック3(電池パック33)に対して2Cの充電電流で充電することができ、高容量の電池パック3(電池パック33)を短時間で充電することができる。
また、本実施の形態では、電池パック3(電池パック33)の遮断特性は、充電電流が電池セル3aの電池温度と対応する許容最大電流値よりも小さい場合に満たされ、充電装置1は、電池パック3(電池パック33)の電池温度を取得する充電制御部45と、複数の電流値(I1〜I5)のうちから一の電流値を設定可能な電流設定回路56と、設定された当該一の電流値で電池パック3(電池パック33)を充電するように充電電流を制御する電流制御回路57と、を有しており、充電制御部45は、電池温度に基づいて、設定可能なI1〜I5のうちで電池温度に対応する許容最大電流値よりも小さい電流値の中で最大の電流値で電池パック3(電パック33)を充電するように充電電流を制御している。なお、本実施の形態においては、図12に示されているS9:Noの場合、すなわち、充電対象が電池パック33の場合は、遮断特性に応じた充電電流の切替制御(S10)を行っていないが、電池パック33に対して当該充電電流の切替制御(S10)を行ってもよい。
上記構成によると、例えば、設定可能な複数の電流値(I1〜I5)のうちの許容最大電流値よりも小さい電流値が、I2〜I5である場合には、I2〜I5の中で最大の電流値I2で電池パック3(電池パック33)を充電することができる。このため、充電時間をより短縮することができる。
また、本実施の形態では、電池パック3(電池パック33)の遮断特性における許容最大電流値は、電池温度が高くなるに従って、より小さくなっており、充電制御部45は、電池温度が高くなるに従って、該充電電流をより小さくする。すなわち、充電装置1では、第1遮断素子3F(第2遮断素子33F)が有する遮断特性に応じて、充電電流を変更することができため、第1遮断素子3F(第2遮断素子33F)による充電電流の遮断を確実に回避することができる。これにより、充電時間を確実に短縮することができる。
また、本実施の形態では、充電制御部45は、I1で充電している場合、電池温度がT1以上となると、I1よりも小さいI2で充電するように充電電流を制御している。さらに、T1は、対応する許容最大電流値がI1である電池温度すなわちTaよりも低く設定されている。これにより、第1遮断素子3F(第2遮断素子33F)による充電電流の遮断をより確実に回避することができる。
より詳細には、Taに対応する許容最大電流値はI1であり、I1で充電を行っている場合は、電池温度がTaに達すると第1遮断素子3Fによって充電電流は遮断されるが、上記構成により、Taよりも低いT1に電池温度が達するとI1からより小さいI2に変更するため、遮断素子による充電電流の遮断をより確実に回避することができる。
また、本実施の形態では、充電制御部45は、I2で充電している場合、電池温度がT1よりも高いT2以上となると、I2よりも小さいI3で充電するように充電電流を制御している。さらに、T2は、対応する許容最大電流値がI2である電池温度すなわちTbよりも低く、且つ、T2よりも高く設定されている。これにより、第1遮断素子3Fによる充電電流の遮断をより確実に回避するとともにより充電時間を短縮することができる。
より詳細には、充電電流をI2からより小さいI3に変更するための温度閾値であるT2は、Tbよりも低いため、第1遮断素子3Fの動作を確実に回避することができる。さらに、T2は、Taよりも高い値、すなわち、過度に低い値ではない。仮に、T2を過度に低い値とした場合、例えば、Taよりも低い値とした場合には、確実に第1遮断素子3Fの動作を回避することができるが、充電電流をI2からより小さいI3に変更するタイミングが早まり充電時間を十分に短縮することができない。この点、本実施の形態のようにT2をTaよりも高くすることで、より小さい電流値への変更タイミングを遅らせることができ、充電時間をより短縮することができる。また、充電装置1は、異なる電圧及び異なる公称容量を有する複数の電池パックを択一的に充電可能であるため、1つの充電装置1を準備しておけば複数の電池パックを充電でき、複数の充電装置を準備する必要がない。さらに、公称容量が5Ah未満の電池パックを2C以上の充電電流で充電可能であるため、低容量(5Ah未満)の電池パックの充電時間も短縮することができる。
次に、第1の実施の形態の変形例を図16から図20を参照して説明する。
この変形例の充電装置1においては、放熱部材46、47に代わりに放熱プレート80を使用する。なお、他の構成は第1の実施の形態と同じであるため、その説明は省略する。
放熱プレート80は、吸気口24aから取りこまれた空気の冷却風としての風路を画成し、排気口22a、23aへと向けて導くものである。
放熱プレート80は、図16に示すように、充電装置1のケース2内に取り付けられたときに、図16から図18に示すように、ダイオード41、トランス42、FET43などの発熱素子を覆う大きさ及び形状を有して、ケース2の上面21と、ダイオード41、トランス42及びFET43との間に配置される。
放熱プレート80は、ダイオード41、トランス42、FET43の各々と対応する位置に、各素子の外形に対応した形状の開口81、82、83、84、85が形成される。さらに、各開口81、82、83、84、85の縁部近傍から基板40に向けてリブ81A、82A、83A、84A、85Aが形成されている。例えば、トランス42対して形成された開口82と、そのリブ82Aとによって、トランス42の基板側から開口82に達するトランス42用の風路が画成される。同様に、ダイオード41と開口81とリブ81Aとによって、ダイオード41用の風路が画成され、FET43を始めとする発熱素子に対して風路が画成される。
従って、放熱プレート80がケース2内に取り付けられたときに、開口81、82、83、84、85が各々の周縁部に設けられたリブ81A、82A、83A、84A、85Aと共に、対応する発熱素子の周囲を若干の間隙を介して包囲する。すなわち、発熱素子は各リブ81A〜85Aによってその周囲を取り囲まれている。
このため、ファン5、6が駆動されると、図18から図20に示すように、吸気口24aから、対応する発熱素子の周囲に形成される風路及び開口を介して、排気口22a、23aに至る冷却風路が形成される。この冷却風路の中を第1冷却風及び第2冷却風が通過して、発熱素子であるダイオード41、トランス42、FET43の各々を冷却する。各発熱素子の近傍においては、発熱素子の側面と対応するリブとの間に風路が画成されて冷却風が発熱素子の側面に沿って開口に向けて流れる。そして、開口を通過した冷却風は、放熱プレート80に沿って排気口22a、23aに向けて流れてケース2外に排気される。従って、リブによって冷却風が発熱素子の周囲に集中するように構成されているため、発熱素子は効率良く冷却され、充電装置1全体の温度上昇が抑制される。
次に、本発明の第2の実施の形態を図21及び図22を参照して説明する。
図21を参照すると、充電装置1は、ケース102の内部に、電池パック3を充電するための充電回路部104と、充電回路部104及び電池パック3を冷却するための第1ファン105及び第2ファン106とを備える。
ケース102は、略直方体形状であり、上面121には前方側に電池パック3が充電のために装着される電池装着部107が設けられている。電池装着部107には、電池パック3を充電するための複数の端子170が設けられると共に、電池パック3を冷却するための風が通過する開口171が設けられている。さらに、ケース102は、上面121を囲む4つの側面122、123、124、125を有し、互いに隣接する側面122、123は角部126にて連結されている。また、側面122、124は互いに対向し、側面123、125は互いに対向する。
第1ファン105は、ケース102内に、角部126と開口171とに近接するとともに側面122に対向して近接配置される。第1ファン105は、駆動されると、回転軸方向Xに第1冷却風を発生させる。第1ファン105が対向する側面122の部分には、複数の通気窓からなる第1排気口122aが形成されている。第1ファン105は、駆動されると、吸気口124aから空気を取りこんで第1排気口122aに向かう第1冷却風を発生させる。第1冷却風は、第1排気口122aを介してケース102から排気される。
