WO2015163093A1 - リチウムイオンキャパシタ用正極電極およびリチウムイオンキャパシタ - Google Patents

リチウムイオンキャパシタ用正極電極およびリチウムイオンキャパシタ Download PDF

Info

Publication number
WO2015163093A1
WO2015163093A1 PCT/JP2015/059920 JP2015059920W WO2015163093A1 WO 2015163093 A1 WO2015163093 A1 WO 2015163093A1 JP 2015059920 W JP2015059920 W JP 2015059920W WO 2015163093 A1 WO2015163093 A1 WO 2015163093A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium ion
ion capacitor
pore volume
less
Prior art date
Application number
PCT/JP2015/059920
Other languages
English (en)
French (fr)
Inventor
法寛 山本
健治 小島
Original Assignee
Jmエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jmエナジー株式会社 filed Critical Jmエナジー株式会社
Priority to CN201580020351.1A priority Critical patent/CN106233407B/zh
Priority to EP15783925.9A priority patent/EP3136409A4/en
Priority to JP2016514833A priority patent/JP6422483B2/ja
Priority to US15/305,504 priority patent/US10256049B2/en
Publication of WO2015163093A1 publication Critical patent/WO2015163093A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a positive electrode for a lithium ion capacitor and a lithium ion capacitor using the positive electrode.
  • lithium-ion capacitors have attracted attention as power storage devices that support applications that require high energy density and high output characteristics.
  • Such a lithium ion capacitor is often used in an environment where the temperature changes drastically. For this reason, reduction of initial capacity and energy density of lithium ion capacitors in a low temperature environment has been a major issue.
  • the pore diameter by the BJH method is in the range of 1.0 to 1.5 nm, and the peak value of the pore volume is 0.
  • a technique for improving charge / discharge characteristics and internal resistance characteristics by using activated carbon in the range of 0.020 to 0.035 cm 3 / g has been proposed (see, for example, Patent Document 1).
  • the activated carbon described in Patent Document 1 has a small BET specific surface area of 1500 to 2200 m 2 / g, when such activated carbon is used as a positive electrode active material of a lithium ion capacitor, charging at room temperature is possible. There is a problem that the discharge capacity itself is lowered.
  • the BET specific surface area is 1500 to 3000 m 2 / g
  • the pore diameter range of the active material is a pore diameter range that occupies a pore volume of 0.6 nm or more and 200 nm or less.
  • the ratio (A) of the pore volume from 0.6 nm to less than 1 nm is in the range of 0.48 ⁇ A ⁇ 0.70, and the fine pore diameter range is 0.6 nm to 200 nm.
  • the pore volume ratio (B) in the pore diameter range of 1 nm to 6 nm is in the range of 0.20 ⁇ B ⁇ 0.52, and the total pore volume is 1.21 cc (mL) / g to 1.62 cc.
  • Activated carbon in the range of / g has been proposed (see Patent Document 2).
  • the ratio (A) of the pore volume having a BET specific surface area of 1500 to 3000 m 2 / g and a pore diameter range of 0.6 nm to less than 1 nm is 0.00.
  • the pore volume in the pore diameter range necessary for increasing the charge / discharge capacity in the vicinity of ⁇ 30 ° C. becomes insufficient, and the charge / discharge capacity at room temperature is insufficient.
  • the decrease rate of the charge / discharge capacity at ⁇ 30 ° C. becomes large.
  • the electrode is configured with auxiliary materials such as a conductive additive and a binder in addition to the positive electrode active material. It has not been clarified as to what kind of pore characteristics are preferable.
  • JP 2007-119342 A Japanese Patent No. 5317659
  • the present invention suppresses the increase in resistance at low temperature, improves the initial discharge capacity and energy density at low temperature, and reduces the rate of decrease in charge / discharge capacity at ⁇ 30 ° C. with respect to charge / discharge capacity at normal temperature (25 ° C.). It is an object of the present invention to provide a positive electrode for a lithium ion capacitor that can be used, and a lithium ion capacitor using the positive electrode.
  • the gist of the present invention is as follows.
  • the positive electrode layer (A) subjected to the following measurement pretreatment has a pore volume of a pore diameter of 1.0 nm or more and less than 1.4 nm calculated by the HK method of 0.11 cc / g or more, and BET A positive electrode for a lithium ion capacitor, wherein the total pore volume calculated by the method is 1.1 cc / g or less.
  • Pre-measurement processing The operation of immersing the positive electrode taken out from the cell in a state of a cell voltage of 3 V and stirring in a dehydrated acetonitrile of 10 cc (mL) per 1 cm 3 of the positive electrode at 25 ° C.
  • the positive electrode layer (A) is scraped off from the preliminarily dried positive electrode obtained and dried for 2 hours under the condition that the pressure is reduced to 5.5 Pa at 200 ° C.
  • a lithium ion capacitor comprising the positive electrode according to any one of (1) to (3) above.
  • the lithium ion capacitor as described in (4) above which has an electrolytic solution containing a cyclic carbonate and a chain carbonate.
  • the positive electrode layer (B) subjected to the following measurement pretreatment has a pore volume of 1.0 nm or more and less than 1.4 nm calculated by the HK method.
  • Pre-measurement processing The positive electrode layer (B) is scraped off and dried at 200 ° C. under reduced pressure to 5.5 Pa for 2 hours.
  • the positive electrode layer (B) having a pore volume of 0.6 nm or more and less than 1.0 nm calculated by the HK method is 0.27 cc / g or less (7) or (8) A positive electrode for a lithium ion capacitor as described in 1. (10) A lithium ion capacitor comprising the positive electrode according to any one of (7) to (9) above.
  • the lithium ion capacitor as described in (10) above which has an electrolytic solution containing a cyclic carbonate and a chain carbonate.
  • a positive electrode having a positive electrode layer whose pore characteristics are adjusted within a predetermined range an increase in resistance at low temperature is suppressed, and an initial discharge capacity and energy density at low temperature are improved.
  • a lithium ion capacitor capable of reducing the rate of decrease in charge / discharge capacity at ⁇ 30 ° C. relative to charge / discharge capacity at room temperature.
  • the positive electrode layer has a pore volume of 0.11 cc / g or more with a pore diameter of 1.0 nm or more and less than 1.4 nm measured by the HK method under a specific condition, and the BET method. Since the total pore volume calculated by (1) is 1.1 cc / g or less, a sufficient pore volume in the necessary pore diameter range is secured, thereby increasing the charge / discharge capacity in the vicinity of ⁇ 30 ° C. Furthermore, a decrease in charge / discharge capacity due to the influence of the mobility of electrolyte ions in the pores of the positive electrode layer can be suppressed, and an increase in internal resistance can be suppressed.
  • the initial discharge capacity and energy density at the low temperature described above are improved, and the reduction rate of the charge / discharge capacity at ⁇ 30 ° C. with respect to the charge / discharge capacity at room temperature (25 ° C.) is suppressed.
  • a positive electrode is provided.
  • the positive electrode of the present invention has a pore volume of a pore diameter of 1.0 nm or more and less than 1.4 nm calculated by the HK method for the positive electrode layer (B) in the positive electrode before being incorporated into the cell is 0.00.
  • the total pore volume calculated by the BET method is 1.2 cc / g or less.
  • the positive electrode of the present invention has a pore volume of 0.11 cc / g or more with a pore diameter of 1.0 nm or more and less than 1.4 nm calculated by the HK method of the positive electrode layer (A) of the positive electrode taken out from the cell.
  • Such a positive electrode is particularly suitable for a large-capacity lithium ion capacitor having a configuration in which a positive electrode layer is laminated on one surface or both surfaces on a current collector.
  • the positive electrode for a lithium ion capacitor according to the present invention means an electrode having a configuration in which a positive electrode layer is formed by applying a slurry, which is a mixture of a positive electrode active material and a binder, on a positive electrode current collector. To do.
  • the positive electrode active material constituting the positive electrode layer in the positive electrode of the present invention is a substance that can reversibly carry at least one anion such as lithium ion and tetrafluoroborate.
  • the positive electrode active material constituting the positive electrode layer include activated carbon and a heat-treated product of an aromatic condensation polymer, for example, a polyacene-based material (hereinafter also referred to as PAS).
  • the 50% volume cumulative diameter D50 is preferably 1 to 12 ⁇ m, particularly preferably 2 to 8 ⁇ m. If the 50% volume cumulative diameter D50 is too small, the capacity retention rate of the lithium ion capacitor may be reduced when applied to a lithium ion capacitor. The reason is presumed that the porosity between the positive electrode active material particles decreases as the electrode density of the positive electrode layer in the positive electrode becomes excessively large, and the electrolyte is easily depleted. The On the other hand, when the 50% volume cumulative diameter D50 is excessive, it is difficult to form the positive electrode because the electrode density required for forming the positive electrode layer cannot be obtained.
  • the energy density of the lithium ion capacitor may be reduced when applied to lithium ion capacity.
  • the 50% volume cumulative diameter D50 of the positive electrode active material is measured by, for example, a laser diffraction microtrack method or an X-ray microtrack method.
  • the BET specific surface area of the positive electrode layer in order to adjust the BET specific surface area of the positive electrode layer to a desired range, the BET specific surface area exceeds 2200 m 2 / g and 2800 m 2 / g. It is preferable to use the following positive electrode active material.
  • the BET specific surface area of the positive electrode active material is less than 2200 m 2 / g, the BET specific surface area of the positive electrode layer becomes too small both before and after being incorporated into the cell, so the pore diameter necessary for increasing the charge / discharge capacity It becomes difficult to ensure a sufficient pore volume in the range. Therefore, the initial capacity at normal temperature and ⁇ 30 ° C.
  • the BET specific surface area exceeds 2800 m 2 / g, the BET specific surface area of the positive electrode layer becomes too large both before and after incorporation into the cell, so that the total pore volume of the positive electrode is kept below a predetermined value. Is difficult. For this reason, the density of the positive electrode decreases, and the energy density tends to decrease at room temperature and in the environment of ⁇ 30 ° C., which is not preferable.
  • the BET specific surface area is preferably more than 2200 m 2 / g and not more than 2800 m 2 / g, more preferably 2300 to 2700 m 2 / g, still more preferably 2300-2600 m 2 / g.
  • the BET specific surface area of the positive electrode active material When the BET specific surface area of the positive electrode active material is too small, the BET specific surface area of the obtained positive electrode layer becomes small, and when applied to a lithium ion capacitor, the capacity of the lithium ion capacitor becomes small and the internal resistance becomes high. Tend to be. On the other hand, when the BET specific surface area of the positive electrode active material is excessive, the bulk density of the positive electrode active material and the resulting positive electrode layer becomes very large, and when applied to a lithium ion capacitor, the energy density per cell volume becomes smaller. In addition, since the amount of electrolyte required in the cell is larger than usual, the energy density per cell mass may be reduced. A positive electrode active material having a BET specific surface area exceeding 2800 m 2 / g is difficult to manufacture and is not realistic.
  • activated carbon is preferably used as the positive electrode active material constituting the positive electrode layer in the positive electrode of the present invention. That is, as the positive electrode active material constituting the positive electrode layer of the present invention, a positive electrode active material made of activated carbon having a BET specific surface area of more than 2200 m 2 / g and not more than 2800 m 2 / g is preferably used.
  • the pore volume having a pore diameter of 1.0 nm or more and less than 1.4 nm is preferably 0.16 cc / g or more and less than 0.23 cc / g, particularly preferably 0.17 cc / g or more and 0. Less than 22 cc / g.
  • the pore volume having a pore diameter of 0.6 nm or more and less than 1.0 nm is preferably 0.18 cc / g or more and 0.32 cc / g or less, particularly preferably 0.20 cc / g or more and 0.30 cc / g. It is as follows.
  • the initial discharge capacity and energy density are improved when applied to a lithium ion capacitor, and the charge / discharge capacity at room temperature is ⁇ 30 ° C.
  • the reduction rate of the charge / discharge capacity can be reduced. That is, as the positive electrode active material constituting the positive electrode layer of the present invention, activated carbon having a pore volume of 1.0 nm or more and less than 1.4 nm and having a pore volume of 0.16 cc / g or more and less than 0.23 cc / g is used. It is preferable.
  • the positive electrode active material constituting the positive electrode layer can be obtained, for example, by subjecting the positive electrode active material to carbonization treatment by firing, followed by activation treatment and further pulverization treatment.
  • the positive electrode active material raw material for example, phenol resin, petroleum pitch, petroleum coke, coconut shell, coal-based coke and the like are used. Of these, phenol resin or coal-based coke is preferable because the specific surface area can be increased.
  • an alkali activation process or a steam activation process is preferable.
  • the alkali activator used for this alkali activation treatment salts of alkali metals such as lithium, sodium and potassium or hydroxides are preferably used, and potassium hydroxide is particularly preferable.
  • the pulverization is performed by pulverizing to 10 to 200 ⁇ m by using a known pulverizer such as a ball mill.
  • the pore volume having a pore diameter of 0.6 nm or more and less than 1.0 nm and 1.0 nm or more and less than 1.4 nm in the positive electrode active material is determined as follows. First, a sample to be measured is dried for a certain period of time under the condition where the positive electrode active material powder as a measurement object is heat-treated and decompressed, and used as a measurement sample. About this measurement sample, an adsorption isotherm is acquired using a specific surface measuring apparatus, and it calculates by this HK method analysis from this adsorption isotherm.
  • the HK method analysis is a calculation method generally used for micropore analysis of substances having pores such as activated carbon.
  • the total pore volume calculated by the BET method is preferably 1.0 cc / g or more and 1.5 cc / g or less, particularly preferably 1.1 cc / g or more and 1.45 cc / g. It is as follows. When the total pore volume of the positive electrode active material is excessively large, the electrode density of the positive electrode layer is low with respect to the positive electrode obtained, and the energy density at normal temperature and ⁇ 30 ° C. may be low. In the present invention, the total pore volume can be obtained from the amount of adsorption at a relative pressure of 0.99 by linearly interpolating the adsorption data obtained from the BET method.
  • the pore volume of the positive electrode layer (B) having a pore diameter of 1.0 or more and less than 1.4 nm calculated by the HK method is 0.13 cc / g or more, and the BET method It is necessary that the total pore volume calculated by the above is 1.2 cc / g or less.
  • the BET specific surface area of the positive electrode layer (B) is preferably 1900 m 2 / g or more and 2300 m 2 / g or less, more preferably 1950 to 2250 m. 2 / g, particularly preferably 2000 to 2200 m 2 / g.
  • the BET specific surface area of the positive electrode layer (B) When the BET specific surface area of the positive electrode layer (B) is too small, when applied to a lithium ion capacitor, the capacity of the lithium ion capacitor is reduced and the internal resistance is increased. On the other hand, when the BET specific surface area of the positive electrode layer (B) is excessive, the electrode density decreases, and as a result, the energy density of the lithium ion capacitor decreases when applied to the lithium ion capacitor. In addition, since the binding state of the positive electrode layer (B) with the binder becomes insufficient, the electrode strength is reduced, and the manufacturing process of the lithium ion capacitor becomes difficult.
  • each measurement is performed after the following pretreatment for measurement.
  • the positive electrode layer (B) is scraped from the prepared positive electrode, and the positive electrode layer (B) is dried for 2 hours under a condition where the pressure is reduced to 5.5 Pa at 200.degree.
  • the BET specific surface area of a measurement sample is measured with a specific surface measuring apparatus. The obtained measured value is taken as the BET specific surface area of the positive electrode layer (B).
  • the pore volume of the measurement sample is obtained by the same method as the calculation of the pore volume using the HK method analysis in the positive electrode active material. This value is the pore volume of the positive electrode layer (B).
  • the pore volume having a pore diameter of 1.0 nm or more and less than 1.4 nm is preferably 0.13 cc / g or more and 0.20 cc / g or less. More preferably, it is 0.14 cc / g or more and 0.19 cc / g or less. Further, the pore volume having a pore diameter of 0.6 nm or more and less than 1.0 nm is preferably 0.27 cc / g or less, more preferably 0.13 cc / g or more and 0.27 cc / g or less, particularly preferably 0.
  • the total pore volume needs to be 1.2 cc / g or less, and preferably 0.9 cc / g or more.
  • the electrode density of the positive electrode layer is reduced, and the energy density is reduced at normal temperature and at ⁇ 30 ° C. environment. There is a fear.
  • the total pore volume of the positive electrode layer (B) in the positive electrode before being incorporated into the cell is excessively small, the pore volume necessary for the expression of the capacity is reduced, and the initial discharge capacity at normal and low temperatures is reduced. May be insufficient.
  • the method for measuring the total pore volume is obtained using the same method as the calculation of the total pore volume using the BET method in the positive electrode active material.
  • the density of the positive electrode layer (B) may be 0.38 to 0.7 g / cm 3 , preferably 0.4 to 0.65 g / cm 3 , 0.41 to 0.6 g / cm 3 is more preferable.
  • the energy density of the lithium ion capacitor becomes small when applied to the lithium ion capacitor.
  • the electrode density of the positive electrode layer is excessive, the positive electrode layer has a low porosity, and when applied to a lithium ion capacitor, the electrolyte does not easily penetrate into the positive electrode layer. Therefore, it becomes difficult to move lithium ions, and it becomes difficult to deliver electrons. This may increase the internal resistance of the lithium ion capacitor and reduce the capacity.
  • the electrode density of the positive electrode layer in the positive electrode of the present invention is a value obtained by dividing the mass of the positive electrode layer by the external volume of the positive electrode layer based on the mass and external volume of the positive electrode layer in a dry state. It is.
  • the “external volume of the positive electrode layer” is a volume calculated based on measured values of the vertical dimension, the horizontal dimension, and the thickness dimension of the positive electrode layer.
  • each measurement is performed after the following treatment.
  • the operation of immersing the positive electrode taken out from the cell in a state of a cell voltage of 3 V and stirring in a dehydrated acetonitrile of 10 cc (mL) per 1 cm 3 of the positive electrode at 25 ° C. for 10 minutes with stirring was repeated three times, and then 60 ° C. For 1 hour.
  • the positive electrode layer (A) is scraped off from the obtained pre-dried positive electrode and dried for 2 hours at 200 ° C. under reduced pressure to 5.5 Pa. And the BET specific surface area of a measurement sample is measured with a specific surface measuring apparatus.
  • the obtained measured value is taken as the BET specific surface area of the positive electrode layer (A). Further, the pore volume of the measurement sample is obtained by the same method as the calculation of the pore volume using the HK method analysis in the positive electrode active material. This value is the pore volume of the positive electrode layer (A).
  • the means for setting the cell voltage to 3 V before taking out the positive electrode from the cell is not particularly limited.
  • the cell voltage exceeds 3V discharging is performed by a constant current until the cell voltage reaches 3V, and then a constant current-constant voltage discharge in which a constant voltage of 3V is applied may be performed.
