JP5707129B2 - モータ制御装置、モータ制御方法、及び制御プログラム - Google Patents

モータ制御装置、モータ制御方法、及び制御プログラム Download PDF

Info

Publication number
JP5707129B2
JP5707129B2 JP2010293273A JP2010293273A JP5707129B2 JP 5707129 B2 JP5707129 B2 JP 5707129B2 JP 2010293273 A JP2010293273 A JP 2010293273A JP 2010293273 A JP2010293273 A JP 2010293273A JP 5707129 B2 JP5707129 B2 JP 5707129B2
Authority
JP
Japan
Prior art keywords
speed
motor
command
unit
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010293273A
Other languages
English (en)
Other versions
JP2012143057A (ja
JP2012143057A5 (ja
Inventor
二見 茂
茂 二見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THK Co Ltd
Original Assignee
THK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010293273A priority Critical patent/JP5707129B2/ja
Application filed by THK Co Ltd filed Critical THK Co Ltd
Priority to CN201180062689.5A priority patent/CN103270694B/zh
Priority to PCT/JP2011/079476 priority patent/WO2012090781A1/ja
Priority to DE112011104617.0T priority patent/DE112011104617B4/de
Priority to US13/993,005 priority patent/US9360851B2/en
Priority to TW100148698A priority patent/TWI516012B/zh
Publication of JP2012143057A publication Critical patent/JP2012143057A/ja
Publication of JP2012143057A5 publication Critical patent/JP2012143057A5/ja
Application granted granted Critical
Publication of JP5707129B2 publication Critical patent/JP5707129B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/20Controlling the acceleration or deceleration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/22Controlling the speed digitally using a reference oscillator, a speed proportional pulse rate feedback and a digital comparator

