JPWO2016039020A1 - 振動モード測定装置 - Google Patents

振動モード測定装置 Download PDF

Info

Publication number
JPWO2016039020A1
JPWO2016039020A1 JP2016547760A JP2016547760A JPWO2016039020A1 JP WO2016039020 A1 JPWO2016039020 A1 JP WO2016039020A1 JP 2016547760 A JP2016547760 A JP 2016547760A JP 2016547760 A JP2016547760 A JP 2016547760A JP WO2016039020 A1 JPWO2016039020 A1 JP WO2016039020A1
Authority
JP
Japan
Prior art keywords
vibration
vibration mode
motor
command
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016547760A
Other languages
English (en)
Other versions
JP6192849B2 (ja
Inventor
智哉 藤田
智哉 藤田
弘太朗 長岡
弘太朗 長岡
剛志 津田
剛志 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016039020A1 publication Critical patent/JPWO2016039020A1/ja
Application granted granted Critical
Publication of JP6192849B2 publication Critical patent/JP6192849B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/025Measuring arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/022Vibration control arrangements, e.g. for generating random vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/06Multidirectional test stands

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Electric Motors In General (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

1つ以上のモータで構成された機械の機械構造の振動モードを測定する振動モード測定装置において、モータの加振指令を生成する加振指令生成部と、加振指令に基づきモータの電流指令を生成し、モータ加振力の換算値を振動モード計算部に出力する制御部と、制御部からモータ電流指令を受け取り、モータを駆動するモータ駆動部と、機械構造の振動を検出する振動センサと、振動センサの貼付点の情報を入力する測定点情報入力部と、モータ加振力の換算値と振動センサの出力を用いて振動モードを計算する振動モード計算部とを出力する振動モード出力部を有することを特徴とする振動モード測定装置を提供する。