  • the cell voltage is less than 3V charging is performed with a constant current until the cell voltage becomes 3V, and then constant current-constant voltage charging in which a constant voltage of 3V is applied may be performed.
  • the positive electrode of the present invention taken out from the cell has a specific pore characteristic, that is, a pore volume of a pore diameter of 1.0 nm or more and less than 1.4 nm calculated by the HK method is 0.11 cc / g or more and 0.18 cc. It is necessary that the total pore volume calculated by the BET method is 0.6 cc / g or more and 1.1 cc / g or less.
  • the BET specific surface area of the positive electrode layer (A) of the positive electrode of the present invention taken out from the cell and subjected to measurement pretreatment is preferably 1500 m 2 / g or more and 2000 m 2 / g or less. More preferably, it is 1550 to 1950 m 2 / g.
  • the BET specific surface area of the positive electrode layer (A) When the BET specific surface area of the positive electrode layer (A) is too small, when applied to a lithium ion capacitor, the capacity of the lithium ion capacitor is reduced and the internal resistance is increased. On the other hand, when the BET specific surface area of the positive electrode layer (A) is excessive, the electrode density decreases, and as a result, the energy density of the lithium ion capacitor decreases when applied to the lithium ion capacitor.
  • the pore volume having a pore diameter of 1.0 nm or more and less than 1.4 nm is required to be 0.11 cc / g or more, preferably 0. It is 11 cc / g or more and 0.18 cc / g or less, More preferably, it is 0.12 cc / g or more.
  • the pore volume having a pore diameter of 0.6 nm or more and less than 1.0 nm is preferably 0.23 cc / g or less, more preferably 0.1 cc / g or more and 0.23 cc / g or less, particularly preferably 0.
  • the total pore volume needs to be 1.1 cc / g or less, preferably 0.6 cc / g or more and 1.1 cc / g or less. More preferably 0.8 to 1.1 cc / g. If the total pore volume of the positive electrode layer (A) of the positive electrode taken out from the cell is excessive, the electrode density of the positive electrode layer will be low, and the energy density at ambient temperature and at ⁇ 30 ° C. may be low. There is.
  • the measurement method of the total pore volume is obtained using the same method as the calculation of the total pore volume using the BET method in the positive electrode active material.
  • the positive electrode having a positive electrode layer having specific pore characteristics includes the type and amount of the positive electrode active material used for the positive electrode layer, the type and amount of the binder, the type and amount of the conductive material, as required. It can be produced by appropriately selecting the type and amount of thickener used accordingly. For example, even if an appropriate positive electrode active material and conductive material are selected, a positive electrode having specific pore characteristics of the positive electrode layer of the present invention cannot be obtained unless the type and amount of the binder are appropriate. Become.
  • any one of the characteristics of the positive electrode layer (B) in the positive electrode before being incorporated into the cell and the characteristics of the positive electrode layer (A) in the positive electrode taken out from the cell satisfies the above conditions. It only has to satisfy.
  • Density of the positive electrode layer of the positive electrode taken out from the cell of the present invention may be any 0.37 ⁇ 0.69g / cm 3, preferably 0.39 ⁇ 0.64g / cm 3, 0 . More preferably, it is 4 to 0.59 g / cm 3 .
  • the electrode density of the positive electrode layer is too low, the energy density of the lithium ion capacitor becomes small when applied to the lithium ion capacitor.
  • the electrode density of the positive electrode layer is excessive, the positive electrode layer has a low porosity, and when applied to a lithium ion capacitor, the electrolyte does not easily penetrate into the positive electrode layer. Further, along with this, it becomes difficult to move lithium ions, and it becomes difficult to deliver electrons. As a result, the internal resistance of the lithium ion capacitor may increase and the capacity retention rate may decrease.
  • binder examples of the binder constituting the positive electrode layer in the present invention include rubber binders such as styrene / butadiene rubber (SBR), fluorine-containing resins such as polytetrafluoroethylene and polyvinylidene fluoride, polypropylene, and polyethylene.
  • SBR styrene / butadiene rubber
  • fluorine-containing resins such as polytetrafluoroethylene and polyvinylidene fluoride, polypropylene, and polyethylene.
  • a hydrocarbon resin such as an acrylic polymer
  • a positive electrode active material and a thickener such as carboxymethyl cellulose are used without using a binder made of the above-described polymer substance to form a positive electrode layer.
  • the resulting positive electrode is not a thickener that constitutes an electrolyte solution in a lithium ion capacitor cell when applied to a lithium ion capacitor. Absorbs protic organic solvent and swells. As a result, the binding force of the positive electrode layer to the current collector is insufficient, and the positive electrode layer is easily peeled off from the current collector.
  • the positive electrode active material has a positive electrode layer in a state of being bound by a binder, there is a positive electrode active material in a state of being bound by a binder.
  • the positive electrode layer and a conductive layer made of, for example, carbon and having no positive electrode active material may be laminated.
  • the thickness of the conductive layer in the positive electrode is preferably 5 to 20% with respect to the total thickness of the positive electrode layer and the conductive layer. Specifically, the thickness of the conductive layer is usually preferably 1 to 20 ⁇ m.
  • the thickness of the positive electrode layer in the positive electrode of the present invention is preferably 30 to 350 ⁇ m, more preferably 50 to 200 ⁇ m.
  • the current collector in the positive electrode of the present invention various materials generally used for lithium batteries can be used as long as they have through holes penetrating the front and back surfaces, such as electrolytic etching foil, etching foil, and expanded metal. Can be used. Specific examples of the material include aluminum and stainless steel.
  • the shape and number of through holes provided in the current collector are not particularly limited as long as the lithium ions can be moved between the front and back of the electrode without being blocked by the current collector.
  • the thickness of the current collector in the positive electrode of the present invention is not particularly limited, but it is usually 1 to 50 ⁇ m, preferably 5 to 40 ⁇ m, particularly preferably 10 to 40 ⁇ m.
  • a slurry is prepared by dispersing additives such as a positive electrode active material, a binder, and a conductive agent and a thickener used as necessary in an aqueous medium.
  • a method for producing a positive electrode by applying and drying on a current collector formed with a conductive layer or the like as necessary.
  • the slurry prepared in the same manner as in (1) above is formed into a sheet in advance, and then the positive electrode layer is consolidated by pressing, and this is preferably used as a current collector using a conductive adhesive.
  • the positive electrode active material dispersion liquid may contain substances other than the binder (specifically, additives such as conductive agents and thickeners used) together with the positive electrode active material. Good.
  • the positive electrode layer has a desired pore volume, a BET specific surface area, and a desired electrode density. be able to.
  • a thickener may be added to the dispersion containing the positive electrode active material (however, no thickener is contained).
  • the positive electrode active material may be added to the dispersion containing the thickener, but the thickener is added to the dispersion containing the positive electrode active material (however, the thickener is not contained). Is preferred.
  • additives such as a binder and a thickener added as needed penetrate into the surface pores of the positive electrode active material. It can be sufficiently suppressed.
  • a dispersion containing the positive electrode active material is prepared separately from the dispersion containing the thickener, and the positive electrode active material is It is preferable to add the containing dispersion to the dispersion containing the thickener.
  • the amount of the binder used varies depending on the electrical conductivity of the positive electrode active material, the shape of the positive electrode layer to be formed, etc., but is preferably 1 to 15% by mass with respect to 100% by mass of the positive electrode active material. More preferred is mass%.
  • Examples of the conductive agent used as necessary to form the positive electrode include acetylene black, ketjen black, furnace black, channel black, lamp black, graphite, and metal powder. Among these, acetylene black or ketjen black is preferable.
  • the amount of the conductive agent used varies depending on the electrical conductivity of the positive electrode active material, the shape of the positive electrode layer to be formed, etc., but is preferably 1 to 40% by mass with respect to 100% by mass of the positive electrode active material. More preferably, it is ⁇ 20% by mass.
  • the thickener used as necessary to form the positive electrode examples include carboxymethyl cellulose (CMC), polyethylene oxide (PEO), and polyvinyl alcohol (PVA).
  • CMC carboxymethyl cellulose
  • PEO polyethylene oxide
  • PVA polyvinyl alcohol
  • the use amount of the thickener is preferably 1 to 10% by mass, more preferably 1 to 5% by mass in 100% by mass of the whole slurry.
  • the positive electrode layer since the positive electrode layer has a specific pore volume, it has a high energy density and a high capacity when used in a lithium ion capacitor. Is obtained.
  • the lithium ion capacitor of the present invention includes the positive electrode of the present invention as a positive electrode.
  • Preferred configurations of the lithium ion capacitor of the present invention include the following configurations.
  • a positive electrode, a negative electrode, and an electrolytic solution containing an electrolyte capable of transporting lithium ions are provided, and the lithium ions move.
  • the positive electrode includes a current collector having through holes penetrating the front and back surfaces, and contains a substance capable of reversibly supporting lithium ions and / or anions as a positive electrode active material.
  • the negative electrode includes a current collector having through holes penetrating the front and back surfaces, contains a material capable of reversibly carrying lithium ions as a negative electrode active material, and lithium is electrochemically doped into the negative electrode.
  • the capacitor cell is formed.
  • the “negative electrode” refers to an electrode on the side where a current flows during discharge.
  • the “positive electrode” is an electrode on the side from which a current flows during discharge as described above.
  • the doping of lithium ions in the capacitor cell is preferably an amount that does not cause such inconvenience in consideration of the type of active material constituting the negative electrode and the positive electrode.
  • Doping means occlusion, adsorption, or insertion, and generally refers to a phenomenon in which at least one of lithium ions and anions enters the positive electrode active material, or a phenomenon in which lithium ions enter the negative electrode active material.
  • De-doping also means desorption and release, and refers to a phenomenon in which lithium ions or anions are desorbed from the positive electrode active material, or a phenomenon in which lithium ions are desorbed from the negative electrode active material.
  • the capacitor cell constituting the lithium ion capacitor of the present invention particularly has a capacitance per unit mass of the negative electrode active material of three times or more than a capacitance per unit mass of the positive electrode active material, and the positive electrode
  • the mass of the positive electrode active material used for the electrode is preferably larger than the mass of the negative electrode active material used for the negative electrode by 1.1 to 10 times. According to such a capacitor cell, a high voltage and a large capacity are achieved.
  • the capacitor cell using the negative electrode having a capacitance per unit mass that is extremely large relative to the capacitance per unit mass of the positive electrode a high voltage is achieved, and at the same time, the negative electrode is designed.
  • the mass of the negative electrode active material can be reduced while maintaining the amount of potential change, and the amount of the positive electrode active material can be increased, so that the capacitor cell has a large capacitance and capacitance.
  • the mass of the positive electrode active material is less than 1.1 times the mass of the negative electrode active material, the weight of the negative electrode active material layer becomes unnecessarily excessive and the energy density decreases.
  • the mass of the positive electrode active material exceeds 10 times the mass of the negative electrode active material, the discharge capacity of the negative electrode increases, and the negative electrode is overdischarged during discharge, and the metal of the negative electrode current collector may be eluted.
  • the difference in thickness between the positive electrode and the negative electrode becomes excessively large, which is not preferable in terms of the structure of the capacitor cell.
  • the capacitance and capacitance are defined as follows.
  • the capacitance of a capacitor cell indicates the amount of electricity (inclination of the discharge curve) flowing through the cell per unit voltage of the capacitor cell (unit: F).
  • the capacitance per unit mass of the capacitor cell is indicated by the division of the total mass of the positive electrode active material and the negative electrode active material with respect to the capacitance of the capacitor cell (unit: F / g).
  • the capacitance of the positive electrode or the negative electrode indicates the amount of electricity (integrated value of discharge curve, unit: F) flowing through the capacitor cell per unit voltage of the positive electrode or the negative electrode.
  • the capacitance per unit mass of the positive electrode or the negative electrode is obtained by dividing the capacitance of the positive electrode or the negative electrode by the mass of the positive electrode or the negative electrode active material (unit: F / g). .
  • the capacity of the capacitor cell is the difference between the discharge start voltage and the discharge end voltage of the capacitor cell, that is, the product of the voltage change amount and the capacitance of the capacitor cell (unit: C). Since 1.0 C is the amount of charge when a current of 1.0 A flows per second, it is converted into mAh in this specification.
  • the capacity of the positive electrode is the product of the difference between the potential of the positive electrode at the start of discharge and the potential of the positive electrode at the end of discharge (potential change amount of the positive electrode) and the capacitance of the positive electrode (unit: C or mAh).
  • the capacity of the negative electrode is the product of the difference between the potential of the negative electrode at the start of discharge and the potential of the negative electrode at the end of discharge (potential change amount of the negative electrode) and the capacitance of the negative electrode (unit: C or mAh).
  • the capacities of these capacitor cells coincide with the capacities of the positive electrode and the negative electrode.
  • a negative electrode active material layer in which a negative electrode active material is bound by a binder is laminated on one surface or both surfaces on a current collector. It has the composition which becomes.
  • the negative electrode active material is a material that can reversibly carry lithium ions.
  • the negative electrode active material include carbon materials such as graphite (hard graphite), non-graphitizable carbon (hard carbon), or heat-treated products of aromatic condensation polymers such as polyacene-based materials (PAS). Is preferred.
  • binder constituting the negative electrode active material layer of the negative electrode examples include the same binders as those constituting the positive electrode layer of the positive electrode described above.
  • the thickness of the negative electrode active material layer in the negative electrode is preferably 20 to 250 ⁇ m.
  • the current collector As the current collector, as in the case of the current collector constituting the positive electrode described above, various types of lithium batteries generally used for lithium-based batteries can be used as long as they have through holes penetrating the front and back surfaces, such as expanded metal.
  • the thing of a material can be used. Specific examples of the material include stainless steel, copper, and nickel.
  • the shape and number of through holes provided in the current collector are not particularly limited as long as the lithium ions can be moved between the front and back of the electrode without being blocked by the current collector.
  • the thickness of the current collector in the negative electrode is not particularly limited, but it is usually 1 to 50 ⁇ m, preferably 5 to 40 ⁇ m, particularly preferably 10 to 40 ⁇ m.
  • the negative electrode constituting the lithium ion capacitor of the present invention is manufactured from a current collector, a negative electrode active material, a binder, and a conductive agent used as necessary.
  • Specific examples of the manufacturing method include the following manufacturing methods.
  • a slurry is prepared by dispersing additives such as a negative electrode active material, a binder, and a conductive agent and a thickener, which are used as necessary, in an aqueous medium.
  • (2) A method in which a slurry prepared in the same manner as in the above (1) is formed into a sheet shape in advance, and this is preferably attached to a current collector using a conductive adhesive.
  • the amount of the binder used to form the negative electrode can be in the same range as the amount of the binder used to form the positive electrode described above.
  • Examples of the conductive agent used as necessary to form the negative electrode include the same conductive agents used as necessary to form the positive electrode, and the amount used thereof Can be in the same range.
  • the thickener used as necessary to form the negative electrode can include the same thickener used as necessary to form the positive electrode described above.
  • the amount used can be in the same range.
  • the means for doping the negative electrode with lithium ions is not particularly limited.
  • a lithium ion supply source such as metallic lithium that can supply lithium ions is disposed in the capacitor cell as a lithium electrode.
  • the method etc. can be mentioned.
  • the lithium electrode may be placed in physical contact (short circuit) with the negative electrode, or may be placed at a position where it can be electrochemically doped.
  • the capacitor cell is configured as a wound cell or a stacked cell.
  • a lithium electrode is provided only in a part of the outermost or outermost capacitor cell, specifically, for example, at a position facing one positive electrode or negative electrode, all the negative electrodes are electrochemically provided.
  • the electrode can be smoothly and uniformly doped with lithium ions.
  • the lithium electrode for example, one in which a lithium ion supply source is formed on a current collector made of a conductive porous body can be used.
  • a metal porous body such as copper or stainless steel that does not react with a lithium ion supply source such as a stainless steel mesh can be used.
  • the lithium ion supply source can contain lithium ions and supply lithium ions, such as lithium metal and lithium-aluminum alloy. Substance is used.
  • the amount of lithium ion supply source may be an amount that provides a predetermined capacity for the negative electrode.
  • an aprotic organic solvent electrolyte solution (a solution in which an electrolyte containing a lithium salt is dissolved in an aprotic organic solvent) is used as the electrolytic solution.
  • Examples of the aprotic organic solvent constituting the electrolytic solution in the present invention include cyclic carbonates such as ethylene carbonate and propylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate, ⁇ -butyrolactone, acetonitrile, and dimethoxyethane. , Tetrahydrofuran, dioxolane, methylene chloride, sulfolane and the like. This can also be used individually or in combination of 2 or more types.
  • the electrolytic solution in the present invention preferably contains a cyclic carbonate and a chain carbonate.
  • the electrolytic solution further preferably contains 20 to 50 vol% of the cyclic carbonate and 50 to 80 vol% of the chain carbonate by volume ratio.
