WO2019167493A1 - 非水電解質二次電池の充電方法、及び非水電解質二次電池の充電システム - Google Patents

非水電解質二次電池の充電方法、及び非水電解質二次電池の充電システム Download PDF

Info

Publication number
WO2019167493A1
WO2019167493A1 PCT/JP2019/002385 JP2019002385W WO2019167493A1 WO 2019167493 A1 WO2019167493 A1 WO 2019167493A1 JP 2019002385 W JP2019002385 W JP 2019002385W WO 2019167493 A1 WO2019167493 A1 WO 2019167493A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
electrolyte secondary
secondary battery
negative electrode
battery
Prior art date
Application number
PCT/JP2019/002385
Other languages
English (en)
French (fr)
Inventor
正寛 曽我
泰右 山本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980016169.7A priority Critical patent/CN111788735A/zh
Priority to US16/975,820 priority patent/US11949091B2/en
Priority to EP19761123.9A priority patent/EP3761438A4/en
Priority to JP2020502866A priority patent/JPWO2019167493A1/ja
Publication of WO2019167493A1 publication Critical patent/WO2019167493A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a method for charging a non-aqueous electrolyte secondary battery and a charging system for the non-aqueous electrolyte secondary battery.
  • Patent Document 1 discloses a non-aqueous electrolyte secondary battery using graphite and a silicon compound as a negative electrode active material.
  • Patent Document 2 discloses a method for charging a secondary battery for the purpose of reducing the initial irreversible capacity of the charge / discharge cycle.
  • An object of the present disclosure is to provide a charging method that enables efficient charging while ensuring good cycle characteristics in a nonaqueous electrolyte secondary battery including a negative electrode including a carbon material and a silicon compound. .
  • a nonaqueous electrolyte secondary battery charging method is a charging method for a nonaqueous electrolyte secondary battery including a negative electrode containing a carbon material and a silicon compound as a negative electrode active material.
  • a capacity ratio of the silicon compound is x (0.1 ⁇ x ⁇ 0.5)
  • a large current charging step of charging at a constant current value I max larger than the first constant current value I 1st is a charging method for a nonaqueous electrolyte secondary battery including a negative electrode containing a carbon material and a silicon compound as a negative electrode active material.
  • a charging system for a non-aqueous electrolyte secondary battery is a charging system for charging a non-aqueous electrolyte secondary battery including a negative electrode including a carbon material and a silicon compound as a negative electrode active material. It is provided with the charge control apparatus which performs a method.
  • a charging method that enables efficient charging while ensuring good cycle characteristics can be provided. That is, according to the charging method according to the present disclosure, it is possible to suppress a decrease in cycle characteristics while being able to be charged in a short time.
  • a nonaqueous electrolyte secondary battery including a negative electrode containing a carbon material and a silicon compound
  • a charging method that can be charged efficiently in a short time and can suppress deterioration of cycle characteristics.
  • the present inventors have clarified a region where the capacity change derived from the silicon compound is large when charging the battery, that is, a region where lithium ions are more likely to be occluded in the silicon compound than the carbon material, and the relaxation based on the above formula is applied only to the region.
  • a cylindrical battery in which the wound electrode body 14 is accommodated in a cylindrical battery case 15 is illustrated, but the battery case is not limited to a cylindrical shape, and may be, for example, a square,
  • a battery case composed of a laminate sheet including a resin layer may be used.
  • the electrode body may be a stacked type in which a plurality of positive electrodes and a plurality of negative electrodes are alternately stacked via separators.
  • the nonaqueous electrolyte secondary battery to which the charging method according to the present disclosure can be applied may be a battery including a negative electrode containing a carbon material and a silicon compound as a negative electrode active material.
  • FIG. 1 is a block diagram showing a configuration of a charging system 1 for a non-aqueous electrolyte secondary battery as an example of an embodiment.
  • the charging system 1 includes a charging control device 2 that controls charging of the nonaqueous electrolyte secondary battery 10 and a battery monitoring unit 3 that monitors the charging state of the battery.
  • the nonaqueous electrolyte secondary battery 10 is connected to a load 101 and supplies electric power stored in the load 101.
  • the charging system 1 may include an assembled battery (also referred to as a battery pack or a battery module) in which a plurality of nonaqueous electrolyte secondary batteries 10 are connected in series, parallel, or series-parallel.
  • the charging system 1 can be widely applied to charging devices and charging facilities for non-aqueous electrolyte secondary batteries containing a carbon material and a silicon compound as a negative electrode active material.
  • vehicles such as electric vehicles and hybrid vehicles, charging facilities for vehicles, power storage facilities It can be applied to various devices and equipment such as a power tool charger.
  • the charging control device 2 may be incorporated in a battery module, or may be configured as a part of a device such as a vehicle or a facility control device on which the charging system 1 is mounted.
  • the charging control device 2 is a device that executes a charging method described later. When charging the battery, the charging control device 2 determines the charging condition of the battery based on the charging state of the battery acquired from the battery monitoring unit 3. As will be described in detail later, the charging control device 2 includes a first charging control unit 4 that executes a first charging step, a second charging control unit 5 that executes a second charging step, and a large current charging that executes a large current charging step. It has the control means 6 and the constant voltage charge control means 7 which performs a constant voltage charge step.
  • the charge control device 2 includes, for example, a rectifier circuit, converts the AC power of the power supply 100 into predetermined DC power, and supplies it to the nonaqueous electrolyte secondary battery 10.
  • the charging control device 2 is configured by an integrated circuit such as an IC chip or an LSI chip, and includes a CPU that is an arithmetic processing unit and a storage unit 8.
  • the CPU has a function of reading and executing a program or the like stored in advance in the storage unit 8.
  • the storage unit 8 has a function of temporarily storing the read program and processing data, and a function of storing a control program, a threshold value, and the like.
  • the functions of the charging control means are realized by executing a control program stored in the storage unit 8, for example.
  • the charging control device 2 includes a constant current circuit that controls charging current so that DC power having a predetermined current value is supplied to the battery, and charging voltage so that DC power having a predetermined voltage value is supplied to the battery. It has a constant voltage circuit to be controlled.
  • a charging circuit such as a rectifier circuit, a constant current circuit, or a constant voltage circuit may be configured as a device separate from the charging control device 2.
  • the charging control device 2 controls the charging circuit based on the charging state of the battery acquired from the battery monitoring unit 3 and executes the charging of the nonaqueous electrolyte secondary battery 10.
  • the battery monitoring unit 3 detects, for example, a charging current and a battery voltage supplied to the nonaqueous electrolyte secondary battery 10.
  • the charging control device 2 estimates a charging rate (SOC) from the battery voltage acquired by the battery monitoring unit 3, and executes charging control based on the SOC.
  • SOC can also be estimated from charging / discharging current and charging / discharging time.
  • a conventionally known method can be applied to the SOC estimation method. It is preferable that the charging control device 2 performs constant current charging (CC charging) including a plurality of steps until the battery voltage reaches a predetermined voltage, and then performs constant voltage charging (CV charging).
  • CC charging constant current charging
  • CV charging constant voltage charging
