JPWO2014049991A1 - キャパシタ用電極およびそれを用いたキャパシタ - Google Patents

キャパシタ用電極およびそれを用いたキャパシタ Download PDF

Info

Publication number
JPWO2014049991A1
JPWO2014049991A1 JP2014538137A JP2014538137A JPWO2014049991A1 JP WO2014049991 A1 JPWO2014049991 A1 JP WO2014049991A1 JP 2014538137 A JP2014538137 A JP 2014538137A JP 2014538137 A JP2014538137 A JP 2014538137A JP WO2014049991 A1 JPWO2014049991 A1 JP WO2014049991A1
Authority
JP
Japan
Prior art keywords
carbon material
material particles
electrode layer
electrode
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014538137A
Other languages
English (en)
Other versions
JP6326632B2 (ja
Inventor
聖啓 石井
聖啓 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2014049991A1 publication Critical patent/JPWO2014049991A1/ja
Application granted granted Critical
Publication of JP6326632B2 publication Critical patent/JP6326632B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

キャパシタ用電極は、集電体と、この集電体に接して設けられ、カチオンを吸蔵および放出可能な電極層とを有する。電極層は、カチオンを吸蔵および放出可能な第1炭素材料粒子と、カチオンを吸蔵および放出可能で第1炭素材料粒子の一次粒子の平均粒径よりも一次粒子の平均粒径が小さい第2炭素材料粒子とを含む。電極層における第2炭素材料粒子の含有量は第1炭素材料粒子の含有量より少ない。