  • the cyclic carbonate and the chain carbonate are in the above range, so the Stokes diameter of the solvated lithium ion is sufficiently small to enter the pores in the positive electrode, so the resistance at low temperature is small and the charge / discharge capacity is large. Prone. If it is out of the above range, the Stokes diameter of the solvated lithium ion becomes large and it becomes difficult to enter the pores in the positive electrode, or there is a concern that the resistance increases due to the increase in the viscosity of the electrolyte solution at a low temperature. .
  • the electrolyte constituting the electrolytic solution in the present invention may be any electrolyte that can generate lithium ions, and various electrolytes can be used.
  • Specific examples of the electrolyte include LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 and the like.
  • LiPF 6 and LiN (CF 3 SO 2 ) 2 are preferable.
  • the concentration of the electrolyte in the aprotic organic solvent electrolyte solution as the electrolytic solution is preferably at least 0.1 mol (mol) / L or more because a low internal resistance is obtained.
  • the aprotic organic solvent electrolyte solution constituting the electrolytic solution is obtained by mixing a sufficiently dehydrated electrolyte and an aprotic organic solvent.
  • a wound cell in which a strip-like positive electrode and a negative electrode are stacked and wound via a separator, and a plate-like positive electrode and a negative electrode are separated by a separator.
  • a large capacity cell such as a laminated cell in which three or more layers are laminated, or a film type cell in which a laminate of three or more layers via a separator is sandwiched between a plate-like positive electrode and a negative electrode in an exterior film
  • a structure suitable for a capacitor cell is mentioned.
  • the lithium ion capacitor of the present invention since the positive electrode of the present invention is used, high energy density and high capacity can be obtained.
  • a lithium ion capacitor of the present invention is extremely effective as a driving power source or auxiliary power source for electric vehicles, hybrid electric vehicles, and the like. Further, it can be suitably used as a driving power source for electric bicycles, electric wheelchairs, etc., an energy storage device such as a solar energy generator and a wind power generator, or a storage power source for household electric appliances.
  • Actual weight of powder 0.02- (Test tube weight before drying-Test tube weight after drying)
  • the specific surface area measuring device “BELSORP-miniII” (manufactured by Nippon Bell Co., Ltd.) is used to measure adsorption and desorption isotherms using nitrogen as an adsorbate, and 0.6 nm or more and 1.0 nm using the HK method. And the specific surface area and the total pore volume were determined using the pore volume of the pore diameter of 1.0 nm or more and less than 1.4 nm and the BET method.
  • thermosetting phenolic resin molded plate having a thickness of 0.5 mm is placed in an electric furnace, heated to 1100 ° C. at a temperature rising rate of 10 ° C./hour in a nitrogen atmosphere, and kept at a temperature of 1100 ° C. for 2 hours. By doing so, hard carbon was synthesized. The obtained hard carbon was pulverized to a mean particle size of 3 ⁇ m using a disk mill to obtain a hard carbon powder.
  • the negative electrode slurry 1 was obtained by adding a part and fully mixing with a mixing stirrer.
  • Preparation of positive electrode slurry 2 In the preparation of the positive electrode slurry 1, as a positive electrode active material, a BET specific surface area of 2350 m 2 / g, a pore volume of 1.07 to less than 1.4 nm obtained by HK analysis, a pore volume of 0.17 cc / g, a pore diameter of 0. Except for using activated carbon powder having a pore volume of 6 nm or more and less than 1.0 nm of 0.25 cc / g, a total pore volume of 1.19 cc / g, and an average particle diameter (average particle diameter D50) of 4 ⁇ m, A positive electrode slurry 2 was obtained in the same manner as in the preparation.
  • (Preparation of positive electrode slurry 3) In the preparation of the positive electrode slurry 1, as a positive electrode active material, a BET specific surface area of 2510 m 2 / g, a pore volume of 1.01 nm or more and less than 1.4 nm obtained by HK analysis, a pore volume of 0.21 cc / g, and a pore diameter of 0. The positive electrode slurry 1 was prepared except that activated carbon powder having a pore volume of 6 nm or more and less than 1 nm of 0.30 cc / g, a total pore volume of 1.42 cc / g, and an average particle diameter (average particle diameter D50) of 4 ⁇ m was used. Similarly, positive electrode slurry 3 was obtained.
  • positive electrode slurry 4 (positive electrode slurry for comparison)
  • a positive electrode active material as a positive electrode active material, a BET specific surface area of 1930 m 2 / g, a fine particle having a pore diameter of 1.0 nm or more and less than 1.4 nm determined by HK analysis.
  • Activated carbon having a pore volume of 0.13 cc / g, a pore volume of 0.61 to less than 1.0 nm, a pore volume of 0.21 cc / g, a total pore volume of 1.17 cc / g, and an average particle diameter (average particle diameter D50) of 4 ⁇ m
  • a positive electrode slurry 4 was obtained in the same manner as the preparation of the positive electrode slurry 1 except that powder was used.
  • positive electrode slurry 5 (positive electrode slurry for comparison)
  • a positive electrode active material as a positive electrode active material, a BET specific surface area of 3000 m 2 / g, a fine particle having a pore diameter of 1.0 nm or more and less than 1.4 nm determined by HK analysis.
  • Activated carbon having a pore volume of 0.22 cc / g, a pore volume of 0.68 to 1.0 nm, a total pore volume of 1.84 cc / g, and an average particle diameter (average particle diameter D50) of 4 ⁇ m.
  • a positive electrode slurry 5 was obtained in the same manner as the preparation of the positive electrode slurry 1 except that powder was used.
  • positive electrode slurry 6 (positive electrode slurry for comparison)
  • positive electrode slurry 1 positive electrode slurry 1 except that an SBR copolymer binder was used in place of the water-soluble acrylic copolymer binder.
  • a positive electrode slurry 6 was obtained in the same manner as in the preparation.
  • the positive electrode slurry is applied onto the conductive layer formed on the current collector by applying the positive electrode slurry 1 to the positive electrode slurry 6 to both surfaces of the current collector on which the conductive layer is formed using a roll coater.
  • a layer positive electrode slurry layer
  • sheet-like positive electrode test samples 1 to 6 having a positive electrode layer made of a laminate of a conductive layer and a positive electrode slurry layer on a current collector were produced.
  • a lithium ion capacitor was produced according to a production example of a lithium ion capacitor described later, and the pore volume, BET specific surface area, and electrode density of the positive electrode layer were obtained by the following method. Was measured. The results are shown in Table 1-1.
  • a sample for measuring the electrode density of 40 mm ⁇ 60 mm in length and width is cut out from each of the positive electrode test samples 1 to 6, the mass and the external volume of the electrode density measurement sample are measured, and the positive electrode layer is measured based on the measured values.
  • the electrode density was calculated. Calculated.
  • a sample for measuring capacitance having a size of 1.5 cm ⁇ 2.0 cm (area 3.0 cm 2 ) was cut out from a negative electrode test sample for measuring negative electrode capacitance, and used as a negative electrode for measuring capacitance.
  • metallic lithium having a vertical and horizontal dimension of 1.5 cm ⁇ 2.0 cm (area 3.0 cm 2 ) and a thickness of 200 ⁇ m was prepared.
  • a 50 ⁇ m thick polyethylene nonwoven fabric was prepared as a separator.
  • the electrostatic capacity per unit mass of the negative electrode was determined from the potential of the negative electrode 1 minute after the start of discharge based on the discharge time during which the cell voltage (capacitor voltage) changed by 0.2 V. However, it was 661 F / g.
  • Example 1 Production Example of Lithium Ion Capacitor 1> ⁇ Production of electrode laminate>
  • the negative electrode test sample 1 was cut to prepare 11 negative electrodes each having an electrode body having a size of 6.0 cm ⁇ 7.5 cm (area 45 cm 2 ) and a terminal connection portion continuous to the electrode body. Further, by cutting the positive electrode test sample 1, 10 positive electrodes each having an electrode body having a size of 5.8 cm ⁇ 7.3 cm (area 42.34 cm 2 ) and a terminal connection portion continuous to the electrode body are obtained. A sheet was produced. Next, 10 positive electrodes and 11 negative electrodes were alternately laminated via a separator made of a cellulose / rayon mixed nonwoven fabric having a thickness of 35 ⁇ m, and four sides were taped.
  • the terminal welded portion in the positive electrode and the terminal welded portion in the negative electrode are opposite to each other, and the opposing surfaces of the positive electrode layer in the positive electrode and the negative electrode active material layer in the negative electrode are 20 pairs.
  • Were laminated Further, between the lowermost negative electrode and the positive electrode inside thereof (hereinafter also referred to as “between the lowermost inner positive electrode and negative electrode”), and between the uppermost negative electrode and the positive electrode inside thereof (hereinafter referred to as “below”) (Also referred to as “between the uppermost inner positive and negative electrodes”), and two separators are disposed, and one separator is disposed between the positive electrode and the negative electrode other than between the uppermost and lowermost inner positive and negative electrodes. Arranged.
  • each of the terminal welded portions of the 10 positive electrodes constituting the obtained laminate was ultrasonically welded to an aluminum positive terminal having vertical and horizontal dimensions of 50 mm ⁇ 50 mm and a thickness of 0.2 mm.
  • each of the terminal welded portions of the eleven negative electrode electrodes was ultrasonically welded to a copper negative electrode terminal having a vertical and horizontal dimension of 50 mm ⁇ 50 mm and a thickness of 0.2 mm.
  • the electrode laminated body was produced.
  • the mass of the positive electrode active material was 1.4 times the mass of the negative electrode active material.
  • a lithium electrode current collector comprising a lithium metal foil (corresponding to 200 mAh / g) having a vertical and horizontal dimensions of 6.0 cm ⁇ 7.5 cm (area 45 cm 2 ) and a thickness of 80 ⁇ m made of a copper mesh having a thickness of 80 ⁇ m.
  • Two sheets having a structure formed by pressure bonding to the body were prepared. Each of the two lithium electrodes was disposed on each of the uppermost part and the lowermost part of the electrode stack so as to completely face the negative electrode located on the outermost side through two separators.
  • the triode laminated unit was produced by carrying out resistance welding of the terminal welding part of the lithium electrode collector in each lithium electrode to a copper negative electrode terminal.
  • the electrolyte solution was vacuum impregnated in a three-pole laminated unit. Thereafter, four film-type lithium capacitors 1 were produced by fusing one side of each exterior film that was not fused.
  • positioned inside the obtained lithium ion capacitor is a quantity equivalent to 400 mAh / g per negative electrode active material mass.
  • the positive electrode layer is scraped off from the pre-dried positive electrode thus obtained and dried for 2 hours under the condition of reduced pressure to 5.5 Pa at 200 ° C., whereby the constituent components of the positive electrode layer (specifically, positive electrode slurry layer) Mixture powder of positive electrode active material, binder, conductive agent, thickener and conductive layer).
  • the constituent components of the positive electrode layer specifically, positive electrode slurry layer
  • Table 1-2 The results are shown in Table 1-2 below.
  • Rate of change
  • Example 2 Production Example of Lithium Ion Capacitor 2>
  • Four lithium ion capacitors 2 were obtained in the same manner as in Example 1 except that the positive electrode test sample 2 was used instead of the positive electrode test sample 1 in the production of the electrode laminate.
  • the obtained lithium ion capacitor 2 when initial evaluation of the lithium ion capacitor was performed by the same method as in Example 1, after 20 days from the production, the unit mass of the negative electrode with respect to the negative electrode It was determined that the negative electrode was doped (preliminarily charged) with an expected amount of lithium ion having a per-capacitance of 1021 F / g or more.
  • the cell voltage of the lithium ion capacitor 2 before decomposition was 3.1 V
  • the cell voltage (capacitor voltage) was discharged by a constant current of 150 mA until the cell voltage reached 3 V, and then a constant voltage of 3 V was applied. Current-constant voltage charging was performed for 1 hour.
  • the pore volume of the positive electrode taken out from the lithium ion capacitor was 1.0 nm or more and less than 1.4 nm, and the pore diameter was 0.6 nm or more and 1.0 nm.
  • the pore volume, the BET specific surface area, the total pore volume, the initial capacity, the energy density, and the direct current internal resistance were measured, and the change rate of the -30 ° C measured value with respect to the 25 ° C measured value was calculated.
  • the results are shown in Table 1-2 and Table 1-3.
  • Example 3 Production example of lithium ion capacitor 3> Four lithium ion capacitors 3 were obtained in the same manner as in Example 1 except that the positive electrode test sample 3 was used instead of the positive electrode test sample 1 in the production of the electrode laminate. The obtained lithium ion capacitor 3 was subjected to an initial evaluation of the lithium ion capacitor by the same method as in Example 1. After 20 days from the production, the unit mass of the negative electrode with respect to the negative electrode was measured. It was determined that the negative electrode was doped (preliminarily charged) with an expected amount of lithium ion having a per-capacitance of 1021 F / g or more. The cell voltage of the lithium ion capacitor 3 before decomposition was 3V.
  • the positive electrode taken out from the lithium ion capacitor had a pore volume of 1.0 nm or more and less than 1.4 nm, and a pore diameter of 0.6 nm or more and 1.0 nm.
  • the pore volume, the BET specific surface area, the total pore volume, the initial capacity, the energy density, and the direct current internal resistance were measured, and the change rate of the -30 ° C measured value with respect to the 25 ° C measured value was calculated. The results are shown in Table 1-2 and Table 1-3.
  • Example 4 Production Example of Lithium Ion Capacitor 4>
  • LiPF 6 is dissolved at a concentration of 1 mol / L in a mixed solvent of ethylene carbonate (EC), diethyl carbonate (DEC) and propylene carbonate (PC) in a volume ratio of 3: 4: 1.
  • an electrolytic solution in which LiPF 6 was dissolved at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 1: 5 was used. Except for this, four lithium ion capacitors 4 were obtained in the same manner as in Example 1.
  • the obtained lithium ion capacitor 4 was subjected to initial evaluation of the lithium ion capacitor by the same method as in Example 1. After 20 days from the production, the unit mass of the negative electrode with respect to the negative electrode was measured. It was determined that the negative electrode was doped (preliminarily charged) with an expected amount of lithium ion having a per-capacitance of 1021 F / g or more. The cell voltage of the lithium ion capacitor 4 before decomposition was 3V.
  • Comparative Example 1 Production Example of Comparative Lithium Ion Capacitor 1>
  • Four lithium ion capacitors 1 for comparison were obtained in the same manner as in Example 1 except that the positive electrode test sample 4 was used instead of the positive electrode test sample 1 in the production of the electrode laminate.
  • the negative electrode was compared with the negative electrode. It was determined that the negative electrode was doped (preliminarily charged) with an expected amount of lithium ion having an electrostatic capacity per unit mass of 1021 F / g or more.
  • the cell voltage of the comparative lithium ion capacitor 1 before decomposition was 3V.
  • the positive electrode electrode taken out from the lithium ion capacitor had a pore volume of 1.0 nm or more and less than 1.4 nm, a pore diameter of 0.6 nm or more and 1
  • the pore volume of less than 0.0 nm, the BET specific surface area, the total pore volume, the initial capacity, the energy density, and the direct current internal resistance were measured, and the change rate of the measured value of ⁇ 30 ° C. with respect to the measured value of 25 ° C. was calculated.
  • Table 1-2 and Table 1-3 The results are shown in Table 1-2 and Table 1-3.
  • Comparative Example 2 Production Example of Comparative Lithium Ion Capacitor 2>
  • Four lithium ion capacitors 2 for comparison were obtained in the same manner as in Example 1 except that the positive electrode test sample 5 was used instead of the positive electrode test sample 1 in the production of the electrode laminate.
  • the negative electrode was compared with the negative electrode. It was determined that the negative electrode was doped (preliminarily charged) with an expected amount of lithium ion having an electrostatic capacity per unit mass of 1021 F / g or more.
  • the cell voltage of the comparative lithium ion capacitor 2 before decomposition was 3V.
  • the positive electrode taken out from the lithium ion capacitor had a pore volume of 1.0 nm or more and less than 1.4 nm, a pore diameter of 0.6 nm or more and 1
  • the pore volume of less than 0.0 nm, the BET specific surface area, the total pore volume, the initial capacity, the energy density, and the direct current internal resistance were measured, and the change rate of the measured value of ⁇ 30 ° C. with respect to the measured value of 25 ° C. was calculated.
  • Table 1-2 and Table 1-3 The results are shown in Table 1-2 and Table 1-3.
  • Comparative Example 3 Production Example of Comparative Lithium Ion Capacitor 3>
  • Four lithium ion capacitors 3 for comparison were obtained in the same manner as in Example 1 except that the positive electrode test sample 6 was used instead of the positive electrode test sample 1 in the production of the electrode laminate.
  • the obtained comparative lithium ion capacitor 3 was subjected to an initial evaluation of the lithium ion capacitor by the same method as in Example 1. After 20 days from the production, the negative electrode was compared with the negative electrode. It was determined that the negative electrode was doped (preliminarily charged) with an expected amount of lithium ion having an electrostatic capacity per unit mass of 1021 F / g or more. In addition, the cell voltage of the comparative lithium ion capacitor 3 before decomposition was 3V.
  • the positive electrode electrode taken out from the lithium ion capacitor had a pore volume of 1.0 nm or more and less than 1.4 nm, a pore volume of 0.6 nm or more and 1
  • the pore volume of less than 0.0 nm, the BET specific surface area, the total pore volume, the initial capacity, the energy density, and the direct current internal resistance were measured, and the change rate of the measured value of ⁇ 30 ° C. with respect to the measured value of 25 ° C. was calculated.
  • Table 1-2 and Table 1-3 The results are shown in Table 1-2 and Table 1-3.
  • the lithium ion capacitors according to Examples 1 to 4 have a high cell capacity at -30 ° C., a large energy density, and a low DC internal resistance. confirmed.
  • the lithium ion capacitor according to Comparative Example 1 has a small capacity and energy density at ⁇ 30 ° C. and a high direct current resistance because the pore volume of the positive electrode having a pore diameter of 1.0 nm or more and less than 1.4 nm is small.
  • the capacity and the energy density decrease rate of ⁇ 30 ° C. relative to 25 ° C. and the increase rate of the DC internal resistance were large.
  • the positive electrode has a pore volume of 1.0 nm or more and 1.4 nm or less of 0.11 cc / g or more, but because the total pore volume is large, the electrode density and energy density are small. It was confirmed.
  • the lithium ion capacitor according to Comparative Example 3 has a small pore volume with a pore diameter of 1.0 nm or more and less than 1.4 nm of the positive electrode, so that the capacity and energy density at ⁇ 30 ° C. are small, and the DC internal resistance is high. It was confirmed that the capacity and energy density decrease rate at ⁇ 30 ° C. relative to 25 ° C. and the DC resistance increase rate were large.
  • the lithium ion capacitor according to Example 4 was the same as that of Example 1 as the positive electrode. However, the capacity and energy density at ⁇ 30 ° C. were higher than that of Example 1 by changing the solvent composition of the electrolytic solution. small. This is presumably because the Stokes diameter of the solvated lithium ion changed and the optimum size of the pores slightly shifted.
  • the present invention suppresses an increase in resistance at low temperature, improves initial discharge capacity and energy density at low temperature, and can reduce the rate of decrease in charge / discharge capacity at ⁇ 30 ° C. with respect to charge / discharge capacity at room temperature. It can utilize for manufacture of an ion capacitor.