  • FIG. 2 is a cross-sectional view of a nonaqueous electrolyte secondary battery 10 which is an example of the embodiment.
  • the nonaqueous electrolyte secondary battery 10 includes an electrode body 14, a nonaqueous electrolyte (not shown), and a battery case 15 that houses the electrode body 14 and the nonaqueous electrolyte.
  • the electrode body 14 has a winding structure in which the positive electrode 11 and the negative electrode 12 are wound via a separator 13.
  • the battery case 15 includes a bottomed cylindrical outer can 16 and a sealing body 17 that closes an opening of the outer can 16.
  • the nonaqueous electrolyte secondary battery 10 includes a resin gasket 28 disposed between the outer can 16 and the sealing body 17.
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous solvent for example, esters, ethers, nitriles, amides, and a mixed solvent of two or more thereof may be used.
  • the non-aqueous solvent may contain a halogen-substituted product in which at least a part of hydrogen in these solvents is substituted with a halogen atom such as fluorine.
  • the non-aqueous electrolyte is not limited to a liquid electrolyte, and may be a solid electrolyte using a gel polymer or the like.
  • the electrolyte salt for example, a lithium salt such as LiPF 6 is used.
  • the electrode body 14 includes a long positive electrode 11, a long negative electrode 12, two long separators 13, a positive electrode tab 20 bonded to the positive electrode 11, and a negative electrode bonded to the negative electrode 12. And tab 21.
  • the negative electrode 12 is formed with a size slightly larger than that of the positive electrode 11 in order to prevent lithium deposition. That is, the negative electrode 12 is formed longer than the positive electrode 11 in the longitudinal direction and the width direction (short direction).
  • the two separators 13 are formed so as to be at least one size larger than the positive electrode 11, and are disposed so as to sandwich the positive electrode 11, for example.
  • Insulating plates 18 and 19 are arranged above and below the electrode body 14, respectively.
  • the positive electrode tab 20 attached to the positive electrode 11 extends to the sealing body 17 side through the through hole of the insulating plate 18, and the negative electrode tab 21 attached to the negative electrode 12 passes through the outside of the insulating plate 19.
  • the positive electrode tab 20 is connected to the lower surface of the filter 23 which is the bottom plate of the sealing body 17 by welding or the like, and the cap 27 which is the top plate of the sealing body 17 electrically connected to the filter 23 serves as a positive electrode terminal.
  • the negative electrode tab 21 is connected to the bottom inner surface of the outer can 16 by welding or the like, and the outer can 16 serves as a negative electrode terminal.
  • the outer can 16 is, for example, a bottomed cylindrical metal container. As described above, the gasket 28 is provided between the outer can 16 and the sealing body 17, and the internal space of the battery case 15 is sealed.
  • the outer can 16 has a grooving portion 22 that supports the sealing body 17 formed by pressing a side surface portion from the outside, for example.
  • the grooving portion 22 is preferably formed in an annular shape along the circumferential direction of the outer can 16, and supports the sealing body 17 on its upper surface. Further, the upper end portion of the outer can 16 is bent inward and crimped to the peripheral edge portion of the sealing body 17.
  • the sealing body 17 has a structure in which a filter 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are laminated in this order from the electrode body 14 side.
  • Each member which comprises the sealing body 17 has disk shape or a ring shape, for example, and each member except the insulating member 25 is electrically connected mutually.
  • the lower valve body 24 and the upper valve body 26 are connected to each other at the center, and an insulating member 25 is interposed between the peripheral edges.
  • the positive electrode 11 has a positive electrode current collector and a positive electrode mixture layer formed on both surfaces of the positive electrode current collector.
  • a positive electrode current collector a metal foil that is stable in the potential range of the positive electrode 11 such as aluminum, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the positive electrode mixture layer includes a positive electrode active material, a conductive material, and a binder.
  • the positive electrode 11 is formed by, for example, applying a positive electrode mixture slurry containing a positive electrode active material, a conductive material, and a binder on a positive electrode current collector, drying the coating film, and then compressing the positive electrode mixture layer to form a positive electrode It can be produced by forming on both sides of the current collector.
  • the positive electrode active material is composed mainly of a lithium metal composite oxide.
  • metal elements contained in the lithium metal composite oxide include Ni, Co, Mn, Al, B, Mg, Ti, V, Cr, Fe, Cu, Zn, Ga, Sr, Zr, Nb, In, Sn, Ta, W, etc. are mentioned.
  • An example of a suitable lithium metal composite oxide is a composite oxide containing at least one of Ni, Co, Mn, and Al.
  • inorganic compound particles such as aluminum oxide and a lanthanoid-containing compound may be fixed to the surface of the lithium metal composite oxide particles.
  • Examples of the conductive material contained in the positive electrode mixture layer include carbon materials such as carbon black, acetylene black, ketjen black, and graphite.
  • Examples of the binder contained in the positive electrode mixture layer include fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resin, acrylic resin, polyolefin resin, and the like. . These resins may be used in combination with cellulose derivatives such as carboxymethyl cellulose (CMC) or a salt thereof, polyethylene oxide (PEO), and the like.
  • CMC carboxymethyl cellulose
  • PEO polyethylene oxide
  • the negative electrode 12 includes a negative electrode current collector and a negative electrode mixture layer formed on both surfaces of the negative electrode current collector.
  • a metal foil that is stable in the potential range of the negative electrode 12 such as copper, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the negative electrode mixture layer includes a negative electrode active material and a binder.
  • the negative electrode 12 is formed by, for example, applying a negative electrode mixture slurry containing a negative electrode active material and a binder on a negative electrode current collector, drying the coating film, and then compressing the negative electrode mixture layer to form a negative electrode current collector. It can produce by forming on both surfaces.
  • the negative electrode mixture layer includes a carbon material and a silicon compound that reversibly occlude and release lithium ions as a negative electrode active material.
  • a suitable carbon material is graphite such as natural graphite such as flaky graphite, massive graphite and earthy graphite, and artificial graphite such as massive artificial graphite (MAG) and graphitized mesophase carbon microbeads (MCMB).
  • the content of the silicon compound in the negative electrode mixture layer is, for example, 1 to 15% by mass, preferably 5 to 10% by mass with respect to the total mass of the negative electrode active material.
  • the mixing ratio of the silicon compound and graphite is, for example, 1:99 to 15:85 by mass ratio, and preferably 5:95 to 10:90.
  • the negative electrode active material a metal alloyed with lithium other than Si, an alloy containing the metal, a compound containing the metal, or the like may be used.
  • a material with low conductivity such as lithium titanate as the negative electrode active material, a conductive material such as carbon black may be added to the negative electrode mixture layer.
  • Examples of the silicon compound include silicon oxide represented by SiO x .
  • the silicon oxide represented by SiO x has a structure in which, for example, Si fine particles are dispersed in an amorphous SiO 2 matrix.
  • An example of a suitable silicon oxide is SiO x (0.5 ⁇ x ⁇ 1.6).
  • the silicon compound may be a composite particle in which fine particles of Si are dispersed in a lithium silicate (Li 2y SiO (2 + y) (0 ⁇ y ⁇ 2)) phase.
  • a conductive film made of a material having higher conductivity than silicon oxide is formed on the surface of silicon oxide particles represented by SiO x .
  • the constituent material of the conductive film include at least one selected from a carbon material, a metal, and a metal compound. Among these, a carbon material such as amorphous carbon is preferable.