Description

本発明は各種電子機器、ハイブリッド自動車や燃料電池車のバックアップ電源用や回生用、あるいは電力貯蔵用等に使用されるキャパシタとそれに用いられる電極に関する。
電子機器が動作する際に、それに要するエネルギーがその電子機器へ取り込まれる。しかしながら、取り込んだエネルギーを全て電子機器の動作のために消費させることは難しく、その一部は熱エネルギーなどとして本来の目的を達成せずに消費される。このように消費されるエネルギーを、電気エネルギーとして一旦蓄電素子に貯蔵し、必要な際に再利用することにより、消費されるエネルギーを低減し、高効率化することが考えられている。
そのためには、電子機器の動作に必要なエネルギーを適切な出力で取りだすことのできる蓄電デバイスが必要である。蓄電デバイスとしては、キャパシタと二次電池とが挙げられる。その中でも特に、大容量を有し、急速充放電が可能で、長期信頼性が高い電気二重層キャパシタが着目され、多くの分野で使用されている。
電気二重層キャパシタは活性炭を主体とする分極性電極を正極、負極として有する。電気二重層キャパシタの耐電圧は、水系電解液を使用すると1.2V、有機系電解液を使用すると2.5〜3.3Vである。
しかし、二次電池に比べると電気二重層キャパシタのエネルギー密度は小さい。エネルギー密度は、容量と電圧の2乗に比例するので電気二重層キャパシタのエネルギー密度を高めるにはこれらの要素の少なくとも一方を向上させる必要がある。
キャパシタの電圧を高めるためには、負極の炭素材料にリチウムイオンを予め吸蔵する(プレドープする)ことにより、負極の電位を低下させることが提案されている。このようなキャパシタは、リチウムイオンを吸蔵した負極と、分極性電極である正極と、これらの正極および負極に含浸し、リチウム塩を含んだ電解液を有する。このキャパシタは負極へプレドープしたリチウムイオンが完全に放出されない範囲で充放電される。
図4Aは、従来のキャパシタの一例として示した、カチオンにリチウムイオンを用いたキャパシタの上面断面図である。図4Bはこのキャパシタにおける電極巻回ユニット100の部分切り欠き正面図である。
図4Aに示すように、このキャパシタは、電極巻回ユニット100を有する。電極巻回ユニット100は正極101、負極102をその間にセパレータ103を介して交互に積層して同心的に巻回して形成されている。電極巻回ユニット100の外周部及び中心部には、リチウムイオン供給源として、リチウム金属(リチウム極)104、105がそれぞれ配置されている。巻回中心部に形成されたリチウム金属105は管棒109により支持されており、管棒109は同時に電極巻回ユニット100の支持用の軸棒の役割も担っている。これらがアルミニウムや鉄製の外装容器106内に収容され、内部に電解液が充填されて構成されている。
正極101及び負極102は、表裏面を貫通する孔が設けられた多孔材からなる集電体(図示せず)を有する。このように集電体が多孔材であるため、リチウム金属104、105が電極巻回ユニット100の外周部と中心部に配置されていても、リチウムイオンはリチウム金属104、105から電極巻回ユニット100の集電体の貫通孔を通って自由に各電極間を移動することができる。その結果、負極102の全体にリチウムイオンが予めプレドープされる。
図4Bに示すように、電極端子107、108は正極101と負極102の夫々の集電体へ接続されている。電極端子107、108はそれぞれ円筒状の電極巻回ユニット100の巻回軸方向に対して逆方向に引き出されている。巻回中心部に形成されたリチウム金属105は管棒109により支持されており、管棒109は同時に電極巻回ユニット100の支持用の軸棒の役割も担っている。また電極巻回ユニット100の最外周は巻回形状を保持するためにテープ110により固定されている。このようなキャパシタは、例えば特許文献1に開示されている。
特開2007−067105号公報
本発明は低抵抗化されたキャパシタ用電極およびそれを用いたキャパシタである。本発明のキャパシタ用電極は、集電体と、この集電体に接して設けられ、カチオンを吸蔵および放出可能な電極層とを有する。電極層は、カチオンを吸蔵および放出可能な第1炭素材料粒子と、カチオンを吸蔵および放出可能で、第1炭素材料粒子の一次粒子の平均粒径よりも一次粒子の平均粒径が小さい第2炭素材料粒子とを含む。電極層における第2炭素材料粒子の含有量は第1炭素材料粒子の含有量より少ない。
上記の構成より、第1炭素材料粒子どうしの間に形成される空隙に、第2炭素材料粒子が配置される。そのため、電極層として、電解液と接触できる表面積が増大し、一度により多くのリチウムイオンを吸蔵することができる。その結果、本発明の電極をキャパシタに負極として用いた場合、負極への単位時間当たりのリチウムドープ量が増えて、キャパシタを低抵抗化することができる。
図1は本発明の実施の形態におけるキャパシタの部分切り欠き斜視図である。 図2は図1に示すキャパシタの負極の作製手順を示すフローチャートである。 図3は図1に示すキャパシタの負極の断面模式図である。 図4Aは従来のキャパシタの水平断面図である。 図4Bは図4Aに示すキャパシタにおける電極巻回ユニットの部分切り欠き正面図である。
前述のように図4Aに示す従来のキャパシタでは、リチウムイオン供給源が電極巻回ユニット100の外周部と中心部の2箇所に設けられている。この配置により、1箇所のリチウムイオン供給源からリチウムイオンを供給してドープさせる方法よりも早くリチウムイオンを負極102へドープさせることができる。そのため、プレドープをより短時間で完了させることができる。しかしながら、このようなキャパシタには、急速な充放電に対応するために、負極の低抵抗化が求められている。