Abstract

 本発明は、低温における抵抗上昇を抑制し、且つ、低温における初期放電容量およびエネルギー密度を向上させ、常温の充放電容量に対する-30℃の充放電容量の低下率を小さくすることができるリチウムイオンキャパシタ用正極電極、および該正極電極を用いたリチウムイオンキャパシタを提供することを目的とする。 本発明の正極電極は、下記測定前処理を行った正極電極層(A)のHK法により算出した1.0nm以上1.4nm未満の細孔径の細孔容積が0.11cc/g以上、BET法により算出した全細孔容積が1.1cc/g以下である。 測定前処理:セル電圧3Vの状態でセルから取り出し、切り出した正極電極を、正極電極1cm3 当たり10ccの脱水アセトニトリル中に25℃で10分間撹拌下に浸漬する操作を3回繰り返し、60℃で1時間予備乾燥処理する。得られた予備乾燥処理正極電極から正極電極層(A)を削り取り、200℃で5.5Paまで減圧した条件下において2時間乾燥処理する。

Description

リチウムイオンキャパシタ用正極電極およびリチウムイオンキャパシタ
  本発明は、リチウムイオンキャパシタ用正極電極および該正極電極を用いたリチウムイオンキャパシタに関する。
 近年、高エネルギー密度および高出力特性を必要とする用途に対応する蓄電デバイスとして、リチウムイオンキャパシタが注目されている。
 このようなリチウムイオンキャパシタは、温度変化が激しい環境下で用いられることが多い。そのため、リチウムイオンキャパシタの低温環境下における初期容量およびエネルギー密度の低下が大きな課題となっていた。
 具体的に説明すると、-30℃付近の低温では、電解液の粘度が上昇するため、正極活物質を構成する活性炭の細孔内において、電解質イオンの易動度が低下する。これにより、充放電容量が著しく低下し内部抵抗が増加する、という問題がある。そこで、低温での電解質イオンの易動度を向上させるために、正極活物質として、細孔容積(cc/g)が大きい活性炭を用いることが行われてきた。しかし、細孔容積(cc/g)が大きい活性炭を用いるだけでは、低温での内部抵抗が低くなるが、正極電極の密度が下がるため、体積当たりの容量(F/cc)が低くなる、という問題があった。
 一方、電気二重層キャパシタにおいては、低温環境下における更なる高性能化を実現するため、BJH法による細孔直径が1.0~1.5nmの範囲にあり、細孔容積のピーク値が0.020~0.035cm/gの範囲にある活性炭を用いることによって、充放電特性および内部抵抗特性を向上させる技術が提案されている(例えば、特許文献1参照。)。
 しかしながら、特許文献1に記載されている活性炭は、BET比表面積が1500~2200m/gと小さいため、このような活性炭をリチウムイオンキャパシタの正極活物質として使用した場合には、常温での充放電容量自体が低くなる、という問題がある。
 また、リチウムイオンキャパシタ用の正極活物質としては、BET比表面積が1500~3000m/gで、活物質の細孔直径範囲が0.6nm以上200nm以下の細孔容積に占める細孔直径範囲が0.6nm以上~1nm未満の細孔容積の比(A)が、0.48≦A≦0.70の範囲で、細孔直径範囲が0.6nm以上~200nm以下の細孔容積に占める細孔直径範囲が1nm以上~6nm以下の細孔容積の比(B)が、0.20≦B≦0.52の範囲で、全細孔容積が1.21cc(mL)/g~1.62cc/gの範囲にある活性炭が提案されている(特許文献2参照。)。
 しかし、先行文献2に記載されている正極活物質において、BET比表面積が1500~3000m/gで、細孔直径範囲0.6nm以上~1nm未満の細孔容積の比(A)が0.48≦A≦0.70の範囲にあるものでは、-30℃付近での充放電容量を大きくするために必要な細孔直径範囲の細孔容積が不十分になり、常温の充放電容量に対する-30℃の充放電容量の低下率が大きくなる、という問題が発生する。
 また、上記のいずれの先行文献においても、リチウムイオンキャパシタに組み込まれる電極の細孔特性についての記述はなく、正極活物質の他に導電助剤や結着剤等の副原料と共に構成される電極においてどのような細孔特性が好ましいかについて明らかにされていなかった。
特開2007-119342号公報 特許第5317659号公報
 本発明は、低温における抵抗上昇を抑制し、且つ、低温における初期放電容量およびエネルギー密度を向上させ、常温(25℃)の充放電容量に対する-30℃の充放電容量の低下率を小さくすることができるリチウムイオンキャパシタ用正極電極、および該正極電極を用いたリチウムイオンキャパシタを提供することを目的とする。
 本発明は以下の構成を要旨とする。
(1)下記の測定前処理を行った正極電極層(A)をHK法により算出した1.0nm以上1.4nm未満の細孔径の細孔容積が0.11cc/g以上であり、かつBET法により算出した全細孔容積が1.1cc/g以下であることを特徴とするリチウムイオンキャパシタ用正極電極。
 測定前処理:
 セル電圧3Vの状態でセルから取り出し、切り出した正極電極を、正極電極1cm当たり10cc(mL)の脱水アセトニトリル中に25℃で10分間撹拌下に浸漬する操作を3回繰り返し、次いで、60℃で1時間予備乾燥処理する。得られた予備乾燥処理正極電極から正極電極層(A)を削り取り、200℃で5.5Paまで減圧した条件下において2時間乾燥処理する。
(2)前記正極電極層(A)をBET法により算出したBET比表面積が1500m/g以上2000m/g以下であることを特徴とする上記(1)に記載のリチウムイオンキャパシタ用正極電極。
(3)前記正極電極層(A)をHK法により算出した0.6nm以上1.0nm未満の細孔容積が0.23cc/g以下であることを特徴とする上記(1)または(2)に記載のリチウムイオンキャパシタ用正極電極。
(4)上記(1)~(3)のいずれか1項に記載の正極電極を有することを特徴とするリチウムイオンキャパシタ。
(5)環状カーボネートおよび鎖状カーボネートを含む電解液を有することを特徴とする上記(4)に記載のリチウムイオンキャパシタ。
(6)前記電解液は溶媒として体積比で前記鎖状カーボネートを20~70vol%、前記鎖状カーボネートを30~80vol%含むことを特徴とする上記(5)に記載のリチウムイオンキャパシタ。
(7)セルに組み込む前の正極電極において、下記の測定前処理を行った正極電極層(B)をHK法により算出した1.0nm以上1.4nm未満の細孔径の細孔容積が0.13cc/g以上であり、BET法により算出した全細孔容積が1.2cc/g以下であることを特徴とするリチウムイオンキャパシタ用正極電極。
 測定前処理:
 正極電極層(B)を削り取り、200℃で5.5Paまで減圧した条件下において2時間乾燥処理する。
(8)前記正極電極層(B)をBET法により算出したBET比表面積が1900~2300m/gの範囲であることを特徴とする上記(7)に記載のリチウムイオンキャパシタ用正極電極。
(9)前記正極電極層(B)をHK法により算出した0.6nm以上1.0nm未満の細孔容積が0.27cc/g以下であることを特徴とする上記(7)または(8)に記載のリチウムイオンキャパシタ用正極電極。
(10)上記(7)~(9)のいずれか1項に記載の正極電極を有することを特徴とするリチウムイオンキャパシタ。
(11)環状カーボネートおよび鎖状カーボネートを含む電解液を有することを特徴とする上記(10)に記載のリチウムイオンキャパシタ。
(12)前記電解液は、溶媒として体積比で前記鎖状カーボネートを20~70vol%、前記鎖状カーボネートを30~80vol%含むことを特徴とする上記(11)に記載のリチウムイオンキャパシタ。
 本発明によれば、所定範囲に細孔特性が調整された正極電極層を有する正極電極を用いることにより、低温における抵抗上昇を抑制し、且つ、低温における初期放電容量およびエネルギー密度が向上し、常温の充放電容量に対する-30℃の充放電容量の低下率を小さくすることができるリチウムイオンキャパシタが提供される。
 すなわち、本発明によれば、正極電極層は、特定の条件下における、HK法により測定した1.0nm以上1.4nm未満の細孔径の細孔容積が0.11cc/g以上、かつBET法により算出した全細孔容積が1.1cc/g以下であるため、必要な細孔直径範囲の細孔容積が十分確保され、これにより、-30℃付近での充放電容量が大きくなる。さらに、正極電極層の細孔内での電解質イオンの易動度の影響による充放電容量の低下を抑制することができ、内部抵抗の増加を抑制することができる。
 また、本発明によれば、上記した低温における初期放電容量およびエネルギー密度が向上し、常温(25℃)の充放電容量に対する-30℃の充放電容量の低下率を抑制したリチウムイオンキャパシタ用の正極電極が提供される。
 本発明の正極電極は、上記のように、セルに組み込む前の正極電極における正極電極層(B)をHK法により算出した1.0nm以上1.4nm未満の細孔径の細孔容積が0.13cc/g以上であり、BET法により算出した全細孔容積が1.2cc/g以下である。
 また、本発明の正極電極は、セルから取り出した正極電極の正極電極層(A)をHK法により算出した1.0nm以上1.4nm未満の細孔径の細孔容積が0.11cc/g以上であり、BET法により算出した全細孔容積が1.1cc/g以下である、特定細孔特性を有する。そして、かかる正極電極は、例えば、集電体上における一方の表面あるいは両方の表面に正極電極層が積層された構成を有する、特に、大容量のリチウムイオンキャパシタに適する。
[正極電極]
 以下、本発明のリチウムイオンキャパシタ用正極電極の実施の形態を例に挙げて説明する。
 本発明に係るリチウムイオンキャパシタ用正極電極とは、正極集電体上に正極活物質と結着剤等との混合物であるスラリーを塗布して正極電極層が形成された構成を有する電極を意味する。
[正極活物質]
 本発明の正極電極における正極電極層を構成する正極活物質は、例えばリチウムイオンおよびテトラフルオロボレート等の少なくとも1種のアニオンを可逆的に担持することができる物質である。
 正極電極層を構成する正極活物質の好ましい具体例としては、活性炭、および芳香族系縮合ポリマーの熱処理物である、例えば、ポリアセン系物質(以下、PASともいう。)が挙げられる。
 正極電極層を構成する正極活物質においては、その50%体積累積径D50が1~12μmであることが好ましく、特に好ましくは2~8μmである。50%体積累積径D50が過小である場合には、リチウムイオンキャパシタに適用したときに、リチウムイオンキャパシタの容量保持率が小さくなるおそれがある。その理由は、正極電極における正極電極層の電極密度が過剰に大きくなることに伴って正極活物質粒子間における空隙率が小さくなり、それに起因して電解液の枯渇が生じやすくなるためと推察される。一方、50%体積累積径D50が過大である場合には、正極電極層を形成するために必要とされる電極密度を得ることができないことから、正極電極を成形することが困難となる。また、たとえ正極電極を成形することができたとしても、リチウムイオンキャパシに適用したときに、リチウムイオンキャパシタのエネルギー密度が小さくなるおそれがある。
 ここに、正極活物質の50%体積累積径D50は、例えばレーザー回折式マイクロトラック法やX線マイクロトラック法によって測定される。
 本発明の正極電極において、正極電極層を構成する正極活物質としては、正極電極層のBET比表面積を所望の範囲に調整するために、BET比表面積が2200m/gを超え2800m/g以下である正極活物質を用いることが好ましい。
 正極活物質のBET比表面積が2200m/gを下回ると、セルに組み込む前後のいずれにおいても正極電極層のBET比表面積が小さくなりすぎるため、充放電容量を大きくするために必要な細孔直径範囲の細孔容積を十分に確保することが困難となる。そのため、常温および-30℃における初期容量、およびエネルギー密度が小さくなる傾向にあり好ましくない。
 また、BET比表面積が2800m/gを上回ると、セルに組み込む前後のいずれにおいても正極電極層のBET比表面積が大きくなりすぎるため、正極電極の全細孔容積を所定の値以下に抑えることが困難である。そのため、正極電極の密度が小さくなり、常温および-30℃環境下におけるエネルギー密度が小さくなる傾向にあり好ましくない。
 正極電極層を構成する正極活物質において、そのBET比表面積は、2200m/gを超え2800m/g以下であることが好ましいが、より好ましくは2300~2700m/gであり、更に好ましくは2300~2600m/gである。
 正極活物質のBET比表面積が過小である場合には、得られる正極電極層のBET比表面積が小さくなり、リチウムイオンキャパシタに適用したときに、リチウムイオンキャパシタの容量が小さくなって内部抵抗が高くなる傾向がある。一方、正極活物質のBET比表面積が過大である場合には、正極活物質および得られる正極電極層の嵩密度が非常に大きくなり、リチウムイオンキャパシタに適用したときに、セル体積当たりのエネルギー密度が小さくなる。しかも、セルにおいて必要とされる電解液の量が通常よりも多くなるためにセル質量当たりのエネルギー密度も小さくなるおそれがある。なお、BET比表面積が2800m/gを超える正極活物質は、その製造が困難であり現実的なものではない。
 具体的には、本発明の正極電極における正極電極層を構成する正極活物質としては、活性炭を用いることが好ましい。
 すなわち、本発明の正極電極層を構成する正極活物質としては、BET比表面積が2200m/gを超え2800m/g以下である活性炭よりなる正極活物質を用いることが好ましい。
 正極活物質においては、1.0nm以上1.4nm未満の細孔径の細孔容積が0.16cc/g以上0.23cc/g未満であることが好ましく、特に好ましくは0.17cc/g以上0.22cc/g未満である。また、0.6nm以上1.0nm未満の細孔径の細孔容積が0.18cc/g以上0.32cc/g以下であることが好ましく、特に好ましくは0.20cc/g以上0.30cc/g以下である。
 正極活物質の各細孔径の範囲の細孔容積が上記の範囲内ある場合には、リチウムイオンキャパシタへの適用に際して、初期放電容量とエネルギー密度が向上し、常温の充放電容量に対する-30℃の充放電容量の低下率を小さくすることができる。
 すなわち、本発明の正極電極層を構成する正極活物質としては、1.0nm以上1.4nm未満の細孔径の細孔容積が0.16cc/g以上0.23cc/g未満である活性炭を用いることが好ましい。
 また、正極電極層を構成する正極活物質は、例えば正極活物質を焼成することによって炭化処理した後、賦活処理し、更に粉砕処理をすることによって得られる。
 正極活物質原料としては、例えばフェノール樹脂、石油ピッチ、石油コークス、ヤシガラおよび石炭系コークスなどが用いられる。これらのうちでは、比表面積を大きくすることができることから、フェノール樹脂、または石炭系コークスが好ましい。
 また、前記賦活処理としては、アルカリ賦活処理または水蒸気賦活処理が好ましい。このアルカリ賦活処理に用いられるアルカリ活性化剤としては、リチウム、ナトリウム、カリウムなどのアルカリ金属の塩類または水酸化物が好適に用いられ、特に水酸化カリウムが好ましい。
 また、前記粉砕処理は、例えばボールミルなどの既知の粉砕機を用いることによって10~200μmに粉砕して行われる。
 本発明では、正極活物質における0.6nm以上1.0nm未満および1.0nm以上1.4nm未満の細孔径の細孔容積は、以下のようにして求められる。
 先ず、測定対象体としての正極活物質の粉体を熱処理して減圧した条件下において、一定時間乾燥処理したものを測定試料とする。この測定試料について、比表面測定装置を用いて吸着等温線を取得し、この吸着等温線からHK法解析により算出する。HK法解析とは、一般的に活性炭等の細孔を有する物質のミクロ孔解析に用いられる計算方法であり、例えば活性炭等に形成された細孔の形状をスリット状と仮定し、細孔内の平均ポテンシャルから細孔径分布を計算する方法であり、Horvathおよび川添により考案された方法である(Geza Horvith and Kunitaro Kawazoe,J.Chem.Eng.Japan,16、470(1983))。
 また、正極活物質においては、BET法により算出した全細孔容積が1.0cc/g以上1.5cc/g以下であることが好ましく、特に好ましくは1.1cc/g以上1.45cc/g以下である。
 正極活物質の全細孔容積が過大である場合には、得られる正極電極に関して、正極電極層の電極密度が低くなり、常温および-30℃環境下におけるエネルギー密度が小さくなるおそれがある。
 本発明では、全細孔容積は、BET法から得られた吸着データを直線補間し相対圧0.99での吸着量からを求められる。
[セルに組み込む前の正極電極]
 本発明のセルに組み込む前の正極電極において、正極電極層(B)のHK法により算出した細孔径1.0以上1.4nm未満の細孔容積が0.13cc/g以上であり、BET法により算出した全細孔容積が1.2cc/g以下であることが必要である。本発明のセルに組み込む前の正極電極において、正極電極層(B)のBET比表面積は、1900m/g以上であって2300m/g以下であることが好ましいが、更に好ましくは1950~2250m/gであり、特に好ましくは2000~2200m/gである。
 正極電極層(B)のBET比表面積が過小である場合には、リチウムイオンキャパシタに適用したときに、リチウムイオンキャパシタの容量が小さくなって内部抵抗が大きくなる。一方、正極電極層(B)のBET比表面積が過大である場合には、電極密度が小さくなり、それに起因して、リチウムイオンキャパシタに適用したときに、リチウムイオンキャパシタのエネルギー密度が小さくなる。また、結着剤による正極電極層(B)の結着状態が不十分なものとなることに起因して電極強度が小さくなり、リチウムイオンキャパシタの製造工程上に困難が生じる。