  • the carbon coating can be formed by, for example, a CVD method using acetylene, methane, or the like, a method in which coal pitch, petroleum pitch, phenol resin, or the like is mixed with SiO x particles and subjected to heat treatment.
  • the conductive coating may be formed by fixing a conductive filler such as carbon black to the SiO x particle surface using a binder.
  • the conductive film is formed, for example, at 0.5 to 10% by mass with respect to the mass of the SiO x particles.
  • a fluorine resin, a PAN, a polyimide resin, an acrylic resin, a polyolefin resin, or the like can be used for the binder contained in the negative electrode mixture layer.
  • CMC or a salt thereof, a styrene-butadiene rubber (SBR) dispersion, polyacrylic acid (PAA) or a salt thereof, polyvinyl alcohol, or the like.
  • the separator 13 a porous sheet having ion permeability and insulating properties is used. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric.
  • an olefin resin such as polyethylene or polypropylene, cellulose, or the like is preferable.
  • the separator 13 may have either a single layer structure or a laminated structure. A heat resistant layer or the like may be formed on the surface of the separator 13.
  • FIG. 3 is a graph showing the relationship between battery capacity, charging current, and dQ Si / dQ.
  • Q means the rated capacity of the battery
  • Q Si means the capacity derived from the silicon compound.
  • the rated capacity Q is, for example, 3000 mAh to 6000 mAh.
  • the negative electrode 12 serves as a capacity regulating electrode
  • the negative electrode capacity serves as the battery capacity. This charging method is particularly suitable when I max described later is 0.5C or more, or 0.7C or more.
  • the non-aqueous electrolyte secondary battery 10 has a battery capacity Q 1st satisfying the following formula 1 as a first constant current when the ratio of the capacity of the silicon compound to the rated capacity Q is x (0.1 ⁇ x ⁇ 0.5).
  • Formula 1 0.38x + 0.063- ⁇ 1 ⁇ Q 1st /Q ⁇ 0.38x+0.063+ ⁇ 1
  • ⁇ 1 is preferably 0.1, and more preferably 0.05.
  • the amount of change in capacity Q Si (dQ Si / dQ) derived from the silicon compound is large in the charging region of the battery capacity Q 1st , and lithium ions are more easily stored in the silicon compound than graphite.
  • Formula 1 is an empirical formula obtained from an experiment of the dQSi / dQ value of OCV obtained when the Si capacity ratio is changed.
  • the capacity ratio x of the silicon compound with respect to the rated capacity Q (negative electrode capacity) is obtained by detecting dV / dQ indicating the voltage change amount dV with respect to the capacity change amount dQ for a predetermined time.
  • the non-aqueous electrolyte secondary battery 10 is further charged with a value greater than the first constant current value I 1st and greater than the current value I max of the large current charging step between the first charging step and the large current charging step. It is preferable to provide a second charging step for charging with a small second constant current value I 2nd . That is, when the battery capacity reaches Q 1st and the first charging step ends, the second charging step is executed. In the second charging step, the battery capacity Q 2nd satisfying the following formula 2 is charged with the second constant current value I 2nd . Equation 2 is an empirical equation similar to Equation 1.
  • Formula 2 0.13x + 0.173 ⁇ 2 ⁇ Q 2nd /Q ⁇ 0.13x+0.173+ ⁇ 2
  • ⁇ 2 is preferably 0.1, and more preferably 0.05.
  • the amount of change in the capacity Q Si is large in the charging region of the battery capacity Q 2nd , and lithium ions are more easily stored in the silicon compound than graphite.
  • the amount of change in the capacitance Q Si than charging region of the charging capacity Q 1st in charging area of the battery capacity Q 2nd small, it is preferable to increase the efficiency of charging as I 1st ⁇ I 2nd.
  • the range of the battery capacity Q 1st corresponds to the first peak width
  • the range of the battery capacity Q 2nd corresponds to the second peak width.
  • Formula 3 is an empirical formula similar to Formulas 1 and 2.
  • Formula 3 82 / (81.8x + 64) ⁇ (0.3 / 0.7) ⁇ 3 ⁇ I 1st / I max ⁇ 82 / (81.8x + 64) ⁇ (0.3 / 0.7) + ⁇ 3
  • ⁇ 3 is preferably 0.3, and more preferably 0.2.
  • Equation 4 is an empirical equation similar to Equations 1-3.
  • ⁇ 4 is preferably 0.3, and more preferably 0.2.
  • a large current charging step is performed in which charging is performed at a constant current value I max.
  • I max is the maximum charging current in a plurality of charging steps.
  • the large current charging step ends when the battery voltage reaches a predetermined threshold value (for example, 4.2 V). Thereafter, CV charging (constant voltage charging step) is performed until the current reaches a predetermined threshold at a predetermined battery voltage (for example, 4.2 V).
  • FIG. 4 is a flowchart showing an example of a control procedure in the above charging method.
  • charge control will be described by taking as an example a case where the remaining capacity of the nonaqueous electrolyte secondary battery 10 is lower than the start level of CV charging.
  • the charging control device 2 estimates the SOC (remaining capacity) of the battery from the detection information such as the battery voltage acquired by the battery monitoring unit 3.
  • the remaining capacity of the battery is below the Q 1st, it executes the first charging step of charging the first constant current value I 1st until the battery capacity reaches Q 1st (S12).
  • the first charging step is executed by the function of the first charging control means 4.
  • the second charging step of charging at the second constant current value I 2nd is executed until the battery capacity reaches Q 2nd (S13).
  • the second charging step is executed by the function of the second charging control means 5.
  • a large current charging step of charging at a constant current value I max is executed until the battery voltage reaches a predetermined threshold (S14, S15).
  • the large current charging step is executed by the function of the large current charging control means 6. That is, in the present embodiment, three-stage CC charging is performed until the battery voltage reaches a predetermined threshold value.
  • a constant voltage charging step for performing CV charging is executed until the current reaches the predetermined threshold value (S16).
  • the constant voltage charging step is executed by the function of the constant voltage charging control means 7.
  • Example 1 [Production of positive electrode]
  • the positive electrode active material a composite oxide represented by LiNi 0.82 Co 0.15 Al 0.03 O 2 was used. 100 parts by mass of the positive electrode active material, 1 part by mass of acetylene black, and 0.9 part by mass of polyvinylidene fluoride were mixed, and an appropriate amount of N-methyl-2-pyrrolidone was added to prepare a positive electrode mixture slurry. Next, the said positive electrode compound-material slurry was apply
  • An exposed portion in which the composite layer does not exist and the surface of the current collector is exposed is provided at one end in the longitudinal direction of the negative electrode (the end located on the end of winding of the electrode body), and a negative electrode tab made of nickel is welded to the exposed portion .
  • the positive electrode and the negative electrode were wound around a core through a separator made of a polyethylene microporous film, and then the core was removed to prepare a wound electrode body.
  • the electrode body was inserted into an iron cylindrical outer can, and the negative electrode tab was resistance-welded to the bottom inner surface of the outer can.
  • the positive electrode tab is welded to the sealing body, the opening of the outer can is sealed with the sealing body, and a cylinder having a diameter of 18 mm, a height of 65 mm, and a rated capacity Q of 3350 mAh.
  • a nonaqueous electrolyte secondary battery of the shape was produced.
  • the capacity ratio x of SiO x to the rated capacity Q was 0.21.
  • Examples 2 to 4 CC-CV charging was performed in the same manner as in Example 1 except that the charging conditions were changed to the conditions shown in Table 1.
  • the first charging step that satisfies the above-described equations 1 and 3 the second charging step that satisfies the above-described equations 2 and 4, and the large current charging step were executed.
  • CC-CV charging was performed in the same manner as in Example 1 except that one-stage CC charging was performed under the charging conditions shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