以下に、本発明の実施の形態によるキャパシタ10およびその電極(負極3)について説明する。図1はキャパシタ10の部分切り欠き斜視図である。キャパシタ10は、キャパシタ素子(以下、素子)1と、素子1に含浸し、カチオンとアニオンとで構成された電解質を含む電解液(図示せず)と、素子1と電解液とを収容する有底筒状の外装体6とを有する。
素子1は正極2と、負極3と、セパレータ4とを有する。セパレータ4は正極2と負極3との間に介在している。正極2は導電性を有する第1集電体である集電体2Aと、集電体2Aの表面に形成された第1電極層である電極層2Bとを有する。負極3は導電性を有する第2集電体である集電体3Aと、集電体3Aの表面に形成された第2電極層である電極層3Bとを有する。電極層2Bは電解質を構成するアニオンを吸脱着可能であり、電極層3Bは、電解質を構成するカチオンを吸蔵している。
集電体2Aは例えばアルミニウムで形成され、集電体3Aは例えば銅で形成されている。電極層2Bはアニオンを吸脱着する活性炭を含んだ、分極性電極層である。電極層3Bは炭素材料を主として形成され、カチオンとしてリチウムイオンを吸蔵している。なお図1では素子1は正極2と負極3との間にセパレータ4を介在させ、これらを巻回して構成されているが、この構造に限定されず、例えば平板状の正極2と負極3を、セパレータ4を介して積層した構造でもよい。
正極2および負極3の表面には電極引出端子としてリード線5A、5Bがそれぞれ接続されている。封口部材7はリード線5A、5Bが表出するように外装体6の開口端部を封止している。
次にこのキャパシタの製造方法を説明する。なお、以下の製造方法は、本発明の構成を実現するための一例であり、本発明は下記の製造方法に限定されない。
まず、正極2を作製する手順を説明する。集電体2Aとして例えば厚み約15μmの高純度アルミニウム箔(純度99%以上)を用い、このアルミニウム箔を塩素系のエッチング液中で電解エッチングをして表面を粗面化する。このように表面を粗面化した集電体2Aの表裏面上に電極層2Bを形成する。電極層2Bを構成する材料は、活性炭、結着剤や導電助剤などである。
活性炭には例えば平均粒径が約3μmのコークス系活性炭を、結着剤には例えばポリテトラフルオロエチレン(PTFE)を水に分散した分散液を、導電助剤には例えばアセチレンブラックを用いる。活性炭:結着剤:導電助剤の混合重量比は例えば、10:2:1である。この混合物を混練機で練合して所定の粘度に調整する。混練の際は、分散剤として例えば、カルボキシメチルセルロース(CMC)を添加する。
このようにして調製したペーストを集電体2Aの表裏面に塗布し、100℃の大気雰囲気中において乾燥して分極性の電極層2Bを形成する。電極層2Bの厚みは例えば40μmである。その後、電極層2Bを設けた集電体2Aをスリット加工して、所定の幅にする。
さらに、集電体2Aの表裏面上へ形成した電極層2Bの一部を取り除き、集電体2Aの露出した部分へアルミニウムなどで形成したリード線5Aを針かしめなどの方法で接続する。以上により、正極2が完成する。
次に、図2を参照しながら負極3を作製する手順を説明する。集電体3Aとして、例えば厚さ約15μmの銅箔を用い、この銅箔の表裏面へ電極層3Bを形成する。電極層3Bを構成する材料には、リチウムイオンを可逆的に吸蔵及び放出できる第1炭素材料粒子11として例えば一次粒子の平均粒径が9μmのハードカーボンを用いる。そして第2炭素材料粒子12として一次粒子の平均粒径が350nm〜500nmのサーマルブラックを用いる。結着剤13として例えばゴム系バインダーであるスチレンブタジエンラバー(SBR)を用いる。
なお、本実施の形態において、平均粒径とはD50(メディアン径)を意味する。また粒径とは光学的特性における有効径を意味する。以下の説明では一次粒子の平均粒径を単に粒径と呼ぶ。
ペーストを調製する際には、分散媒14である水に対し、分散剤17であるCMCを投入して撹拌しCMC水溶液を調製する(S01)。このCMC水溶液中に第1炭素材料粒子11を投入してCMC水溶液中に第1炭素材料粒子11を分散する(S02)。その後、第2炭素材料粒子12と結着剤13とを投入し、攪拌して混練して負極3に用いるペーストを作製する(S03)。なお、塗布に適した粘度にするため、必要に応じて分散媒14を追加してもよい。
このペーストを、コンマコータやダイコータなどを用いて集電体3Aの表裏面へ塗布し、80℃の大気中で乾燥し、電極層3Bを形成する(S04)。そして、電極層3Bを表裏面上へ形成した集電体3Aをスリット加工して所定の幅にする(S05)。
さらに、正極2と同様に、集電体3Aの表面へ形成された電極層3Bの一部を取り除き(S06)、集電体3Aが露出した部分へ銅などで形成されたリード線5Bを抵抗溶接などにより接続する(S07)。以上により、プレドープ前の負極3が完成する。
なお、第1炭素材料粒子11として、ハードカーボン(難黒鉛化炭素)を使用する以外に、黒鉛化炭素、ソフトカーボン(易黒鉛化炭素)、低温焼成炭素などを用いてもよい。
正極2と異なり、負極3の炭素材料内へはプレドープによってリチウムイオンを吸蔵させる必要がある。そこで次に、リチウム配設工程として、ドープ源となるカチオン原子を含むリチウム層(図示なし)を、外装体6内に設ける。このリチウム層は、溶媒中でイオン化し、負極3の電極層3B内にインタカレーションする。そのため、外装体6内で電解液と接触できる場所であれば特に限定されず、例えば外装体6の底面上などに配設してもよい。このプレドープ工程については後ほど、詳しく説明する。
次に、素子1を作製する手順を説明する。正極2と負極3とを対向させ、正極2と負極3の間にセパレータ4を挟んで積層体を形成する。セパレータ4は、例えばセルロース系の紙である。この積層体を、対向する正極2と負極3の間にセパレータ4が介在する様に巻回し素子1を完成させる。