Description

本発明は、モータ制御装置、モータ制御方法、及び制御プログラムに関する。
モータを動力にして対象物を移動させる際の位置決め制御において、位置指令値の出力が終了したときには、対象物は目標の位置に達しておらず、位置偏差が生じている。そのため、対象物が目標の位置に移動して位置偏差が「0」になり整定するまでには、位置偏差に対する比例制御ゲインKpの逆数に比例した時間を要する。
そこで、位置決め制御に要する時間(整定時間)を短縮するために、比例制御ゲインKpの値を大きくすることが考えられるが、比例制御ゲインKpを大きな値にすると、位置の応答が振動的になってしまい、整定時間が逆に長くなってしまう。
これに対して、位置指令値の出力が終了した時点で、比例制御ゲインの値を切り替えて、応答が振動的になることを防ぎつつ、整定時間を短くする技術が提案されている(特許文献1)。
特開平11−194829号公報
しかしながら、上記の技術では、位置指令値の出力が終了したときに、比例制御ゲインの値を切り替えているため、切り替え後の比例制御ゲインの値を、位置指令値の出力が終了したときの位置偏差に基づいて設定する必要があった。位置指令値の出力が終了したときの位置偏差が大きいと、切り替え後の比例制御ゲインに対して大きい値を設定することができず、整定時間の短縮には改善の余地があった。
本発明は、上記の状況に鑑みてなされたもので、その目的は、位置制御ゲインを切り替える際の位置偏差を低減させ、整定時間を短縮することができるモータ制御装置、モータ制御方法、及び制御プログラムを提供することにある。
上記問題を解決するために、本発明は、モータを用いて対象物を目標位置に移動させる際に用いる加速度指令値を時系列に示す加速度パターンを生成し、生成した加速度パターンに対して、前記モータの応答特性に応じて前記モータの駆動速度を減速する期間を延ばす変更をし、変更した加速度パターンから位置指令値を出力する指令生成部と、前記指令生成部が出力する位置指令値と、前記対象物の位置との位置偏差に対する比例制御を用いて前記モータを駆動するとともに、前記対象物が目標位置の近傍に達したときに前記比例制御における比例制御ゲインを現在値より大きい値に変更する制御部とを具備することを特徴とするモータ制御装置である。
また、本発明は、モータを用いて対象物を目標位置に移動させる際に用いる加速度指令値を時系列に示す加速度パターンを生成し、生成した加速度パターンに対して、前記モータの応答特性に応じて前記モータの駆動速度を減速する期間を延ばす変更をし、変更した加速度パターンから位置指令値を出力する指令生成ステップと、前記指令生成ステップにおいて出力される位置指令値と、前記対象物の位置との位置偏差に対する比例制御を用いて前記モータを駆動するとともに、前記対象物が目標位置の近傍に達したときに前記比例制御における比例制御ゲインを現在値より大きい値に変更する制御ステップとを有することを特徴とするモータ制御方法である。
また、本発明は、モータを用いて対象物を目標位置に移動させる際に用いる加速度指令値を時系列に示す加速度パターンを生成し、生成した加速度パターンに対して、前記モータの応答特性に応じて前記モータの駆動速度を減速する期間を延ばす変更をし、変更した加速度パターンから位置指令値を出力する指令生成ステップと、前記指令生成ステップにおいて出力される位置指令値と、前記対象物の位置との位置偏差に対する比例制御を用いて前記モータを駆動するとともに、前記対象物が目標位置の近傍に達したときに前記比例制御における比例制御ゲインを現在値より大きい値に変更する制御ステップとをコンピュータに実行させるためのモータ制御プログラムである。
この発明によれば、適切なタイミングで比例制御ゲインの値を切り替えることにより、整定時間を短縮することができる。
第1実施形態におけるモータ制御装置1の構成を示す概略ブロック図である。 同施形態におけるリニアモータ20の斜視図(可動テーブル34の断面を含む)である。 同実施形態における指令生成部11の構成を示す概略ブロック図と、指令生成部11において算出される指令の概略を示すグラフである。 同実施形態における制御部12の構成を示す概略ブロック図である。 同実施形態における移動制御部15、及び整定制御部16の構成を示す概略ブロック図である。 同実施形態のモータ制御装置1を用いた制御のシミュレーション結果を示す図である。 第2実施形態におけるモータ制御装置に備えられている指令生成部11Aの構成を示す概略ブロック図である。 同実施形態におけるモータ制御装置を用いた制御のシミュレーション結果を示す第1の図である。 同実施形態におけるモータ制御装置を用いた制御のシミュレーション結果を示す第2の図である。 同実施形態におけるモータ制御装置を用いた制御のシミュレーション結果を示す第3の図である。 同第3実施形態におけるモータ制御装置5の構成を示す概略ブロック図である。 同実施形態における停止制御部57の構成を示す概略ブロック図である。 回転モータを制御する変形例の構成を示す概略図である。 回転タイプの案内装置を備えた駆動装置のモータを制御する変形例の構成を示す概略図である。
以下、図面を参照して、本発明の実施形態におけるモータ制御装置、モータ制御方法、及び制御プログラムを説明する。
(第1実施形態)
図1は、第1実施形態におけるモータ制御装置1の構成を示す概略ブロック図である。
同図に示すように、モータ制御装置1は、パワーアンプ2を介して、搬送装置3に備えられているリニアモータ31に電流を流し、リニアモータ31を駆動する。
搬送装置3は、長尺の固定子311、及び固定子311上を移動する可動子315からなる上述のリニアモータ31と、固定子311及び可動子315を組み付ける一対の案内装置33、33を備えている。案内装置33は、例えば、ボールを介して組みつけられた軌道レール331及びスライドブロック332から構成されている。案内装置33の軌道レール331は、固定子311が有するベース312に固定され、案内装置33のスライドブロック332は、可動子315に固定されている。これにより、可動子315は、固定子311上を軌道レール331に沿って自在に案内されるようになっている。
また、固定子311は、一対の軌道レール331、331の間に並べられた複数の駆動用磁石314を備えている。複数の駆動用磁石314は、可動子315が移動する方向(以下、移動方向という)において、N極及びS局の磁極が交互になるように並べられている。また、各駆動用磁石314は、移動方向において、同じ長さを有しており、可動子315の位置に関わらず一定の推力が得られるようになっている。
可動子315は、複数のコイルを有する電機子316と、搬送する物を載せる可動テーブル34と、位置検出器35とを有している。位置検出器35は、例えば、光学式、又は磁気式のリニアスケールなどを用いて可動テーブル34の位置を検出する。
図2は、本実施形態における搬送装置3の斜視図(可動テーブル34の断面を含む)である。リニアモータ31は、上述のように固定子311がN極又はS極が着磁されている面を可動子315に向けて配列されている複数の板状の駆動用磁石314を備え、可動子315が固定子311に対して相対的に直線運動をするフラットタイプのリニアモータである。可動子315が有している電機子316は、駆動用磁石314と一定のすきまを介して対向している。
固定子311が有する細長く伸びているベース312上には、上述の複数の駆動用磁石314が移動方向に一列に配列されている。ベース312は、底壁部312aと、底壁部312aの幅方向の両側に設けられている一対の側壁部312bとから構成されている。底壁部312aには、上述の複数の駆動用磁石314が取り付けられている。
各駆動用磁石314には、可動子315が有している電機子316と対向する面にN極かS極のいずれかの磁極が形成されている。複数の駆動用磁石314は、それぞれが隣接する駆動用磁石314と異なる磁極を電機子316に向けている。
ベース312の側壁部312bの上面には、案内装置33の軌道レール331が取り付けられている。軌道レール331には、上述したように、スライドブロック332がスライド可能に組み付けられている。軌道レール331と、スライドブロック332との間には、転がり運動可能に複数のボールが介在されている(図示せず)。