非水電解質二次電池の充電方法は、定格容量Qに対するケイ素化合物の容量の比率をx(0.1≦x≦0.5)としたとき、下記式を満たす第1定電流値I1stで充電する第1充電ステップと、第1充電ステップ終了後、第1定電流値I1stよりも大きな定電流値Imaxで充電する大電流充電ステップとを有する。 式:82/(81.8x+64)×(0.3/0.7)-α ≦I1st/Imax≦82/(81.8x+64)×(0.3/0.7)+α (α=0.3)

Description

非水電解質二次電池の充電方法、及び非水電解質二次電池の充電システム
 本開示は、非水電解質二次電池の充電方法、及び非水電解質二次電池の充電システムに関する。
 SiOxで表される酸化ケイ素などのケイ素化合物は、黒鉛などの炭素材料と比べて単位体積当りに多くのリチウムイオンを吸蔵できることが知られている。例えば、特許文献1には、負極活物質として黒鉛及びケイ素化合物を用いた非水電解質二次電池が開示されている。また、特許文献2には、充放電サイクルの初期不可逆容量の低減を目的とした二次電池の充電方法が開示されている。
特開2010-212228号公報 特開2000-106219号公報
 ところで、ケイ素化合物を含む負極を備えた非水電解質二次電池において、充電電流を増大させると、例えばケイ素化合物の割れが発生して劣化が進み、良好なサイクル特性を確保することが難しくなる。他方、充電電流を低く抑えると、長い充電時間が必要となる。本開示の目的は、炭素材料及びケイ素化合物を含む負極を備えた非水電解質二次電池において、良好なサイクル特性を確保しつつ、効率の良い充電を可能とする充電方法を提供することである。
 本開示の一態様である非水電解質二次電池の充電方法は、負極活物質として炭素材料及びケイ素化合物を含む負極を備えた非水電解質二次電池の充電方法であって、定格容量Qに対する前記ケイ素化合物の容量の比率をx(0.1≦x≦0.5)としたとき、下記式を満たす第1定電流値I1stで充電する第1充電ステップと、前記第1充電ステップ終了後、前記第1定電流値I1stよりも大きな定電流値Imaxで充電する大電流充電ステップとを有することを特徴とする。
 式:82/(81.8x+64)×(0.3/0.7)-α
 ≦I1st/Imax≦82/(81.8x+64)×(0.3/0.7)+α
 (α=0.3)
 本開示の一態様である非水電解質二次電池の充電システムは、負極活物質として炭素材料及びケイ素化合物を含む負極を備えた非水電解質二次電池を充電する充電システムであって、上記充電方法を実行する充電制御装置を備えることを特徴とする。
 本開示の一態様によれば、炭素材料及びケイ素化合物を含む負極を備えた非水電解質二次電池において、良好なサイクル特性を確保しつつ、効率の良い充電を可能とする充電方法を提供できる。つまり、本開示に係る充電方法によれば、短時間での充電が可能でありながら、サイクル特性の低下を抑制できる。
実施形態の一例である非水電解質二次電池の充電システムの構成を示すブロック図である。 実施形態の一例である非水電解質二次電池の断面図である。 実施形態の一例である非水電解質二次電池の充電方法を説明するための図である。 非水電解質二次電池の充電制御手順の一例を示すフローチャートである。
 炭素材料及びケイ素化合物を含む負極を備えた非水電解質二次電池において、短時間で効率良く充電でき、かつサイクル特性の劣化を抑えることが可能な充電方法を提供することは重要な課題である。本発明者らは、電池の充電時においてケイ素化合物に由来する容量変化が大きな領域、即ち炭素材料よりもケイ素化合物にリチウムイオンが吸蔵され易い領域を明らかにし、当該領域のみに上記式に基づく緩和された充電条件を適用することで、サイクル特性の劣化を効率良く抑制することに成功した。
 以下、本開示の実施形態の一例について詳細に説明する。以下では、巻回型の電極体14が円筒形状の電池ケース15に収容された円筒形電池を例示するが、電池ケースは円筒形に限定されず、例えば角形であってもよく、金属層及び樹脂層を含むラミネートシートで構成された電池ケースであってもよい。また、電極体は、複数の正極と複数の負極がセパレータを介して交互に積層された積層型であってもよい。なお、本開示に係る充電方法が適用できる非水電解質二次電池は、負極活物質として炭素材料及びケイ素化合物を含む負極を備えた電池であればよい。
 図1は、実施形態の一例である非水電解質二次電池の充電システム1の構成を示すブロック図である。図1に例示するように、充電システム1は、非水電解質二次電池10の充電を制御する充電制御装置2と、電池の充電状態を監視する電池監視ユニット3とを備える。非水電解質二次電池10は、負荷101に接続され、負荷101に蓄えた電力を供給する。充電システム1は、複数の非水電解質二次電池10が直列、並列、又は直並列接続された組電池(電池パック、又は電池モジュールとも呼ばれる)を備えていてもよい。
 充電システム1は、負極活物質として炭素材料及びケイ素化合物を含む非水電解質二次電池の充電装置、充電設備に広く適用でき、例えば電気自動車、ハイブリッド自動車等の車両、車両用充電設備、蓄電設備、電動工具用充電器など、種々の装置、設備に適用できる。充電制御装置2は、電池モジュールに組み込まれていてもよく、充電システム1が搭載される車両等の装置、設備の制御装置の一部として構成されていてもよい。
 充電制御装置2は、後述の充電方法を実行する装置である。充電制御装置2は、電池を充電する際に、電池監視ユニット3から取得した電池の充電状態に基づいて電池の充電条件を決定する。詳しくは後述するが、充電制御装置2は、第1充電ステップを実行する第1充電制御手段4、第2充電ステップを実行する第2充電制御手段5、大電流充電ステップを実行する大電流充電制御手段6、及び定電圧充電ステップを実行する定電圧充電制御手段7を有する。充電制御装置2は、例えば整流回路を有し、電源100の交流電力を所定の直流電力に変換して非水電解質二次電池10に供給する。
 充電制御装置2は、例えばICチップ、LSIチップ等の集積回路で構成され、演算処理部であるCPUと、記憶部8とを有する。CPUは、記憶部8に予め記憶されたプログラム等を読み出して実行する機能を有する。記憶部8は、読み出したプログラム、処理データ等を一時的に記憶する機能と、制御プログラム、閾値等を記憶する機能とを有する。上記各充電制御手段の機能は、例えば記憶部8に記憶された制御プログラムを実行することで実現される。
 また、充電制御装置2は、所定の電流値の直流電力が電池に供給されるように充電電流を制御する定電流回路、所定の電圧値の直流電力が電池に供給されるように充電電圧を制御する定電圧回路等を有する。なお、整流回路、定電流回路、定電圧回路等の充電回路は、充電制御装置2と別の装置として構成されていてもよい。充電制御装置2は、電池監視ユニット3から取得した電池の充電状態に基づいて充電回路を制御し、非水電解質二次電池10の充電を実行する。
 電池監視ユニット3は、例えば非水電解質二次電池10に供給される充電電流、及び電池電圧を検出する。充電制御装置2は、電池監視ユニット3により取得された電池電圧から充電率(SOC)を推定し、SOCに基づいて充電制御を実行する。なお、充放電電流と充放電時間からSOCを推定することもできる。SOCの推定方法には、従来公知の手法を適用できる。充電制御装置2は、電池電圧が所定の電圧に達するまでは複数のステップを含む定電流充電(CC充電)を行い、その後、定電圧充電(CV充電)を行うことが好ましい。
 [非水電解質二次電池]
 図2は、実施形態の一例である非水電解質二次電池10の断面図である。図2に例示するように、非水電解質二次電池10は、電極体14と、非水電解質(図示せず)と、電極体14及び非水電解質を収容する電池ケース15とを備える。電極体14は、正極11と負極12がセパレータ13を介して巻回されてなる巻回構造を有する。電池ケース15は、有底筒状の外装缶16と、外装缶16の開口部を塞ぐ封口体17とで構成される。また、非水電解質二次電池10は、外装缶16と封口体17との間に配置される樹脂製のガスケット28を備える。
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えばエステル類、エーテル類、ニトリル類、アミド類、及びこれらの2種以上の混合溶媒等を用いてもよい。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。なお、非水電解質は液体電解質に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。電解質塩には、例えばLiPF6等のリチウム塩が使用される。
 電極体14は、長尺状の正極11と、長尺状の負極12と、長尺状の2枚のセパレータ13と、正極11に接合された正極タブ20と、負極12に接合された負極タブ21とで構成される。負極12は、リチウムの析出を防止するために、正極11よりも一回り大きな寸法で形成される。即ち、負極12は、正極11より長手方向及び幅方向(短手方向)に長く形成される。2枚のセパレータ13は、少なくとも正極11よりも一回り大きな寸法で形成され、例えば正極11を挟むように配置される。