第2ファン106は、ケース102内に、角部126と開口171とに近接するとともに側面123に対向して近接配置される。第2ファン106は、駆動されると回転軸方向Yに第2冷却風を発生させる。このとき、第2ファン106は、回転軸方向Yが第1ファン105の回転軸方向Xと交差するように配置される。第2ファン106が対向する側面123の部分には、複数の通気窓からなる第2排気口123aが形成されている。第2ファン106は、駆動されると、吸気口124aから空気を取りこんで、第2排気口123aに向かう第2冷却風を発生させる。第2冷却風は、第2排気口123aを介してケース102から排気される。
吸気口124aは、ケース102の側面124の所定範囲に亘って複数の通気窓として形成されている。従って、第1及び第2ファン105、106が駆動されると、吸気口124aを介してケース102への吸気が行われる。
充電回路部104は、基板140に、主に、ダイオード141と、トランス142と、FET143と、温度検出素子144と、充電制御部45とが実装され、例えば商用交流電源から供給される電力を用いて端子170を介して電池パック3を充電する。急速充電のために、単位時間あたり多量の電流を充電回路部104に流すと、ダイオード141、トランス142、FET143は、発熱する傾向があり、いわゆる発熱素子となる。これらの部品を発熱から保護して放熱させるために、例えば、ダイオード141及びFET143にはそれぞれ放熱部材146、147が取り付けられている。
ダイオード141、トランス142、及びFET143は、吸気口124a近傍に配置されて、吸気口124aからケース102内に導入される空気に直接晒されるようになっている。
ケース102は、開口171を上面121に、第1排気口122a、第2排気口123a、及び吸気口124aを側面に有する。ケース102内の空気の流れは、主に、開口171と第1排気口122a及び第2排気口123aとの間と、吸気口124aと第1排気口122a及び第2排気口123aとの間と、に形成される。放熱部材146、147は、吸気口124aと第1排気口122a及び第2排気口123aとの間に形成される風路内に、ダイオード141、トランス142及びFET143の少なくとも1つ、好ましくは全てを含むように、各々の形状と、ケース102内における位置とが設定される。また、放熱部材146、147に対して、ダイオード141及びFET143は、ケース102内でのダイオード141及びFET143の第1及び第2冷却風による冷却を可能とするように取り付けられている。なお、放熱部材146、147はそれぞれ、第2放熱部を有していない。
温度検出素子144は、例えばサーミスタからなり、ケース102内部の温度を検出する。
充電制御部45は、電池パック3の温度をモニタしつつ、充電回路部104による電池パック3の充電を制御すると共に、第1及び第2ファン105、106の回転を制御する。
電池パック3の充電が行われているとき、ケース102内では、2つのファン105、106が駆動しているので、吸気口124aからケース2内に取りこまれた冷却風は、ダイオード41、トランス42、FET43の傍を通過することによりこれらの発熱素子を冷却し、排気口122a、123aより排気される。従って、ダイオード41、トランス42、FET43の温度上昇を防いで、充電装置100を効率良く冷却できる。
また、放熱部材146、147が、ダイオード141、トランス142、FET143を囲むように風路を画定して、第1冷却風及び第2冷却風は、主に放熱部材146、147の吸気口に近い一端部側から他端部側に向けて流れていくので、冷却が必要なダイオード141、トランス142、FET143を効率的に冷却できる。さらに、ダイオード141とFET143とは放熱部材146、147にそれぞれ取り付けられているので、ダイオード141とFET143とは、放熱部材146、147に沿って流れる冷却風に晒されて効率良く冷却される。
さらに、第1ファン105及び第2ファン106が、各々の回転軸方向が交差するように配置されると共に、ケース102の角部126に設けられているために、充電回路部104のための領域をケース102内に大きく取ることができる。また、冷却風の通過領域を広く取ることができる。
さらに、ダイオード141、トランス142、FET143は、吸気口124aの近傍に配置されているので、吸気口124aから吸い込まれた直後の温められる前の空気を冷却風として冷却されるので、効率良く冷却される。なお、冷却風の流れを逆にしてもよい。すなわち、排気口122a及び123aを吸気口として空気を吸いこみ、吸気口124aを排気口として空気を排出するように構成してもよい。
次に、第2の実施の形態の変形例について図23から図28を参照して以下に説明する。
図23は、第1ファン105及び第2ファン106を、直方体形状のケース102の側面123に近接して並置した充電装置100Aを示す。吸気口124aは、側面123と対向する側面125に形成される。なお、他の構成要素は、第2の実施の形態のものと同一であるため、その詳細な説明は省略する。第1ファン105及び第2ファン106が駆動されると、吸気口124aから排気口122a、123aに向けて第1冷却風及び第2冷却風が流れて、その風路中に配置されたダイオード141、トランス142、FET143を冷却する。すなわち、放熱部材146、147が吸気口124aから排気口122a、123aに向けて(図中前後方向)冷却風を案内するように延びて配置され、放熱部材146、147の間にトランス142を配置している。ケース102内に2つのファン105、106を設けることによって、風量を増やすとともに冷却風の通過領域を増やして発熱素子141、142、143、さらには充電装置100Aの冷却効果を高めることができる。
図24は、第1ファン105及び第2ファン106を、ケース102の側面122に近接して並置した充電装置100Bを示す。吸気口124aは、側面122と対向する側面124に形成される。なお、他の構成要素は、第2の実施の形態のものと同一であるため、その詳細な説明は省略する。第1ファン105及び第2ファン106が駆動されると、吸気口124aから排気口122a、123aに向けて第1冷却風及び第2冷却風が流れて、その風路中に配置されたダイオード141、トランス142、FET143を冷却する。すなわち、放熱部材146、147が吸気口124aから排気口122a、123aに向けて(図中左右方向)冷却風を案内するように延びて配置され、放熱部材146,147の間にトランス142を配置している。ケース2内に2つのファン105、106を設けることによって、風量を増やすとともに冷却風の通過領域を増やして発熱素子141、142、143、さらには充電装置100Aの冷却効果を高めることができる。なお、冷却風の流れを逆にしてもよい。すなわち、排気口122a及び123aを吸気口として空気を吸いこみ、吸気口124aを排気口として空気を排出するように構成してもよい。
図25は、第1ファン105及び第2ファン106を、ケース102の側面125に近接して上下方向に並置した充電装置100Cを示す。ファン105、106の近傍の側面125に排気口がそれぞれ形成され、側面125に対向する側面123に吸気口が形成される。なお、他の構成要素は、第2の実施の形態のものと同一であるため、その詳細な説明は省略する。第1ファン105及び第2ファン106が駆動されると、吸気口から排気口に向けて第1冷却風及び第2冷却風が流れて、その風路中に配置されたダイオード141、トランス142、FET143を冷却する。ケース2内に2つのファン105、106を設けることによって、風量を増やして発熱素子141、142、143、さらには充電装置100Aの冷却効果を高めることができる。ここで、図25では、放熱部材146、147を吸気口124aから排気口122a、123aに向かう冷却風路を遮るように配置しているが、図23のように冷却風を案内するように放熱部材146、147を配置すれば、冷却効果を高めることができる。その際、放熱部材146、147の間で吸気口124aに近接してトランス142を配置すれば、ダイオード141、FET143に加えトランス142の冷却効果を高めることができる。また、冷却風の流れを逆にしてもよい。すなわち、排気口122a及び123aを吸気口として空気を吸いこみ、吸気口124aを排気口として空気を排出するように構成してもよい。