Description

本発明は、モータを有する機械の振動モードを測定する振動モード測定装置に関する。
従来から、複数のセンサ入力を持つ振動測定手段と、伝達関数を演算する手段と、振動モードを可視化し出力する手段とを備えた振動モード測定装置が知られている(例えば特許文献1)。
また、従来から、機械に取り付けられた電動機と、前記電動機または前記機械からなる被検出体の動作量を検出する検出手段と、指令信号を発生する指令器と、指令信号を受けて前記電動機を駆動する制御装置とからなる電動機制御部において、制御装置の特性を含まない開ループ周波数応答特性を計測する開ループ周波数応答特性計測手段と、電動機制御部の制御装置の制御装置モデルと、計測した開ループ周波数応答特性と制御装置モデルから一巡開ループ周波数応答特性を算出する演算手段と、前記制御装置の制御パラメータと前記一巡開ループ周波数応答特性の変化の関係を感度解析する感度解析装置とを備えた電動機制御部の制御パラメータ感度解析装置が知られている(例えば特許文献2)。
特開平3−218421号公報 特開2006−227793号公報
しかしながら、上記特許文献1で開示された方式では、加振装置にインパルスハンマまたは加振器を用意する必要があった。インパルスハンマを使用する場合では、作業者が打撃を行う必要があり、また、加振器を用いる場合には、小型の機械の場合は加振器を設置する場所を確保できず、逆に大型の機械で十分な加振力を与えることができなかった。すなわち、特許文献1の技術では、作業者の負担、機械サイズによる制約という課題があった。
一方、特許文献2は、振動モードを測定する装置ではないが、モータを用いて機械を加振し、加振力から機械構造に取り付けたセンサまでの伝達関数を算出することが可能な装置を提供しており、作業者の負担、機械サイズによる制約の課題は解決できると思われる。
しかしながら、特許文献2の技術を振動モード測定に適用するためには、測定点の情報、センサの方向に関して1つ1つの条件毎に作業者がデータ処理を行う必要があると共に、センサの感度方向と軸の方向が逆の場合は伝達関数の計算をやり直したり、位相のデータに修正したりする必要があった。すなわち、特許文献2の技術では、効率よく高精度に信頼性の高い振動モードを測定することが困難であった。
本発明は、上記に鑑みてなされたものであり、1つ以上のモータを有する機械において、効率よく高精度に信頼性の高い振動モードを測定する振動モード測定装置を得ることを目的とする。
本願発明は、上記問題を解消し、目的を達成するために、本発明にかかる振動モード測定装置は、1つ以上の駆動装置の動きにより振動を生じる装置の前記装置の任意な振動を決定する決定部と、前記1つ以上の駆動装置それぞれを制御して、前記装置に前記決定された振動きをさせる制御部と、前記決定された振動をしている前記装置の測定の対象となる1つ以上の部位それぞれの振動を測定する測定部と、前記検出された振動に基づいて、少なくとも前記測定の対象となる1つ以上の部位それぞれの振動の態様を計算する計算部とを有する。
本発明によれば、1つ以上のモータを有する機械において、効率よく高精度に信頼性の高い振動モードを測定することができる、という効果を奏する。
実施の形態1に係る振動モード測定装置の概略構成を示すブロック図 制御部の詳細を示すブロック図 速度制御部の詳細を示すブロック図 図1の機械構造の概略構成を示す概略図 図1〜図4に示した実施の形態1における測定系により伝達関数の計算と振動モード同定の処理を示すフローチャート 振動モード計算部の詳細を示すブロック図 実施の形態2における振動モード測定装置の概要を示すブロック図 実施の形態2において振動モード測定装置が適用される3軸の工作機械の概略構成を示す斜視図 実施の形態2における制御部の構成の概略を示すブロック図 機械情報送信部の詳細を示すブロック図 実施の形態3における振動モード測定装置の制御部の概要を示すブロック図 実施の形態4における振動モード測定装置の概略を示すブロック図 実施の形態6における振動モード測定装置の制御部の概要を示すブロック図 実施の形態7における加振指令生成部の構成を示すブロック図 実施の形態8に係る振動モード測定装置の概略構成を示すブロック図 実施の形態9に係る振動モード測定装置の概略構成を示すブロック図
実施の形態1.
以下に、本発明の実施の形態にかかる振動モード測定装置を図面に基づいて詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。
図1は、本発明の実施の形態1に係る振動モード測定装置200の概略構成を示すブロック図である。振動モード測定装置200は、機械構造16の振動モードを測定する装置であり、モータ1に駆動力fを発生させて機械構造16の加振を行うモータ駆動装置19、モータ1への加振指令Cmdを生成する加振指令生成部11、加振指令Cmdに基づいて生成される電流指令Imとモータ回転角Sdとを用いてモータ1を制御し、モータ1の加振力換算値fnを出力する制御部12、i番目の測定点の座標Xiとセンサの向きを表すセンサ方向Ddiを設定する測定点情報入力部18、機械構造16の測定点に付されて加振によって機械構造16に生じる振動を検出するための振動センサの一例である加速度センサ13の出力である加速度aとモータ1の加振力換算値fnおよび、測定点の座標Xiとセンサ方向Ddiとを用いて振動モードを計算する振動モード計算部14を備えて構成される。なお、図示のように、同定した振動モードをアニメーションとして出力する振動モード出力部15を設けるようにしてもよい。
また、図1の構成において、加振指令生成部11が生成する加振指令の一例には、擬似ランダム信号、サインスイープ信号などがある。これら擬似ランダム信号およびサインスイープ信号は、速度指令としても位置づけられる。よって、実施の形態1では、「加振指令Cmd」を「加振用速度指令Cmd」として説明する。
図2は、制御部12の詳細を示すブロック図である。制御部12では加振用速度指令Cmdとエンコーダ3により検出されたモータ1の回転角度を位置に変換した検出位置Sdとの誤差ができる限り小さくなるようにモータ1に流す電流(以下「モータ電流」と称する)を制御するための電流指令Imを生成して出力する。電流値取得部123は、電流指令Imからモータ1の加振力換算値fnを計算し、出力する。なお、図2において、電流値取得部123は電流指令Imを用いて加振力換算値fnを計算しているが、モータ1に実際に流れるモータ電流のフィードバック値を使用して加振力換算値fnを計算してもよい。ここで、モータ1の駆動力fは、モータ1のトルク定数Ktを用いて、たとえば、次の数式1で求められる。