 電極体14の上下には、絶縁板18,19がそれぞれ配置される。図2に示す例では、正極11に取り付けられた正極タブ20が絶縁板18の貫通孔を通って封口体17側に延び、負極12に取り付けられた負極タブ21が絶縁板19の外側を通って外装缶16の底部側に延びている。正極タブ20は封口体17の底板であるフィルタ23の下面に溶接等で接続され、フィルタ23と電気的に接続された封口体17の天板であるキャップ27が正極端子となる。負極タブ21は外装缶16の底部内面に溶接等で接続され、外装缶16が負極端子となる。
 外装缶16は、例えば有底円筒形状の金属製容器である。上述のように、外装缶16と封口体17との間にはガスケット28が設けられ、電池ケース15の内部空間が密閉される。外装缶16は、例えば側面部を外側からプレスして形成された、封口体17を支持する溝入れ部22を有する。溝入れ部22は、外装缶16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。また、外装缶16の上端部は、内側に折り曲げられ封口体17の周縁部に加締められている。
 封口体17は、電極体14側から順に、フィルタ23、下弁体24、絶縁部材25、上弁体26、及びキャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続されている。下弁体24と上弁体26は各々の中央部で互いに接続され、各々の周縁部の間には絶縁部材25が介在している。異常発熱で電池の内圧が上昇すると、下弁体24が上弁体26をキャップ27側に押し上げるように変形して破断することにより、下弁体24と上弁体26の間の電流経路が遮断される。さらに内圧が上昇すると、上弁体26が破断し、キャップ27の開口部からガスが排出される。
 [正極]
 正極11は、正極集電体と、正極集電体の両面に形成された正極合材層とを有する。正極集電体には、アルミニウムなど正極11の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合材層は、正極活物質、導電材、及び結着材を含む。正極11は、例えば正極集電体上に正極活物質、導電材、及び結着材等を含む正極合材スラリーを塗布し、塗膜を乾燥させた後、圧縮して正極合材層を正極集電体の両面に形成することにより作製できる。
 正極活物質は、リチウム金属複合酸化物を主成分として構成される。リチウム金属複合酸化物に含有される金属元素としては、Ni、Co、Mn、Al、B、Mg、Ti、V、Cr、Fe、Cu、Zn、Ga、Sr、Zr、Nb、In、Sn、Ta、W等が挙げられる。好適なリチウム金属複合酸化物の一例は、Ni、Co、Mn、Alの少なくとも1種を含有する複合酸化物である。なお、リチウム金属複合酸化物の粒子表面には、酸化アルミニウム、ランタノイド含有化合物等の無機化合物粒子などが固着していてもよい。
 正極合材層に含まれる導電材としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料が例示できる。正極合材層に含まれる結着材としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド樹脂、アクリル樹脂、ポリオレフィン樹脂などが例示できる。これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩等のセルロース誘導体、ポリエチレンオキシド(PEO)等が併用されてもよい。
 [負極]
 負極12は、負極集電体と、負極集電体の両面に形成された負極合材層とを有する。負極集電体には、銅など負極12の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極合材層は、負極活物質、及び結着材を含む。負極12は、例えば負極集電体上に負極活物質、及び結着材等を含む負極合材スラリーを塗布し、塗膜を乾燥させた後、圧縮して負極合材層を負極集電体の両面に形成することにより作製できる。
 負極合材層には、負極活物質として、リチウムイオンを可逆的に吸蔵、放出する炭素材料及びケイ素化合物が含まれる。好適な炭素材料は、天鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛(MAG)、黒鉛化メソフェーズカーボンマイクロビーズ(MCMB)等の人造黒鉛などの黒鉛である。負極合材層におけるケイ素化合物の含有量は、負極活物質の総質量に対して、例えば1~15質量%であり、好ましくは5~10質量%である。ケイ素化合物と黒鉛との混合比率は、例えば質量比で1:99~15:85であり、好ましくは5:95~10:90である。
 なお、負極活物質には、Si以外のリチウムと合金化する金属、当該金属を含有する合金、当該金属を含有する化合物等が用いられてもよい。負極活物質としてチタン酸リチウム等の導電性の低い材料を用いる場合は、負極合材層にカーボンブラック等の導電材を添加してもよい。
 ケイ素化合物としては、SiOxで表される酸化ケイ素が例示される。SiOxで表される酸化ケイ素は、例えば非晶質のSiO2マトリックス中にSiの微粒子が分散した構造を有する。好適な酸化ケイ素の一例は、SiOx(0.5≦x≦1.6)である。ケイ素化合物は、リチウムシリケート(Li2ySiO(2+y)(0<y<2))相中にSiの微粒子が分散した複合粒子であってもよい。
 SiOxで表される酸化ケイ素の粒子表面には、酸化ケイ素よりも導電性の高い材料で構成される導電被膜が形成されていることが好ましい。導電被膜の構成材料としては、炭素材料、金属、及び金属化合物から選択される少なくとも1種が例示できる。中でも、非晶質炭素等の炭素材料が好ましい。炭素被膜は、例えばアセチレン、メタン等を用いたCVD法、石炭ピッチ、石油ピッチ、フェノール樹脂等をSiOx粒子と混合し、熱処理を行う方法などで形成できる。また、カーボンブラック等の導電フィラーを結着材を用いてSiOxの粒子表面に固着させることで導電被膜を形成してもよい。導電被膜は、例えばSiOx粒子の質量に対して0.5~10質量%で形成される。
 負極合材層に含まれる結着材には、正極11の場合と同様に、フッ素樹脂、PAN、ポリイミド樹脂、アクリル樹脂、ポリオレフィン樹脂等を用いることができる。水系溶媒を用いて合材スラリーを調製する場合は、CMC又はその塩、スチレン-ブタジエンゴム(SBR)のディスパージョン、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコールなどを用いることが好ましい。
 [セパレータ]
 セパレータ13には、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ13の材質としては、ポリエチレン、ポリプロピレン等のオレフィン樹脂、セルロースなどが好適である。セパレータ13は、単層構造、積層構造のいずれであってもよい。セパレータ13の表面には、耐熱層などが形成されていてもよい。
 以下、図3を適宜参照しながら、非水電解質二次電池10の充電方法について詳説する。図3は、電池容量、充電電流、及びdQSi/dQの関係を示すグラフである。ここで、Qは電池の定格容量、QSiはケイ素化合物に由来する容量を意味する。定格容量Qは、例えば3000mAh~6000mAhである。一般的に、非水電解質二次電池10では、負極12が容量規制極となるので、負極容量が電池容量となる。本充電方法は、後述のImaxが0.5C以上、又は0.7C以上である場合に特に好適である。
 非水電解質二次電池10は、定格容量Qに対するケイ素化合物の容量の比率をx(0.1≦x≦0.5)としたとき、下記式1を満たす電池容量Q1stを第1定電流値I1stで充電する第1充電ステップと、第1充電ステップ終了後、第1定電流値I1stよりも大きな定電流値Imaxで充電する大電流充電ステップとを有する、少なくとも2段の定電流充電ステップを経て充電される。
 式1:0.38x+0.063-α1≦Q1st/Q≦0.38x+0.063+α1
 ここで、α1は0.1が好ましく、0.05がより好ましい。
 図3に示すように、電池容量Q1stの充電領域ではケイ素化合物に由来する容量QSiの変化量(dQSi/dQ)が大きく、黒鉛よりもケイ素化合物にリチウムイオンが吸蔵され易い。当該領域において電流値を低く抑えた定電流充電を実行することで、ケイ素化合物の割れを抑制でき、良好なサイクル特性を維持できる。式1は、Si容量比率を変えた際に得られるOCVのdQSi/dQの値の実験から求められた実験式である。定格容量Q(負極容量)に対するケイ素化合物の容量比率xは、所定時間の容量変化量dQに対する電圧変化量dVを示すdV/dQを検出することにより求められる。