 本発明のセルに組み込む前の正極電極における正極電極層(B)においては、以下の測定前処理を行ってから各測定を行う。作製した正極電極から正極電極層(B)を削り取り、当該正極電極層(B)を200℃で5.5Paまで減圧した条件下において2時間乾燥処理したものを測定試料とする。そして、比表面測定装置によって測定試料のBET比表面積を測定する。得られた測定値が正極電極層(B)のBET比表面積とされる。また、正極活物質におけるHK法解析を用いた細孔容積の算出と同様の方法により、測定試料の細孔容積を求める。この値が、正極電極層(B)の細孔容積とされる。
 セルに組み込む前の正極電極における正極電極層(B)においては、1.0nm以上1.4nm未満の細孔径の細孔容積が0.13cc/g以上0.20cc/g以下であることが好ましく、更に好ましくは0.14cc/g以上0.19cc/g以下である。また、0.6nm以上1.0nm未満の細孔径の細孔容積が0.27cc/g以下であることが好ましく、より好ましくは0.13cc/g以上0.27cc/g以下、特に好ましくは0.15cc/g以上0.25cc/g以下である。
 セルに組み込む前の正極電極における正極電極層(B)の各細孔径の範囲の細孔容積が上記の範囲内ある場合には、リチウムイオンキャパシタに適用したときに、初期放電容量とエネルギー密度が向上し、常温の充放電容量に対する-30℃の充放電容量の低下率を小さくすることができる。
 また、セルに組み込む前の正極電極における正極電極層(B)においては、全細孔容積が1.2cc/g以下であることが必要であり、0.9cc/g以上であるのが好ましい。
 セルに組み込む前の正極電極における正極電極層(B)の全細孔容積が過大である場合には、正極電極層の電極密度が低くなり、常温および-30℃環境下におけるエネルギー密度が小さくなるおそれがある。また、セルに組み込む前の正極電極における正極電極層(B)の全細孔容積が過小である場合には、容量の発現に必要な細孔容積が低下して常温ならびに低温における初期放電容量が不十分になるおそれがある。
 本発明では、全細孔容積の測定方法は、正極活物質におけるBET法を用いた全細孔容積の算出と同様の方法を用いて求められる。
 本発明のセルに組み込む前の正極電極において、正極電極層(B)の密度は、0.38~0.7g/cmであればよく、0.4~0.65g/cmが好ましく、0.41~0.6g/cmが更に好ましい。
 正極電極層の電極密度が過小である場合には、リチウムイオンキャパシタに適用したときに、リチウムイオンキャパシタのエネルギー密度が小さくなる。一方、正極電極層の電極密度が過大である場合には、正極電極層が空隙率の小さいものとなり、リチウムイオンキャパシタに適用したときに、正極電極層内部に電解液が浸透しにくくなる。そのため、リチウムイオンの移動が難しくなって電子の受け渡しが難しくなり、これに起因してリチウムイオンキャパシタの内部抵抗が大きくなり、また容量が小さくなるおそれがある。
 本発明の正極電極における正極電極層の電極密度は、乾燥状態の正極電極層の質量と外形体積とに基づき、正極電極層の質量を当該正極電極層の外形体積によって除することによって得られる値である。
 ここに、「正極電極層の外形体積」とは、正極電極層の縦寸法、横寸法および厚み寸法を測定し、その測定値に基づいて算出される体積である。
[セルから取り出した正極電極] 
 本発明のセルから取り出した正極電極の正極電極層(A)において、以下の処理を行ってから各測定を行う。
 セル電圧3Vの状態でセルから取り出し、切り出した正極電極を、正極電極1cm当たり10cc(mL)の脱水アセトニトリル中に25℃で10分間撹拌下に浸漬する操作を3回繰り返し、次いで、60℃で1時間予備乾燥処理する。得られた予備乾燥処理正極電極から正極電極層(A)を削り取り、200℃で5.5Paまで減圧した条件下において2時間乾燥処理したものを測定試料とする。そして、比表面測定装置によって測定試料のBET比表面積を測定する。得られた測定値が正極電極層(A)のBET比表面積とされる。また、正極活物質におけるHK法解析を用いた細孔容積の算出と同様の方法により、測定試料の細孔容積を求める。この値が、正極電極層(A)の細孔容積とされる。
 本発明のセルから取り出した正極電極の正極電極層(A)において、セルから正極電極を取り出す前にセル電圧を3Vにする手段は特に限定されない。例えば、セル電圧が3Vを超える場合には、定電流によってセル電圧が3Vになるまで放電し、その後、3Vの定電圧を印加する定電流-定電圧放電を行えばよい。また、セル電圧が3V未満の場合には、定電流によってセル電圧が3Vになるまで充電し、その後、3Vの定電圧を印加する定電流-定電圧充電を行えばよい。
 そして、セルから取り出した本発明の正極電極は、特定細孔特性、すなわち、HK法により算出した1.0nm以上1.4nm未満の細孔径の細孔容積が0.11cc/g以上0.18cc/g以下であり、BET法により算出した全細孔容積が0.6cc/g以上1.1cc/g以下であることが必要である。そして、セルから取り出して測定前処理を行った、本発明の正極電極の正極電極層(A)のBET比表面積は、1500m/g以上であって2000m/g以下であることが好ましいが、更に好ましくは1550~1950m/gである。
 正極電極層(A)のBET比表面積が過小である場合には、リチウムイオンキャパシタに適用したときに、リチウムイオンキャパシタの容量が小さくなって内部抵抗が大きくなる。一方、正極電極層(A)のBET比表面積が過大である場合には、電極密度が小さくなり、それに起因して、リチウムイオンキャパシタに適用したときに、リチウムイオンキャパシタのエネルギー密度が小さくなる。
 セルから取り出した正極電極の正極電極層(A)においては、1.0nm以上1.4nm未満の細孔径の細孔容積が0.11cc/g以上であることが必要であり、好ましくは0.11cc/g以上0.18cc/g以下、更に好ましくは0.12cc/g以上である。また、0.6nm以上1.0nm未満の細孔径の細孔容積が0.23cc/g以下であることが好ましく、より好ましくは0.1cc/g以上0.23cc/g以下、特に好ましくは0.12cc/g以上0.21cc/g以下である。
 セルから取り出した正極電極の正極電極層(A)の各細孔径の範囲の細孔容積が上記の範囲内ある場合には、リチウムイオンキャパシタに適用したときに、初期放電容量とエネルギー密度が向上し、常温の充放電容量に対する-30℃の充放電容量の低下率を小さくすることができる。
 セルから取り出した正極電極の正極電極層(A)においては、全細孔容積が1.1cc/g以下であることが必要であり、好ましくは0.6cc/g以上1.1cc/g以下であり、更に好ましくは0.8以上1.1cc/g以下である。セルから取り出した正極電極の正極電極層(A)の全細孔容積が過大である場合には、正極電極層の電極密度が低くなり、常温および-30℃環境下におけるエネルギー密度が小さくなるおそれがある。一方、セルから取り出した正極電極の正極電極層(A)の全細孔容積が過小である場合には、容量の発現に必要な細孔容積が低下して常温および低温における初期放電容量が不十分になるおそれがある。
 ここに、全細孔容積の測定方法は、正極活物質におけるBET法を用いた全細孔容積の算出と同様の方法を用いて求められる。
 本発明の特定細孔特性の正極電極層を有する正極電極は、正極電極層に用いる正極活物質の種類および使用量、結着剤の種類および使用量、導電材の種類および使用量、必要に応じて用いる増粘剤の種類および使用量等を適切に選択することにより製造することができる。例えば、適切な正極活物質および導電材を選択したとしても、結着剤の種類および使用量が適切でないと、本発明の正極電極層の特定細孔特性を有する正極電極は得られないことになる。
 本発明においては、セルに組み込む前の正極電極における正極電極層(B)の特性、およびセルから取り出した正極電極における正極電極層(A)の特性のうち、いずれかの特性が上記の条件を満たしていればよい。
 本発明のセルから取り出した正極電極の正極電極層(A)の密度は、0.37~0.69g/cmであればよく、0.39~0.64g/cmが好ましく、0.4~0.59g/cmが更に好ましい。正極電極層の電極密度が過小である場合には、リチウムイオンキャパシタに適用したときに、リチウムイオンキャパシタのエネルギー密度が小さくなる。一方、正極電極層の電極密度が過大である場合には、正極電極層が空隙率の小さいものとなり、リチウムイオンキャパシタに適用したときに、正極電極層内部に電解液が浸透しにくくなる。また、これに伴って、リチウムイオンの移動が難しくなって電子の受け渡しが難しくなる。これに起因して、リチウムイオンキャパシタの内部抵抗が大きくなり、また容量保持率が小さくなるおそれがある。
[結着剤]
 本発明における正極電極層を構成する結着剤としては、例えばスチレン・ブタジエンゴム(SBR)等のゴム系結着剤、ポリ四フッ化エチレン、ポリフッ化ビニリデン等の含フッ素系樹脂、ポリプロピレン、ポリエチレン等の炭化水素樹脂、アクリル系重合体など耐酸化性および電解液に対する耐溶解性を有する高分子物質を好適に用いることができる。本発明における正極電極層を構成する結着剤としては、アクリル系重合体結着剤が好ましく、水溶性アクリル系共重合体結着剤が特に好ましい。
 なお、後述する正極電極の製造方法において、正極電極層を形成するために前記の高分子物質よりなる結着剤を用いず、正極活物質と、例えばカルボキシメチルセルロースなどの増粘剤として用いられる、耐酸化性を有さない高分子物質のみを用いた場合には、得られる正極電極は、リチウムイオンキャパシタに適用したときに、リチウムイオンキャパシタのセル中において増粘剤が電解液を構成する非プロトン性有機溶媒を吸収して膨潤する。これに起因して、正極電極層の集電体に対する結着力が不足し、集電体からの正極電極層の剥落が生じやすくなる。
 また、本発明の正極電極においては、正極活物質が結着剤によって結着された状態の正極電極層を有するものであれば、結着剤によって結着された状態の正極活物質が存在する正極電極層と、例えばカーボンなどよりなる、正極活物質が存在しない導電層とが積層されたものであってもよい。正極電極における導電層の厚みは、正極電極層と導電層との総厚みに対して5~20%が好ましい。具体的には、導電層の厚みは、通常、1~20μmが好ましい。
 また、本発明の正極電極における正極電極層の厚みは、30~350μmが好ましく、50~200μmがさらに好ましい。
[集電体]
 本発明の正極電極における集電体としては、例えば電解エッチング箔、エッチング箔、エキスパンドメタルのように表裏面を貫通する貫通孔を備えたものであれば、一般にリチウム系電池に用いられる種々の材質のものを用いることができる。
 具体的な材質としては、例えばアルミニウム、ステンレスなどが挙げられる。
 集電体に備えられた貫通孔の形態、数などは特に限定されず、リチウムイオンが集電体に遮断されることなく電極の表裏間を移動できるよう設計されていればよい。
 また、本発明の正極電極における集電体は、その厚みが特に限定されるものではないが、通常、1~50μmであればよく、5~40μmが好ましく、10~40μmが特に好ましい。
[正極電極の製造方法]
 本発明の正極電極を製造する方法としては、例えば以下の製造方法が挙げられる。
(1)正極活物質、結着剤、並びに必要に応じて使用される導電剤および増粘剤などの添加剤を、水性媒体中に分散させることによってスラリーを調製し、得られたスラリーを、必要に応じて予め導電層などの形成された集電体に塗布・乾燥することによって、正極電極を製造する方法。
(2)上記(1)と同様にして調製したスラリーを予めシート状に成形し、その後、プレス処理により正極電極層を圧密化し、これを好ましくは導電性接着剤を使用して集電体に貼り付けることによって、正極電極を製造する方法。
 本発明の正極電極を製造する方法においては、スラリーを調製する際に、正極活物質を含有する分散液に結着剤を添加する、具体的には、正極活物質を含有する正極活物質分散液と、結着剤を含有する結着剤分散液とを別々に調製し、正極活物質分散液に対して結着剤分散液を添加することが好ましい。
 本発明においては、正極活物質分散液には、正極活物質と共に、結着剤以外の物質(具体的には、使用される導電剤および増粘剤などの添加剤)が含有されていてもよい。
 このように、正極活物質を含有する分散液に結着剤を添加することにより、正極電極層を所望の細孔容積、およびBET比表面積を有し、かつ所望の電極密度を有するものとすることができる。
[増粘剤]
 正極活物質分散液に増粘剤が含有される場合においては、正極活物質を含有する分散液(但し、増粘剤は含有されていない。)に増粘剤を添加してもよく、また、増粘剤を含有する分散液に正極活物質を添加してもよいが、正極活物質を含有する分散液(但し、増粘剤は含有されていない。)に増粘剤を添加することが好ましい。正極活物質を含有する分散液に増粘剤を添加することにより、正極活物質の表面細孔内に結着剤および必要に応じて添加される増粘剤などの添加剤が侵入することを十分に抑制することができる。その結果、リチウムイオンキャパシタに適用したときに、より一層の高容量化および内部抵抗の低減化を図ることができる。
 また、増粘剤を含有する分散液に正極活物質を添加する場合においては、増粘剤を含有する分散液とは別個に正極活物質を含有する分散液を調製し、その正極活物質を含有する分散液を、増粘剤を含有する分散液に添加することが好ましい。
 結着剤の使用量は、正極活物質の電気伝導度、形成すべき正極電極層の形状などによっても異なるが、正極活物質100質量%に対して1~15質量%が好ましく、3~10質量%がさらに好ましい。
[導電剤]
 正極電極を形成するために必要に応じて使用される導電剤としては、例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、ランプブラック、グラファイト、金属粉末などが挙げられる。これらの中では、アセチレンブラックまたはケッチェンブラックが好ましい。
 導電剤の使用量は、正極活物質の電気伝導度、形成すべき正極電極層の形状などによっても異なるが、正極活物質100質量%に対して1~40質量%であることが好ましく、2~20質量%であることがさらに好ましい。
 正極電極を形成するために必要に応じて使用される増粘剤としては、例えばカルボキシメチルセルロース(CMC)、ポリエチレンオキシド(PEO)およびポリビニルアルコール(PVA)などが挙げられる。増粘剤としては、カルボキシメチルセルロースが好ましい。
 増粘剤の使用量は、スラリー全体100質量%において1~10質量%が好ましく、1~5質量%がさらに好ましい。
 以上のような本発明の正極電極によれば、正極電極層が、特定の細孔容積を有するものであることから、リチウムイオンキャパシタに用いた場合において、高エネルギー密度および高容量なリチウムイオンキャパシタが得られる。
[リチウムイオンキャパシタ]
 本発明のリチウムイオンキャパシタは、正極電極として本発明の正極電極が備えられている。
 本発明のリチウムイオンキャパシタの好ましい構成としては、以下の構成が挙げられる。
 正極電極および負極電極、並びにリチウムイオンを移送可能な電解質を含有する電解液を備え、リチウムイオンの移動を伴うものである。正極電極は、表裏面を貫通する貫通孔を備えた集電体を備え、正極活物質としてリチウムイオンおよび/またはアニオンを可逆的に担持可能な物質を含有する。また、負極電極は、表裏面を貫通する貫通孔を備えた集電体を備え、負極活物質としてリチウムイオンを可逆的に担持可能な物質を含有し、負極電極にリチウムが電気化学的にドーピングされたキャパシタセルよりなるものである。
 本明細書において、「負極電極」とは放電の際に電流が流れ込む側の電極をいう。なお、「正極電極」とは、前述のように放電の際に電流が流れ出る側の電極である。
 このキャパシタセルにおけるリチウムイオンのドーピングは、負極電極および正極電極を構成する活物質の種類などを考慮し、このような不具合を生じない量とすることが好ましい。
 また、「ドーピング」とは、吸蔵、吸着または挿入を意味し、広く、正極活物質にリチウムイオンおよびアニオンの少なくとも一方が入る現象、あるいはまた、負極活物質にリチウムイオンが入る現象をいう。また、「脱ドーピング」とは、脱離、放出をも意味し、正極活物質からリチウムイオンもしくはアニオンが脱離する現象、または負極活物質からリチウムイオンが脱離する現象をいう。
 また、本発明のリチウムイオンキャパシタを構成するキャパシタセルは、特に、負極活物質の単位質量当たりの静電容量が正極活物質の単位質量当たりの静電容量の3倍以上であり、かつ、正極電極に使用されている正極活物質の質量が負極電極に使用されている負極活物質の質量よりも大きく、1.1~10倍であるものとされることが好ましい。
 このようなキャパシタセルによれば、高電圧かつ大容量が達成される。また、正極電極の単位質量当たりの静電容量に対して極めて大きな単位質量当たりの静電容量を有する負極電極を用いたキャパシタセルによれば、高電圧が達成されると同時に、設計上負極電極の電位の変化量を維持したまま負極活物質の質量を減らすことが可能となって正極活物質の充填量を多くすることができるので、キャパシタセルが静電容量および容量の大きなものとされる。
 ここに、正極活物質の質量が負極活物質の質量の1.1倍未満である場合には、負極活物質層の重量が不必要に過剰になりエネルギー密度が低下する。また正極活物質の質量が負極活物質の質量の10倍を超える場合には、負極の放電容量が大きくなり、放電時に負極が過放電になって負極集電体の金属が溶出するおそれがあると共に、正極電極と負極電極との厚みの差が過剰に大きくなってキャパシタセルの構造上好ましくない。
 なお、本発明において、静電容量および容量は、次のように定義される。