図26は、第1ファン105及び第2ファン106を、ケース102の上面121において電池装着部107から外れた位置に近接して並置した充電装置100Dを示す。ファン105、106の近傍の上面121に吸気口がそれぞれ形成され、側面123に排気口が形成される。なお、他の構成要素は、第2の実施の形態のものと同一であるため、その詳細な説明は省略する。第1ファン105及び第2ファン106が駆動されると、吸気口から排気口に向けて第1冷却風及び第2冷却風が流れて、その風路中に配置されたダイオード141、トランス142、FET143を冷却する。ケース2内に2つのファン105、106を設けることによって、風量を増やして発熱素子141、142、143、さらには充電装置100Aの冷却効果を高めることができる。また、2つのファン105及び106を上面121に沿って配置したため、基板140の配置スペースを確保することができる。また、2つのファン105及び106を上面121且つ側面122又は124に沿って配置することもできる。なお、図25と同様、冷却風路に沿って放熱部材146、147を配置すれば一層冷却効果を高めることができる。また、冷却風の流れを逆にしてもよい。すなわち、ファン近傍の上面に排気口を形成し、側面123の排気口123aを吸気口として空気を吸いこむように構成してもよい。
図27は、第1ファン105を側面125近傍に、第2ファン106を側面123近傍に配置した充電装置100Eを示す。すなわち、充電回路部104を挟んで両側に互いに離して第1ファン105と第2ファン106を配置した。吸気口は、側面125に形成され、排気口は側面123に形成される。なお、他の構成要素は、第2の実施の形態のものと同一であるため、その詳細な説明は省略する。第1ファン105及び第2ファン106が駆動されると、吸気口から排気口に向けて第1冷却風及び第2冷却風が流れて、その風路中に配置されたダイオード141、トランス142、FET143を冷却する。ケース102内に2つのファン105、106を設け、一方を吸気用、他方を排気用に駆動することによって、ケース2内を流れる冷却風の風量を増やして発熱素子141、142、143、さらには充電装置100Aの冷却効果を高めることができる。
図28は、第1ファン105を側面124と側面125との角部近傍に、第2ファン106を角部126近傍に配置した充電装置100Fを示す。すなわち、充電回路部104を挟んで両側に互いに離して第1ファン105と第2ファン106を配置した。吸気口は、側面125に形成され、排気口は側面123に形成される。なお、他の構成要素は、第2の実施の形態のものと同一であるため、その詳細な説明は省略する。第1ファン105及び第2ファン106が駆動されると、吸気口から排気口に向けて第1冷却風及び第2冷却風が流れて、その風路中に配置されたダイオード141、トランス142、FET143を冷却する。ケース102内に2つのファン105、106を対角方向の両端に設けて、一方を吸気用、他方を排気用に駆動することによって、ケース2内を流れる冷却風の風路の距離を長く取ることによって発熱素子141、142、143、さらには充電装置100Fの冷却効果を高めることができる。なお、冷却風路(図中の矢印)に沿って放熱部材146、147を配置すれば一層冷却効果を高めることができる。また、冷却風の流れを逆にしてもよい。すなわち、側面123側から空気を吸いこみ、側面125側から空気を排出するように構成してもよい。
次に、第3の実施の形態である充電装置200について図29を参照して以下に説明する。充電装置200については、第1の実施の形態と同じ部材については同一の参照符号を付し、異なる部分を中心に以下に説明する。
図29を参照すると、充電装置200は、ケース202の内部に、電池パック3を充電するための充電回路部204と、充電回路部204及び電池パック3を冷却するための第1ファン205及び第2ファン206とを備える。
ケース202は、略直方体形状であり、上面221には前方側に電池パック3が充電のために装着される電池装着部207が設けられている。電池装着部207には、電池パック3を充電するための複数の端子270が設けられると共に、電池パック3を冷却するための風が通過する開口271が設けられている。さらに、ケース202は、上面221を囲む4つの側面222、223、224、225を有し、互いに隣接する側面222、223は角部226にて連結されている。
第1ファン205は、ケース202内に、角部226と開口271とに近接するとともに側面222に対向して配置される。第1ファン205が対向する側面222の部分には、複数の通気窓からなる第1通気口222aが形成されている。第1ファン205は、駆動されると、第1通気口222aから空気を吸い込み、回転軸方向Xを送風方向とする第1冷却風を発生させる。
第2ファン206は、ケース202内に、角部226と開口271とに近接するとともに側面223に対向して配置される。第2ファン206が対向する側面223の部分には、複数の通気窓からなる第2通気口223aが形成されている。第2ファン206は、駆動されると、第2通気口223aから空気を吸い込み、回転軸方向Yを送風方向として第2冷却風を発生させる。また、第2ファン106は、回転軸方向Yが第1ファン5の回転軸方向Xと交差するように配置される。
第1通気口222a及び第2通気口223aは、電池パック3の充電中は、ケース202の内部に空気を取りこむ吸気口として機能する。
さらに、ケース202の側面224には、所定範囲に亘って複数の排気窓が排気口224aとして形成され、第1及び第2ファン205、206の駆動により、排気口224aを介して第1及び第2冷却風のケース202への排気が行われる。
充電回路部204は、基板240に、主に、ダイオード241と、トランス242と、FET243と、温度検出素子244と、充電制御部45とが実装され、例えば商用交流電源から供給される電力を用いて端子270を介して電池パック3を充電する。急速充電のために、単位時間あたり多量の電流を充電回路部204に流すと、ダイオード241、トランス242、FET243は、発熱する傾向があり、いわゆる発熱素子となる。これらの部品を発熱から保護して放熱させるために、例えば、ダイオード241及びFET243にはそれぞれ放熱部材246、247が取り付けられている。
ダイオード241、トランス242、及びFET243は、排気口224a近傍に配置されて、排気口224aからケース202外に排気される第1及び第2冷却風に直接晒されるようになっている。
ケース202は、開口271を上面221に、第1通気口222a、第2通気口223a、及び排気口224aを側面に有する。ケース202内の空気の流れは、主に、第1及び第2ファン205、206と開口271との間と、第1通気口222a及び第2通気口223aと排気口224aとの間と、に形成される。放熱部材246、247は、特に、第1通気口222a及び第2通気口223aと排気口224aとの間に風路を形成する。そして、その風路内に、ダイオード241、トランス242及びFET243の少なくとも1つ、好ましくは全てを含むように、各々の形状と、ケース202内における位置とが設定される。また、放熱部材246、247に対して、ダイオード241及びFET243は、ケース202内でのダイオード241及びFET243の第1及び第2冷却風による冷却を可能とするように取り付けられている。
温度検出素子244は、例えばサーミスタからなり、ケース202内部の温度を検出する。