 非水電解質二次電池10の充電には、さらに、第1充電ステップと大電流充電ステップとの間に、第1定電流値I1stよりも大きく、大電流充電ステップの電流値Imaxよりも小さな第2定電流値I2ndで充電する第2充電ステップを設けることが好ましい。即ち、電池容量がQ1stに達して第1充電ステップが終了したときに、第2充電ステップを実行する。第2充電ステップでは、下記式2を満たす電池容量Q2ndを第2定電流値I2ndで充電する。式2は、式1と同様の実験式である。
 式2:0.13x+0.173-α2≦Q2nd/Q≦0.13x+0.173+α2
 ここで、α2は0.1が好ましく、0.05がより好ましい。
 図3に示すように、電池容量Q2ndの充電領域では容量QSiの変化量が大きく、黒鉛よりもケイ素化合物にリチウムイオンが吸蔵され易い。電池容量Q2ndの充電領域において電流値を低く抑えた定電流充電を実行することで、ケイ素化合物の割れを抑制でき、良好なサイクル特性を維持できる。他方、電池容量Q2ndの充電領域では充電容量Q1stの充電領域と比べると容量QSiの変化量が小さいので、I1st<I2ndとして充電の効率を高めることが好ましい。図3に例示するように、非水電解質二次電池10の充電初期には、dQSi/dQのピークが2つ存在する。電池容量Q1stの範囲は1つ目のピーク幅に対応し、電池容量Q2ndの範囲は2つ目のピーク幅に対応する。
 第1充電ステップでは、下記式3を満たす第1定電流値I1stで充電することが好ましい。式3は、式1,2と同様の実験式である。
 式3:82/(81.8x+64)×(0.3/0.7)-α3
 ≦I1st/Imax≦82/(81.8x+64)×(0.3/0.7)+α3
 ここで、α3は0.3が好ましく、0.2がより好ましい。
 容量QSiの変化量が大きく、黒鉛よりもケイ素化合物にリチウムイオンが吸蔵され易い充電初期において、電流値をI1stに抑えた定電流充電を実行することで、ケイ素化合物の割れを抑制でき、良好なサイクル特性を維持できる。
 また、第2充電ステップでは、下記式4を満たす第2定電流値I2ndで充電することが好ましい。式4は、式1~3と同様の実験式である。
 式:36/(122.4x+10.9)×(0.5/0.7)-α4
 ≦I2nd/Imax≦36/(122.4x+10.9)×(0.5/0.7)+α4
 ここで、α4は0.3が好ましく、0.2がより好ましい。
 容量QSiの変化量が大きく、黒鉛よりもケイ素化合物にリチウムイオンが吸蔵され易い充電初期において、電流値をI2ndに抑えた定電流充電を実行することで、ケイ素化合物の割れを抑制でき、良好なサイクル特性を維持できる。
 本充電方法では、電池容量がQ1stに達したとき、又は第2充電ステップを実行する場合は電池容量がQ2ndに達したときに、定電流値Imaxで充電する大電流充電ステップを実行する。Imaxは、複数の充電ステップにおいて最大の充電電流である。容量QSiの変化量が小さな充電領域では、電流量を増大させてImaxで充電することにより、充電時間の短縮を図ることができる。大電流充電ステップは、電池電圧が所定の閾値(例えば、4.2V)に達したときに終了する。その後、所定の電池電圧(例えば、4.2V)で電流が所定の閾値に達するまでCV充電(定電圧充電ステップ)を実行する。
 図4は、上記充電方法における制御手順の一例を示すフローチャートである。ここでは、非水電解質二次電池10の残容量がCV充電の開始レベルよりも少ない場合を例に挙げて充電制御の具体例を説明する。
 図4に例示するように、電池の充電を行う際には、まず電池の残容量を確認する(S10,S11)。例えば、充電制御装置2は、電池監視ユニット3により取得された電池電圧等の検出情報から電池のSOC(残容量)を推定する。そして、電池の残容量が上記Q1st以下である場合、電池容量がQ1stに達するまで第1定電流値I1stで充電する第1充電ステップを実行する(S12)。第1充電ステップは、第1充電制御手段4の機能により実行される。
 他方、電池の残容量が上記Q1st以上Q2nd以下である場合は、電池容量がQ2ndに達するまで第2定電流値I2ndで充電する第2充電ステップを実行する(S13)。第2充電ステップは、第2充電制御手段5の機能により実行される。そして、電池の残容量がQ2ndに達したことを条件として、電池電圧が所定の閾値に達するまで定電流値Imaxで充電する大電流充電ステップを実行する(S14,S15)。大電流充電ステップは、大電流充電制御手段6の機能により実行される。即ち、本実施形態では、電池電圧が所定の閾値に達するまで、3段階のCC充電を実行する。
 電池電圧が所定の閾値に達した場合、電流が所定の閾値に達するまでCV充電する定電圧充電ステップを実行する(S16)。定電圧充電ステップは、定電圧充電制御手段7の機能により実行される。
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
 <実施例1>
 [正極の作製]
 正極活物質として、LiNi0.82Co0.15Al0.032で表される複合酸化物を用いた。正極活物質100質量部と、アセチレンブラック1質量部と、ポリフッ化ビニリデン0.9質量部とを混合し、N-メチル-2-ピロリドンを適量加えて、正極合材スラリーを調製した。次に、当該正極合材スラリーをアルミニウム箔からなる長尺状の正極集電体の両面に塗布し、塗膜を乾燥させた。乾燥した塗膜を圧縮した後、所定の電極サイズに切断し、正極集電体の両面に正極合材層が形成された正極を作製した。正極の長手方向中央部に、合材層が存在せず集電体表面が露出した露出部を設け、アルミニウム製の正極タブを露出部に溶接した。
 [負極の作製]
 負極活物質として、黒鉛粉末94質量部と、粒子表面に炭素被膜が形成されたSiO(SiOx、x=1)で表される酸化ケイ素を6質量部とを用いた。負極活物質100質量部と、カルボキシメチルセルロースナトリウム1.5質量部と、スチレン-ブタジエンゴムのディスパージョン1質量部とを混合し、水を適量加えて、負極合材スラリーを調製した。次に、当該負極合材スラリーを銅箔からなる長尺状の負極集電体の両面に塗布し、塗膜を乾燥させた。乾燥した塗膜を圧縮した後、所定の電極サイズに切断し、負極集電体の両面に負極合材層が形成された負極を作製した。負極の長手方向一端部(電極体の巻き終り側に位置する端部)に合材層が存在せず集電体表面が露出した露出部を設け、ニッケル製の負極タブを露出部に溶接した。
 [非水電解液の調製]
 エチレンカーボネート(EC)とジメチルカーボネート(DMC)とを、25:75の体積比(1気圧、25℃)で混合した混合溶媒に、LiPF6を濃度が1mol/Lとなるように溶解して、非水電解液を調製した。
 [非水電解質二次電池の作製]
 上記正極及び上記負極をポリエチレン製微多孔膜からなるセパレータを介して巻芯に巻回した後、巻芯を取り除いて巻回型の電極体を作製した。次に、鉄製の円筒形状の外装缶に電極体を挿入し、負極タブを外装缶の底部内面に抵抗溶接した。上記非水電解液を外装缶内に注入した後、正極タブを封口体に溶接し、封口体で外装缶の開口部を封口して、直径18mm、高さ65mm、定格容量Qが3350mAhの円筒形の非水電解質二次電池を作製した。定格容量Qに対するSiOxの容量比率xは0.21であった。
 [電池の初回充放電]
 室温環境下において、上記電池を、表1に示す充電条件で電池電圧が4.2VになるまでCC充電し、その後、4.2Vの定電圧で電流が168mAになるまでCV充電した。実施例1では、上記式1,3の条件を満たす第1充電ステップ、及び大電流充電ステップを実行した。充電後、電池を0.5Cの定電流で電池電圧が2.5Vとなるまで放電した。この充放電サイクルを100サイクル繰り返し、100サイクル目の電池容量を初回の電池容量で除した値を容量維持率として求めた。
 <実施例2~4>
 充電条件を表1に示す条件に変更したこと以外は、実施例1と同様にしてCC-CV充電を行った。実施例2~4では、上記式1,3の条件を満たす第1充電ステップ、上記式2,4の条件を満たす第2充電ステップ、及び大電流充電ステップを実行した。
 <比較例1,2>
 表1に示す充電条件で1段のCC充電を行ったこと以外は、実施例1と同様にしてCC-CV充電を行った。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1,2の充電プロファイルによれば、比較例2の場合と比べて容量維持率が高く、良好なサイクル特性を維持できる。また、実施例1,2では、充電時間が長い比較例1の場合と同様の容量維持率を実現できた。つまり、実施例1,2の充電プロファイルによれば、良好なサイクル特性を確保しつつ、効率良く充電できる。
 1 充電システム
 2 充電制御装置
 3 電池監視ユニット
 4 第1充電制御手段
 5 第2充電制御手段
 6 大電流充電制御手段
 7 定電圧充電制御手段
 8 記憶部
 10 非水電解質二次電池
 11 正極
 12 負極
 13 セパレータ
 14 電極体
 15 電池ケース
 16 外装缶
 17 封口体
 18,19 絶縁板
 20 正極タブ
 21 負極タブ
 22 溝入れ部
 23 フィルタ
 24 下弁体
 25 絶縁部材
 26 上弁体
 27 キャップ
 28 ガスケット
 100 電源
 101 負荷