スライドブロック332には、複数のボールを循環させるためのトラック状のボール循環経路が設けられている。軌道レール331に対して、スライドブロック332がスライドすると、複数のボールがこれらの間を転がり運動し、また複数のボールがボール循環経路を循環する。これにより、スライドブロック332の円滑な直線運動が可能になる。
案内装置33のスライドブロック332の上面には、可動子315の可動テーブル34が取り付けられている。可動テーブル34は、例えば、アルミニウムなどの非磁性素材からなり、搬送する物を載せる。可動テーブル34の下面には、電機子316が吊り下げられている。
図1に戻って、説明を続ける。
モータ制御装置1は、上位の制御装置から入力される最終目標位置xpから位置指令値を生成する指令生成部11と、指令生成部11が生成した位置指令値、及び可動テーブル34の位置を示す位置信号に基づいて、リニアモータ31に流す電流値を示す電流指令値を生成する制御部12とを備えている。
モータ制御装置1は、指令生成部11が可動テーブル34を最終目標位置xpに移動させる際の位置指令値を生成し、制御部12が位置指令値に基づいてリニアモータ31を駆動して可動テーブル34を最終目標位置xpに移動させる。
図3は、本実施形態における指令生成部11の構成を示す概略ブロック図と、指令生成部11において算出される指令の概略を示すグラフである。
指令生成部11は、加速度指令生成部111、速度指令算出部112、及び位置指令算出部113を有している。
加速度指令生成部111は、入力される最終目標位置xpと、可動テーブル34の位置とから可動テーブル34を移動させる距離を算出し、算出した距離と、リニアモータ31の推力定数などとを用いて、加速度指令値を時系列に示す加速度パターンを生成する。また加速度指令生成部111は、生成した加速度パターンに対して、可動テーブル34を減速させる期間を延ばす変更をし、変更した加速度パターンに基づいて加速度指令値を時系列に出力する。
加速度指令生成部111が行う加速度パターンの変更は、(a)に示すように、入力される情報に基づいて生成された加速度パターンが、「加速度=α」にする加速期間(T1)、「加速度=0」にする等速期間(T2)、及び「加速度=−α」にする減速期間(T1)からなる場合、減速期間を時間T3だけ延ばして、減速期間を「T1+T3」にする。延長する時間T3における加速度は、例えば、減速期間と同じ加速度にする。
ここで、減速期間を延ばす時間T3は、リニアモータ31の応答遅延に基づいて予め定められた値が用いられ、例えば、T3を応答遅延と同じ時間や、位置制御における比例制御ゲイン(後述する比例制御ゲインKp1)の逆数から算出される時間を設定する。
すなわち、加速度指令生成部111は、加速度を「0」に戻すタイミングを時間T3だけ遅らせる変更を加速度パターンに対して行う。
速度指令算出部112は、積分演算を用いて、加速度指令生成部111が出力する加速度指令値から「最高速度=Vm」の速度指令値を算出する。速度指令算出部112が算出する速度指令値は、加速度指令生成部111が減速期間を延ばしたため、一般的な、台形制御の速度指令値と異なり、(b)に示すように、速度が負になる領域を有する。
位置指令算出部113は、積分演算を用いて、速度指令算出部112が算出した速度指令値から位置指令値を算出し、位置指令値を時系列に制御部12に出力する。位置指令値算出b113が算出する位置指令は、加速度指令生成部111が減速期間を伸ばしたために、位置指令値の変化を示す曲線が、(c)に示すように、一般的なS字曲線とならず、時刻(2T+T)において最終目標位置xpとなる上に凸な曲線になる。
上述の構成により、指令生成部11は、加速度指令生成部111が加速度を「0」に戻すタイミングを時間T3だけ遅らせることにより、位置指令値を出力する期間を時間T3だけ延ばしていることになる。
図4は、本実施形態における制御部12の構成を示す概略ブロック図である。同図に示すように、制御部12は、速度算出部13、切替制御部14、移動制御部15、及び整定制御部16を有している。
速度算出部13は、搬送装置3に備えられている位置検出器35から入力される位置信号の単位時間あたりの変化量から、可動テーブル34の移動速度を算出し、算出した移動速度を示す速度信号を出力する。
切替制御部14は、位置偏差判定部141と、切替部142とを有している。位置偏差判定部141は、位置検出器35が検出する可動テーブル34の位置x(以下、検出位置xという。)と、最終目標位置xpとの偏差が予め定めたしきい値Δx未満か否かを判定し、判定結果に応じて切替部142を制御する。すなわち、位置偏差判定部141は、検出位置xが「|xp−x|<Δx」を満たす最終目標位置xpの近傍に位置するか否かを判定する。ここで、しきい値Δxは、位置検出器35の分解能や、要求される位置決め整定時間などに基づいて、予め設定される値である。また、しきい値Δxは、シミュレーションや、実測値に基づいて設定される。
切替部142は、位置偏差判定部141の制御に基づいて、移動制御部15が出力する電流指令値と、整定制御部16が出力する電流指令値とのいずれかを選択し、選択した電流指令値をパワーアンプ2に出力する。
具体的には、位置偏差判定部141は、偏差がしきい値Δx以上の場合、移動制御部15が出力する電流指令値を切替部142に選択させ、偏差がしきい値Δx未満の場合、整定制御部16が出力する電流指令値を切替部142に選択させる。
移動制御部15は、指令生成部11が出力する位置指令値と、速度算出部13が出力する移動信号、位置信号とに基づいて、電流指令値を出力する。
整定制御部16は、最終目標位置xpと、速度算出部13が出力する移動信号と、位置信号とに基づいて、電流指令値を算出し出力する。
以下、移動制御部15、及び整定制御部16のより詳細な構成に付いて説明する。
図5は、本実施形態における移動制御部15、及び整定制御部16の構成を示す概略ブロック図である。
同図に示すように、移動制御部15は、位置偏差算出部151、速度指令算出部152、速度偏差算出部153、電流指令算出部154、質量補正部155を有している。
位置偏差算出部151は、位置指令値と、位置信号とから位置指令値が示す位置と、可動テーブル34の位置との位置偏差を算出する。速度指令算出部152は、位置偏差算出部151が算出する位置偏差に対して、第1比例制御ゲインである比例制御ゲインKp1を乗じて速度指令値を算出する。
速度偏差算出部153は、速度指令算出部152が算出する速度指令値と、速度信号が示す可動テーブル34の移動速度との速度偏差を算出する。
電流指令算出部154は、P制御演算部154a、I制御演算部154b、及び加算部154cを有している。P制御演算部154aは、速度偏差算出部153が算出する速度偏差と、比例制御ゲインKv1とを用いた比例演算により電流指令値を算出する。I制御演算部154bは、速度偏差算出部153が算出する速度偏差と、積分制御ゲインKi1とを用いた積分演算により電流指令値を算出する。加算部154cは、P制御演算部154a、及びI制御演算部154bが算出した電流指令値を加算し、加算した電流指令値を質量補正部155に出力する。
すなわち、電流指令算出部154は、比例制御ゲインKv1、及び積分制御ゲインKi1を用いたPI制御演算で速度偏差から電流指令値を算出し、算出した電流指令値を質量補正部155に出力する。
質量補正部155は、可動テーブル34の質量、又は、可動テーブル34の質量と可動テーブル34上に積載された荷物などの質量に基づいて、電流指令算出部154が出力する電流指令値を補正し、補正した電流指令値を切替制御部14に出力する。
整定制御部16は、位置偏差算出部161、速度指令算出部162、速度偏差算出部163、電流指令算出部164、質量補正部165、及び推力制限部166を有している。
位置偏差算出部161は、最終目標位置xpと、位置信号と最終目標位置xpに対する可動テーブル34の位置との位置偏差を算出する。速度指令算出部162は、位置偏差算出部161が算出する位置偏差に対して、第2比例制御ゲインである比例制御ゲインKp2を乗じて速度指令値を算出する。