充電制御部45は、電池パック3の温度をモニタしつつ、充電回路部204による電池パック3の充電を制御すると共に、第1及び第2ファン205、206の回転を制御する。
次に、充電装置200の第1の動作について図30を参照しながら説明する。
充電装置200が例えば商用電源に接続されると、充電制御部45は、S111にて、電池装着部207に電池パック3が装着されているか否かを判断する。電池パック3が装着されている場合(S111:Yes)、S112にて、5秒間、第1ファン205をオンにして駆動し、且つ第2ファン206のオフ状態を維持する。このとき、図31に示すように、第1ファン205の駆動及び第2ファン206のオフにより、第1通気口222aから吸い込まれた空気は、第1ファン205から、第1冷却風として第2通気口223aと排気口224aとに向けて送風される。第2通気口223aに向かう第1冷却風は、第2通気口223aよりケース202外部に排気され、第2通気口223aに付着した埃などをケース202外部に吹き飛ばす。
次に、S113に進み、5秒間、第1ファン205をオフにして停止させ、且つ第2ファン206をオンにして駆動させる。このとき、図32に示すように、第1ファン205のオフ及び第2ファン206の駆動により、第2通気口223aから吸い込まれた空気は、第2ファン206から、第2冷却風として第1通気口222aと排気口224aとに向けて送風される。第1通気口222aに向かう第2冷却風は、第1通気口222aよりケース202外部に排気され、第1通気口222aに付着した埃などをケース202外部に吹き飛ばす。
なお、S112、S113における時間は、本実施の形態ではそれぞれ5秒間としたが、この時間に限定されること無く、適宜の長さの時間とすることができる。
次に、S114に進み、電池パック3の充電を開始すると共に、S115にて第1及び第2ファン205、206を共にオンにする。第1及び第2ファン205、206は、図33に示すように、第1及び第2冷却風を発生させるので、空気が第1通気口222a、223aを介してケース202内に取りこまれて排気口224aに向かう風路が形成される。また、第1通気口222a、223aから開口271に向かう風路も形成される。
S116にて、電池パック3の充電が完了すると、充電制御部45は、S117にて電池パック3の温度が40度以上であるか否かを確認する。電池パック3の温度が40度以上であれば(S117:Yes)、第1及び第2ファン205、206の駆動を継続して(S118)電池パック3の冷却を継続する。
電池パック3の温度が40度未満であれば(S117:No)、充電回路部204の温度が40度以上であるか否かを確認する(S119)。充電回路部204の温度が40度以上であれば(S119:Yes)、第1及び第2ファン205、206の駆動を継続して(S120)充電回路部204の冷却を継続する。充電回路部204の温度が40度未満であれば(S119:No)、第1及び第2ファン205、206の駆動を停止する(S121)。
一方、S111にて、電池パック3が装着されていない場合(S111:No)、S122にて、5秒間、第1ファン205をオンにして駆動し、且つ第2ファン206のオフ状態を維持する。このとき、図31に示すように、第1ファン205の駆動及び第2ファン206のオフにより、第1通気口222aから吸い込まれた空気は、第1冷却風として第1ファン205から、第2通気口223aと排気口224aとに向けて送風される。第2通気口223aに向かう第1冷却風は、第2通気口223aよりケース202外部に排気され、第2通気口223aに付着した埃などをケース202外部に吹き飛ばす。
次に、S123に進み、5秒間、第1ファン205をオフにして停止させ、且つ第2ファン206をオンにして駆動させる。このとき、図32に示すように、第1ファン205のオフ及び第2ファン206の駆動により、第2通気口223aから吸い込まれた空気は、第2冷却風として第2ファン206から、第1通気口222aと排気口224aとに向けて送風される。第1通気口222aに向かう第2冷却風は、第1通気口222aよりケース202外部に排気され、第1通気口222aに付着した埃などをケース202外部に吹き飛ばす。
なお、S122、S123における時間は、本実施の形態ではそれぞれ5秒間としたが、この時間に限定されること無く、適宜の長さの時間とすることができる。
次に、S124に進み、第1ファン205、206の各々を停止させる。次に、S125に進み、充電装置200は、電池パック3が装着されるまでS125で待機する。
第2の実施の形態に係る充電装置200では、電池パック3の充電中は吸気口として使用されるケース202の第1通気口222a及び第2通気口223aが、S113、112では、ケース202の外部に空気を排気する排気口として機能するため、排気により、第1通気口222a及び第2通気口223aに付着した埃などを第1通気口222a及び第2通気口223aから除去することが可能となる。
また、発熱素子となるダイオード241、トランス242、FET243は、排気口224aの近傍に設けられている。第1及び第2冷却風は、ケース外への排気のため排気口224aに集束されるので、比較的高い風量によってダイオード241、トランス242、FET243が冷却されるため、効率良くダイオード241、トランス242、FET243を冷却できる。
また、第1ファン205と第2ファン206とは、各々の送風方向が交差するようにケース202内に配置されるため、第1及び第2冷却風によるケース202内の冷却領域を広くすることができる。従って、充電中の電池パック3のみならず、ダイオード241、トランス242、FET243などの、ケース202内の発熱素子を中心とする各種電子部品を適宜冷却して発熱より保護することができる。
次に、充電装置200の第2の動作について図34を参照しながら説明する。
充電装置200が例えば商用電源に接続されると、S31にて、電池装着部7に電池パック3が装着されているか否かを判断する。電池パック3が装着されている場合(S31:Yes)、充電制御部45は、S32に進み、電池パック3の充電を開始する。同時に、S33にて、第1ファン205をオンにして電池パック3の充電中と同じ100%の回転数での駆動を開始する。このとき、第2ファン206もオンにして駆動させるが、電池パック3の充電中を100%とするとその20%の回転数で5秒間駆動させる。このとき、図35に示すように、第2ファン206の駆動により第2通気口223aから空気は吸い込まれるが、第1ファン205の回転数が第2ファン206の回転数よりも高いために、第1ファン205によって生じた第1冷却風の一部が、第2通気口223aを介してケース202外に排気される。このため、第1冷却風の一部により、第2通気口223aに付着した埃などがケース202外部に吹き飛ばされる。
次に、S34に進み、第2ファン206を電池パック3の充電中と同じ100%の回転数での駆動を開始する。このとき、第1ファン205は、電池パック3の充電中を100%とするとその20%の回転数で5秒間駆動させる。このとき、図36に示すように、第1ファン205の駆動により第1通気口222aから空気は吸い込まれるが、第2ファン206の回転数が第1ファン205の回転数よりも高いために、第2ファン206によって生じた第2冷却風の一部が、第1通気口222aを介してケース202外に排気される。このため、第2冷却風の一部により、第1通気口222aに付着した埃などがケース202外部に吹き飛ばされる。
なお、S33、S34における時間は、本実施の形態ではそれぞれ5秒間としたが、この時間に限定されること無く、適宜の長さの時間とすることができる。また、S33、S34における第2ファン206、第1ファン205の回転数を20%としたが、これに限定されず、第2通気口223a又は第1通気口222aから冷却風の排気を可能とする適宜の割合が選択される。
次に、S35に進み、第1及び第2ファン205、206を共に100%の駆動状態にして、第1及び第2冷却風を発生させる。第1及び第2冷却風によって、充電中の電池パック3を冷却すると共に、ケース内のダイオード241と、トランス242と、FET243などの発熱素子を冷却して、これらの発熱素子を熱から保護する。
S36にて、電池パック3の充電が完了すると、充電制御部45は、S37にて電池パック3の温度が40度以上であるか否かを確認する。電池パック3の温度が40度以上であれば(S37:Yes)、第1及び第2ファン205、206の駆動を継続して(S38)電池パック3の冷却を継続する。
電池パック3の温度が40度未満であれば(S37:No)、充電回路部204の温度が40度以上であるか否かを確認する(S39)。充電回路部204の温度が40度以上であれば(S39:Yes)、第1及び第2ファン205、206の駆動を継続して(S40)充電回路部204の冷却を継続する。充電回路部204の温度が40度未満であれば(S39:No)、第1及び第2ファン205、206の駆動を停止する(S41)。
一方、S31にて、電池パック3が装着されていない場合(S31:No)、S42にて、5秒間、第1ファン205をオンにして駆動し、且つ第2ファン206のオフ状態を維持する。このとき、第1ファン205の駆動及び第2ファン206のオフにより、第1通気口222aから吸い込まれた空気は、第1冷却風として第1ファン205から、第2通気口223aと排気口224aとに向けて送風される。第2通気口223aに向かう第1冷却風は、第2通気口223aよりケース202外部に排気され、第2通気口223aに付着した埃などをケース202外部に吹き飛ばす。
次に、S43に進み、5秒間、第1ファン205をオフにして停止させ、且つ第2ファン206をオンにして駆動させる。このとき、第1ファン205のオフ及び第2ファン206の駆動により、第2通気口223aから吸い込まれた空気は、第2冷却風として第2ファン206から、第1通気口222aと排気口224aとに向けて送風される。第1通気口222aに向かう第2冷却風は、第1通気口222aよりケース202外部に排気され、第1通気口222aに付着した埃などをケース202外部に吹き飛ばす。
次に、S44に進み、第1ファン205、206の各々を停止させる。次に、S45に進み、充電装置200は、電池パック3が装着されるまでS45で待機する。S45で電池パック3の装着が検出されたときはS31に戻る。
第2の実施の形態に係る充電装置200の第2の動作では、電池パック3の充電開始と同時に、第1及び第2ファン205、206のうち、一方のファンの回転数を他方のファンの回転数よりも大きくすることによって、回転数の小さいファンに対応する通気口から回転数の高いファンによって発生された冷却風を排気させることによって、回転数の小さいファンに対応する通気口に付着した埃などをケース202外部に吹き飛ばしている。次に、ファンの回転数を第1ファン205と第2ファン206とで逆にすることによって、もう一方の通気口に付着した埃などをケース202外部に吹き飛ばしている。従って、電池パック3の充電中に生じる第1及び第2通気口の目詰まりを解消することができる。
また、発熱素子となるダイオード241、トランス242、FET243は、排気口224aの近傍に設けられている。第1及び第2冷却風は、ケース外への排気のため排気口224aに集束されるので、比較的高い風量によってダイオード241、トランス242、FET243が冷却されるため、効率良くダイオード241、トランス242、FET243を冷却できる。
さらに、第1ファン205と第2ファン206とは、各々の送風方向が交差するようにケース202内に配置されるため、2つのファンの送風方向を互いに平行となるように配置するよりも、第1及び第2冷却風によるケース202内の冷却領域を広くすることができる。従って、充電中の電池パック3のみならず、ダイオード241、トランス242、FET243などの、ケース202内の発熱素子を中心とする各種電子部品を適宜冷却して発熱より保護することができる。
なお、上記実施の形態では、第1通気口222aと第2通気口223aとは、角部226によって分離される構成をとっている。しかしながら、他の実施の形態では、側面222、223に亘り連続して第1通気口222aと第2通気口223aとが形成されていても良い。同様に、第1通気口222aと第2通気口223aとは、角部226によって分離される構成をとっている。しかしながら、他の実施の形態では、側面222、223に亘り連続して第1通気口222aと第2通気口223aとが形成されていても良い。
本発明による充電装置は、上述した実施の形態に限定されず、特許請求の範囲に記載された発明の要旨の範囲内で種々の変更が可能である。
例えば、冷却風の風路を図37及び図38に示すように構成してもよい。第4の実施の形態の充電装置1においては、冷却風の風路を第1の実施の形態の放熱プレート80に代わり、放熱部材46、47と共にケース2と一体的に形成されたプレート300を使用する。なお、他の構成は第1の実施の形態と同じであるため、その説明は省略する。
プレート300は、放熱部材46及び47と共に、吸気口24aから取りこまれた空気の冷却風としての風路を画成し、排気口22a、23aへと向けて導くものである。
プレート300は、図37に示すように、充電装置1のケース2内において、ケース上面側の内周面にケース2と一体又は別体で設けられている。ケース2と別体とした場合には、図示しないねじ等によりケース2の内周面に固定されている。充電装置1を組み立てた状態において、プレート300は、ダイオード41、トランス42、FET43などの発熱素子を覆うように、すなわち放熱部材46及び47で形成された風路を覆うように、それら発熱素子の上方に位置し、放熱部材46及び47の長手方向に沿った大きさ及び形状を有する。プレート300はケース2の上面21と、ダイオード41、トランス42及びFET43との間に配置される。
第1の実施の形態ではトランス42の上方は開口していたが、本実施の形態ではプレート300によってトランス42を覆っている。そのため、トランス42の冷却効率を高めることができる。
従って、ファン5、6が駆動されると、図38に示すように、吸気口24aから、放熱部材46、47及びプレート300によって形成された風路を介して、排気口22a及び23aに至る冷却風路が形成される。この冷却風路の中を第1冷却風及び第2冷却風が通過して、発熱素子であるダイオード41、トランス42、FET43の各々を冷却する。各発熱素子の上方は、プレート300によって発熱素子が覆われているため、冷却風は確実に発熱素子の周囲を通り、発熱素子は効率良く冷却され、充電装置1全体の温度上昇が抑制される。
また、上述した実施の形態ではファンを複数(2つ)設けることで電池パックや発熱素子を冷却する構成とした。しかしながら、公称容量5Ah以上の電池パックを2C以上又は10A以上の充電電流で充電した際に、電池パックや発熱素子を冷却するために十分な風量であれば、ファンは複数でもよいし1つだけでもよい。
第5の本実施の形態では、図39に示すように、単一のファン6を用いた構成とした。なお、ファンの配置場所は、図4のファン5の位置、図27、28のファン105、106の位置等、どの位置でもよい。
電池パックを10A以上の充電電流で充電する場合、単一のファン6によるケース2内の風量を13.0m^3/hr(一時間当たり13立方メートル)以上、好ましくは13.5m^3/hr以上とすることで発熱素子の発熱を抑えながら充電することが可能である。その際、風圧は0.0015Pa以上が好ましい。また、図4等のように複数のファンによってケース2内の発生する風量を13.0m^3/hr以上としてもよい。
従って、電池パックを10A以上の充電電流で充電する場合、ケース2内の風量を13m^3/hr以上とすることができれば、単一のファンでもよい。
なお、ダイオード41、トランス42、FET43は、本発明における発熱素子の一例である。放熱部材46、47は、本発明における風路画成部材の一例である。第1放熱部46A、47Aは、本発明における第1画成部の一例である。第2放熱部46B、47Bは、本発明における第2画成部の一例である。放熱プレート80、800は、本発明における風路画成部材を構成する板状部材の一例である。リブ81A、82A、83A、84A、85Aは、本発明における風路画成部材の案内片部の一例である。
1, 100,200…充電装置、 2,102,202…ケース、3,33…電池パック、3a…電池セル、3F…第1遮断素子、4,104,204…充電回路部、5,105,205…第1ファン、6,106,206…第2ファン、7… 電池装着部、22a,122a…第1排気口、23a,123a…第2排気口、222a…第1通気口、223a…第2通気口、33F…第2遮断素子、41,141,241…ダイオード、42,142,242…トランス、43,143,243…FET、45…充電制御部、46,47…放熱部材、46A,47A…第1放熱部、46B,47B…第2放熱部、56…電流設定回路、57…電流制御回路、70…端子、

Claims (24)

  1. 底部と、前記底部と対向する上部と、前記底部と前記上部とを連結する側面部とを有するケースと、
    前記ケース内に設けられた複数のファンと、
    前記ケース内に設けられて電池パックを充電するように構成され、前記電池パックの充電に伴い発熱する発熱素子を有する充電回路部と、
    を有し、
    前記複数のファンは前記側面部に沿って配置されることを特徴とする充電装置。
  2. 前記ケースは略直方体形状を有し、
    前記複数のファンは、第1ファンと第2ファンを有し、
    前記第1ファンと前記第2ファンとは、前記側面部の一の角部近傍に配置されていることを特徴とする請求項1に記載の充電装置。
  3. 前記第1のファン及び前記第2のファンは、次の(1)〜(3)の何れかのように配置されることを特徴とする請求項2に記載の充電装置。
    (1)前記第1ファンは第1の側面部に沿って配置され、前記第2ファンは前記一の角部を介して前記第1の側面部に連結された第2の側面部に沿って配置される。
    (2)前記第1ファン及び前記第2ファンは同一の前記側面部に沿って配置される。
    (3)前記第1ファンは第1の側面部に沿って配置され、前記第2ファンは前記第1の側面部と対向する第3の側面部に沿って配置される。
  4. 前記ケースは、空気を前記ケース内に取りこむ吸気口と、前記空気を前記ケース外に排気する排気口とを有し、
    前記第1ファン及び前記第2ファンは、それぞれ前記排気口の近傍に配置され、
    前記発熱素子は、前記吸気口の近傍に配置されることを特徴とする請求項2又は3に記載の充電装置。
  5. 前記吸気口及び前記排気口は前記側面部に設けられることを特徴とする請求項4に記載の充電装置。
  6. ケースと、
    前記ケース内に第1冷却風を発生させる第1ファンと、
    前記ケース内に第2冷却風を発生させる第2ファンと、
    前記ケースに装着される電池パックを充電するように構成され、前記電池パックの充電に伴い発熱する発熱素子を有する充電回路部と、
    を有し、
    前記ケースは、空気を前記ケース内に取りこむ吸気口と、前記第1冷却風及び前記第2冷却風を前記ケース外に排気する排気口とを有し、
    前記第1ファン及び前記第2ファンは、それぞれ前記排気口の近傍に配置され、
    前記発熱素子は、前記吸気口の近傍に配置されて前記第1及び第2冷却風の少なくとも一方により冷却されることを特徴とする充電装置。
  7. 前記ケースは、底部と、前記底部と対向する上部と、前記底部と前記上部とを連結するように設けられた側面部とを有し、
    前記排気口は前記側面部に設けられて、前記第1ファン及び前記第2ファンが近接することを特徴とする請求項6記載の充電装置。
  8. 前記ケースは略直方体形状を有し、
    前記第1ファンと前記第2ファンとは、前記側面部の一の角部近傍に配置されていることを特徴とする請求項7に記載の充電装置。
  9. 前記充電回路部は、前記発熱素子に取り付けられた放熱部材をさらに有し、
    前記放熱部材は、前記第1及び第2冷却風が通過する風路の一部を画成することを特徴とする請求項6から8の何れか一に記載の充電装置。
  10. 前記第1ファンは、第1回転軸を有し、
    前記第2ファンは、第2回転軸を有し、
    前記第1ファン及び前記第2ファンは、互いに近接すると共に前記第1回転軸の延長線と前記第2回転軸の延長線とが交差するように配置されていることを特徴とする請求項6から9の何れか一に記載の充電装置。
  11. 前記ケースは、充電中の電池パックを冷却するための風が通過可能な開口を有し、
    前記第1ファン及び前記第2ファンは、前記開口の近傍に配置されることを特徴とする請求項2から10の何れか一に記載の充電装置。
  12. ケースと、
    前記ケース内に設けられた第1ファンと、
    前記ケース内に設けられた第2ファンと、
    前記ケース内に装着される電池パックを充電するように構成された充電回路部と、
    を有し、
    前記ケースは、空気の出入りが可能な通気口と、前記空気を排気する排気口とを有し、
    前記通気口は、前記第1ファンが近傍に配置される第1通気口と、前記第2ファンが近傍に配置される第2通気口とを有し、
    前記第1ファンの回転速度が前記第2ファンの回転速度よりも大きいことにより、前記第1通気口より吸い込む空気の一部を、前記第2通気口を介して前記ケースの外に排気する第1の通気動作を行い、
    前記充電回路部による充電動作中は、前記第1及び第2ファンは、前記第1及び第2通気口より空気を前記ケース内に取りこむように構成されていることを特徴とする充電装置。
  13. 電池電圧及び定格容量が異なる複数の電池パックを選択的に充電可能な充電装置であって、
    前記電池パックが装着されるケースと、
    前記ケース内に設けられたファンと、
    前記ケース内に設けられて前記電池パックを充電するように構成され、前記電池パックの充電に伴い発熱する発熱素子を有する充電回路部と、
    を有し、
    前記電池パックを10A以上の充電電流で充電可能であって、前記ファンの風量、又は前記ファンによって前記ケース内に発生する風量が13m^3/hr以上であることを特徴とする充電装置。
  14. 空気を取りこむ吸気口と冷却風を排気する排気口とが形成されると共に、底部と、前記底部と対向する上部とを有し、電池パックが装着可能なケースと、
    前記ケース内に冷却風を発生させるファンと、
    前記ケース内に設けられると共に前記電池パックを充電するように構成され、前記電池パックの充電に伴い発熱する発熱素子を有する充電回路部と、
    前記ケース内に前記冷却風が通過する冷却風路を画成する風路画成部材と、
    を有し、
    前記風路画成部材は、前記上部と前記発熱素子との間に延在する板状部を備えることを特徴とする充電装置。
  15. 前記発熱素子は、複数の発熱素子を含み、
    前記風路画成部材は、
    前記上部と交差する第1方向に延びる第1画成部と、
    前記第1画成部から前記第1方向と交差する第2方向に延びて、前記第1方向において前記上部と前記複数の発熱素子のうちの少なくとも1つの発熱素子との間に位置する第2画成部と、を備え、
    前記ファンの駆動により前記冷却風を前記発熱素子に導き、前記発熱素子を冷却可能とするように構成されていることを特徴とする請求項14に記載の充電装置。
  16. 前記風路画成部材は、前記複数の発熱素子のうちの少なくとも1つの発熱素子の放熱用に設けられた放熱部材を備え、
    前記放熱部材は、前記冷却風の進行方向と交差する断面が略L字形状を有することを特徴とする請求項15に記載の充電装置。
  17. 前記充電回路部は、前記複数の発熱素子が実装された回路基板を有し、
    前記第1画成部は、前記回路基板と前記上部とのうちの一方から他方に向けて立設され、
    前記冷却風路は、前記回路基板及び前記風路画成部材によって画成されることを特徴とする請求項15又は16に記載の充電装置。