Claims (3)

  1.  負極活物質として炭素材料及びケイ素化合物を含む負極を備えた非水電解質二次電池の充電方法であって、
     定格容量Qに対する前記ケイ素化合物の容量の比率をx(0.1≦x≦0.5)としたとき、下記式を満たす第1定電流値I1stで充電する第1充電ステップと、
     前記第1充電ステップ終了後、前記第1定電流値I1stよりも大きな定電流値Imaxで充電する大電流充電ステップと、
     を有する、非水電解質二次電池の充電方法。
     式:82/(81.8x+64)×(0.3/0.7)-α
     ≦I1st/Imax≦82/(81.8x+64)×(0.3/0.7)+α
     (α=0.3)
  2.  前記第1充電ステップと前記大電流充電ステップとの間に、下記式を満たす第2定電流値I2ndで充電する第2充電ステップをさらに有する、請求項1に記載の非水電解質二次電池の充電方法。
     式:36/(122.4x+10.9)×(0.5/0.7)-α
     ≦I2nd/Imax≦36/(122.4x+10.9)×(0.5/0.7)+α
  3.  負極活物質として炭素材料及びケイ素化合物を含む負極を備えた非水電解質二次電池を充電する充電システムであって、
     請求項1又は2に記載の充電方法を実行する充電制御装置を備えた、非水電解質二次電池の充電システム。
PCT/JP2019/002385 2018-02-28 2019-01-25 非水電解質二次電池の充電方法、及び非水電解質二次電池の充電システム WO2019167493A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980016169.7A CN111788735A (zh) 2018-02-28 2019-01-25 非水电解质二次电池的充电方法和非水电解质二次电池的充电系统
US16/975,820 US11949091B2 (en) 2018-02-28 2019-01-25 Charging method of non-aqueous electrolyte secondary battery, and charging system of non-aqueous electrolyte secondary battery
EP19761123.9A EP3761438A4 (en) 2018-02-28 2019-01-25 NON-AQUEOUS ELECTROLYTE RECHARGEABLE BATTERY CHARGING PROCESS, AND NON-AQUEOUS ELECTROLYTE RECHARGEABLE BATTERY CHARGING SYSTEM
JP2020502866A JPWO2019167493A1 (ja) 2018-02-28 2019-01-25 非水電解質二次電池の充電方法、及び非水電解質二次電池の充電システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018034957 2018-02-28
JP2018-034957 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019167493A1 true WO2019167493A1 (ja) 2019-09-06