次に、素子1と電解液を外装体6内に収容する手順を説明する。電解液には、例えばカチオンとしてのリチウムイオンと、アニオンとしての耐電圧特性を考慮してフッ素原子を含んだアニオンとを含む電解質を溶媒に溶解した溶液を用いる。上記アニオンとしてBF あるいはPF が好ましい。溶媒として、例えば高誘電率のエチレンカーボネート(EC)と低粘度のジメチルカーボネート(DMC)とを重量比1:1に混合した混合溶媒を用いる。なお電解液は上記構成に限定されず、リチウムイオンを含んでいれば同様の効果を奏する。電解液の組成とその効果については後述する。
外装体6は、放熱性の観点から例えば鉄、アルミニウムや銅やニッケルなどの金属で形成されているが、電解液と反応を生じる虞の低い材料であれば特に限定されない。また角柱ケースやラミネート袋でもよい。
キャパシタ10においては、リチウムイオンを含んだ電解液とともに素子1を外装体6へ収容したときに、負極3に対してリチウムイオンをプレドープする。
ここで素子1を構成する負極3に施すプレドープについて説明する。プレドープとは、実際にキャパシタ10を作製後に充放電する前に、負極3へリチウムイオンを予め一定量だけ吸蔵させる処理である。なお吸蔵とは、第1炭素材料粒子11、第2炭素材料粒子12が有する多層状の結晶構造の層間へ負極3近傍のリチウムイオンが入り込み、炭素原子とリチウム原子による層間化合物をつくる現象のことを表す。
このようにリチウムイオンが負極3へ吸蔵される際にリチウムイオンの電気化学反応により負極3の電極電位が下がる。その結果、キャパシタに用いられる正極2と負極3の電位差が広がることによりキャパシタのエネルギー密度が向上する。
このリチウムイオンは、第1炭素材料粒子11、第2炭素材料粒子12が有する多層状の結晶構造の層間へ挿入されてリチウム層から負極3に供給された電子と共にリチウムと炭素から成る合金を形成する。このようにしてリチウムは負極3の炭素材料へ吸蔵され、負極3の電位が降下する。
そして一定時間、負極3へ電解液を含浸することにより、リチウム層の金属リチウムが炭素材料へ吸蔵され、プレドープ工程が完了する。
なお、リチウムイオン二次電池の分野においても負極へリチウムイオンがプレドープされる。しかしながら、リチウムイオン二次電池でのプレドープは充放電サイクルにおける負極の不可逆容量を低減して、充放電容量を向上させることを目的としており、キャパシタにおけるプレドープとは目的や作用が異なる。キャパシタのプレドープの目的は負極3の電位低下による、キャパシタの高電圧化(電位窓の拡大)である。これらの目的の違いによりそれぞれのプレドープの際のリチウムイオン吸蔵量も異なる。したがってリチウムイオン二次電池のリチウムイオン吸蔵量は負極の不可逆容量分のみで良いため、キャパシタのリチウムイオン吸蔵量より明らかに少ない。
次に、封止の手順を説明する。まず素子1から突出したリード線5A、5Bを封口部材7に設けられた貫通孔の中を通す。この状態で、素子1を外装体6に挿入し、封口部材7を外装体6の開口部へ配設する。そして、封口部材7が位置する、外装体6の開口部近傍の外周面から外装体6内部へ向かって絞り加工を施す。一方、外装体6の開口端部にカーリング加工を施す。このようにして、封口部材7を圧縮した状態で固定する。以上の手順で、外装体6の開口部の封止が完成する。
最後に品質保持のために、組み立てたキャパシタ10をエージングした後、電気的な初期動作を確認する。以上より、キャパシタ10が完成する。
ここで、電解液の組成について説明する。上述の説明では、LiBFあるいはLiPFを支持塩(溶質)とし、ECとDMCの混合溶媒を用いている。しなしながら溶質は上記構成に限定されず、次の化学式で示したアニオンのうち2種類以上を混合したものも有用である。すなわち、PF 、BF 、P(CF X−(1≦X≦6)、B(CF Y−(1≦Y≦4)(CFはCなど鎖状、環状フルオロカーボンとしても良い)のうち2つ以上のアニオンの混合物が好ましい。
キャパシタ10のセル容量、抵抗においては、正極2の容量、抵抗も重要である。正極2の活物質は、上述のように活性炭である。活性炭が有する細孔の径は、一様ではない。すなわち細孔径は一定の分布を有し、アニオン半径と活性炭の細孔径の大きさとの間には最適範囲が存在する。このため、複数種の細孔径により構成された活性炭に対して、複数種のアニオン径を有したアニオンを吸脱着させることにより、正極2の活性炭と単一のアニオンを使用したときの容量よりも容量を大きくすることができる。
さらに活性炭の容量は、正極電位3.0V(対Li/Li電位)以下ではリチウムイオンが吸着することにより発現される。このときリチウムイオンが溶媒和するが、この溶媒和の状態は、アニオン種によって変わる。
すなわち、リチウムイオンが溶媒和した状態の半径を変えてやることで、正極電位3.0V(対Li/Li電位)以下の正極活性炭容量を積極的に増大することが可能になる。
この現象は、本実施の形態のように、負極にリチウムイオンをプレドープさせる炭素材料を用い、正極に活性炭を用いて分極性電極を形成するキャパシタに特有の現象である。
なお電解質に含まれるアニオンとして、アニオン耐電圧が高いほうが望ましい。すなわち、アニオン単体の耐電圧としては、PF が比較的耐電圧が高く望ましい。そのため、前述のアニオンの組み合わせにはPF が含まれるほうがより望ましい。
上記のように耐電圧が向上する理由は次のように推定される。集電体2Aを構成するアルミニウムの腐食を抑制する観点から、先に集電体2Aの表面にフッ化アルミニウム主体の皮膜を形成する必要がある。PF は有効にFをアルミニウム表面に供給することができるため、PF が含有されたキャパシタは耐電圧が高いと考えられる。このことから、一旦、PF を用いて、アルミニウム皮膜を電気化学的に形成した後に、BF などの他のアニオンを添加、混合することで効率的にフッ化アルミニウム皮膜形成が可能になる。