速度偏差算出部163は、速度指令算出部162が算出する速度指令値と、速度信号が示す可動テーブル34の移動速度との速度偏差を算出する。
電流指令算出部164は、P制御演算部164a、I制御演算部164b、及び加算部164cを有している。P制御演算部164aは、速度偏差算出部163が算出する速度偏差と、比例制御ゲインKv2とを用いた比例演算により電流指令値を算出する。I制御演算部164bは、速度偏差算出部163が算出する速度偏差と、積分制御ゲインKi2とを用いた積分演算により電流指令値を算出する。加算部164cは、P制御演算部164a、及びI制御演算部164bが算出した電流指令値を加算し、加算した電流指令値を質量補正部165に出力する。
すなわち、電流指令算出部164は、比例制御ゲインKv2、及び積分制御ゲインKi2を用いたPI制御演算で速度偏差から電流指令値を算出し、算出した電流指令値を質量補正部155に出力する。
質量補正部165は、可動テーブル34の質量、又は、可動テーブル34の質量と可動テーブル34上に積載された荷物などの質量に基づいて、電流指令算出部164が出力する電流指令値を補正する。
推力制限部166は、質量補正部165が補正した電流指令値が、リニアモータ31の最大推力に対応する最大電流値を超えているか否かを判定し、超えている場合には電流指令値を最大電流値に制限して切替制御部14に出力する。
ここで、整定制御部16において用いられる比例制御ゲインKp2は、移動制御部15において用いられる比例制御ゲインKp1より大きい値が予め設定される。また、整定制御部16において用いられる比例制御ゲインKv2は、移動制御部15において用いられる比例制御ゲインKv1以上の値が予め設定される。また、積分制御ゲインKi2は、移動制御部15において用いられる積分制御ゲインKi1以上の値が予め設定される。
上述の構成により、モータ制御装置1は、上位の制御装置から最終目標位置xpが入力されると、切替制御部14が移動制御部15を選択し、移動制御部15において算出された電流指令値をパワーアンプ2に出力して、リニアモータ31を駆動させる。そして、モータ制御装置1は、可動テーブル34の位置が最終目標位置xpの近傍に到達すると、切替制御部14が整定制御部16を選択する。整定制御部16が、移動制御部15で用いられる比例制御ゲインKp1より値が大きい比例制御ゲインKp2を用いて算出された電流指令をパワーアンプ2に出力して、可動テーブル34の位置を最終目標位置xpに整定させる。このとき、比例制御ゲインKp1から比例制御ゲインKp2に切り替えるのと同様に、比例制御ゲインKv1及び積分制御ゲインKi1から、比例制御ゲインKv2及び積分制御ゲインKi2に切り替える。
このようにして、モータ制御装置1は、可動テーブル34が最終目標位置xpの近傍に到達すると制御ゲインを大きい値に切り替える制御を行い、位置決め整定時間の短縮を行う。
なお、比例制御ゲインKp1及びKv1、Kp2及びKv2、積分制御ゲインKi1、Ki2の値は、シミュレーションの結果や、実機を用いた測定値などに基づいて定められる。
ところで、図1に示したような、搬送装置3において、案内装置で生じる摩擦の特性は、移動距離が1[mm]オーダー以上の距離の場合(粗動制御)ではクーロン摩擦特性を有し、移動距離が100[μm]オーダー以下の距離の場合(微動制御)では非線形ばね特性を有する。摩擦の特性が非線形ばね特性である領域においては、クーロン摩擦特性である場合に比べ応答が非常に遅くなる。
切替制御部14は、可動テーブル34の位置が最終目標位置xpの近傍になると、移動制御部15を用いたリニアモータ31の駆動制御から、整定制御部16を用いたリニアモータ31の駆動制御に切り替える構成にしている。すなわち、可動テーブル34の位置が最終目標位置xpの近傍になり、移動距離が100[μm]オーダー以下の距離になったときに、比例制御ゲイン及び積分制御ゲインの制御ゲインを切り替えることができる。
これにより、可動テーブル34が最終目標位置xpの近傍に位置するタイミングで、制御ゲイン(Kp1,Kv1,Ki1)より大きい値の制御ゲイン(Kp2,Kv2,Ki2)に切り替えて微動制御を行うことができ、位置決め整定時間を短縮することができる。
モータ制御装置1では、指令生成部11が加速度パターンにおいて減速期間を延ばすことにより、位置指令値の出力(払い出し)が終了するまでの期間を延ばしている。
これにより、従来の制御方法で発生していた「位置指令=最終目標位置xp」かつ「速度指令=0」かつ「加速度指令=0」の状態における制御を排除し、「位置指令=最終目標位置xp」かつ「速度指令=0」かつ「加速度指令=±α」の状態で最終目標位置xpの近傍を通過させる指令を発生するため、可動テーブル34を最終目標位置xpの近傍(100[μm]のオーダー)に速やかに移動させることができる。なお、「加速度指令=±α」は、正方向の位置決めにおいて加速度指令を負の値にし、負方向の位置決めにおいて加速度指令を正の値にすることを表す。
その結果、位置偏差が小さくなるタイミングで、制御ゲインを切り替えることができ、整定制御部16において用いる制御ゲイン(Kp2、Kv2,Ki2)に対して大きな値を設定することができるので、位置決め整定時間を短縮することができる。
なお、本実施形態では、指令生成部11が出力する位置指令値を出力する期間を延ばしているが、可動テーブル34の位置が最終目標位置xpの近傍に近づいたとき、切替制御部14が整定制御部16を用いた制御に切り替えるので、可動テーブル34の位置が最終目標位置xpに対してオーバーシュートすることを防ぐことができる。
図6は、本実施形態のモータ制御装置1を用いた制御のシミュレーション結果を示す図である。図6(a)及び(b)において、横軸は時間を示し、縦軸は位置偏差及び速度を示している。図6(a)には、本実施形態のモータ制御装置1を用いた制御のシミュレーション結果が示されている。図6(b)には、比較例として、加速度指令生成部111における加速度パターンの変更、及び切替制御部14における電流指令値の切り替えを行わない場合のシミュレーション結果を示している。
また、図6(a)において、時刻0.3[s]以降の細い破線にて示しているのは、加速度指令生成部111が変更した加速度パターンに対応する速度指令値である。同図に示すように、指令生成部11が位置指令値の出力(払い出し)が終了するまでの期間を延ばしたことにより、時刻0.3[s]以降において、速度が緩やかに「0」に変化するのではなく、時刻0.3[s]以前と同様の傾きで「0」に変化していることが分かる。
図6(b)では、時刻0.3[s]において位置指令値の払い出しが終了するとともに、「速度指令値=0」かつ「加速度指令値=0」の応答が遅い位置偏差を用いた制御が行われるため、移動速度、及び位置偏差が「0」になるまでに時間を要している。
これに対して、図6(a)では、位置指令値の払出しの期間を延ばしているため、時刻0.3[s]以降においても、位置偏差及び速度偏差を用いた制御が引き続き行われるため、移動速度、及び位置偏差が「0」になるまでの時間(整定時間)が図6(b)より短縮されていることが分かる。
(第2実施形態)
続いて、本発明に係る第2実施形態におけるモータ制御装置について説明する。
第2実施形態におけるモータ制御装置は、指令生成部の構成が第1実施形態におけるモータ制御装置1の指令生成部11(図3)と異なる変形例である。ここでは、第1実施形態と構成が異なる指令生成部について説明をし、他の構成についてはその説明を省略する。
図7は、第2実施形態におけるモータ制御装置に備えられている指令生成部11Aの構成を示す概略ブロック図である。同図に示すように、指令生成部11Aは、加速度指令生成部111、速度指令算出部112、位置指令算出部113、逆伝達関数補償部114、及び加算部115を有している。指令生成部11Aは、逆伝達関数補償部114と、加算部115とを有している点が、第1実施形態の指令生成部11(図3)と異なる。ここでは、逆伝達関数補償部114と、加算部115とについて説明をし、他の同じ構成に対して同じ符号を付して、その説明を省略する。
逆伝達関数補償部114は、速度指令算出部112が算出した速度指令値に対して、制御部12の移動制御部15において用いられる比例制御ゲインKp1の逆数を乗じて、位置指令値に対する補正値を算出する。