Figure 2016039020
位置制御部121は、P制御器で構成されることが多い。振動モード測定装置200は、加振実行時に、位置制御部121のゲインを小さくする。設定する値は、測定する周波数レンジの下限の値を設定する場合または、初めに設定されていた位置制御部121のゲインの5分の1〜10分の1の決まった値を設定する方式のうちのいずれを用いてもよい。この理由は、一般に送りねじで構成された駆動機構は、速度の制御の応答帯域が数百Hzに対して、位置の制御の応答帯域が数Hzから数十Hzしかないため、広い帯域を加振するためには、位置制御では不十分であるからである。そこで、位置制御よりも広い帯域を持つ速度制御を利用する。
一般に、速度制御では位置制御に比べて3〜8倍の帯域を持つ。また、モータ駆動装置で行われる電流制御は、速度制御の5〜10倍の帯域を持つ。速度制御を利用するためには、速度指令として加振信号を入力すればよい。しかし、位置制御が有効である場合、速度指令は位置制御部121に対して外乱として作用してしまうため、位置制御帯域以下の加振信号は抑制される。そこで、位置制御部121のゲインを小さくし、位置制御帯域が加振時の周波数レンジの下限より小さくする必要がある。一方で、位置制御部121のゲインを0にして、位置制御を完全に無効にしてしまうと、機械の位置が制御されなくなり、意図しない位置に移動する可能性もあるため、完全に無効にはしない。速度制御部122は、PI制御器で構成される事が多い。速度制御部122では、位置制御部121の出力である位置制御用速度指令Pcmd、加振指令生成部120から受け取った加振用速度指令Cmd、エンコーダ出力であるモータ回転角Sdを用いて速度制御を行う。
図3は、速度制御部122の詳細を示すブロック図である。微分部122aは、エンコーダ出力であるモータ回転角Sdを微分し、モータ1の速度を算出する。加算部122bは、加振用速度指令Cmdと位置制御用速度指令Pcmdの和を計算する。また、減算部122cは、微分部122aと加算部122bの差を出力する。PI制御部122dでは、減算部122cの出力に対して、PI制御を行い、電流指令Imを出力する。
図4は、図1の機械構造16の概略構成を示す概略図である。制御部12より出力された電流指令Imにより、モータ駆動装置19は、モータ1に駆動力fを発生し、機械構造16を加振する。このとき、モータ1の回転運動はカップリング8を介して送りねじ2に伝達され、ナット9を介して直進運動に変換される。送りねじ2の直進運動は、サポートベアリング10により拘束されている。ナット9の直進運動によりワークテーブル4が直進運動する。このとき、ワークテーブル4上に設置された加速度センサ13により加速度aが測定され、振動モード測定装置200内の振動モード計算部14に対して出力される。一方、モータ1は、振動モード測定装置200のモータ駆動装置19から入力された電流指令Imに従って回転し、エンコーダ3により計測されたモータ1の回転速度および回転角は、モータ駆動装置19を介して制御部12に対して出力される。
測定点情報入力部18では、作業者が加速度センサ13を貼付したi番目の測定点の座標Xiと、そのときのセンサの向きを表すセンサ方向Ddiを入力する。測定点の座標Xiは、アニメーションを描画する際のセンサ貼付位置を表示する座標に使用する。また、センサ方向Ddiは、機械の構成上のx,y,z軸の向きと加速度センサ13の座標軸の向きを必ずしも一致して取り付ける事ができない場合に、これらの対応関係を記録するために入力する。例えば、3軸加速度センサの1ch,2ch,3chがそれぞれ機械構成上のy軸正方向、x軸正方向、z軸負方向に取り付けられているとするとセンサ方向Ddiは、(+y,+x,−z)となる。
振動モード計算部14では、加振力換算値fnと加速度aとを用いて伝達関数の計算および振動モードの同定を行う。図5は、図1から図4に示した実施の形態1における測定系により伝達関数の計算と振動モード同定の処理を示すフローチャートである。
まず、作業者は、機械構造16上の測定点に加速度センサ13を貼付する。ステップS11において、作業者は、測定点情報入力部18に対する測定点情報として、測定点の座標Xと、センサ方向Ddを入力する。ステップS12において、作業者が、制御部12から入力される加振力を示す情報fnと、モータ1を擬似的にランダムに回転させるといった加振の態様を実現するための加振用速度指令Cmd、モータ電流を示す情報Imを決定し、機械構造16の振動の測定を開始する。測定が開始されると加振指令生成部11より、制御パラメータ設定指令が制御部12に対して出力される。なお、制御パラメータ設定指令も図1に示す加振指令Cmdの1つである。制御パラメータ設定指令が制御部12に対して出力されると、位置制御部121のゲインが変更される。
ステップS13において、加振力換算値fnおよび電流指令Imといった制御パラメータの設定が完了したか否かが判断され、制御パラメータの設定が完了すると(ステップS13,Yes)、ステップS14の処理に進み、完了しなければ(ステップS13,No)、ステップS12,S13の処理を繰り返す。
ステップS14において、加振指令生成部11から加振用速度指令Cmdが制御部12に出力され、制御部12がモータ駆動装置19を制御してモータ1を回転駆動させ、機械構造16に対する加振が開始される。ステップS15において、加振中に、振動モード計算部14において、加振力換算値fnと加速度aが同期して測定される。なお、加振力換算値fnに代えて、加振中のモータ電流のモニタ値でもよい。ステップS16において、加振が終了すると、加振指令生成部11より、再度、制御パラメータ設定指令が出され、ステップS12において書き換えられたゲインが元の値に戻される。
ステップS17では、加振終了後に振動モード計算部14において、測定したモータ電流モニタ値fnと加速度aから伝達関数が計算される。ステップS18では、測定が終了したか否かが判断され、測定が終了した場合には(ステップS18,Yes)、ステップS19の処理に進み、測定が終了していない場合には(ステップS18,No)、ステップS11の処理に戻る。なお、ステップS18の処理において、作業者が測定の選択をしたか否かを判断してもよく、測定の選択をした場合にはステップS19の処理に進んで振動モードの計算を行う。
ステップS19では、振動モード計算部14によって振動モードの計算が行われる。ステップS20では、振動モード出力部15によって振動モードがアニメーション化して表示される。
図6は、振動モード計算部14の詳細を示すブロック図である。振動モード計算部14は、伝達関数計算部141、一時記憶領域142および振動モード同定部143を備える。また、振動モード計算部14には、加振力fn、加速度aおよび測定点の座標Xiが入力される。
加振力fnと加速度aは、伝達関数計算部141にて同期してサンプリングされ、加振終了後に伝達関数の計算が行われる。時系列波形からの伝達関数の計算方法としては、多くの方式が提案されている。例えば、スペクトル解析法、ARX同定、部分空間法などがある。本実施の形態における振動モード測定装置では、入力を加振力、出力を加速度としてスペクトル解析法の一つであるH1推定法を用いて伝達関数の計算方法を詳細に述べる。なお、伝達関数の計算アルゴリズムが、以下の説明に限定されるものではないことは言うまでもない。
加速度センサ13が3軸加速度センサの場合は、3方向の加速度応答aが3成分のベクトルとして得られるので、センサ方向Ddiに基づき、機械のx,y,z方向に対応するセンサの入力チャンネルの順番を入れ替える。加振力f、加速度aのフーリエスペクトルをそれぞれF(s),A(s)と置くと、入力のパワースペクトルGffは数式2で、入出力のクロススペクトルGafは数式3のように表現される。ただし、*は共役なスペクトルを表す。H1推定法を用いるとi番目の測定点における伝達関数Gi(s)は数式4で表現される。H1推定を用いることで、出力信号である加速度aの信号に存在するノイズを平均化により最小化することが可能となる。
Figure 2016039020
Figure 2016039020
Figure 2016039020
計算された伝達関数の情報は、測定点情報入力部18から入力された測定点の座標Xiと関連付けられ、すべての測定点での伝達関数の測定が終了するまで、一時記憶領域142に保存される。すべての測定点での測定が終了したら伝達関数計算部141は、すべての伝達関数の情報を振動モード同定部143に出力される。
振動モード同定部143では、カーブフィットなどの方法により振動モードを規定するモードパラメータ(固有振動数、モード減衰比)を行う。同定方式は、モード円適合、偏分反復法など様々な方式がある。ここでは、制御的に振動を評価する際に使い勝手のよい、加振力に対して各点の時系列の応答振幅と位相データとして振動モードを導出する。伝達関数Gi(s)の周波数特性を計算するためjωを代入する。ただし、jは虚数単位、ωは周波数である(数式5)。このとき、ある周波数ωの成分における加振力fに対する振幅比R(ω)と位相差d(ω)は数式6で表現される。ただし、“abs”は、絶対値関数である。
Figure 2016039020
Figure 2016039020
このとき、周波数ωの時の加振力fの入力に対する各測定点iの基準座標Xiからの変位量dXiは、線形システムを仮定すると、以下の数式7のように正弦波関数で記述できる。
Figure 2016039020
上式において、tは時間であり、加速度センサ13が3軸加速度センサの場合は、変位量dXiは、x,y,zの3方向の成分を含む。すべての測定点iにおける、変位量dXiを計算すると、加振力fに対してある周波数ωでの振動モードの形状を時間領域で記述することが可能となる。振動モード計算部14では、算出した各測定点iの振動モードを表す情報として基準座標Xiおよび変位量dXiを振動モード出力部15に出力する。
振動モード出力部15では、測定点座標Xiと変位量dXiからアニメーションを描画する。まず、全ての測定点iに関して、測定点座標Xiに基づいて機械のワイヤーフレームモデルを描画し、基準点とする。次に、注目する周波数ωにおいて、Δt秒後の基準点Xiからの変位量dXiを算出する。Δt秒ごとに変位量dXiの値を計算し、測定点の座標を更新することで振動モードのアニメーションが描画される。
このように、本実施の形態に係る振動モード測定装置によれば、駆動軸のモータを用いて機械を加振し、当該加振力の換算値と、機械構造上の複数の点に設置した振動センサにおける1つ以上の貼付点の情報とを用いて振動モードを計算することとしたので、当該複数の点に設置した振動センサまでの周波数応答の測定が可能となり、加振力から各点の周波数応答から振動モードを計算し出力するまでの一連の作業を行うことが可能となる。また、加振時に制御パラメータ設定を変更することで広い帯域において機械構造を加振することが可能となる。
実施の形態2.
図7は、実施の形態2における振動モード測定装置の概要を示すブロック図である。実施の形態1との違いは、制御部12より機械情報Datを振動モード計算部14に出力する点である。
また、図8は実施の形態2において振動モード測定装置が適用される3軸の工作機械の概略構成を示す斜視図である。図8において、X軸、Y軸およびZ軸方向に運動を案内された複数の可動軸を有し、各可動軸はモータ1x,1y,1zと送りねじ2x,2y,2zから成る駆動機構によって駆動される。モータ1x,1y,1zの回転角度はエンコーダ3x3y,3zによりそれぞれ検出され、モータ制御部にフィードバックされる。各軸の駆動機構の構成は、図1に示した振動モード測定装置の概略構成と同様とするが、モータ駆動方法として、モータ1x,1y,1zと送りねじ2x,2y,2zの代わりにリニアモータを用い、エンコーダ3x,3y,3zの代わりにリニアスケールを用いる場合もある。
この工作機械では、Y軸の駆動機構によりワークテーブル4が駆動され、X軸の駆動機構によりコラム5が駆動される。コラム5に取付けられたZ軸の駆動機構により、ラム6を介して主軸頭7が駆動され、結果として主軸頭7の先端に取付けられる工具と、ワークテーブル4上に設置される工作物との間に3次元形状が創成される。なお、ワークテーブル4およびコラム5は架台21上に設置される。実施の形態2においては、駆動軸は3軸存在するため、加振指令生成部11では、加振する軸の指定と加振軸の加振用速度指令Cmdx〜Cmdzを出力する。