また、プラズマ処理、ガス処理などのドライ雰囲気での処理により、集電体表面へフッ化アルミニウムを先に形成してもよい。このような方法により、さらに耐電圧を上げることが可能になる。さらに活性炭にも同時に処理を行うことで容量を向上し抵抗を低減できるため、実質的な耐電圧をさらに上げることが可能になる。さらにこれらのドライ雰囲気で正極2を処理することにより電解液の取り扱い時に2種類以上のアニオンを同一に扱うことができるため生産性も大きく向上できる利点がある。
上記の電解質に対して、溶媒として、プロピレンカーボネート、エチレンカーボネート、ガンマブチロラクトン、スルホラン、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ブチレンカーボネート、などの環状カーボネート、鎖状カーボネートの混合物や環状エステル、鎖状エステル、環状エーテル、鎖状エーテル、のほかエポキシ基、スルホン基、ビニル基、カルボニル基、アミド基、シアノ基を有する有機系溶媒のうち、2種類以上を適宜選ぶことができる。
次に負極3について詳細に説明する。本実施の形態によるキャパシタ10の負極3は、集電体3Aと、集電体3Aに接して設けられ、カチオンを吸蔵および放出可能な電極層3Bとを有する。電極層3Bは、第1炭素材料粒子11と第2炭素材料粒子12を含む。第1炭素材料粒子11と第2炭素材料粒子12はカチオンを吸蔵および放出可能である。第2炭素材料粒子12の粒径は、第1炭素材料粒子11の粒径に比べて小さい。また電極層3Bにおける第2炭素材料粒子12の含有量は第1炭素材料粒子11の含有量より少ない。
この構成により、第1炭素材料粒子11どうしの間に形成される空隙に、第2炭素材料粒子12が配置される。そのため、電極層3Bにおけるリチウムイオンと反応可能な表面が増加し、充放電時の負極3内の抵抗を低減することができる。
上記のような炭素材料粒子の配置関係を満たすために、本実施の形態では、電極層3Bにおいて含有量が多い主材として、粒径が大きい第1炭素材料粒子11を用い、含有量が少ない副材として、粒径が小さい第2炭素材料粒子12を用いている。第1炭素材料粒子11は、数十μm程度の厚みの電極層3Bを形成するために、1〜10μm程度の粒径(例えば約9μm)をもっていることが好ましい。
そして、第2炭素材料粒子12の粒径は、350nm〜500nmと第1炭素材料粒子11の粒径に比べて小さい。このように第2炭素材料粒子12は小さいため、電極層3Bを形成する前に凝集しやすい。そのため電極層3B内でより均一に分散できるように、分散剤として電極層3B内に分子量が異なる複数の分散剤を用いることが好ましい。このような構成の電極層3Bを図3を参照しながら説明する。図3は負極3の断面模式図である。電極層3Bは粒径が大きい第1炭素材料粒子11と、粒径が小さい第2炭素材料粒子12と、比較的分子量の大きい第1分散剤15と、比較的分子量の小さい第2分散剤16とを含む。なお、簡略化のため結着剤13は図示していない。
第1分散剤15の分子量は例えば50万から30万であり、第2分散剤16の分子量は5000以上、20000以下であることが好ましい。第1分散剤15、第2分散剤16は、例えば、いずれもCMCである。しかしながらセルロース骨格を有していれば他の分散剤を適用してもよい。すなわち、第1分散剤15、第2分散剤16はセルロースまたはその誘導体であればよい。そして、電極層3Bにおける第2分散剤16の含有量が第1分散剤15の含有量より少ないほうが分散性が向上する。
なお、このように2種類の分散剤を用いる場合、図2の分散剤17に代えて第1分散剤15を用いるとともに、S03の混練の前に、第2炭素材料粒子12を第2分散剤16の水溶液中に分散し、結着剤13とともに第1炭素材料粒子11の分散液と混合する。より具体的には、第2炭素材料粒子12と第2分散剤16と水とを、直径3mmのジルコニアビーズとともにシェーカーに入れて振ることで第2炭素材料粒子12の分散液を作製する。そして、プラネタリミキサーを用いて第1炭素材料粒子11を第1分散剤15の水溶液中に分散している途中で、上記分散液をプラネタリミキサー内に投入する。
このように第1分散剤15を用いて第1炭素材料粒子11を分散させ、第2分散剤16を用いて第2炭素材料粒子12を分散させる。そのため、第1分散剤15は第1炭素材料粒子11の近傍に、第2分散剤16は第2炭素材料粒子12の近傍に、それぞれ多く存在すると考えられる。
また第2炭素材料粒子12は、その結晶子サイズを層間距離で除した値が12以上であり、真密度が2.11g/cm以下であることが好ましい。結晶子サイズを層間距離で除した値とは、単位結晶子あたりのリチウムイオンがインタカレーションできる層間部分の数に相当する。この値が12を超えることにより、ソフトカーボン(サーマルブラック)である第2炭素材料粒子12として抵抗が小さくなる。そして、真密度が2.11g/cm以下であることにより第2炭素材料粒子12として容量を確保することができる。この条件の第2炭素材料粒子12を得るために、1600℃、不活性ガス下にて1〜50時間、サーマルブラックを焼成して350nm以上、500nm以下の粒径を有する第2炭素材料粒子12を作製する。第2炭素材料粒子12は、層間をもった結晶構造であることが好ましく、ソフトカーボンのほかに黒鉛材料などでもよい。
上記結晶子サイズを層間距離で除した値は、焼成によって加わる熱エネルギーが大きい程、数値は高まり、抵抗は下がっていく。そのため、上限を設けることが困難であるが、この値の上限の代わりに、真密度の値を上限に用いる。焼成によって加わる熱エネルギーが大きい程、真密度の値も上昇するが、この真密度が上昇しすぎると、上記のように容量が低下する虞がある。そのため、真密度の値を上限に用いることができる。