 キャパシタセルの静電容量とは、当該キャパシタセルの単位電圧当たりセルに流れる電気量(放電カーブの傾き)を示す(単位:F)。
 また、キャパシタセルの単位質量当たりの静電容量とは、キャパシタセルの静電容量に対する正極活物質と負極活物質の合計質量の除で示されるものである(単位:F/g)。
 また、正極電極または負極電極の静電容量とは、正極電極あるいは負極電極の単位電圧当たりキャパシタセルに流れる電気量(放電カーブの積算値、単位:F)を示す。
 また、正極電極あるいは負極電極の単位質量当たりの静電容量とは、正極電極あるいは負極電極の静電容量を正極あるいは負極活物質の質量の除で示されるものである(単位:F/g)。
 さらに、キャパシタセルの容量とは、キャパシタセルの放電開始電圧と放電終了電圧との差、すなわち電圧変化量とキャパシタセルの静電容量の積である(単位:C)。
 なお、1.0Cは1秒間に1.0Aの電流が流れたときの電荷量であるので、本明細書においては換算してmAhと表示する。
 また、正極電極の容量とは、放電開始時の正極電極の電位と放電終了時の正極電極の電位の差(正極電極の電位変化量)と正極電極の静電容量の積である(単位:CまたはmAh)。同様に、負極電極の容量とは放電開始時の負極電極の電位と放電終了時の負極電極の電位の差(負極電極の電位変化量)と負極電極の静電容量の積である(単位:CまたはmAh)。
 これらキャパシタセルの容量と、正極電極の容量および負極電極の容量は一致する。
[負極電極]
 本発明のリチウムイオンキャパシタを構成する負極電極は、例えば集電体上における一方の表面あるいは両方の表面に、負極活物質が結着剤によって結着された状態の負極活物質層が積層されてなる構成を有するものである。
[負極活物質層]
 本発明のリチウムイオンキャパシタにおいて、負極活物質は、リチウムイオンを可逆的に担持できる物質である。
 負極活物質の好ましい具体例としては、黒鉛(グラファイト)、難黒鉛化炭素(ハードカーボン)などの炭素材料、または、芳香族系縮合ポリマーの熱処理物である、例えば、ポリアセン系物質(PAS)等が好ましい。
 負極電極の負極活物質層を構成する結着剤としては、前述の正極電極の正極電極層を構成する結着剤と同様のものを挙げることができる。
 また、負極電極における負極活物質層の厚みは、20~250μmであることが好ましい。
[集電体] 
 集電体としては、前述の正極電極を構成する集電体と同様に、例えばエキスパンドメタルのように表裏面を貫通する貫通孔を備えたものであれば、一般にリチウム系電池に用いられる種々の材質のものを用いることができる。
 具体的な材質としては、例えばステンレス、銅、ニッケルなどが挙げられる。
 集電体に備えられた貫通孔の形態、数などは特に限定されず、リチウムイオンが集電体に遮断されることなく電極の表裏間を移動できるよう設計されていればよい。
 また、負極電極における集電体は、その厚みが特に限定されるものではないが、通常、1~50μmであればよく、5~40μmが好ましく、10~40μmが特に好ましい。
[負極電極の製造方法]
 本発明のリチウムイオンキャパシタを構成する負極電極は、集電体、負極活物質および結着剤、並びに必要に応じて使用される導電剤から製造される。具体的な製造方法としては、例えば以下の製造方法が挙げられる。
(1)例えば負極活物質、結着剤、および必要に応じて使用される導電剤および増粘剤などの添加剤を、水系媒体中に分散させることによってスラリーを調製し、得られたスラリーを集電体に塗布して乾燥する方法。
(2)上記(1)と同様にして調製したスラリーを予めシート状に成形し、これを好ましくは導電性接着剤を使用して集電体に貼り付ける方法。
 負極電極を形成するための結着剤の使用量は、前述の正極電極を形成するための結着剤の使用量と同様の範囲とすることができる。
 負極電極を形成するために必要に応じて使用される導電剤としては、前述の正極電極を形成するために必要に応じて使用される導電剤と同様のものを挙げることができ、その使用量も同様の範囲とすることができる。
 負極電極を形成するために必要に応じて使用される増粘剤としては、前述の正極電極を形成するために必要に応じて使用される増粘剤と同様のものを挙げることができ、その使用量も同様の範囲とすることができる。
[リチウムイオンのドーピング]
 本発明のリチウムイオンキャパシタにおいて、負極電極にリチウムイオンをドーピングさせる手段は特に限定されず、例えば、リチウムイオンを供給可能な、金属リチウムなどのリチウムイオン供給源をリチウム極としてキャパシタセル内に配置する方法などを挙げることができる。リチウム極は負極電極に物理的に接触(短絡)させた状態で配置させてもよく、電気化学的にドーピングできる位置に配置させてもよい。
 リチウムイオンを電気化学的にドーピングさせる場合には、正極電極および負極電極を構成する集電体が貫通孔を有するものであるために、キャパシタセルが捲回型セルや積層型セルとして構成されたものであっても、リチウム極を最外周または最外側のキャパシタセルの一部、具体的には例えば1つの正極電極または負極電極に対向する位置にのみ設ければ、電気化学的にすべての負極電極に、スムーズかつ均一にリチウムイオンをドーピングさせることができる。
 リチウム極としては、例えば、導電性多孔体からなる集電体上にリチウムイオン供給源が形成されたものを用いることができる。リチウム極の集電体となる導電性多孔体としては、ステンレスメッシュなどのリチウムイオン供給源と反応しない銅やステンレスなどの金属多孔体を使用することができる。
 また、リチウムイオン供給源から電気化学的にドーピングする場合には、リチウムイオン供給源としては、リチウム金属やリチウム-アルミニウム合金などのように、少なくともリチウムを含有し、リチウムイオンを供給することのできる物質が用いられる。
 リチウムイオン供給源の量(リチウム金属などの質量)は、負極電極に所定の容量が得られる量であればよい。
[電解液]
 本発明のリチウムイオンキャパシタにおいては、電解液として、非プロトン性有機溶媒電解質溶液(リチウム塩を含む電解質を非プロトン性有機溶媒に溶解させた溶液)が用いられる。
 本発明における電解液を構成する非プロトン性有機溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート等の環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状カーボネート、γ-ブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、スルホランなどが挙げられる。
 これは、単独でまたは2種以上を組み合わせて用いることもできる。
 本発明における電解液は、環状カーボネートおよび鎖状カーボネートを含むことが好ましい。なかでも、前記電解液は体積比で前記環状カーボネートを20~50vol%、前記鎖状カーボネートを50~80vol%含むことがさらに好ましい。
 環状カーボネートおよび鎖状カーボネートが上記範囲にある場合には、溶媒和したリチウムイオンのストークス径が正極電極中の細孔内に入り込めるほど十分に小さくなるため、低温における抵抗が小さく充放電容量が大きくなりやすい。上記範囲を外れると、溶媒和したリチウムイオンのストークス径が大きくなり正極電極中の細孔内に入りづらくなったり、低温における電解液の粘度が高くなるなどして抵抗が大きくなると言う懸念がある。
 本発明における電解液を構成する電解質は、リチウムイオンを生成しうる電解質であればよく、種々のものを用いることができる。
 前記電解質の具体例としては、例えば、LiClO、LiAsF、LiBF、LiPF、LiN(CSO、LiN(CFSOなどが挙げられる。前記電解質としては、LiPF、LiN(CFSOが好ましい。
 電解液としての非プロトン性有機溶媒電解質溶液中における電解質の濃度は、低い内部抵抗が得られることから、少なくとも0.1モル(mol)/L以上であることが好ましい。
 ここに、電解液を構成する非プロトン性有機溶媒電解質溶液は、十分に脱水された状態の電解質と非プロトン性有機溶媒とを混合することによって得られるものである。
[リチウムイオンキャパシタの構造]
 本発明に係るリチウムイオンキャパシタの構造としては、特に、帯状の正極電極と負極電極とをセパレータを介して積層して捲回させる捲回型セル、板状の正極電極と負極電極とをセパレータを介して各3層以上積層された積層型セル、あるいは、板状の正極電極と負極電極とをセパレータを介した各3層以上積層物を外装フィルム内に封入したフィルム型セルなどの大容量のキャパシタセルに適した構造が挙げられる。
 これらのキャパシタセルの構造は、国際公開WO00/07255号公報、国際公開WO03/003395号公報、特開2004-266091号公報などにより既知であり、本発明のキャパシタセルも上記の既知のセルと同様の構成とすることができる。
 本発明のリチウムイオンキャパシタによれば、本発明の正極電極が用いられていることから、高エネルギー密度および高容量が得られる。
 このような本発明のリチウムイオンキャパシタは、電気自動車、ハイブリッド電気自動車などの駆動用電源または補助用電源として極めて有効なものである。また、電気自転車、電気車椅子などの駆動用電源、ソーラーエネルギー発電機、風力発電機などのエネルギー蓄電装置、あるいは家庭用電気器具の蓄電源などとして好適に用いることができる。
 以下、本発明の具体的な実施例について説明するが、本発明はこれらに限定されるものではない。
(細孔容積、および比表面積の測定方法)
 測定を行う粉体0.02gを採取して試料管に仕込み、粉体の入った試料管の重量を測定した。次いで、温度200℃で5.5Paまで減圧した条件下において2時間乾燥処理した。その後、乾燥処理後の粉体の入った試料管の重量を測定し、測定に用いた粉体の実重量を下記式により算出した。
 粉体の実重量=0.02-(乾燥前試験管重量-乾燥後試験管重量)
 この粉体を、比表面積測定装置「BELSORP-miniII」(日本ベル社製)を用い、窒素を吸着質とし吸脱着の等温線の測定を行ない、HK法を用いて0.6nm以上1.0nm未満、および1.0nm以上1.4nm未満の細孔径の細孔容積およびBET法を用いて比表面積、および全細孔容積を求めた。
(負極スラリー1の調製)
 厚さ0.5mmの熱硬化性フェノール樹脂成形板を電気炉中に入れ、窒素雰囲気下で昇温速度10℃/時間で1100℃まで昇温し、温度1100℃で2時間保持することによって熱処理することにより、ハードカーボンを合成した。得られたハードカーボンをディスクミルを用いて平均粒子径3μmまで粉砕することにより、ハードカーボン粉体を得た。
 次に、得られたハードカーボン粉体92質量部に対し、アセチレンブラック粉体6質量部、水溶性アクリレート系共重合体結着剤5質量部、カルボキシメチルセルロース4質量部、およびイオン交換水200質量部を加えて混合撹拌機にて充分混合することにより負極スラリー1を得た。
(正極スラリー1の調製)
 正極活物質としてのBET比表面積2400m/g、HK法解析により求めた細孔径1.0nm以上1.4nm未満の細孔容積0.19cc/g、細孔径0.6nm以上1.0nm未満の細孔容積0.29cc/g、全細孔容積1.29cc/g、平均粒子径(平均粒子径D50)4μmの活性炭粉末92質量部、導電剤としてのアセチレンブラック粉体6質量部、およびイオン交換水120質量部を、2軸遊星撹拌機を用いて混合することにより、正極活物質と導電剤とが分散されてなる分散液を得た。
 次いで、得られた分散液に、イオン交換水36質量部に溶解させた、増粘剤としてのカルボキシメチルセルロース4質量部を添加し、2軸遊星撹拌機を用いて混合し、その後、イオン交換水44質量部および水溶性アクリル系共重合体結着剤6質量部を添加し、2軸遊星撹拌機を用いて混合することにより、正極スラリー1を得た。
(正極スラリー2の調製)
 正極スラリー1の調製において、正極活物質として、BET比表面積2350m/g、HK法解析により求めた細孔径1.0nm以上1.4nm未満の細孔容積0.17cc/g、細孔径0.6nm以上1.0nm未満の細孔容積0.25cc/g、全細孔容積1.19cc/g、平均粒子径(平均粒子径D50)4μmの活性炭粉末を用いたこと以外は、正極スラリー1の調製と同様にして正極スラリー2を得た。
(正極スラリー3の調製)
 正極スラリー1の調製において、正極活物質として、BET比表面積2510m/g、HK法解析により求めた細孔径1.0nm以上1.4nm未満の細孔容積0.21cc/g、細孔径0.6nm以上1nm未満の細孔容積0.30cc/g、全細孔容積1.42cc/g、平均粒子径(平均粒子径D50)4μmの活性炭粉末を用いたこと以外は、正極スラリー1の調製と同様にして正極スラリー3を得た。
(正極スラリー4(比較用正極スラリー)の調製
 正極スラリー1の調製において、正極活物質として、BET比表面積1930m/g、HK法解析により求めた細孔径1.0nm以上1.4nm未満の細孔容積0.13cc/g、細孔径0.6nm以上1.0nm未満の細孔容積0.21cc/g、全細孔容積1.17cc/g、平均粒子径(平均粒子径D50)4μmの活性炭粉末を用いたこと以外は、正極スラリー1の調製と同様にして正極スラリー4を得た。
(正極スラリー5(比較用正極スラリー)の調製
 正極スラリー1の調製において、正極活物質として、BET比表面積3000m/g、HK法解析により求めた細孔径1.0nm以上1.4nm未満の細孔容積0.22cc/g、細孔径0.6nm以上1.0nm未満の細孔容積0.38cc/g、全細孔容積1.84cc/g、平均粒子径(平均粒子径D50)4μmの活性炭粉末を用いたこと以外は、正極スラリー1の調製と同様にして正極スラリー5を得た。
(正極スラリー6(比較用正極スラリー)の調製
 正極スラリー1の調製において、水溶性アクリル系共重合体結着剤の代わりにSBR系共重合体結着剤を用いたこと以外は、正極スラリー1の調製と同様にして正極スラリー6を得た。
(負極テストサンプル1の作製)
 集電体として厚さ35μm、気孔率50%の銅製エキスパンドメタル(日本金属工業社製)を用意した。この銅製エキスパンドメタルの両面に、ロールコーターを用いて、負極スラリー1を塗工することによって集電体上に負極活物質層を形成し、シート状の負極テストサンプル1を作製した。
 得られた負極テストサンプル1を用いることにより、後述のリチウムイオンキャパシタの製造例によってリチウムイオンキャパシタを作製した。
(正極テストサンプル1~6の作製)
 集電体として厚さ35μm、気孔率50%のアルミニウム製エキスパンドメタル(日本金属工業社製)を用意した。このアルミニウム製エキスパンドメタルの両面に非水系カーボン系導電塗料「EB-815」(日本アチソン社製)をスプレー方式によってコーティングし、乾燥処理することにより、集電体上に厚み5μmの導電層を形成した。導電層が形成された集電体においては、アルミニウム製エキスパンドメタルの貫通孔が導電層によって略閉塞された状態とされていた。
 次いで、導電層の形成された集電体の両面に、ロールコーターを用いて、各々、正極スラリー1~正極スラリー6を塗工することによって集電体に形成された導電層上に正極スラリーよりなる層(正極スラリー層)を形成することにより、集電体上に導電層と正極スラリー層との積層体よりなる正極電極層を有するシート状の正極テストサンプル1~6を作製した。
 得られた正極テストサンプル1~6を用いることにより、後述のリチウムイオンキャパシタの製造例によってリチウムイオンキャパシタを作製し、また、下記の手法によって正極電極層の細孔容積、BET比表面積および電極密度を測定した。結果を表1-1に示す。
(正極電極における正極電極層の細孔容積、および比表面積の測定方法)
 上記の正極テストサンプル1~6の各々を5cmになるようにカットし、正極電極層を削り取り、200℃で5.5Paまで減圧した条件下において2時間乾燥処理することにより、正極電極層の構成成分(具体的には、正極スラリー層の構成成分である正極活物質、結着剤、導電剤、増粘剤および導電層)の混合物粉体を得た。
 次いで、得られた混合物粉体について上記の手法により細孔径1.0以上1.4nm未満の細孔容積、細孔径0.6nm以上1.0nm未満の細孔容積、BET比表面積、および全細孔容積を求めた。
(正極電極における正極電極層の電極密度の測定)
 正極テストサンプル1~6の各々から40mm×60mmの縦横寸法の電極密度測定用試料を切り出し、その電極密度測定用試料の質量と外形体積とを測定し、その測定値に基づいて正極電極層の質量および当該正極電極層の外形体積とを算出し、得られた正極電極層の質量値および正極電極層の外形体積値に基づいて、質量値を外形体積値によって除することにより、電極密度を算出した。
〔静電容量測定用のリチウムイオンキャパシタの製造〕
(負極静電容量測定用の負極テストサンプルの作製)
 集電体として厚さ18μmの銅箔を用意し、その銅箔の片面に、負極スラリー1を、7mg/cm(固形分換算)の塗工条件で塗工した後、乾燥処理およびプレス処理を行うことにより、負極静電容量測定用の負極テストサンプルを作製した。
(負極電極の単位質量当たりの静電容量の測定)
 負極静電容量測定用の負極テストサンプルから1.5cm×2.0cm(面積3. 0cm)の寸法の静電容量測定用試料を切り出し、静電容量測定用の負極電極とした。この負極電極の対極として、縦横の寸法が1.5cm×2.0cm(面積3. 0cm)で、厚みが200μmの金属リチウムを用意した。また、セパレータとして厚み50μmのポリエチレン製不織布を用意した。正極電極の両面にセパレータを介して対極を配置し、参照極として金属リチウム板を備え、電解液としてLiPFが濃度1モル/Lで溶解されてなるプロピレンカーボネート溶液が用いられてなる構成の模擬セルを作製した。