加算部115は、位置指令算出部113が算出する位置指令値と、逆伝達関数補償部114が算出する補正値とを加算し、加算結果を位置指令値として制御部12に出力する。
第2実施形態におけるモータ制御装置では、逆伝達関数補償部114が算出する補正値により、位置指令値に対して生じる位置偏差に相当する補正値を算出し、位置指令値を補正している。これにより、位置指令値に対する遅れを防ぐことができ、搬送装置3における応答遅延を低減させることができ、位置決め整定時間を更に短縮することができる。
図8は、本実施形態におけるモータ制御装置を用いた制御のシミュレーション結果を示す第1の図である。図8(a)及び(b)において、横軸は時間を示し、縦軸は位置偏差及び速度を示している。図8(a)には、本実施形態のモータ制御装置1を用いた制御のシミュレーション結果が示されている。図8(b)には、比較例として、加速度指令生成部111における加速度パターンの変更、及び切替制御部14における電流指令値の切り替えを行わない場合のシミュレーション結果を示している。
また、図8(a)において、指令生成部11Aが比例制御ゲインKp1を用いて位置指令値を補正することにより、移動速度が速度指令値に遅れなく応答している。
図8(b)では、移動速度が速度指令値に遅れなく応答している。しかし、位置偏差は、位置指令値の払い出しが終了する時刻0.3[s]で一時的に「0」になるが、その後に遅い応答が発生するため、位置決め整定時間が図8(a)に比べ遅くなっている。
図9は、本実施形態におけるモータ制御装置を用いた制御のシミュレーション結果を示す第2の図である。図9に示すシミュレーション結果は、下記の条件の下で行った結果である。可動テーブル34の質量を10[kg]とし、可動テーブル34の移動距離である駆動ストロークを300[mm]とし、リニアモータ31の駆動加速度を1.5[G]とし、駆動最高速度を1.5[m/s]とし、位置偏差判定部141におけるしきい値Δxを10[μm]とした。また、移動制御部15における比例制御ゲインKp1、Kv1、及び、積分制御ゲインKi1を60、300、27000とし、整定制御部16における比例ゲインKp2、Kv2、及び、積分制御ゲインKi2を500、1600、768000とした。
図9(a)〜(c)には本実施形態におけるモータ制御装置のシミュレーション結果を示し、図9(d)〜(f)には比較例として加速度パターンの変更、及び制御ゲインの切り替えを行わないモータ制御装置によるシミュレーション結果を示している。
本実施形態のモータ制御装置を用いた場合、図9(a)に示されるように、速度指令に対して可動テーブル34の移動速度である実速度が遅れなく応答している。また、図9(c)に示されるように、位置偏差が時刻0.3[s]以降において短時間で収束し、整定している。
本実施形態のモータ制御装置を用いた場合では、300[mm]の駆動ストロークに対して±5[μm]の誤差を許容したとき、時刻0.3[s]で指令の払出しが完了してからの位置決め整定時間が3.7[ms]であった。一方、比較例のモータ制御装置を用いた場合では、位置決め整定時間が521.4[ms]であった。
図10は、本実施形態におけるモータ制御装置を用いた制御のシミュレーション結果を示す第3の図である。同図において、横軸は時間を示し、縦軸はリニアモータ31の推力を示している。また、シミュレーションにおける条件は、図9のシミュレーションと同じである。図10(a)は本実施形態に対応するシミュレーション結果を示し、図10(b)は比較例に対応するシミュレーション結果を示している。図10(a)に示すように、本実施形態のモータ制御装置を用いることにより、時刻0.2[s]から時刻0.3[s]の減速期間の後に短時間で整定している。一方、比較例においては、減速期間の後、停止するまでに時間を要している。すなわち、本実施形態におけるモータ制御装置を用いることにより、指令の払出しが完了してから可動テーブル34を最終目標位置xpに停止させるまでに要する位置決め整定時間を短縮できている。
このように、シミュレーション結果から、本実施形態のモータ制御装置を用いることにより、搬送装置3の移動制御における整定時間を大幅に短縮できることが分かる。
(第3実施形態)
続いて、本発明に係る第3実施形態におけるモータ制御装置について説明する。
図11は、第3実施形態におけるモータ制御装置5の構成を示す概略ブロック図である。同図に示すように、モータ制御装置5は、指令生成部11と、制御部52とを備えている。制御部52は、速度算出部13、切替制御部54、移動制御部15、整定制御部16、及び停止制御部57を有している。
本実施形態のモータ制御装置5は、制御部52が切替制御部54及び停止制御部57を有している点が、第1実施形態の制御部12と異なる。ここでは、第1実施形態と構成が異なる切替制御部54、及び停止制御部57について説明をする。他の構成については、該当する構成に同じ符号を付して、その説明を省略する。
切替制御部54は、零速度検出部541、タイマ部542、及び切替部543を有している。零速度検出部541は、加速期間において移動制御部15を選択させる制御を切替部543に対して行うとともに、減速期間において、速度算出部13が算出する移動速度が予め定めたしきい値Δv未満か否かを判定し、しきい値Δv未満の場合に移動制御部15から停止制御部57に選択を切り替えさせる制御を切替部543に対して行う。
すなわち、零速度検出部541は、可動テーブル34を減速させ始めた後に、可動テーブル34の移動速度vが「0」近傍まで減速されたとき(「|v|<Δv」を満たすとき)に、切替部543による切り替えを行わせる。ここで、しきい値Δvは、位置検出器35の分解能や、要求される整定時間などに基づいて、予め設定される値である。また、しきい値Δxは、シミュレーションや、実測値に基づいて設定される。
タイマ部542は、零速度検出部541が停止制御部57による制御に切り替えてから、予め定められた時間Tが経過すると、停止制御部57から整定制御部16に選択を切り替えさせる制御を切替部543に対して行う。ここで、時間Tは、比例制御ゲインKp1の逆数として算出される時間を設定する。
切替部543は、零速度検出部541及びタイマ部542の制御に基づいて、移動制御部15が出力する電流指令値、停止制御部57が出力する電流指令値、及び整定制御部16が出力する電流指令値のうちのいずれか1つを選択し、選択した電流指令値をパワーアンプ2に出力する。
停止制御部57は、移動速度vが「|v|<Δv」を満たすことを零速度検出部541が検出したことを示す零速度信号と、位置信号と、速度信号とに基づいて、電流指令値を出力する。
図12は、本実施形態における停止制御部57の構成を示す概略ブロック図である。同図に示すように、停止制御部57は、位置記憶部571、位置偏差算出部572、速度指令算出部573、速度偏差算出部574、電流指令算出部575、質量補正部576、及び推力制限部577を有している。
位置記憶部571には、位置信号と、零速度信号とが入力されている。位置記憶部571は、移動速度vが「|v|<Δv」を満たしたときにおける可動テーブル34の位置を記憶し、記憶した位置を出力する。位置偏差算出部572は、位置記憶部571に記憶されている位置と、位置信号が示す可動テーブル34の位置との位置偏差を算出する。
速度指令算出部573は、位置偏差算出部572が算出する位置偏差に対して、第3比例制御ゲインである比例制御ゲインKp3を乗じて速度指令値を算出する。速度偏差算出部574は、速度指令算出部573が算出する速度指令値と、速度信号が示す可動テーブル34の移動速度との速度偏差を算出する。
電流指令算出部575は、P制御演算部575a、I制御演算部575b、及び加算部575cを有している。P制御演算部575aは、速度偏差算出部574が算出する速度偏差と、比例制御ゲインKv3とを用いた比例演算により電流指令値を算出する。I制御演算部575bは、速度偏差算出部574が算出する速度偏差と、積分制御ゲインKi3とを用いた積分演算により電流指令値を算出する。加算部575cは、P制御演算部575a、及びI制御演算部575bが算出した電流指令値を加算し、加算した電流指令値を質量補正部576に出力する。