さらに、第2炭素材料粒子12は、電極層3Bに対して含有量が、0wt%を超えて40wt%以下であることが好ましい。そして、電極層3Bの表面粗さRzが5μm以上であることが好ましい。電極層3Bを形成する際にプレスを行わないことにより、電極層3Bの割れや集電体3Aからの剥離を抑制することができる。結果的に、上記の数値のように表面が粗いままになる。一方、第2炭素材料粒子12の含有量が40wt%を超えると電極層3Bが集電体3Aから剥離しやすくなる傾向があり、電極層3Bの表面粗さRzも5μm未満になる。なお、粒径が1μm以上、10μm以下の第1炭素材料粒子11を用いる場合、電極層3Bの表面粗さRzも実質的に10μm以下となる。
(性能評価試験)
以下、本実施の形態によるキャパシタの具体例の特性試験について説明する。
以下の例では、第1炭素材料粒子11として粒径が9μmのハードカーボンを用い、第2炭素材料粒子12として粒径が400nmのサーマルブラックを用いる。結着剤としてSBRを用いる。これらの材料を混合する場合、サンプルAでは、第1炭素材料粒子11と第2炭素材料粒子12と結着剤13とを95:40:1の重量比で混合する。サンプルBでは、95:17:1の重量比で混合する。
第1分散剤15には、分子量が約33万のCMCを用い、第2分散剤16には、約1万の分子量のCMCを用いている。また第1分散剤15と第2分散剤16の重量比は2:1としている。なおCMCの総量は第1炭素材料粒子11の重量の1%程度である。
これらの材料を用いてペーストを調製し、集電体3Aの表裏面へ塗布し、80℃の大気中で乾燥し、片面の厚みが約40μmの電極層3Bを形成する。なお第2炭素材料粒子12の電極層3Bにおける含有量は、上記混合比からサンプルAでは約30wt%、サンプルBでは約15wt%である。
またサンプルCでは、第2炭素材料粒子12を含有していない負極を用いる。これ以外はサンプルAと同様にしてキャパシタのモデルセルを構成する。
正極2については、前述のとおりである。正極2、負極3の寸法は2cm×2cmである。セパレータ4には、厚み約35μm、密度0.45g/cmであるセルロース系の紙を用いる。ECとDMCの1:1混合溶媒にLiPFを1.0mol/lとなるよう溶解して電解液として用いる。電解液の量は15mlである。以上のような正極2、セパレータ4、負極3を重ね、電解液を含浸させてアルミラミネートに封止してモデルセルを作製する。このモデルセルの定格は3.8V、大きさは4cm×10cm×0.35cmである。
これらサンプルA〜サンプルCのモデルセルについて、それぞれ直流内部抵抗(DC−IR)を計測する。DC−IRは、各サンプルの負極を用いたキャパシタを4Vで充電し、そのあと、放電したときの放電カーブを外挿したときの切片を、放電開始直前の4Vから差し引き、その値を放電時の電流値で割った値として算出している。このとき外挿する放電カーブの範囲は一例として、放電開始から0.5〜2秒の範囲とする。そして、放電時の電流値を、各キャパシタを2Vに達するまで放電する際、6分で2Vまで達する電流値とする。
(表1)に、サンプルCに対するサンプルA、サンプルBのDC−IRの減少率を温度別に示す。減少率は、サンプルCのDC−IRに対する、サンプルCのDC−IRとサンプルA、サンプルBそれぞれのDC−IRの差分とする。計測時の温度条件は、常温として25℃と、低温として0℃としている。
Figure 2014049991
(表1)のように、サンプルA、サンプルBではサンプルCに対してDC−IRが減少していることが分かる。そして、低温時にその効果がさらに顕著になっていることがわかる。
以上のように、負極3は、電極層3B内に2種の粒径が異なる炭素材料粒子を有し、小さい炭素材料粒子が、大きい炭素材料粒子どうしの隙間に入り込むように構成されている。これにより、電極層3B内の表面積を増やし負極3として抵抗が低減される。
本発明にかかるキャパシタ用電極を用いたキャパシタは、抵抗の低減に優れている。そのため急速な充放電においても優れたエネルギー密度を示す。したがって、例えば、回生やバックアップに用いられるハイブリッド車両電源としての用途に有用である。
1 キャパシタ素子(素子)
2 正極
2A,3A 集電体
2B,3B 電極層
3 負極
4 セパレータ
5A,5B リード線
6 外装体
7 封口部材
10 キャパシタ
11 第1炭素材料粒子
12 第2炭素材料粒子
13 結着剤
14 分散媒
15 第1分散剤
16 第2分散剤
17 分散剤
ここで、電解液の組成について説明する。上述の説明では、LiBFあるいはLiPFを支持塩(溶質)とし、ECとDMCの混合溶媒を用いている。しかしながら溶質は上記構成に限定されず、次の化学式で示したアニオンのうち2種類以上を混合したものも有用である。すなわち、PF 、BF 、P(CF X−(1≦X≦6)、B(CF Y−(1≦Y≦4)(CFはCなど鎖状、環状フルオロカーボンとしても良い)のうち2つ以上のアニオンの混合物が好ましい。
キャパシタ10のセル容量、抵抗においては、正極2の容量、抵抗も重要である。正極2の活物質は、上述のように活性炭である。活性炭が有する細孔の径は、一様ではない。すなわち細孔径は一定の分布を有し、あるアニオン半径に対して、活性炭の細孔径の大きさには最適範囲が存在し、逆に、ある活性炭の細孔径に対して、アニオン半径には最適範囲が存在する。このため、複数種の細孔径により構成された活性炭に対して、複数種のアニオン径を有したアニオンを吸脱着させることにより、正極2の活性炭と単一のアニオンを使用したときの容量よりも容量を大きくすることができる。