  18. 前記板状部材は、前記発熱素子と対応する位置に、前記発熱素子の外形に応じて形成された開口と、前記開口の縁部近傍から前記上部とは反対側に延びて前記発熱素子と共に前記冷却風路の一部を画成する案内片部とを有し、
    前記冷却風路は、前記吸気口から、前記発熱素子と前記案内片部との間と前記開口とを通過して前記排気口に至るように設けられることを特徴とする請求項14から17の何れか一に記載の充電装置。
  19. 前記発熱素子は、ダイオード、FET、トランス及びコイルのうちの少なくとも1つであり、
    前記発熱素子を前記吸気口の近傍に配置することを特徴とする請求項14から18の何れか一に記載の充電装置。
  20. 空気を取りこむ吸気口と冷却風を排気する排気口とが形成されると共に、底部と、前記底部と対向する上部とを有し、電池パックが装着可能なケースと、
    前記ケース内に冷却風を発生させるファンと、
    前記ケース内に設けられると共に前記電池パックを充電するように構成され、前記電池パックの充電に伴い発熱する複数の発熱素子を有する充電回路部と、を有し、
    前記発熱素子はトランスを含み、
    前記トランスを前記吸気口の近傍に配置したことを特徴とする充電装置。
  21. 前記ケース内に前記冷却風が通過する冷却風路を画成する風路画成部材を有し、
    前記風路画成部材は、
    前記上部と交差する第1方向に延びる第1画成部と、
    前記第1画成部から前記第1方向と交差する第2方向に延びて、前記第1方向において前記上部と前記複数の発熱素子のうちの少なくとも1つの発熱素子との間に位置する第2画成部と、を備え、
    前記トランスは前記風路画成部材で画成された前記冷却風路内に配置されることを特徴とする請求項20に記載の充電装置。
  22. 前記風路画成部材は発熱素子に取り付けられた放熱部材であり、
    前記ファンの駆動により前記冷却風を前記放熱部材に沿って流れるように構成したことを特徴とする請求項21に記載の充電装置。
  23. 空気を取りこむ吸気口と冷却風を排気する排気口とが形成されると共に電池パックが装着可能なケースと、
    前記ケース内に冷却風を発生させるファンと、
    前記ケース内に設けられると共に前記電池パックを充電するように構成され、前記電池パックの充電に伴い発熱する複数の発熱素子を有する充電回路部と、
    前記ケース内に前記冷却風が通過する冷却風路を画成する風路画成部材と、
    を有し、
    前記風路画成部材で画成した前記冷却風路内に前記複数の発熱素子を配置したことを特徴とする充電装置。
  24. 空気を取りこむ吸気口と冷却風を排気する排気口とが形成されると共に、電池パックが装着可能なケースと、
    前記ケース内に冷却風を発生させるファンと、
    前記ケース内に設けられると共に前記電池パックを充電するように構成され、前記電池パックの充電に伴い発熱する複数の発熱素子を有する充電回路部と、
    前記ケース内に前記冷却風が通過する冷却風路を画成する風路画成部材と、
    を有し、
    前記風路画成部材は前記複数の発熱素子を取り囲むように構成されていることを特徴とする充電装置。
JP2017526235A 2015-06-30 2016-06-02 充電装置 Active JP6399479B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015132219 2015-06-30
JP2015132218 2015-06-30
JP2015132219 2015-06-30
JP2015132218 2015-06-30
PCT/JP2016/066415 WO2017002519A1 (ja) 2015-06-30 2016-06-02 充電装置

Publications (2)

Publication Number Publication Date
JPWO2017002519A1 true JPWO2017002519A1 (ja) 2018-04-19
JP6399479B2 JP6399479B2 (ja) 2018-10-03

Family

ID=57609473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017526235A Active JP6399479B2 (ja) 2015-06-30 2016-06-02 充電装置

Country Status (5)

Country Link
US (1) US10547186B2 (ja)
JP (1) JP6399479B2 (ja)
CN (1) CN107710547B (ja)
DE (1) DE112016002974T5 (ja)
WO (1) WO2017002519A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3068010A1 (de) * 2015-03-10 2016-09-14 HILTI Aktiengesellschaft Netzbetreibbares Akku-Ladegerät und Ladesystem
US10945355B2 (en) * 2016-07-27 2021-03-09 Mitsubishi Electric Corporation Power conversion device
JP6920880B2 (ja) * 2017-05-17 2021-08-18 株式会社マキタ 電動工具のバッテリパックを充電する充電器
JP2018196242A (ja) * 2017-05-17 2018-12-06 株式会社マキタ 電動工具のバッテリパックを充電する充電器
TWM575626U (zh) 2017-06-26 2019-03-11 美商米沃奇電子工具公司 電池充電器
US10674618B2 (en) * 2017-09-01 2020-06-02 Black & Decker Inc. Portable power supply
CN108281999A (zh) * 2018-01-12 2018-07-13 浙江动新能源动力科技股份有限公司 一种充电装置
US11540429B2 (en) 2018-07-30 2022-12-27 Milwaukee Electric Tool Corporation Battery charger
JP7110798B2 (ja) * 2018-07-30 2022-08-02 工機ホールディングス株式会社 充電装置
CN210120406U (zh) 2018-10-17 2020-02-28 米沃奇电动工具公司 电池充电器
CN109699157B (zh) * 2018-12-14 2020-11-24 宁波市亿嘉汽车电器有限公司 一种车载充电器
US20220123569A1 (en) * 2019-02-28 2022-04-21 Koki Holdings Co., Ltd. Charging device
DE102019209325A1 (de) * 2019-06-27 2020-12-31 Robert Bosch Gmbh Akkupack
EP4032376A4 (en) 2019-09-17 2024-01-10 Milwaukee Electric Tool Corp HEATSINK
CN112701741B (zh) * 2019-10-23 2024-03-12 北京小米移动软件有限公司 充电控制方法、装置及存储介质
WO2021113426A1 (en) 2019-12-03 2021-06-10 Milwaukee Electric Tool Corporation Battery pack and charger system
US20210296057A1 (en) * 2020-03-23 2021-09-23 Autab, Llc Battery-ultracapacitor stud welder