Family

ID=67808831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002385 WO2019167493A1 (ja) 2018-02-28 2019-01-25 非水電解質二次電池の充電方法、及び非水電解質二次電池の充電システム

Country Status (5)

Country Link
US (1) US11949091B2 (ja)
EP (1) EP3761438A4 (ja)
JP (1) JPWO2019167493A1 (ja)
CN (1) CN111788735A (ja)
WO (1) WO2019167493A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106219A (ja) 1998-07-31 2000-04-11 Canon Inc 二次電池の充電方法及びその装置
JP2010212228A (ja) 2009-02-13 2010-09-24 Hitachi Maxell Ltd 非水二次電池
JP2015165482A (ja) * 2014-02-07 2015-09-17 信越化学工業株式会社 非水電解質二次電池用負極及び非水電解質二次電池

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156358U (ja) * 1983-04-06 1984-10-20 三洋電機株式会社 渦巻電極体を備えた非水電解液電池
JP3890185B2 (ja) * 2000-07-27 2007-03-07 松下電器産業株式会社 正極活物質およびこれを含む非水電解質二次電池
JP2003109672A (ja) * 2001-09-28 2003-04-11 Sony Corp 非水電解質電池の充電方法
JP2005032632A (ja) * 2003-07-08 2005-02-03 Hitachi Maxell Ltd 非水二次電池の製造方法
JP4222362B2 (ja) * 2005-11-17 2009-02-12 パナソニック電工株式会社 充電方法、充電回路、及び充電装置
JP4951547B2 (ja) * 2008-02-14 2012-06-13 ソニー株式会社 電池パック
EP2479834A1 (en) 2009-09-18 2012-07-25 Panasonic Corporation Nonaqueous electrolyte secondary battery charging method and charging device
JP4818491B2 (ja) 2009-12-14 2011-11-16 パナソニック株式会社 非水電解質二次電池の充電方法、及び電池パック
JP5975024B2 (ja) * 2011-05-27 2016-08-23 日本電気株式会社 負極にリチウムをドープ及び脱ドープする方法及びリチウム二次電池用負極の製造方法
KR101491712B1 (ko) * 2011-09-27 2015-02-09 히다치 막셀 가부시키가이샤 리튬 이온 이차 전지의 충전 방법
WO2013094668A1 (ja) * 2011-12-22 2013-06-27 三洋電機株式会社 非水電解質二次電池
WO2014010312A1 (ja) * 2012-07-12 2014-01-16 日産自動車株式会社 二次電池の充電制御方法および充電制御装置
JP6225588B2 (ja) 2013-09-17 2017-11-08 ソニー株式会社 蓄電装置および蓄電装置の制御方法
EP3076478B1 (en) * 2013-11-29 2019-06-05 Hitachi Automotive Systems, Ltd. Battery module and assembled battery
WO2016009590A1 (ja) * 2014-07-15 2016-01-21 信越化学工業株式会社 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
CN107431250B (zh) * 2015-03-13 2020-08-18 三洋电机株式会社 非水电解质二次电池
JP6386414B2 (ja) * 2015-04-22 2018-09-05 信越化学工業株式会社 非水電解質二次電池用負極活物質及びその製造方法、並びにその負極活物質を用いた非水電解質二次電池及び非水電解質二次電池用負極材の製造方法
CN109075376B (zh) * 2016-04-28 2020-05-08 远景Aesc 日本有限公司 非水电解质二次电池
KR102270155B1 (ko) * 2016-07-21 2021-06-28 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
CN115863618A (zh) * 2016-11-22 2023-03-28 三菱化学株式会社 非水二次电池用负极材料、非水二次电池用负极及非水二次电池
EP3761426A4 (en) * 2018-02-27 2021-04-28 Panasonic Intellectual Property Management Co., Ltd. SECONDARY CELL WITH ANHYDROUS ELECTROLYTE
US11811255B2 (en) * 2018-02-28 2023-11-07 Panasonic Intellectual Property Management Co., Ltd. Charging method of non-aqueous electrolyte secondary battery, and charging system of non-aqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106219A (ja) 1998-07-31 2000-04-11 Canon Inc 二次電池の充電方法及びその装置
JP2010212228A (ja) 2009-02-13 2010-09-24 Hitachi Maxell Ltd 非水二次電池
JP2015165482A (ja) * 2014-02-07 2015-09-17 信越化学工業株式会社 非水電解質二次電池用負極及び非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3761438A4

Also Published As

Publication number Publication date
US20200403220A1 (en) 2020-12-24
EP3761438A1 (en) 2021-01-06
EP3761438A4 (en) 2021-06-02
CN111788735A (zh) 2020-10-16
JPWO2019167493A1 (ja) 2021-03-11
US11949091B2 (en) 2024-04-02

Similar Documents

Publication Publication Date Title
KR102633418B1 (ko) 비수전해질 이차 전지용 부극 활물질 및 비수전해질 이차 전지, 그리고 비수전해질 이차 전지용 부극재의 제조 방법
KR102237266B1 (ko) 비수전해질 이차 전지용 부극 및 비수전해질 이차 전지
JP2008177346A (ja) エネルギー貯蔵デバイス
US11448702B2 (en) Charging method for nonaqueous electrolyte secondary cell and charging system for nonaqueous electrolyte secondary cell
JP2012015051A (ja) リチウムイオン二次電池、及びリチウムイオン二次電池用負極
JP6163920B2 (ja) 電池の製造方法
JP7136017B2 (ja) 非水電解質二次電池
JP2017091886A (ja) 非水電解液二次電池
WO2022163456A1 (ja) 非水電解質二次電池の充電方法、及び、充放電方法、並びに、非水電解質二次電池の充電システム
JP6573150B2 (ja) 蓄電素子
JP2000090932A (ja) リチウム二次電池
JP7190666B2 (ja) 非水電解質二次電池の充電方法、及び非水電解質二次電池の充電システム
WO2015045400A1 (ja) 偏平形非水電解質二次電池及びそれを用いた組電池
WO2022138451A1 (ja) 電極、非水電解質電池及び電池パック
WO2019167493A1 (ja) 非水電解質二次電池の充電方法、及び非水電解質二次電池の充電システム
US11387483B2 (en) Nonaqueous electrolyte energy storage device and method for producing same
WO2022163578A1 (ja) 非水電解質二次電池の充電方法、及び、充放電方法、並びに、非水電解質二次電池の充電システム
JP2000306607A (ja) 非水電解質電池
EP3565051A1 (en) Secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761123

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502866

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019761123

Country of ref document: EP

Effective date: 20200928