Claims (12)

  1. 集電体と、
    前記集電体に接して設けられ、カチオンを吸蔵および放出可能な電極層と、を備え、
    前記電極層は、カチオンを吸蔵および放出可能な第1炭素材料粒子と、カチオンを吸蔵および放出可能で前記第1炭素材料粒子の一次粒子の平均粒径よりも一次粒子の平均粒径が小さい第2炭素材料粒子とを含み、
    前記電極層における前記第2炭素材料粒子の含有量は前記第1炭素材料粒子の含有量より少ない、
    キャパシタ用電極。
  2. 前記第2炭素材料粒子は、層状結晶構造を有する、
    請求項1記載のキャパシタ用電極。
  3. 前記第2炭素材料粒子は、350nm以上、500nm以下の前記一次粒子の平均粒径を有するサーマルブラックであり、前記第2炭素材料粒子の結晶子サイズを層間距離で除した値が12以上であり、前記第2炭素材料粒子の真密度が2.11g/cm以下である、
    請求項2記載のキャパシタ用電極。
  4. 前記第1炭素材料粒子はハードカーボンである、
    請求項1記載のキャパシタ用電極。
  5. 前記第1炭素材料粒子の前記一次粒子の平均粒径は1μm以上、10μm以下であり、前記第2炭素材料粒子の前記一次粒子の平均粒径は350nm以上、500nm以下であり、前記第2炭素材料粒子の前記電極層に対する含有率が0wt%を超えて40wt%以下であり、前記電極層の表面粗さRzが5μm以上である、
    請求項1記載のキャパシタ用電極。
  6. 前記電極層はセルロースまたはその誘導体である第1分散剤と、前記第1分散剤より分子量が小さいセルロースまたはその誘導体である第2分散剤とをさらに含み、
    前記電極層における前記第2分散剤の含有量は前記第1分散剤の含有量より少ない、
    請求項1記載のキャパシタ用電極。
  7. アニオンを吸脱着できる正極と、
    前記正極に対向する負極と、
    前記正極と前記負極との間に介在する電解質と、を備え、
    前記負極は、
    集電体と、
    前記集電体に接して設けられ、カチオンを吸蔵および放出可能な電極層と、を有し、
    前記電極層は、カチオンを吸蔵および放出可能な第1炭素材料粒子と、カチオンを吸蔵および放出可能で前記第1炭素材料粒子の一次粒子の平均粒径よりも一次粒子の平均粒径が小さい第2炭素材料粒子とを含み、
    前記電極層における前記第2炭素材料粒子の含有量は前記第1炭素材料粒子の含有量より少ない、
    キャパシタ。
  8. 前記第2炭素材料粒子は、層状結晶構造を有する、
    請求項7記載のキャパシタ。
  9. 前記第2炭素材料粒子は、350nm以上、500nm以下の前記一次粒子の平均粒径を有するサーマルブラックであり、前記第2炭素材料粒子の結晶子サイズを層間距離で除した値が12以上であり、前記第2炭素材料粒子の真密度が2.11g/cm以下である、
    請求項8記載のキャパシタ。
  10. 前記第1炭素材料粒子はハードカーボンである、
    請求項7記載のキャパシタ。
  11. 前記第1炭素材料粒子の前記一次粒子の平均粒径は1μm以上、10μm以下であり、前記第2炭素材料粒子の前記一次粒子の平均粒径は350nm以上、500nm以下であり、前記第2炭素材料粒子の前記電極層に対する含有率が0wt%を超えて40wt%以下であり、前記電極層の表面粗さRzが5μm以上である、
    請求項7記載のキャパシタ。
  12. 前記電極層はセルロースまたはその誘導体である第1分散剤と、前記第1分散剤より分子量が小さいセルロースまたはその誘導体である第2分散剤とをさらに含み、
    前記電極層における前記第2分散剤の含有量は前記第1分散剤の含有量より少ない、
    請求項7記載のキャパシタ。
JP2014538137A 2012-09-28 2013-09-11 キャパシタ用電極およびそれを用いたキャパシタ Active JP6326632B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012215883 2012-09-28
JP2012215883 2012-09-28
PCT/JP2013/005376 WO2014049991A1 (ja) 2012-09-28 2013-09-11 キャパシタ用電極およびそれを用いたキャパシタ