図9は、実施の形態2における制御部12の構成の概略を示すブロック図である。実施の形態2における制御部12では、図9に示すように、X軸、Y軸およびZ軸に対応して設けられた位置制御部121x,121y,121zおよび速度制御部122x,122y,122zが設けられている。位置制御部121x,121y,121zには、エンコーダ3x,3y,3zの出力であるワークテーブル位置Sdx,SDy,Sdzが入力される。速度制御部122x,122y,122zには、位置制御部121x,121y,121zの出力である位置制御用速度指令Pcmdx,Pcmdy,Pcmdz、指令値分配部120によって分配された軸毎の加振用速度指令Cmdx,Cmdy,Cmdz、およびワークテーブル位置Sdx,SDy,Sdzがそれぞれ入力される。速度制御部122xは、位置制御用速度指令Pcmdx、加振用速度指令Cmdxおよびワークテーブル位置Sdxを使用して生成したX軸の電流指令ImxをX軸の駆動装置であるモータ駆動装置19xに出力する。Y軸およびZ軸においても同様であり、速度制御部122yは、位置制御用速度指令Pcmdy、加振用速度指令Cmdyおよびワークテーブル位置Sdyを使用して生成したY軸の電流指令ImyをY軸の駆動装置であるモータ駆動装置19yに出力し、速度制御部122zは、位置制御用速度指令Pcmdz、加振用速度指令Cmdzおよびワークテーブル位置Sdzを使用して生成したZ軸の電流指令ImzをZ軸の駆動装置であるモータ駆動装置19zに出力する。また、制御部12は、機械の状態量を取得し振動モード計算部14に出力する、機械情報送信部124を有する。
図10は、機械情報送信部124の詳細を示すブロック図である。また機械のワークテーブル位置Sdx,SDy,Sdz、電流指令Imx〜Imz、図示されていない温度センサによって測定した気温情報Temp、図示されていない温度センサによって測定された機械の温度TempMを収集し、機械情報Datを振動モード計算部14に出力する。これは、複数軸を持つ工作機械においては、ワークテーブルの位置、そのときのモータ負荷、機械の温度、気温などによって振動モード変化することが知られており、これらの機械の状態情報と振動モードを関連付けて管理する必要があるからである。なお、電流指令Imx〜Imzに代えて、モータ1に実際に流れるモータ電流(特に静止時の電流)のフィードバック値を機械情報Datとしてもよい。
振動モード計算部14においては、伝達関数を計算し、一時記憶領域142に保存する際、加振に用いた軸の情報と機械情報Datと関連付けて保存する。これにより、機械情報Datと振動モードの関係を作業者が容易に把握できるようになる。また、加振する軸により励起される振動モードの差異についても作業者が容易に把握できるようになる。また、加振する軸および機械位置などの情報と振動モードを関連付けて保持することで、機械構造の振動の特性への理解がより容易になるという効果がある。
実施の形態3.
図11は、実施の形態3における振動モード測定装置の制御部12の概要を示すブロック図である。実施の形態2との違いは、加振指令Cmdx,Cmdy,Cmdzを速度指令ではなく、電流指令として駆動機構であるモータ駆動装置19x,19y,19zにそれぞれ指令している点である。電流指令として加振指令を入力することで、速度指令として入力する場合より高周波領域までモータ1で加振する事が可能となる。
一方で、速度制御帯域以下の周波数の加振指令Cmdx,Cmdy,Cmdzは抑制されてしまうため、速度制御部122のゲインを変更し、速度制御帯域が測定する周波数レンジの下限となるようにする。このため、加振指令Cmdx,Cmdy,Cmdzは、速度制御部122のゲインを変更するための情報Pdx,Pdy,Pdzとして使用する。また、位置制御帯域が速度制御帯域よりも広いと制御系が不安定になるため、位置制御部121のゲインも、速度制御帯域より位置制御帯域が狭くなるように変更する必要がある。このとき設定するゲインの値は、測定する周波数レンジの下限になる位置制御部121と速度制御部122のゲインを設定する場合または、初めに設定されていたゲインの5分の1〜10分の1の決まった値を入力する方式のうちの何れを用いてもよい。
実施の形態4.
また、本発明に係る振動モード測定装置においては、振動を検出するセンサに加速度センサ以外のセンサを使用してもよい。図12は、実施の形態4における振動モード測定装置の概略を示すブロック図である。実施の形態1〜3との違いは、機械構造の加速度の検出に設置点と測定対象のとの間の相対速度Vを測定するレーザドップラ振動計17を使用する点である。
加速度センサ13は、絶対加速度を検出するため、例えば機械を設置した床の剛性が低く、機械の駆動に合わせて床も振動する場合、床振動が振動モードとして検出されてしまう。そのため、床振動の影響を除外する必要がある場合は、測定した伝達関数から床振動分の伝達関数を除外する操作を行う必要がある。これに対して、レーザドップラ振動計17を用いる場合、設置床と測定点との間の相対速度Vが検出されるため、床振動の除外操作を実施する必要がない。
振動の検出にレーザドップラ振動計17を使用した場合は、伝達関数計算部141で計算される伝達関数は、加振力から速度の伝達関数になるため、振動モード同定部143で振動モードを計算する際には、数式8で表記される式で振動モードを同定することができる。
Figure 2016039020
実施の形態5.
実施の形態5は、図12に示すレーザドップラ振動計17の代わりに、直接変位を測定するレーザ変位計またはレーザ干渉計を使用する構成である。レーザ変位計またはレーザ干渉計を使用した場合、加振力に対して直接機械構造の変位が測定できる。ここで、レーザ変位計またはレーザ干渉計を使用した場合の振動モードは、例えば数式9のように算出される。変位を直接測定することで、対象物の位置および軌跡の誤差を直接評価できるという効果がある。
Figure 2016039020
実施の形態6.
図13は、実施の形態6における振動モード測定装置の制御部12の概要を示すブロック図である。工作機械の駆動機構には、ワークテーブル4の位置を微調整するための微動機構が搭載されていることがある。一般的な微動機構に用いられるアクチュエータとして、例えば圧電アクチュエータ、ボイスコイルモータがある。