EP4229734A4 (en) * 2020-10-16 2024-05-01 Globe Jiangsu Co Ltd CHARGER, CHARGING DEVICE, POWER SUPPLY DEVICE AND CHARGER CONTROL METHOD
US20220140635A1 (en) * 2020-10-30 2022-05-05 Techtronic Cordless Gp Battery Pack with Temperature Limited Current
EP4016783B1 (de) 2020-12-15 2023-11-22 Andreas Stihl AG & Co. KG Ladegerät mit ladeelektronikeinheit und kühlluftführungsstruktur
DE102022212288A1 (de) 2022-11-18 2024-05-23 Robert Bosch Gesellschaft mit beschränkter Haftung Ladevorrichtung für mindestens ein Akkupack

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330913A (ja) * 2005-05-24 2006-12-07 Toshiba Corp 情報処理装置および制御方法
JP2012074161A (ja) * 2010-09-27 2012-04-12 Panasonic Eco Solutions Power Tools Co Ltd 充電器
JP2014038935A (ja) * 2012-08-15 2014-02-27 Nec Corp 冷却装置及び冷却方法
JP2015019535A (ja) * 2013-07-12 2015-01-29 日立工機株式会社 充電装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075079A (ja) 1996-08-30 1998-03-17 Matsushita Electric Works Ltd 点灯装置
JP3830243B2 (ja) * 1997-10-06 2006-10-04 トヨタ自動車株式会社 電池電源装置
US6455186B1 (en) * 1998-03-05 2002-09-24 Black & Decker Inc. Battery cooling system
JP3563965B2 (ja) * 1998-06-29 2004-09-08 本田技研工業株式会社 バッテリ充電装置
JP4566392B2 (ja) * 2000-11-16 2010-10-20 レノボ シンガポール プライヴェート リミテッド 温度制御に伴うアクションレベルを決定する電池、電池パック、コンピュータ装置、電気機器、および電池の温度制御方法
JP4380927B2 (ja) 2001-02-05 2009-12-09 ミツミ電機株式会社 過充電保護回路
DE10214367B4 (de) * 2002-03-30 2006-08-24 Robert Bosch Gmbh Energiespeichermodul und Handwerkzeugmaschine
KR100903182B1 (ko) * 2005-09-28 2009-06-17 주식회사 엘지화학 차량용 전지팩의 냉각 시스템
JP5314235B2 (ja) * 2006-03-07 2013-10-16 プライムアースEvエナジー株式会社 二次電池の温度制御装置、二次電池の加温システム、およびプログラム
JP5034316B2 (ja) * 2006-05-22 2012-09-26 トヨタ自動車株式会社 電源装置
JP2008125249A (ja) 2006-11-13 2008-05-29 Densei Lambda Kk 電源装置
EP3954505A1 (en) * 2011-07-24 2022-02-16 Makita Corporation Adapter for power tools

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330913A (ja) * 2005-05-24 2006-12-07 Toshiba Corp 情報処理装置および制御方法
JP2012074161A (ja) * 2010-09-27 2012-04-12 Panasonic Eco Solutions Power Tools Co Ltd 充電器
JP2014038935A (ja) * 2012-08-15 2014-02-27 Nec Corp 冷却装置及び冷却方法
JP2015019535A (ja) * 2013-07-12 2015-01-29 日立工機株式会社 充電装置

Also Published As

Publication number Publication date
US20180191183A1 (en) 2018-07-05
US10547186B2 (en) 2020-01-28
CN107710547A (zh) 2018-02-16
JP6399479B2 (ja) 2018-10-03
CN107710547B (zh) 2021-10-08
DE112016002974T5 (de) 2018-03-29
WO2017002519A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6399479B2 (ja) 充電装置
US10103558B2 (en) Charger, charging system and power tool with battery pack
JP4618561B2 (ja) 電池の充電装置
US7508171B2 (en) Protection methods, protection circuits and protective devices for secondary batteries, a power tool, charger and battery pack adapted to provide protection against fault conditions in the battery pack
CN108352715B (zh) 充电器
US20170331302A1 (en) Charging device
JP6699078B2 (ja) 電動工具用電池パックの充電装置
JP6920880B2 (ja) 電動工具のバッテリパックを充電する充電器
JP6040743B2 (ja) 充電装置
JP2007006628A (ja) 充電器およびそれを用いる電動工具セット
JP2015104216A (ja) 充電装置
JP2007116853A (ja) リチウム電池パック
JP2009289694A (ja) 電池パック
JP2016192353A (ja) 電池パック
JP3780906B2 (ja) 充電装置
WO2018212075A1 (ja) 電動工具のバッテリパックを充電する充電器
JP2015198491A (ja) 充電装置
JP4568086B2 (ja) パック電池
JP7072479B2 (ja) バッテリパック
JP2013158142A (ja) 充電装置及び充電システム
JP2012005288A (ja) 充電装置
JP2015211607A (ja) 充電装置
JP4730671B2 (ja) 充電装置
KR20170069216A (ko) 전지팩
JP2023023030A (ja) 電源装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180826

R150 Certificate of patent or registration of utility model

Ref document number: 6399479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150