Publications (2)

Publication Number Publication Date
JPWO2014049991A1 true JPWO2014049991A1 (ja) 2016-08-22
JP6326632B2 JP6326632B2 (ja) 2018-05-23

Family

ID=50387438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014538137A Active JP6326632B2 (ja) 2012-09-28 2013-09-11 キャパシタ用電極およびそれを用いたキャパシタ

Country Status (4)

Country Link
US (1) US9799458B2 (ja)
JP (1) JP6326632B2 (ja)
CN (1) CN104662627B (ja)
WO (1) WO2014049991A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018067595A (ja) * 2016-10-18 2018-04-26 太陽誘電株式会社 電気化学デバイス

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (ja) * 1997-01-28 1999-09-07 Canon Inc 電極構造体、二次電池及びそれらの製造方法
JP2012054552A (ja) * 2010-08-31 2012-03-15 Samsung Electro-Mechanics Co Ltd リチウムイオンキャパシタ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69836514T2 (de) 1997-01-28 2007-09-13 Canon K.K. Elektrodenkörper, mit diesem versehener Akkumulator, sowie Herstellung des Elektrodenkörpers und des Akkumulators
JP2006059923A (ja) * 2004-08-18 2006-03-02 Nippon Oil Corp 電気二重層キャパシタの電極用炭素材の原料炭組成物
JP2006164689A (ja) * 2004-12-06 2006-06-22 Enerstruct Kk 電極構造体、二次電池及びキャパシタ
JP4732072B2 (ja) 2005-08-30 2011-07-27 富士重工業株式会社 捲回型リチウムイオンキャパシタ
WO2007055087A1 (ja) 2005-10-20 2007-05-18 Mitsubishi Chemical Corporation リチウム二次電池及びそれに用いる非水系電解液
CN113394458A (zh) 2005-10-20 2021-09-14 三菱化学株式会社 锂二次电池以及其中使用的非水电解液
JP5401765B2 (ja) * 2007-04-20 2014-01-29 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
JP2011204704A (ja) 2008-08-08 2011-10-13 Nippon Zeon Co Ltd リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ
JP2010049873A (ja) 2008-08-20 2010-03-04 Toyo Ink Mfg Co Ltd 電池用組成物
EP2357154B1 (en) * 2008-12-02 2014-04-23 Mitsubishi Chemical Corporation Production process of a nonaqueous electrolytic solution comprising a production process of difluorophosphate
JP2010157564A (ja) * 2008-12-26 2010-07-15 Nippon Zeon Co Ltd 電気化学素子電極用複合粒子の製造方法
JP2011253620A (ja) * 2009-09-30 2011-12-15 K & W Ltd 負極活物質、この負極活物質の製造方法、及びこの負極活物質を用いたリチウムイオン二次電池
WO2011096463A1 (ja) * 2010-02-03 2011-08-11 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極及びリチウム二次電池
KR101138594B1 (ko) * 2010-08-31 2012-05-10 삼성전기주식회사 리튬 이온 커패시터

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (ja) * 1997-01-28 1999-09-07 Canon Inc 電極構造体、二次電池及びそれらの製造方法
JP2012054552A (ja) * 2010-08-31 2012-03-15 Samsung Electro-Mechanics Co Ltd リチウムイオンキャパシタ

Also Published As

Publication number Publication date
CN104662627A (zh) 2015-05-27
CN104662627B (zh) 2017-10-31
US20150248971A1 (en) 2015-09-03
JP6326632B2 (ja) 2018-05-23
US9799458B2 (en) 2017-10-24
WO2014049991A1 (ja) 2014-04-03

Similar Documents

Publication Publication Date Title
US9245691B1 (en) High energy density electrochemical capacitors
JP4731967B2 (ja) リチウムイオンキャパシタ
JP5873971B2 (ja) 電気化学キャパシタおよびそれに用いられる電極
JP4738042B2 (ja) 非水系リチウム型蓄電素子およびその製造方法
WO2013073526A1 (ja) 蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法
US11551878B2 (en) Electricity storage device
JP6019400B2 (ja) 電気化学キャパシタ用電極とそれを用いた電気化学キャパシタ
JPWO2006118120A1 (ja) 蓄電デバイス用負極活物質
US20110292568A1 (en) Electrode film, electrode, method for manufacturing the electrode, and electrical storage device
JP2012004491A (ja) 蓄電デバイス
JP2008243888A (ja) 電気化学キャパシタの製造方法及びこれにより得られた電気化学キャパシタ
JP2006338963A (ja) リチウムイオンキャパシタ
JP6609946B2 (ja) リチウムイオン二次電池用電極、その製造方法及びリチウムイオン二次電池
JP4731974B2 (ja) リチウムイオンキャパシタ
JP4705404B2 (ja) リチウムイオンキャパシタ
JP2012089823A (ja) リチウムイオンキャパシタ及びその製造方法
JP6326632B2 (ja) キャパシタ用電極およびそれを用いたキャパシタ
JP6010763B2 (ja) 電気化学キャパシタ
JP5904368B2 (ja) 非水電解液二次電池及びその製造方法
JP2014204069A (ja) 蓄電デバイス用電極およびリチウムイオンキャパシタ
JP2013138096A (ja) 蓄電デバイス
WO2015163093A1 (ja) リチウムイオンキャパシタ用正極電極およびリチウムイオンキャパシタ
JP5306578B2 (ja) 電気化学キャパシタ及びその製造方法
JP2012114201A (ja) 蓄電デバイス
WO2019167493A1 (ja) 非水電解質二次電池の充電方法、及び非水電解質二次電池の充電システム

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180319

R151 Written notification of patent or utility model registration

Ref document number: 6326632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151