このような微動に使用されるアクチュエータは、高精度で高応答なことが特長である。そのため、加振指令として速度指令、電流指令を指令しなくても位置制御帯域で数百Hzの応答性を実現できる。そのため、加振指令を直接位置指令として制御部12に指令することが可能となり、これにより、加振時に制御パラメータを使用する必要がなくなるという効果がある。
実施の形態7.
図14は、実施の形態7における加振指令生成部11の構成を示すブロック図である。実施の形態7においては、作業者が加振する軸、測定する周波数帯域の上限値、下限値、加振信号の種類を加振条件入力部110に入力する。加振方式決定部111では、入力された周波数帯域の上限値を元に加振指令を位置指令に入力するか、速度指令に入力するか、電流指令に入力するかを決定する。このとき、測定する周波数帯域の上限値が、位置制御帯域未満であれば位置指令を、位置制御帯域以上速度制御帯域未満であれば速度指令を、速度制御帯域以上であれば電流指令を選択する。
加振信号生成部113では、加振指令のタイプと加振の種類に基づき加振指令Cmdを生成する。例えば、加振指令のタイプが速度指令で、加振信号の種類が擬似ランダム信号であれば、速度指令として擬似ランダム指令を加振指令Cmdとして出力する。また、加振指令のタイプが電流指令で、加振信号の種類がサインスイープ信号であれば、電流指令としてサインスイープ指令を加振指令Cmdとして出力する。制御パラメータ計算部112では、加振指令のタイプと測定する周波数帯域の下限値によって制御パラメータのゲインを決定する。
実施の形態8.
当業者は、本願発明にかかる振動モード測定装置200が、加速度センサ13およびモータ駆動装置19などを有するコンピュータ上で実行されるソフトウェアとして実現され得ること、および、振動モード測定装置200が、上記コンピュータのハードウェア資源を具体的に用いて実行され得ることを、自明なこととして理解するであろう。また、当業者は、振動モード測定装置200は、記憶媒体に記憶された形態あるいはネットワークを介して上記コンピュータに供給され、そのRAMなどにロードされて、上記ハードウェア資源を具体的に利用することにより実行され得ることもまた、自明なこととして理解するであろう。
図15は、実施の形態8に係る振動モード測定装置200の概略構成を示すブロック図である。実施の形態1との差異は、振動モード測定装置200の構成要素に加速度センサが含まれない点と、センサの信号を入力するセンサ信号入力インターフェース(以下「センサ信号入力IF」と表記)30を有する点である。
実施の形態8においては、外部に設置した振動センサの一例である加速度センサ13の信号を取り込むためのセンサ信号入力IF30を有する。センサ信号入力IF30としては、例えば、信号取り込みAD変換器として実装される。センサ信号入力IF30は、センサ13の信号を取り込み、デジタル信号に変換して振動モード計算部14に出力する。振動センサ13は、測定方式、サイズ価格により様々な組み合わせが考えられる。そこで、共通の信号入力インターフェースであるセンサ信号入力IF30を有することにより、振動モード測定装置200において、任意の振動センサを測定に使用することが可能となる。
実施の形態9.
図16は、実施の形態9に係る振動モード測定装置200の概略構成を示すブロック図である。実施の形態8との差異は、制御部12より機械情報Datを振動モード計算部に出力する点である。実施の形態9においても、実施の形態8と同様にセンサ信号入力IF30は、センサ13の信号を取り込み、デジタル信号に変換して振動モード計算部14に出力する。
振動モード計算部14においては、伝達関数を計算し、一時記憶領域142に保存する際、加振に用いた軸の情報と機械情報Datと関連付けて保存する。これにより、機械情報Datと振動モードの関係を実験者が容易に把握できるようになる。また、加振する軸により励起される振動モードの差異についても実験者が容易に把握できるようになる。また、加振する軸および機械位置などの情報と振動モードを関連付けて保持することで、機械構造の振動の特性への理解がより容易になるという効果がある。
振動モード測定装置200によれば、測定対象自身のモータ1を用いて装置に振動を与えて測定を行うことができるので、例えば、インパルスハンマを用いた実験モード解析のように、測定対象の装置に振動を与える機器を必要としない。一方、インパルスハンマを用いた実験モード解析においては、測定点の全てについてインパルスハンマを用いた打撃を装置に繰り返し与えなければならず、例えば、測定点が多い場合には、加速度センサの位置を変えながら産業機械に何度も振動を加える(加振する)必要がり、あるいは、大型の産業機械を試験する場合には、充分な振動を加える力(加振力)を得るために、大きなインパクトハンマを使用する必要があるので、試験を行う作業者の負担が大きい。従って、振動モード測定装置200によれば、試験を行う作業者の負担を大きく減らすことができる。
また、インパクトハンマの代わりに測定対象に加振器を設置して振動を加える方法もあるが、加振器を設置するための十分なスペースを確保する必要があり、小型の産業機械においては、加振器を設置できない場合があり、さらに、加振器が産業機械に加える振動の形態と、実際に産業機械がモータにより駆動された場合の振動の形態とが異なるという場合があるが、振動モード測定装置200によれば、このような不具合を解消することができる。
1,1x,1y,1z モータ、2,2x,2y,2z 送りねじ、3,3x,3y,3z エンコーダ、4 ワークテーブル、5 コラム、6 ラム、7 主軸頭、8 カップリング、9 ナット、10 サポートベアリング、11 加振指令生成部、12 制御部、13 加速度センサ、14 振動モード計算部、15 振動モード出力部、16 機械構造、17 レーザドップラ振動計、18 測定点情報入力部、19,19x,19y,19z モータ駆動装置、21 架台、30 センサ信号入力IF、110 加振条件入力部、111 加振方式決定部、112 制御パラメータ計算部、113 加振信号生成部、120 指令値分配部、121,121x,121y,121z 位置制御部、122,122x,122y,122z 速度制御部、122a 微分部、122b 加算部、122c 減算部、122d PI制御部、123 電流値取得部、124 機械情報送信部、141 伝達関数計算部、142 一時記憶領域、143 振動モード同定部、200 振動モード測定装置。