 次いで、得られた模擬セルに対して、充填電流1mAで負極活物質にその質量に対して400mAh/g相当のリチウムイオンが供給されるよう充電した後、充電電流1mAの条件でセル電圧(キャパシタの電圧)が1.5Vとなるまで充電を行った。その後、放電開始1分間後の負極電極の電位から、セル電圧(キャパシタの電圧)が0.2V変化するまだの間の放電時間に基づいて、負極電極の単位質量当たりの静電容量を求めたところ、661F/gであった。
〈実施例1:リチウムイオンキャパシタ1の製造例〉
《電極積層体の作製》
 負極テストサンプル1をカットすることにより、6.0cm×7.5cm(面積45cm)の寸法を有する電極本体と該電極本体に連続する端子接続部とを備えた負極電極を11枚作製した。また、正極テストサンプル1をカットすることにより、5.8cm×7.3cm(面積42.34cm)の寸法を有する電極本体と該電極本体に連続する端子接続部とを備えた正極電極を10枚作製した。
 次いで、10枚の正極電極と、11枚の負極電極とを、厚み35μmのセルロース/レーヨン混合不織布よりなるセパレータを介して交互に積層し、4辺をテープ止めした。このとき、正極電極における端子溶接部と、負極電極における端子溶接部とがそれぞれ反対側となり、また、正極電極における正極電極層と負極電極における負極活物質層との各対向面が20対となるよう積層した。また、最下部の負極電極とその内側の正極電極との間(以下、「最下部内側正負極間」ともいう。)、および最上部の負極電極とその内側の正極電極との間(以下、「最上部内側正負極間」ともいう。)に、各2枚のセパレータを配置し、最上部および最下部内側正負極間以外の正極電極と負極電極との間には各1枚のセパレータを配置した。その後、得られた積層体を構成する10枚の正極電極における端子溶接部の各々を、縦横の寸法が50mm×50mmで厚さが0.2mmのアルミニウム製正極端子に超音波溶接した。また、11枚の負極電極における端子溶接部の各々を、縦横の寸法が50mm×50mmで厚さが0.2mmの銅製負極端子に超音波溶接した。このようにして電極積層体を作製した。
 得られた電極積層体において、正極活物質の質量は負極活物質の質量の1.4倍であった。
《リチウムイオンキャパシタの作製》
 リチウム極として、縦横の寸法が6.0cm×7.5cm(面積45cm)で厚さが80μmのリチウム金属箔(200mAh/g相当)が、厚さが80μmの銅メッシュよりなるリチウム極集電体に圧着されてなる構成のものを2枚用意した。その2枚のリチウム極を、電極積層体の最上部および最下部の各々に、最外側に位置する負極電極と完全に2枚のセパレータを介して対向するようにして各1枚配置した。そして、各リチウム極におけるリチウム極集電体の端子溶接部を銅製負極端子に抵抗溶接することにより、三極積層ユニットを作製した。
 次いで、得られた三極積層ユニットに適合した寸法を有する矩形状の外装フィルムを2枚用意した。これらの2枚の外装フィルムのうちの一方の外装フィルムは、6.5mmの深絞りが施されたものである。そして、深絞りが施された一方の外装フィルムの中央部に三極積層ユニットを配置し、この三極積層ユニットに他方の外装フィルムを重ね合わせることによって該三極積層ユニットを外装フィルムによって覆い、各外装フィルムの三辺を融着した。その後、電解液としてエチレンカーボネート(EC)、ジエチルカーボネート(DEC)およびプロピレンカーボネート(PC)を体積比で3:4:1とした混合溶媒に、LiPFが濃度1モル/Lで溶解されてなる電解液を、三極積層ユニットに真空含浸させた。その後、各外装フィルムにおける未融着の一辺を融着することにより、フィルム型リチウムキャパシタ1を4個作製した。
 なお、得られたリチウムイオンキャパシタの内部に配置されたリチウム金属は負極活物質質量当たり400mAh/g相当の量である。
《リチウムイオンキャパシタの初期評価》
 作製した4個のリチウムイオンキャパシタ1を作製してから20日間放置した。その後、1個のリチウムイオンキャパシタ1を分解したところ、リチウム極に係るリチウム金属箔が消失していることが確認された。このことから、作製してから20日間経過した後には、負極電極に対して、負極電極の単位質量当たりの静電容量が1021F/g以上となる所期の量のリチウムイオンが負極電極にドーピング(予備充電)されたと判断される。なお、分解前のリチウムイオンキャパシタ1のセル電圧は3Vであった。
《リチウムイオンキャパシタから取り出した正極電極における正極電極層の細孔容積、および比表面積の測定》
 上記で分解したリチウムイオンキャパシタ1から回収した正極電極を5cmになるようにカットし、アルゴン置換したグローブボックス内で脱水アセトニトリル50mLの入った容器に浸漬し、スターラ―で撹拌しながら25℃で10分間洗浄した。この洗浄を3回繰り返した後に、60℃で1時間予備乾燥処理した。得られた予備乾燥処理正極電極から正極電極層を削り取り、200℃で5.5Paまで減圧した条件下において2時間乾燥処理することにより、正極電極層の構成成分(具体的には、正極スラリー層の構成成分である正極活物質、結着剤、導電剤、増粘剤および導電層)の混合物粉体を得た。
 次いで、得られた混合物粉体について上記の手法により細孔径1.0nm以上1.4nm未満の細孔容積、細孔径0.6nm以上1.0nm未満の細孔容積、BET比表面積、および全細孔容積を求めた。結果を下記表1-2に示す。
《リチウムイオンキャパシタの25℃での初期容量およびエネルギー密度の測定》
 3個のリチウムイオンキャパシタ1の各々に対し、1.5Aの定電流によってセル電圧(キャパシタの電圧)が3.8Vになるまで充電し、その後、3.8Vの定電圧を印加する定電流-定電圧充電を1時間行った。次いで、150mAの定電流によってセル電圧(キャパシタの電圧)が2.2Vになるまで放電した。この操作を1サイクルとして25℃雰囲気下で繰り返して行い、10サイクル目の放電におけるキャパシタの容量(初期容量)およびエネルギー密度を測定し、3個のリチウムイオンキャパシタ1についての平均値を算出した。また、この際、放電直前の電圧と放電開始100msec後の電圧との電圧差を放電電流で除した値を直流内部抵抗として評価した。結果を下記表1-3に示す。
 なお、評価基準を以下に記す。
[初期容量]
 155mAhを超える場合:〇
 150~155mAhの場合:△
 150mAh未満の場合:×
[エネルギー密度]
 10.5Wh/lを超える場合:〇
 10.5Wh/lの場合:△
 10.5Wh/l未満の場合:× 
[直流内部抵抗]
 11mΩ未満の場合:〇
 11~12mΩの場合:△
 12mΩを超える場合:×
《リチウムイオンキャパシタの-30℃での初期容量およびエネルギー密度の測定》
 3個のリチウムイオンキャパシタ1の各々に対し、-30℃雰囲気下で3 時間静置した。次いで、1.5Aの定電流によってセル電圧(キャパシタの電圧)が3.8Vになるまで充電し、その後、3.8Vの定電圧を印加する定電流-定電圧充電を1時間行った。次いで、-30℃雰囲気下で150mAの定電流によってセル電圧(キャパシタの電圧)が2.2Vになるまで放電した。この操作を1サイクルとして-30℃雰囲気下で繰り返して行い、10サイクル目の放電におけるキャパシタの容量(初期容量)、エネルギー密度を測定し、3個のリチウムイオンキャパシタ1についての平均値を算出した。また、この際、放電直前の電圧と放電開始100msec後の電圧との電圧差を放電電流で除した値を直流内部抵抗として評価した。結果を表1-3に示す。
 なお、評価基準を以下に記す。
[初期容量]
 130mAhを超える場合:〇
 125~130mAhの場合:△
 125mAh未満の場合:×
[エネルギー密度]
 9. 0Wh/l以上の場合:〇
 8. 5~9. 0Wh/lの場合:△
 8. 5Wh/l未満の場合:×
[直流内部抵抗]
 120mΩ未満の場合:〇
 120~125mΩの場合:△
 125mΩを超える場合:×
《25℃測定値に対する-30℃測定値の変化率》
 また、25℃の測定値(以下、「常温測定値」という。)に対する-30℃の測定値(以下、「低温測定値」という。)の変化率(以下、単に「変化率」ともいう。)を下記式により算出した。結果を表1-3に示す。
 変化率=|常温測定値-低温測定値|/常温測定値×100
 この変化率における評価基準を以下に記す。
[初期容量の変化率(低下率)]
 15%未満の場合:〇
 15~20%の場合:△
 20%を超える場合:×
[エネルギー密度の変化率(低下率)]
 15%未満の場合:〇
 15~20%の場合:△
 20%を超える場合:×
[直流内部抵抗の変化率(上昇率)]
 1100%未満の場合:〇
 1100~1200%の場合:△
 1200%を超える場合:×
〈実施例2:リチウムイオンキャパシタ2の製造例〉
 電極積層体の作製において、正極テストサンプル1に代えて正極テストサンプル2を用いたこと以外は、実施例1と同様にしてリチウムイオンキャパシタ2を4個得た。
 得られたリチウムイオンキャパシタ2について、実施例1と同様の手法によってリチウムイオンキャパシタの初期評価を行ったところ、作製してから20日間経過した後には、負極電極に対して、負極電極の単位質量当たりの静電容量が1021F/g以上となる所期の量のリチウムイオンが負極電極にドーピング(予備充電)されたと判断された。なお、分解前のリチウムイオンキャパシタ2のセル電圧は3.1Vであったため、150mAの定電流によってセル電圧(キャパシタの電圧)が3Vになるまで放電し、その後、3Vの定電圧を印加する定電流-定電圧充電を1時間行った。
 また、リチウムイオンキャパシタ2について、実施例1と同様の手法によって、リチウムイオンキャパシタから取り出した正極電極の細孔径1.0nm以上1.4nm未満の細孔容積、細孔径0.6nm以上1.0nm未満の細孔容積、BET比表面積、全細孔容積、初期容量、エネルギー密度および直流内部抵抗を測定し、25℃測定値に対する-30℃測定値の変化率を算出した。結果を表1-2および表1-3に示す。
〈実施例3:リチウムイオンキャパシタ3の製造例〉
 電極積層体の作製において、正極テストサンプル1に代えて正極テストサンプル3を用いたこと以外は、実施例1と同様にしてリチウムイオンキャパシタ3を4個得た。
 得られたリチウムイオンキャパシタ3について、実施例1と同様の手法によってリチウムイオンキャパシタの初期評価を行ったところ、作製してから20日間経過した後には、負極電極に対して、負極電極の単位質量当たりの静電容量が1021F/g以上となる所期の量のリチウムイオンが負極電極にドーピング(予備充電)されたと判断された。なお、分解前のリチウムイオンキャパシタ3のセル電圧は3Vであった。
 また、リチウムイオンキャパシタ3について、実施例1と同様の手法によって、リチウムイオンキャパシタから取り出した正極電極の細孔径1.0nm以上1.4nm未満の細孔容積、細孔径0.6nm以上1.0nm未満の細孔容積、BET比表面積、全細孔容積、初期容量、エネルギー密度および直流内部抵抗を測定し、25℃測定値に対する-30℃測定値の変化率を算出した。結果を表1-2および表1-3に示す。
〈実施例4:リチウムイオンキャパシタ4の製造例〉
 リチウムイオンキャパシタの作製において、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)およびプロピレンカーボネート(PC)を体積比で3:4:1とした混合溶媒に、LiPFが濃度1モル/Lで溶解されてなる電解液に代えて、エチレンカーボネート(EC)およびジエチルカーボネート(DEC)を体積比で1:5とした混合溶媒に、LiPFが濃度1モル/lで溶解されてなる電解液を用いたこと以外は、実施例1と同様にしてリチウムイオンキャパシタ4を4個得た。
 得られたリチウムイオンキャパシタ4について、実施例1と同様の手法によってリチウムイオンキャパシタの初期評価を行ったところ、作製してから20日間経過した後には、負極電極に対して、負極電極の単位質量当たりの静電容量が1021F/g以上となる所期の量のリチウムイオンが負極電極にドーピング(予備充電)されたと判断された。なお、分解前のリチウムイオンキャパシタ4のセル電圧は3Vであった。
 また、リチウムイオンキャパシタ4について、実施例1と同様の手法によって、リチウムイオンキャパシタから取り出した正極電極の細孔径1.0nm以上1.4nm未満の細孔容積、細孔径0.6nm以上1.0nm未満の細孔容積、BET比表面積、全細孔容積、初期容量、エネルギー密度、および直流内部抵抗を測定し、25℃測定値に対する-30℃測定値の変化率を算出した。結果を表1-2および表1-3に示す。
〈比較例1:比較用リチウムイオンキャパシタ1の製造例〉
 電極積層体の作製において、正極テストサンプル1に代えて正極テストサンプル4を用いたこと以外は、実施例1と同様にして比較用リチウムイオンキャパシタ1を4個得た。
 得られた比較用リチウムイオンキャパシタ1について、実施例1と同様の手法によってリチウムイオンキャパシタの初期評価を行ったところ、作製してから20日間経過した後には、負極電極に対して、負極電極の単位質量当たりの静電容量が1021F/g以上となる所期の量のリチウムイオンが負極電極にドーピング(予備充電)されたと判断された。なお、分解前の比較用リチウムイオンキャパシタ1のセル電圧は3Vであった。
 また、比較用リチウムイオンキャパシタ1について、実施例1と同様の手法によって、リチウムイオンキャパシタから取り出した正極電極の細孔径1.0nm以上1.4nm未満の細孔容積、細孔径0.6nm以上1.0nm未満の細孔容積、BET比表面積、全細孔容積、初期容量、エネルギー密度、および直流内部抵抗を測定し、25℃測定値に対する-30℃測定値の変化率を算出した。結果を表1-2および表1-3に示す。
〈比較例2:比較用リチウムイオンキャパシタ2の製造例〉
 電極積層体の作製において、正極テストサンプル1に代えて正極テストサンプル5を用いたこと以外は、実施例1と同様にして比較用リチウムイオンキャパシタ2を4個得た。
 得られた比較用リチウムイオンキャパシタ2について、実施例1と同様の手法によってリチウムイオンキャパシタの初期評価を行ったところ、作製してから20日間経過した後には、負極電極に対して、負極電極の単位質量当たりの静電容量が1021F/g以上となる所期の量のリチウムイオンが負極電極にドーピング(予備充電)されたと判断された。なお、分解前の比較用リチウムイオンキャパシタ2のセル電圧は3Vであった。
 また、比較用リチウムイオンキャパシタ2について、実施例1と同様の手法によって、リチウムイオンキャパシタから取り出した正極電極の細孔径1.0nm以上1.4nm未満の細孔容積、細孔径0.6nm以上1.0nm未満の細孔容積、BET比表面積、全細孔容積、初期容量、エネルギー密度、および直流内部抵抗を測定し、25℃測定値に対する-30℃測定値の変化率を算出した。結果を表1-2および表1-3に示す。
〈比較例3:比較用リチウムイオンキャパシタ3の製造例〉
 電極積層体の作製において、正極テストサンプル1に代えて正極テストサンプル6を用いたこと以外は、実施例1と同様にして比較用リチウムイオンキャパシタ3を4個得た。
 得られた比較用リチウムイオンキャパシタ3について、実施例1と同様の手法によってリチウムイオンキャパシタの初期評価を行ったところ、作製してから20日間経過した後には、負極電極に対して、負極電極の単位質量当たりの静電容量が1021F/g以上となる所期の量のリチウムイオンが負極電極にドーピング(予備充電)されたと判断された。なお、分解前の比較用リチウムイオンキャパシタ3のセル電圧は3Vであった。
 また、比較用リチウムイオンキャパシタ3について、実施例1と同様の手法によって、リチウムイオンキャパシタから取り出した正極電極の細孔径1.0nm以上1.4nm未満の細孔容積、細孔径0.6nm以上1.0nm未満の細孔容積、BET比表面積、全細孔容積、初期容量、エネルギー密度、および直流内部抵抗を測定し、25℃測定値に対する-30℃測定値の変化率を算出した。結果を表1-2および表1-3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1-1~表1-3に示されるように、実施例1~4に係るリチウムイオンキャパシタは、-30℃において高セル容量であってエネルギー密度の大きく、かつ直流内部抵抗が低いことが確認された。
 一方、比較例1に係るリチウムイオンキャパシタは、正極電極の細孔径1.0nm以上1.4nm未満の細孔容積が小さいことから、-30℃における容量およびエネルギー密度が小さく、また直流抵抗が高くなり、25℃に対する-30℃の容量およびエネルギー密度の低下率、並びに直流内部抵抗の上昇率が大きいことが確認された。
 比較例2に係るリチウムイオンキャパシタは、正極電極の1.0nm以上1.4nm以下の細孔容積は0.11cc/g以上だが、全細孔容積が大きいことから、電極密度およびエネルギー密度が小さいことが確認された。
 比較例3に係るリチウムイオンキャパシタは、正極電極の細孔径1.0nm以上1.4nm未満の細孔容積が小さいことから、-30℃における容量およびエネルギー密度が小さく、また直流内部抵抗が高くなり、25℃に対する-30℃の容量およびエネルギー密度の低下率、並びに直流抵抗の上昇率が大きいことが確認された。
 また実施例4に係るリチウムイオンキャパシタは、正極電極として実施例1と同じものを用いたが、電解液の溶媒組成を変更したことにより、実施例1よりは-30℃における容量およびエネルギー密度が小さい。これは、溶媒和したリチウムイオンのストークス径が変化して、細孔の最適なサイズが若干ずれたためと考えられる。
 本発明は、低温における抵抗上昇を抑制し、尚且つ、低温における初期放電容量およびエネルギー密度が向上し、常温の充放電容量に対する-30℃の充放電容量の低下率を小さくすることができるリチウムイオンキャパシタの製造に利用することができる。