すなわち、電流指令算出部575は、比例制御ゲインKv3、及び積分制御ゲインKi3を用いたPI制御演算で速度偏差から電流指令値を算出し、算出した電流指令値を質量補正部576に出力する。
質量補正部576は、可動テーブル34の質量、又は、可動テーブル34の質量と可動テーブル34上に積載された荷物などの質量に基づいて、電流指令算出部575が出力する電流指令値を補正する。
推力制限部577は、質量補正部576が補正した電流指令値が、リニアモータ31の最大推力に対応する最大電流値を超えているか否かを判定し、超えている場合には電流指令値を最大電流値に制限して切替制御部54に出力する。
ここで、停止制御部57において用いられる比例制御ゲインKp3には、移動制御部15において用いられる比例制御ゲインKp1より大きい値が予め設定される。また、停止制御部57において用いられる比例制御ゲインKv3には、移動制御部15において用いられる比例制御ゲインKv1の値以上の値が予め設定される。同様に、積分制御ゲインKi3には、移動制御部15において用いられる積分制御ゲインKi1の値以上の値が予め設定される。
また、停止制御部57において用いられる比例制御ゲインKp3及びKv3には、整定制御部16において用いられる比例制御ゲインKp2及びKv2の値以上の値を設定してもよい。なお、比例制御ゲインKp3及びKv3の値と、積分制御ゲインKi3の値とは、シミュレーションの結果や、実機を用いた測定値などに基づいて定められる。
上述の構成により、モータ制御装置5は、上位の制御装置から最終目標位置xpが入力されると、切替制御部54が移動制御部15を選択し、移動制御部15において算出された電流指令値をパワーアンプ2に出力する。そして、モータ制御装置5は、リニアモータ31を駆動して可動テーブル34を移動させる。モータ制御装置5は、指令生成部11が生成する位置指令値に基づいて、可動テーブル34の移動速度を減速させる。
ここで、モータ制御装置5は、移動速度が「0」近傍になると、切替制御部54が停止制御部57を選択し、停止制御部57において算出された電流指令値をパワーアンプ2に出力して、可動テーブル34を停止させる制御をする。その後に、切替制御部54が整定制御部16を選択し、整定制御部16において算出された電流指令をパワーアンプ2に出力して、可動テーブル34の位置を最終目標位置xpに整定させる。
このようにして、モータ制御装置5は、可動テーブル34が最終目標位置xpの近傍に到達すると比例制御ゲインを切り替える制御を行い、整定時間の短縮を行う。また、モータ制御装置5は、移動速度が「0」近傍になると、停止制御部57を用いて可動テーブル34を一時的に停止させることにより、整定制御部16を用いた制御において、可動テーブル34を安定して移動させることができ、更に、整定時間を短縮することができる。
切替制御部54では、移動速度に基づいて、制御ゲインの切り替えを行っている。これは、位置偏差と速度偏差とを用いたP−PI制御において、位置の制御に対して、速度の制御の応答が十分に速い場合、「(速度)≒(速度指令値)=(位置偏差)×(比例制御ゲインKp)」であることに基づいている。
すなわち、位置偏差と速度偏差とを用いたP−PI制御において、「(位置偏差)≒0」と「(速度)≒0」とは同時に起こることを意味している。切替制御部54は、位置に対して応答が速い速度を用いて、位置偏差が小さくなるタイミングで制御ゲインの切り替えを行うことができ、整定時間を更に短縮することができる。
なお、制御部52において、移動制御部15を用いた制御から停止制御部57を用いた制御へ切り替えずに、第1実施形態と同様に、移動制御部15を用いた制御から整定制御部16を用いた制御に切り替えるようにしてもよい。
また、切替制御部54において、移動制御部15を用いた制御から停止制御部57を用いた制御への切り替えを、第1実施形態と同様に位置偏差判定部141を用いて、可動テーブル34の位置が最終目標位置xpの近傍に位置するタイミングで行うようにしてもよい。
また、上述の第1〜第3実施形態において、整定制御部16を用いた制御を行い、可動テーブル34を整定させた後に、移動制御部15において用いられている制御ゲイン(Kp1,Kv1,Ki1)に切り替えるようにしてもよい。これにより、可動テーブル34を整定させた後に、微小な振動や、ノイズ等により位置偏差が生じて、可動テーブル34が移動してしまうことを防ぐことができる。また、移動制御部15において用いられる制御ゲイン(Kp1,Kv1,Ki1)でなくとも、整定制御部16において用いられる制御ゲイン(Kp2,Kv2,Ki2)それぞれを小さい値に切り替えるようにしてもよい。
また、上述の第1〜第3実施形態では、搬送装置3に備えられたリニアモータ31を制御する構成を説明したが、これに限ることなく、リニアモータ31に替えて回転モータを制御するようにしてもよい。
図13は、回転モータを制御する変形例の構成を示す概略図である。搬送装置7は、回転モータ71、ベース72、ベース72上に設置された案内レール731、案内レール731に取り付けられている転がり案内732、転がり案内732上に設けられている可動テーブル74、回転モータ71の回転軸とボールねじ75の一端とを接続する軸継手76、及び、ボールねじ75の他端を支持するようにベースに設置されているボールねじ受部77を備えている。
モータ制御装置1(5)は、回転モータ71に設けられているエンコーダから出力される回転軸の回転角を示す位置信号に基づいて、回転モータ71を駆動させて可動テーブル74を移動させ、その整定時間を短縮するようにしてもよい。
また、上述の第1〜第3実施形態では、直動タイプの案内装置33を備えた搬送装置3のリニアモータ31を制御する構成を説明したが、これに限ることなく、回転タイプの案内装置を備えた装置のモータを制御するようにしてもよい。
図14は、回転タイプの案内装置を備えた駆動装置のモータを制御する変形例の構成を示す概略図である。駆動装置8は、回転モータ81、回転モータ81の回転軸に取り付けられているギア82、ギア82と組み合わされたギア83、ギア83に回転軸が取り付けられている回転体84、及び、回転体84の回転運動を案内する転がり案内85を備えている。
モータ制御装置1(5)は、回転モータ81に設けられているエンコーダから出力される回転軸の回転角を示す位置信号に基づいて、回転モータ81を駆動させることにより、回転体85を回転させる際の整定時間を短縮するようにしてもよい。また、図14では、ギア82、83を介して回転モータ81の動力を回転体84に伝達する例を示したが、回転モータ81の動力を回転体84に直に伝達するように接続してもよい。
上述のモータ制御装置1(5)は内部に、コンピュータシステムを有していてもよい。その場合、上述した指令生成部11(11A)、速度算出部13、切替制御部14(57)、移動制御部15、整定制御部16、及び停止制御部57それぞれの処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われることになる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。
サーボモータを用いた装置における整定時間の短縮が求められる用途にも適用できる。
1,5…モータ制御装置、2…パワーアンプ、3…搬送装置、11,11A…指令生成部、12,52…制御部、13…速度算出部、14,54…切替制御部、15…移動制御部、16…整定制御部、31…リニアモータ、34…可動テーブル、57…停止制御部、111…加速度指令生成部、112…速度指令算出部、113…位置指令算出部、114…逆伝達関数補償部、115…加算部、141…位置偏差判定部、142,543…切替部、151,161,572…位置偏差算出部、152,162,573…速度指令算出部、153,163,574…速度偏差算出部、154,164,575…電流指令算出部、154a,164a,575a…P制御演算部、154b,164b,575b…I制御演算部、154c,164c,575c…加算部、155,165,576…質量補正部、166,577…推力制限部、541…零速度検出部、542…タイマ部、571…位置記憶部

Claims (9)

  1. モータを用いて対象物を目標位置に移動させる際に用いる加速度指令値を時系列に示す加速度パターンを生成し、生成した加速度パターンに対して、前記モータの応答特性に応じて前記モータの駆動速度を減速する期間を延ばす変更をし、変更した加速度パターンから位置指令値を出力する指令生成部と、
    前記指令生成部が出力する位置指令値と、前記対象物の位置との位置偏差に対する比例制御を用いて前記モータを駆動するとともに、前記対象物が目標位置の近傍に達したときに前記比例制御における比例制御ゲインを現在値より大きい値に変更する制御部と
    を具備することを特徴とするモータ制御装置。
  2. 前記指令生成部は、
    前記生成した加速度パターンに対して、前記モータの駆動速度を減速する期間を、前記モータの応答遅延より長い時間だけ延ばす変更をする
    ことを特徴とする請求項1に記載のモータ制御装置。
  3. 前記制御部は、
    前記対象物の位置を検出する位置検出部と、
    前記指令生成部が算出した位置指令値、及び前記対象物の位置の差分と、第1比例制御ゲインとを用いて、前記モータに対する第1電流指令値を算出して前記モータを駆動する移動制御部と、
    前記目標位置、及び前記対象物の位置の差分と、前記第1比例制御ゲインより大きい値を有する第2比例制御ゲインとを用いて、前記モータに対する第2電流指令値を算出して前記モータを駆動する整定制御部と、
    前記移動制御部を用いて前記モータを駆動させ、前記位置検出部が検出した位置と、前記目標位置との差分が予め定めたしきい値より小さいとき、前記整定制御部を用いて前記モータを駆動させる制御切替部と、
    を備える
    ことを特徴とする請求項1又は請求項2のいずれかに記載のモータ制御装置。
  4. 前記移動制御部は、
    前記指令生成部が生成した位置指令値と、前記対象物の位置との差分である第1位置偏差を算出する第1位置偏差算出部と、
    前記第1位置偏差と、前記第1比例制御ゲインとを乗算して第1速度指令を算出する第1速度指令算出部と、
    前記第1速度指令算出部が算出した第1速度指令と、前記対象物の移動速度との差分である第1速度偏差を算出する第1速度偏差算出部と、
    前記第1速度偏差に対して比例制御及び積分制御を用いて第1電流指令を算出する第1電流指令算出部と
    を有し、
    前記整定制御部は、
    前記目標位置と、前記対象物の位置との差分である第2位置偏差を算出する第2位置偏差算出部と、
    前記第2位置偏差と、前記第2比例制御ゲインとを乗算して第2速度指令を算出する第2速度指令算出部と、
    前記第2速度指令算出部が算出した第2速度指令と、前記移動速度との差分である第2速度偏差を算出する第2速度偏差算出部と、
    前記第2速度偏差に対して比例制御及び積分制御を用いて第2電流指令を算出する第2電流指令算出部と
    を有する
    ことを特徴とする請求項3に記載のモータ制御装置。
  5. 前記制御部は、
    前記対象物の位置を検出する位置検出部と、
    前記対象物が移動する移動速度を検出する速度検出部と、
    前記指令生成部が算出した位置指令値、及び前記対象物の位置の差分と、第1比例制御ゲインとを用いて、前記モータに対する第1電流指令値を算出して前記モータを駆動する移動制御部と、
    前記目標位置、及び前記対象物の位置の差分と、前記第1比例制御ゲインより大きい値を有する第2比例制御ゲインとを用いて、前記モータに対する第2電流指令値を算出して前記モータを駆動する整定制御部と、
    前記移動制御部を用いて前記モータを駆動させ、前記移動速度を減速させる期間において、前記移動速度が予め定めたしきい値より小さいとき、前記整定制御部を用いて前記モータを駆動させる制御切替部と、
    を具備することを特徴とする請求項1又は請求項2のいずれかに記載のモータ制御装置。
  6. 前記モータの駆動速度が前記しきい値より小さくなったときの前記対象物の位置、及び前記対象物の位置との差分と、前記第1比例制御ゲインより大きい値を有する第3比例制御ゲインとを用いて、前記モータに対する電流指令値を算出して前記モータを駆動する停止制御部
    を更に備え、
    前記制御切替部は、前記モータの駆動速度を減速する期間において、前記移動速度が予め定めたしきい値以下になると、前記停止制御部を用いて前記モータを駆動させ、更に、前記第1比例制御ゲインに応じた応答時間が経過した後に、前記整定制御部を用いて前記モータを駆動させる
    ことを特徴とする請求項5に記載のモータ制御装置。
  7. 前記移動制御部は、
    前記指令生成部が生成した位置指令値と、前記対象物の位置との差分である第1位置偏差を算出する第1位置偏差算出部と、
    前記第1位置偏差と、前記第1比例制御ゲインとを乗算して第1速度指令を算出する第1速度指令算出部と、
    前記第1速度指令算出部が算出した第1速度指令と、前記移動速度との差分である第1速度偏差を算出する第1速度偏差算出部と、
    前記第1速度偏差に対して比例制御及び積分制御を用いて第1電流指令を算出する第1電流指令算出部と
    を有し、
    前記整定制御部は、
    前記目標位置と、前記対象物の位置との差分である第2位置偏差を算出する第2位置偏差算出部と、
    前記第2位置偏差と、前記第2比例制御ゲインとを乗算して第2速度指令を算出する第2速度指令算出部と、
    前記第2速度指令算出部が算出した第2速度指令と、前記移動速度との差分である第2速度偏差を算出する第2速度偏差算出部と、
    前記第2速度偏差に対して比例制御及び積分制御を用いて第2電流指令を算出する第2電流指令算出部と
    を有し、
    前記停止制御部は、
    前記モータの駆動速度がゼロになったときの前記対象物の位置と、前記対象物の位置との差分である第3位置偏差を算出する第3位置偏差算出部と、
    前記第3位置偏差と、前記第3比例制御ゲインとを乗算して第3速度指令を算出する第3速度指令算出部と、
    前記第3速度指令算出部が算出した第3速度指令と、前記移動速度との差分である第3速度偏差を算出する第3速度偏差算出部と、
    前記第3速度偏差に対して比例制御及び積分制御を用いて第3電流指令を算出する第3電流指令算出部と
    を有する
    ことを特徴とする請求項6に記載のモータ制御装置。
  8. モータを用いて対象物を目標位置に移動させる際に用いる加速度指令値を時系列に示す加速度パターンを生成し、生成した加速度パターンに対して、前記モータの応答特性に応じて前記モータの駆動速度を減速する期間を延ばす変更をし、変更した加速度パターンから位置指令値を出力する指令生成ステップと、
    前記指令生成ステップにおいて出力される位置指令値と、前記対象物の位置との位置偏差に対する比例制御を用いて前記モータを駆動するとともに、前記対象物が目標位置の近傍に達したときに前記比例制御における比例制御ゲインを現在値より大きい値に変更する制御ステップと
    を有することを特徴とするモータ制御方法。
  9. モータを用いて対象物を目標位置に移動させる際に用いる加速度指令値を時系列に示す加速度パターンを生成し、生成した加速度パターンに対して、前記モータの応答特性に応じて前記モータの駆動速度を減速する期間を延ばす変更をし、変更した加速度パターンから位置指令値を出力する指令生成ステップと、
    前記指令生成ステップにおいて出力される位置指令値と、前記対象物の位置との位置偏差に対する比例制御を用いて前記モータを駆動するとともに、前記対象物が目標位置の近傍に達したときに前記比例制御における比例制御ゲインを現在値より大きい値に変更する制御ステップと
    をコンピュータに実行させるためのモータ制御プログラム。
JP2010293273A 2010-12-28 2010-12-28 モータ制御装置、モータ制御方法、及び制御プログラム Active JP5707129B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010293273A JP5707129B2 (ja) 2010-12-28 2010-12-28 モータ制御装置、モータ制御方法、及び制御プログラム
PCT/JP2011/079476 WO2012090781A1 (ja) 2010-12-28 2011-12-20 モータ制御装置、モータ制御方法及び制御プログラム
DE112011104617.0T DE112011104617B4 (de) 2010-12-28 2011-12-20 Motorsteuerungsvorrichtung, Motorsteuerungsverfahren und Steuerungsprogramm
US13/993,005 US9360851B2 (en) 2010-12-28 2011-12-20 Motor control apparatus of linear motor, motor control method of linear motor, and control program of linear motor
CN201180062689.5A CN103270694B (zh) 2010-12-28 2011-12-20 电动机控制装置、电动机控制方法及控制程序
TW100148698A TWI516012B (zh) 2010-12-28 2011-12-26 馬達控制裝置、馬達控制方法及控制程式

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010293273A JP5707129B2 (ja) 2010-12-28 2010-12-28 モータ制御装置、モータ制御方法、及び制御プログラム

Publications (3)

Publication Number Publication Date
JP2012143057A JP2012143057A (ja) 2012-07-26
JP2012143057A5 JP2012143057A5 (ja) 2014-01-30
JP5707129B2 true JP5707129B2 (ja) 2015-04-22

Family

ID=46382892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010293273A Active JP5707129B2 (ja) 2010-12-28 2010-12-28 モータ制御装置、モータ制御方法、及び制御プログラム

Country Status (6)

Country Link
US (1) US9360851B2 (ja)
JP (1) JP5707129B2 (ja)
CN (1) CN103270694B (ja)
DE (1) DE112011104617B4 (ja)
TW (1) TWI516012B (ja)
WO (1) WO2012090781A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9996071B2 (en) * 2014-06-24 2018-06-12 Western Digital Technologies, Inc. Moveable slider for use in a device assembly process
JP6484954B2 (ja) * 2014-08-11 2019-03-20 株式会社リコー モータ制御装置、モータ制御システム、モータ制御方法及びモータ制御プログラム
US10564032B2 (en) * 2014-09-10 2020-02-18 Mitsubishi Electric Corporation Vibration mode determining apparatus
JP6758098B2 (ja) 2015-08-06 2020-09-23 Thk株式会社 位置制御装置及び方法
CN107450431B (zh) * 2017-08-14 2020-04-10 广州耐奇电气科技有限公司 一种能源综合管理系统
WO2021157239A1 (ja) * 2020-02-04 2021-08-12 パナソニックIpマネジメント株式会社 リニアモータシステム
JP6800384B1 (ja) * 2020-03-04 2020-12-16 三菱電機株式会社 位置決め制御装置および位置決め方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4698773A (en) * 1986-01-31 1987-10-06 The Boeing Company Adaptive feed rate override system for a milling machine
JPS6368913A (ja) * 1986-09-10 1988-03-28 Fujitsu Ltd サ−ボ制御回路
JPH0515959A (ja) * 1991-07-09 1993-01-26 Sumitomo Metal Ind Ltd ステツピングシリンダのロツド位置制御方法
JPH0517028A (ja) 1991-07-11 1993-01-26 Itoki Crebio Corp 垂直搬送装置の制御方法
JPH05118302A (ja) * 1991-09-25 1993-05-14 Toshiba Corp サーボモータの制御装置
US5223778A (en) * 1992-09-16 1993-06-29 Allen-Bradley Company, Inc. Automatic tuning apparatus for PID controllers
US5475291A (en) * 1992-12-10 1995-12-12 Matsushita Electric Industrial Co., Ltd. Adjustment device for adjusting control parameters of a servo motor and an adjustment method therefor
JPH0731172A (ja) * 1993-07-15 1995-01-31 Matsushita Electric Ind Co Ltd サーボモータ制御装置
US5497063A (en) * 1993-09-16 1996-03-05 Allen-Bradley Company, Inc. Fuzzy logic servo controller
JPH07295650A (ja) * 1994-04-21 1995-11-10 Ricoh Co Ltd 多関節型ロボットの制御方法
DE19617107A1 (de) * 1996-04-19 1997-10-23 Mannesmann Ag Verfahren und Einrichtung zum Positionieren eines Gerätes
JP3232030B2 (ja) * 1997-09-01 2001-11-26 本田技研工業株式会社 電動パワーステアリング装置
JPH11195829A (ja) 1998-01-06 1999-07-21 Sumitomo Electric Ind Ltd 広帯域光出力装置
JPH11194829A (ja) * 1998-01-07 1999-07-21 Yaskawa Electric Corp 位置決め制御方法およびその装置
US6320345B1 (en) * 1998-03-05 2001-11-20 Nikon Corporation Command trajectory for driving a stage with minimal vibration
JP2000122724A (ja) * 1998-10-20 2000-04-28 Matsushita Electric Ind Co Ltd モータ駆動装置の位置決め時間短縮方法
DE60128164T2 (de) * 2000-03-03 2008-03-06 Seiko Epson Corp. Motorsteuerungsvorrichtung und -verfahren
DE60135586D1 (de) * 2000-05-15 2008-10-09 Yaskawa Denki Kitakyushu Kk Positionerungs-Servosteuerung
JP2001331208A (ja) * 2000-05-23 2001-11-30 Kaijo Corp 直交座標型移動装置の物体の移動制御方法
US6668202B2 (en) * 2001-11-21 2003-12-23 Sumitomo Heavy Industries, Ltd. Position control system and velocity control system for stage driving mechanism
JP2006079526A (ja) * 2004-09-13 2006-03-23 Mitsubishi Electric Corp 位置決め制御装置
JP4577107B2 (ja) * 2005-06-17 2010-11-10 三菱電機株式会社 機械位置制御装置
US7898207B2 (en) * 2007-12-04 2011-03-01 Pitney Bowes Inc. Method for controlling a DC motor
US8508160B2 (en) * 2008-03-28 2013-08-13 Thk Co., Ltd. Servo motor position control device
US7769552B2 (en) * 2008-05-16 2010-08-03 Schneider Electric USA, Inc. Method and apparatus for estimating induction motor rotor temperature
CN101609326B (zh) * 2008-06-20 2012-09-19 鸿富锦精密工业(深圳)有限公司 加减速控制装置及加减速控制方法
CN102884313B (zh) * 2010-05-28 2016-09-14 三菱重工业株式会社 可再生能源类型的发电装置及其运行方法
WO2012024802A1 (en) * 2010-08-25 2012-03-01 Socovar, S.E.C. System and method for feedback control
JP5273117B2 (ja) * 2010-09-30 2013-08-28 ブラザー工業株式会社 モータ制御装置
KR101749515B1 (ko) * 2010-10-27 2017-06-21 삼성전자 주식회사 모터 속도 제어 장치 및 그 방법

Also Published As

Publication number Publication date
US9360851B2 (en) 2016-06-07
CN103270694A (zh) 2013-08-28
JP2012143057A (ja) 2012-07-26
US20130282192A1 (en) 2013-10-24
TW201251300A (en) 2012-12-16
WO2012090781A1 (ja) 2012-07-05
CN103270694B (zh) 2016-01-20
DE112011104617T5 (de) 2013-10-02
TWI516012B (zh) 2016-01-01
DE112011104617B4 (de) 2021-12-23

Similar Documents

Publication Publication Date Title
JP5707129B2 (ja) モータ制御装置、モータ制御方法、及び制御プログラム
KR101022646B1 (ko) 선형 모터 시스템 및 그 반발력 보상방법
US10008963B2 (en) Position control device
US20190233251A1 (en) Method and an elevator control unit for controlling a doorstep gap of an elevator and an elevator
JP2009217927A5 (ja)
CN108352774B (zh) 线性电动机的控制装置及控制方法
JP5550782B2 (ja) リニアモータ駆動装置
US10958195B2 (en) Control device and control method for linear motor
EP2752718B1 (en) Actuator control method and actuator control device
KR20220160654A (ko) 스테핑 모터 제어 장치
JP2018024483A (ja) エレベーター
JP2017126286A (ja) 移動体、移動体システム、および、移動体の補正係数算出方法
JP2011100203A (ja) 位置制御装置
JP2003006884A (ja) 光ディスクドライブにおけるロングシークの制御システムおよびその方法
JPH11122902A (ja) リニアモータ駆動装置
Rangarajan et al. A Novel Static Optimization Scheme to Minimize the Energy Consumption of PMSM Driven Elevators by Reducing their Leveling Time in Creep to Floor Speed Profile
JP2012137990A (ja) 数値制御装置、移動制御方法、移動制御プログラム及び記憶媒体
JP2008027246A (ja) 位置決め制御装置とその位置決め制御方法
JP5862265B2 (ja) エネルギ評価制御方法及びエネルギ評価制御装置
JP5026559B2 (ja) リニアモータの制御装置
JP6001250B2 (ja) リニアモータ制御装置、及びリニアモータ制御方法
JP5988694B2 (ja) モータ制御装置、及びモータ制御方法
JP5862264B2 (ja) エネルギ評価制御方法及びエネルギ評価制御装置
JPH1166774A (ja) ディスク装置の位置決め方法
JP5495550B2 (ja) モータ制御方法、および、電源装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150302

R150 Certificate of patent or registration of utility model

Ref document number: 5707129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250