Claims (13)

  1. 1つ以上のモータで構成された機械の機械構造の振動モードを測定する振動モード測定装置において、
    前記モータへの加振指令を生成する加振指令生成部と、
    前記加振指令に基づき前記モータへの電流指令を生成し、モータ加振力の換算値を出力する制御部と、
    前記制御部からモータ電流指令を受け取り、前記モータを駆動するモータ駆動部と、
    前記機械構造の振動を検出する振動センサと、
    前記振動センサにおける1つ以上の貼付点の情報を入力する測定点情報入力部と、
    前記モータ加振力の換算値と前記振動センサの出力を用いて振動モードを計算する振動モード計算部と、
    を有することを特徴とする振動モード測定装置。
  2. 1つ以上のモータで構成された機械の機械構造の振動モードを測定する振動モード測定装置において、
    前記モータへの加振指令を生成する加振指令生成部と、
    前記加振指令に基づき前記モータへの電流指令を生成し、モータ加振力の換算値および前記機械の状態また位置の情報である機械情報を出力する制御部と、
    前記制御部からモータ電流指令を受け取り、前記モータを駆動するモータ駆動部と、前記機械構造の振動を検出する振動センサと、
    前記振動センサにおける1つ以上の貼付点の情報を入力する測定点情報入力部と、
    前記モータ加振力の換算値と前記振動センサの出力を用いて振動モードを計算すると共に、前記機械情報と前記振動モードとを関連付けて保持する振動モード計算部とを有することを特徴とする振動モード測定装置。
  3. 1つ以上のモータで構成された機械の機械構造の振動モードを測定する振動モード測定装置において、
    前記モータへの加振指令を生成する加振指令生成部と、
    前記加振指令に基づき前記モータへの電流指令を生成し、モータ加振力の換算値を出力する制御部と、
    前記制御部からモータ電流指令を受け取り、前記モータを駆動するモータ駆動部と、
    外部のセンサの信号を取得するセンサ信号取得インターフェースと、
    前記モータ加振力の換算値と前記センサ信号取得インターフェースで取得したセンサ信号を用いて振動モードを計算する振動モード計算部と、
    前記センサ信号取得インターフェースに接続された外部のセンサの貼付点の情報を入力する測定点情報入力部と、
    を有することを特徴とする振動モード測定装置。
  4. 前記振動モード計算部は、前記機械情報と前記振動モードとを関連付けて保持することを特徴とする請求項3に記載の振動モード測定装置。
  5. 前記加振指令が前記モータへの速度指令であることを特徴とする請求項1から4のいずれか1項に記載の振動モード測定装置。
  6. 前記制御部は、位置制御部のゲインを現在の値より小さい値に変更することを特徴とする請求項5に記載の振動モード測定装置。
  7. 前記制御部は、加振指令が前記モータへの電流指令であることを特徴とする請求項1から4のいずれか1項に記載の振動モード測定装置。
  8. 前記制御部は、位置制御部と速度制御部のゲインを現在の値より小さい値に変更することを特徴とする請求項5に記載の振動モード測定装置。
  9. 前記振動センサは、加速度センサまたは、速度センサまたは、変位センサであることを特徴とする請求項1から4のいずれか1項に記載の振動モード測定装置。
  10. 前記機械情報は、機械の位置、気温、機械の温度、対象物の質量のいずれかの組み合わせまたは、全てであることを特徴とする請求項1から4のいずれか1項に記載の振動モード測定装置。
  11. 前記振動モード出力部は、アニメーションまたは、静止画像によって振動を表現して出力することを特徴とする請求項1から4のいずれか1項に記載の振動モード測定装置。
  12. 前記測定点情報入力部は、振動センサを貼付した点の3次元の座標値と前記振動センサの貼付方向の情報を含むことを特徴とする請求項1から4のいずれか1項に記載の振動モード測定装置。
  13. 前記加振指令生成部は、入力した加振条件を元に加振軸、加振指令の種類と、加振時の制御パラメータの設定値を算出することを特徴とする請求項1から4のいずれか1項に記載の振動モード測定装置。
JP2016547760A 2014-09-10 2015-07-21 振動モード測定装置 Active JP6192849B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014184652 2014-09-10
JP2014184652 2014-09-10
PCT/JP2015/070722 WO2016039020A1 (ja) 2014-09-10 2015-07-21 振動モード測定装置

Publications (2)

Publication Number Publication Date
JPWO2016039020A1 true JPWO2016039020A1 (ja) 2017-04-27
JP6192849B2 JP6192849B2 (ja) 2017-09-06

Family

ID=55458781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016547760A Active JP6192849B2 (ja) 2014-09-10 2015-07-21 振動モード測定装置

Country Status (5)

Country Link
US (1) US10564032B2 (ja)
JP (1) JP6192849B2 (ja)
CN (1) CN106687792B (ja)
DE (1) DE112015004133B4 (ja)
WO (1) WO2016039020A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094938A (ja) * 2018-12-13 2020-06-18 ユカインダストリーズ株式会社 変圧器内部異常および劣化の診断方法と診断装置および変圧器の製造販売方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6522454B2 (ja) * 2015-07-28 2019-05-29 ローム株式会社 センサ情報無線送信装置
DE102017116400A1 (de) * 2017-07-20 2019-01-24 Logicdata Electronic & Software Entwicklungs Gmbh Elektrisch verstellbares Tischsystem
JP6660038B1 (ja) * 2018-11-05 2020-03-04 株式会社明電舎 軸トルク制御装置
US11184690B2 (en) * 2018-12-07 2021-11-23 Itt Manufacturing Enterprises Llc Embedded system for vibration detection and analysis
CN109682561B (zh) * 2019-02-19 2020-06-16 大连理工大学 一种自动检测高速铁路桥梁自由振动响应以识别模态的方法
JP7264776B2 (ja) * 2019-09-04 2023-04-25 ファナック株式会社 パラメータの設定方法、及び、制御装置
CN110566473B (zh) * 2019-09-06 2021-01-05 中广核工程有限公司 非能动核电厂主泵振动监测系统
CN110596784B (zh) * 2019-09-23 2022-04-01 深圳市深创谷技术服务有限公司 地声传感探头的测试装置、及其测试方法、可读存储介质
JP7368159B2 (ja) * 2019-09-27 2023-10-24 ファナック株式会社 機械学習装置、機械学習方法及び産業機械
JP7230872B2 (ja) * 2020-03-31 2023-03-01 ブラザー工業株式会社 数値制御装置及び数値制御方法
CN112098026B (zh) * 2020-09-08 2022-08-09 杭州亿恒科技有限公司 一种噪声及环路检测加速方法及其系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315145A (ja) * 2002-04-18 2003-11-06 Nippon Densan Corp 回転機械の振動計測方法及び設計方法
JP2011080816A (ja) * 2009-10-06 2011-04-21 Fujikura Ltd ハードディスクドライブ用キャリッジの評価装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4181025A (en) * 1978-04-19 1980-01-01 Hughes Aircraft Company Means for adjusting the area of an orifice in a vibration system
US4181029A (en) * 1978-04-19 1980-01-01 Hughes Aircraft Company Multi-axis, complex mode pneumatically actuated annular frame shaker for quasi-random pneumatic vibration facility
JPH03218421A (ja) 1989-11-02 1991-09-26 Fuji Electric Co Ltd 振動モード測定装置
JPH05128091A (ja) 1991-11-07 1993-05-25 Nagoyashi 振動環境シミユレ−シヨン装置
JPH08297069A (ja) * 1995-04-25 1996-11-12 Suzuki Motor Corp 台上振動応力評価装置
JP4272750B2 (ja) * 1998-06-23 2009-06-03 キヤノン株式会社 露光装置及び除振装置、システム同定装置及びその方法
KR100728492B1 (ko) * 2000-04-20 2007-06-14 가부시키가이샤 야스가와덴끼 전동기 제어 장치
JP2002304219A (ja) 2001-04-04 2002-10-18 Yaskawa Electric Corp モータ制御装置およびメカ特性測定方法
JP4683255B2 (ja) * 2001-08-20 2011-05-18 株式会社安川電機 モータ制御装置の周波数特性演算装置
JP4146141B2 (ja) * 2002-03-12 2008-09-03 東芝エレベータ株式会社 振動調整装置および振動調整方法
JP3930783B2 (ja) 2002-09-04 2007-06-13 富士通テン株式会社 振動特性測定方法および装置
JP4396541B2 (ja) * 2005-02-16 2010-01-13 株式会社安川電機 電動機制御装置の制御パラメータ感度解析装置および電動機制御装置の制御パラメータ設定方法
CN2814373Y (zh) * 2005-06-30 2006-09-06 上海汽轮机有限公司 高速旋转机械气流激振模拟与振动测试装置
JP5136408B2 (ja) * 2006-05-08 2013-02-06 シンフォニアテクノロジー株式会社 自動車用制振装置および制振制御方法
KR101310969B1 (ko) * 2006-12-01 2013-09-23 삼성전자주식회사 디바이스의 환경을 분석하는 방법 및 이를 이용한 디바이스
JP5306672B2 (ja) * 2008-03-07 2013-10-02 日本発條株式会社 振動特性測定装置
US20120031193A1 (en) * 2009-04-01 2012-02-09 Purdue Research Foundation Identification of loads acting on an object
JP5229396B2 (ja) * 2009-09-30 2013-07-03 三菱電機株式会社 位置決め制御装置
JP4897909B2 (ja) * 2010-07-15 2012-03-14 ファナック株式会社 すべり周波数補正機能を有するセンサレス誘導モータの制御装置
JP5707129B2 (ja) * 2010-12-28 2015-04-22 Thk株式会社 モータ制御装置、モータ制御方法、及び制御プログラム
CN103718451B (zh) * 2011-08-10 2016-06-15 松下电器产业株式会社 电动机的控制装置
DE102011089808A1 (de) * 2011-12-23 2013-06-27 Endress + Hauser Flowtec Ag Verfahren bzw. Meßsystem zum Ermitteln einer Dichte eines Fluids
CN105247432B (zh) * 2013-06-03 2017-06-09 三菱电机株式会社 频率响应测定装置
WO2015017469A2 (en) * 2013-07-30 2015-02-05 Sonelite Inc. Methods and systems for determining response of a reverberant system
CN103940564B (zh) * 2014-04-11 2016-09-28 东北大学 一种转子支承系统动力学相似测试实验台及测试方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315145A (ja) * 2002-04-18 2003-11-06 Nippon Densan Corp 回転機械の振動計測方法及び設計方法
JP2011080816A (ja) * 2009-10-06 2011-04-21 Fujikura Ltd ハードディスクドライブ用キャリッジの評価装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094938A (ja) * 2018-12-13 2020-06-18 ユカインダストリーズ株式会社 変圧器内部異常および劣化の診断方法と診断装置および変圧器の製造販売方法

Also Published As

Publication number Publication date
DE112015004133B4 (de) 2021-05-12
DE112015004133T5 (de) 2017-06-14
US20170176244A1 (en) 2017-06-22
WO2016039020A1 (ja) 2016-03-17
CN106687792B (zh) 2020-10-30
JP6192849B2 (ja) 2017-09-06
CN106687792A (zh) 2017-05-17
US10564032B2 (en) 2020-02-18

Similar Documents

Publication Publication Date Title
JP6192849B2 (ja) 振動モード測定装置
TWI540402B (zh) 馬達控制裝置
JP5209810B1 (ja) イナーシャと摩擦係数とばね定数を同時に推定する機能を備える電動機の制御装置
US10775148B2 (en) Determining a position of a movable part of a coordinate measuring machine
US6822415B1 (en) Motor controller
JP6846607B2 (ja) ロボットの制御方法
TW201115291A (en) Servo controller
JP2016207021A (ja) 機械の周波数特性をオンラインで取得する機能を有するサーボ制御装置
CN110186553A (zh) 振动分析装置以及振动分析方法
JP7034383B2 (ja) サーボ制御装置
JP5441944B2 (ja) モータ制御装置
US20230052996A1 (en) Method of obtaining vibrational properties of robot arm
JP3697484B2 (ja) 磁力支持天秤装置における動的力評価システム
JP6697313B2 (ja) 送り軸制御装置における周波数特性測定方法
KR101919950B1 (ko) 잔류진동 억제용 모션 프로파일 생성 장치
JP5710367B2 (ja) 制御装置および制御方法、並びにプログラム
JP5225060B2 (ja) 機械運動測定装置
JP2005278349A (ja) 電動機制御装置
JPH06167386A (ja) ロボットを用いた振動体の振動測定方法
JP2014233147A (ja) モータ制御システムおよびモータ制御方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170808

R150 Certificate of patent or registration of utility model

Ref document number: 6192849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250