Claims (12)

  1.  下記の測定前処理を行った正極電極層(A)のHK法により算出した1.0nm以上1.4nm未満の細孔径の細孔容積が0.11cc/g以上、BET法により算出した全細孔容積が1.1cc/g以下であることを特徴とするリチウムイオンキャパシタ用正極電極。
     測定前処理:
     セル電圧3Vの状態でセルから取り出し、切り出した正極電極を、正極電極1cm当たり10cc(mL)の脱水アセトニトリル中に25℃で10分間撹拌下に浸漬する操作を3回繰り返し、次いで、60℃で1時間予備乾燥処理する。得られた予備乾燥処理正極電極から正極電極層(A)を削り取り、200℃で5.5Paまで減圧した条件下において2時間乾燥処理する。
  2.  前記正極電極層(A)をBET法により算出したBET比表面積が1500m/g以上2000m/g以下である請求項1に記載のリチウムイオンキャパシタ用正極電極。
  3.  前記正極電極層(A)をHK法により算出した0.6nm以上1.0nm未満の細孔径の細孔容積が0.23cc/g以下である請求項1または請求項2に記載のリチウムイオンキャパシタ用正極電極。
  4.  請求項1~3のいずれか1項に記載の正極電極を有することを特徴とするリチウムイオンキャパシタ。
  5.  環状カーボネートおよび鎖状カーボネートを含む電解液を有することを特徴とする請求項4に記載のリチウムイオンキャパシタ。
  6.  前記電解液は溶媒として体積比で前記環状カーボネートを20~70vol%、前記鎖状カーボネートを30~80vol%含むことを特徴とする請求項5に記載のリチウムイオンキャパシタ。
  7.  セルに組み込む前の正極電極において、下記の測定前処理を行った正極電極層(B)をHK法により算出した1.0nm以上1.4nm未満の細孔径の細孔容積が0.13cc/g以上であり、BET法により算出した全細孔容積が1.2cc/g以下であることを特徴とするリチウムイオンキャパシタ用正極電極。
     測定前処理:
     正極電極層(B)を削り取り、200℃で5.5Paまで減圧した条件下において2時間乾燥処理する。
  8.  前記正極電極層(B)をBET法により算出したBET比表面積が1900~2300m/gの範囲であることを特徴とする請求項7に記載のリチウムイオンキャパシタ用正極電極。
  9.  前記正極電極層(B)をHK法により算出した0.6nm以上1.0nm未満の細孔径の細孔容積が0.27cc/g以下であることを特徴とする請求項7または請求項8に記載のリチウムイオンキャパシタ用正極電極。
  10.  請求項7~9のいずれか1項に記載の正極電極を有することを特徴とするリチウムイオンキャパシタ。
  11.  環状カーボネートおよび鎖状カーボネートを含む電解液を有することを特徴とする請求項10に記載のリチウムイオンキャパシタ。
  12.  前記電解液は、溶媒として体積比で前記鎖状カーボネートを20~70vol%、および前記鎖状カーボネートを30~80vol%含むことを特徴とする請求項11に記載のリチウムイオンキャパシタ。
PCT/JP2015/059920 2014-04-25 2015-03-30 リチウムイオンキャパシタ用正極電極およびリチウムイオンキャパシタ WO2015163093A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580020351.1A CN106233407B (zh) 2014-04-25 2015-03-30 锂离子电容器用正极电极及锂离子电容器
EP15783925.9A EP3136409A4 (en) 2014-04-25 2015-03-30 Positive electrode for lithium ion capacitor, and lithium ion capacitor
JP2016514833A JP6422483B2 (ja) 2014-04-25 2015-03-30 リチウムイオンキャパシタ用正極電極およびリチウムイオンキャパシタ
US15/305,504 US10256049B2 (en) 2014-04-25 2015-03-30 Positive electrode for a lithium ion capacitor and lithium ion capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014091830 2014-04-25
JP2014-091830 2014-04-25

Publications (1)

Publication Number Publication Date
WO2015163093A1 true WO2015163093A1 (ja) 2015-10-29

Family

ID=54332262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059920 WO2015163093A1 (ja) 2014-04-25 2015-03-30 リチウムイオンキャパシタ用正極電極およびリチウムイオンキャパシタ

Country Status (5)

Country Link
US (1) US10256049B2 (ja)
EP (1) EP3136409A4 (ja)
JP (1) JP6422483B2 (ja)
CN (1) CN106233407B (ja)
WO (1) WO2015163093A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111033658A (zh) * 2017-06-14 2020-04-17 Ioxus公司 用于制备电化学储能装置的固体电解质界面的系统和方法
JP7067019B2 (ja) * 2017-10-30 2022-05-16 セイコーエプソン株式会社 二次電池用電極、二次電池、電子機器、二次電池用電極の製造方法、二次電池の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136397A (ja) * 2003-10-10 2005-05-26 Showa Denko Kk 活性炭及びそれを用いた電極材料並びに電気二重層キャパシタ
JP2007119342A (ja) * 2005-09-29 2007-05-17 Showa Denko Kk 活性炭およびその製造方法並びに用途
JP2007180431A (ja) * 2005-12-28 2007-07-12 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
JP2011100925A (ja) * 2009-11-09 2011-05-19 Asahi Kasei Corp 非水系リチウム型蓄電素子
JP2011129794A (ja) * 2009-12-21 2011-06-30 Panasonic Corp 電気化学素子用活性炭、及びこれを用いた電気化学素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037508A1 (en) * 2005-09-29 2007-04-05 Showa Denko K.K. Activated carbon and process of making the same
US8248757B2 (en) * 2007-11-16 2012-08-21 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type storage element
JP5317659B2 (ja) 2008-12-05 2013-10-16 富士重工業株式会社 リチウムイオン蓄電デバイス用正極活物質及びそれを用いたリチウムイオン蓄電デバイス
WO2011003033A1 (en) * 2009-07-01 2011-01-06 Energ2, Inc. Ultrapure synthetic carbon materials
JP5562688B2 (ja) 2010-03-16 2014-07-30 Jsr株式会社 リチウムイオンキャパシタの製造方法、および正極の製造方法
JP2012235041A (ja) 2011-05-09 2012-11-29 Jm Energy Corp 正極電極およびリチウムイオンキャパシタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136397A (ja) * 2003-10-10 2005-05-26 Showa Denko Kk 活性炭及びそれを用いた電極材料並びに電気二重層キャパシタ
JP2007119342A (ja) * 2005-09-29 2007-05-17 Showa Denko Kk 活性炭およびその製造方法並びに用途
JP2007180431A (ja) * 2005-12-28 2007-07-12 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
JP2011100925A (ja) * 2009-11-09 2011-05-19 Asahi Kasei Corp 非水系リチウム型蓄電素子
JP2011129794A (ja) * 2009-12-21 2011-06-30 Panasonic Corp 電気化学素子用活性炭、及びこれを用いた電気化学素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3136409A4 *

Also Published As

Publication number Publication date
JPWO2015163093A1 (ja) 2017-04-13
US10256049B2 (en) 2019-04-09
JP6422483B2 (ja) 2018-11-14
CN106233407A (zh) 2016-12-14
US20170040122A1 (en) 2017-02-09
EP3136409A4 (en) 2018-08-15
EP3136409A1 (en) 2017-03-01
CN106233407B (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
Zhang et al. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors
JP4731967B2 (ja) リチウムイオンキャパシタ
JP5322435B2 (ja) 蓄電デバイス用負極活物質
JP6867821B2 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、負極の製造方法、及びリチウムイオン二次電池の製造方法
JP4834030B2 (ja) リチウム二次電池用正極及びこれを用いたリチウム二次電池
JP2009231234A (ja) 負極用炭素材料、蓄電デバイス、及び蓄電デバイス搭載品
JP2008103596A (ja) リチウムイオンキャパシタ
WO2007046382A1 (ja) リチウムイオンキャパシタ
JP2008252013A (ja) リチウムイオンキャパシタ
JP2007180431A (ja) リチウムイオンキャパシタ
JP2006338963A (ja) リチウムイオンキャパシタ
JP2006286926A (ja) リチウムイオンキャパシタ
TW201638981A (zh) 鋰離子電容器中之聚偏二氟乙烯陽極黏結劑
JP4964404B2 (ja) リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP5562688B2 (ja) リチウムイオンキャパシタの製造方法、および正極の製造方法
JP6422483B2 (ja) リチウムイオンキャパシタ用正極電極およびリチウムイオンキャパシタ
JP4731974B2 (ja) リチウムイオンキャパシタ
JP5679206B2 (ja) リチウムイオン二次電池用負極の製造方法およびリチウムイオン二次電池の製造方法
JP4705404B2 (ja) リチウムイオンキャパシタ
JP2007294539A (ja) リチウムイオンハイブリッドキャパシタ
JP2012235041A (ja) 正極電極およびリチウムイオンキャパシタ
JP5650029B2 (ja) リチウムイオンキャパシタ
JP2008166342A (ja) リチウムイオンキャパシタ
JP2006310412A (ja) リチウムイオンキャパシタ
JP2011204828A (ja) リチウムイオンキャパシタ用非水電解液及びそれを備えたリチウムイオンキャパシタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016514833

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015783925

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015783925

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15305504

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE