JPWO2013191273A1 - 状態判定方法、状態通知システムおよび状態判定プログラム - Google Patents

状態判定方法、状態通知システムおよび状態判定プログラム Download PDF

Info

Publication number
JPWO2013191273A1
JPWO2013191273A1 JP2014521520A JP2014521520A JPWO2013191273A1 JP WO2013191273 A1 JPWO2013191273 A1 JP WO2013191273A1 JP 2014521520 A JP2014521520 A JP 2014521520A JP 2014521520 A JP2014521520 A JP 2014521520A JP WO2013191273 A1 JPWO2013191273 A1 JP WO2013191273A1
Authority
JP
Japan
Prior art keywords
value
state
color component
calculated
state determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014521520A
Other languages
English (en)
Other versions
JP6175433B2 (ja
Inventor
恵則 大沼
恵則 大沼
卓也 白田
卓也 白田
康仁 井田
康仁 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Nabtesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp filed Critical Nabtesco Corp
Publication of JPWO2013191273A1 publication Critical patent/JPWO2013191273A1/ja
Application granted granted Critical
Publication of JP6175433B2 publication Critical patent/JP6175433B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J2003/466Coded colour; Recognition of predetermined colour; Determining proximity to predetermined colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • G01N2021/8514Probe photometers, i.e. with optical measuring part dipped into fluid sample with immersed mirror
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

機械のオイルの劣化の状態と、機械の破損の状態とのうち少なくとも一方の状態を従来より高精度に判定することができる状態判定方法を提供する。減速機の潤滑油の劣化の状態と、減速機の破損の状態とを判定する状態判定方法であって、白色LEDによって発せられる白色の光を潤滑油に透過させ、白色LEDによって潤滑油を透過させた光の色をRGBセンサーに検出させ、RGBセンサーによって検出された色の明度を算出し(S201)、RGBセンサーによって検出された色のR値、G値およびB値のうち最大値および最小値の差である色成分最大差を算出し(S202)、S201によって算出された明度、および、S202によって算出された色成分最大差に基づいて状態を判定する(S203、S207)ことを特徴とする。

Description

本発明は、機械のオイルの劣化の状態と、機械の破損の状態とのうち少なくとも一方の状態を判定する状態判定方法に関する。
従来、機械のオイルの劣化の状態を判定する状態判定方法として、発光素子によって発せられる白色の光をオイルに透過させて、オイルを透過させた光の色を受光素子に検出させた後、受光素子の出力に基づいてオイルの劣化の状態を判定する方法が知られている(例えば、特許文献1−3参照。)。
特許文献1に記載されている状態判定方法は、受光素子によって検出された光の赤色、緑色および青色の成分のうちオイル毎に適合する1色を選択し、選択した1色に対する吸光度に基づいてオイルの劣化の状態を判定する方法である。
特許文献2に記載されている状態判定方法は、受光素子によって検出された光の赤色の成分の光吸収率と、青色の成分の光吸収率との違いに基づいてオイルの劣化の状態、すなわち、オイルに混入している異物の種類および量を判定する方法である。
特許文献3に記載されている状態判定方法は、受光素子によって検出された光の赤色の成分の値と、緑色の成分の値との比に基づいてオイルの化学的な劣化の状態を判定するとともに、受光素子によって検出された光の赤色、緑色および青色の各成分の吸光度の変化に基づいてオイルに混入している異物の量を判定する方法である。
特開平6−34541号公報 特開2007−198767号公報 米国特許第7612874号明細書
しかしながら、本願の発明者は、特許文献1−3に記載されている方法において判定されるオイルの劣化の状態の精度に満足することができなかった。
また、特許文献1−3に記載されている方法においては、機械の破損の状態を判定することができなかった。
そこで、本発明は、機械のオイルの劣化の状態と、機械の破損の状態とのうち少なくとも一方の状態を従来より高精度に判定することができる状態判定方法を提供することを目的とする。
本発明の状態判定方法は、機械のオイルの劣化の状態と、前記機械の破損の状態とのうち少なくとも一方の状態を判定する状態判定方法であって、発光素子によって発せられる白色の光を前記オイルに透過させる発光ステップと、前記発光ステップによって前記オイルを透過させた前記光の色を受光素子に検出させる受光ステップと、前記受光ステップによって検出された前記色の明度を算出する明度算出ステップと、前記受光ステップによって検出された前記色のR値、G値およびB値のうち最大値および最小値に基づいて算出される値である色成分算出値を算出する色成分算出値算出ステップと、前記明度算出ステップによって算出された前記明度、および、前記色成分算出値算出ステップによって算出された前記色成分算出値に基づいて前記状態を判定する状態判定ステップとを備えており、前記色成分算出値は、前記最大値および前記最小値の差と、前記最大値および前記最小値の比と、前記最大値および前記最小値の差の前記明度による積分値と、前記最大値および前記最小値の比の前記明度による積分値との何れかであることを特徴とする。
本願の発明者は、機械のオイルの劣化の状態と、受光素子によって検出された光の色の明度および色成分算出値との間に強い関連が存在することを実験によって見出した。また、本願の発明者は、機械の破損の状態と、受光素子によって検出された光の色の明度および色成分算出値との間に強い関連が存在することも実験によって見出した。本発明の状態判定方法は、機械のオイルの劣化の状態と、機械の破損の状態とのうち少なくとも一方の状態を、受光素子によって検出された光の色の明度および色成分算出値に基づいて判定するので、機械のオイルの劣化の状態と、機械の破損の状態とのうち少なくとも一方の状態を従来より高精度に判定することができる。
また、本発明の状態判定方法において、前記状態判定ステップは、前記オイルの劣化の状態を判定するオイル劣化状態判定ステップを備えており、前記オイル劣化状態判定ステップは、前記明度算出ステップによって算出された前記明度、および、前記色成分算出値算出ステップによって算出された前記色成分算出値の組み合わせに対して予め定められている状態を前記オイルの劣化の状態として判定するステップであっても良い。
この構成により、本発明の状態判定方法は、受光素子によって検出された光の色の明度および色成分算出値の組み合わせに基づいて機械のオイルの劣化の状態を判定するので、機械のオイルの劣化の状態を判定するために複雑な処理が必要ない。したがって、本発明の状態判定方法は、機械のオイルの劣化の状態を判定する負担を低減することができる。
また、本発明の状態判定方法において、前記状態判定ステップは、前記機械の破損の状態を判定する機械破損状態判定ステップを備えており、前記機械破損状態判定ステップは、前記明度算出ステップによって算出された前記明度、および、前記色成分算出値算出ステップによって算出された前記色成分算出値の組み合わせに対して予め定められている状態を前記機械の破損の状態として判定するステップであっても良い。
この構成により、本発明の状態判定方法は、受光素子によって検出された光の色の明度および色成分算出値の組み合わせに基づいて機械の破損の状態を判定するので、機械の破損の状態を判定するために複雑な処理が必要ない。したがって、本発明の状態判定方法は、機械の破損の状態を判定する負担を低減することができる。
また、本発明の状態判定方法において、前記状態判定ステップは、前記機械の破損の状態を判定する機械破損状態判定ステップを備えており、前記色成分算出値は、前記最大値および前記最小値の差であり、前記機械破損状態判定ステップは、前記明度算出ステップによって算出された前記明度、および、前記色成分算出値算出ステップによって算出された前記色成分算出値が両方とも低下を開始した時点と比較して前記色成分算出値が低下した量に応じて、前記機械の破損の状態を判定するステップであっても良い。
この構成により、本発明の状態判定方法は、色成分算出値が受光ステップによって検出された色のR値、G値およびB値のうち最大値および最小値の差である場合に、受光素子によって検出された光の色の明度および色成分算出値の単純な組み合わせではなく、受光素子によって検出された光の色の明度および色成分算出値の変化に基づいて機械の破損の状態を判定するので、機械の破損の状態の判定に対する機械の個体差およびオイルの個体差の影響を低減することができる。したがって、本発明の状態判定方法は、機械の破損の状態の判定の精度を向上することができる。
また、本発明の状態判定方法において、前記機械破損状態判定ステップは、前記明度算出ステップによって算出された前記明度、および、前記色成分算出値算出ステップによって算出された前記色成分算出値が両方とも低下している場合、前記機械破損状態判定ステップの実行の周期と、この周期で前記色成分算出値が低下した量とに応じて、前記機械の破損の状態として前記機械の故障までの時間を判定するステップであっても良い。
この構成により、本発明の状態判定方法は、機械の故障までの時間を判定するので、機械の使用者の利便性を向上することができる。
また、本発明の状態判定方法は、前記受光素子の出力を調整する受光出力調整ステップを備えており、前記受光出力調整ステップは、前記受光素子への前記光の到達が遮られた時点での前記受光素子の出力を黒色とし、前記オイルが前記機械に導入された時点での前記受光素子の出力を白色とするステップであっても良い。
この構成により、本発明の状態判定方法は、オイル毎に受光素子の出力を調整するので、状態の判定に対するオイルの個体差の影響を低減することができる。
また、本発明の状態判定方法において、前記色成分算出値は、前記最大値および前記最小値の差であり、前記色成分算出値算出ステップは、前記受光ステップによって検出された前記色のR値およびB値の差を前記色成分算出値として算出するステップであっても良い。
この構成により、本発明の状態判定方法は、受光ステップによって検出された色のR値、G値およびB値のうち何れが最大値であって何れが最小値であるかを都度判断する必要がないので、色成分算出値を算出する負担を低減することができる。
本発明の状態通知システムは、機械のオイルの劣化の状態と、前記機械の破損の状態とのうち少なくとも一方の状態を通知する状態通知システムであって、白色の光を発する発光素子と、受けた光の色を検出する受光素子と、前記オイルが侵入するための隙間であって前記発光素子から前記受光素子までの光路上に配置されている油用隙間が形成された隙間形成部材と、前記受光素子によって検出された前記色の明度を算出する明度算出手段と、前記受光素子によって検出された前記色のR値、G値およびB値のうち最大値および最小値に基づいて算出される値である色成分算出値を算出する色成分算出値算出手段と、前記明度算出手段によって算出された前記明度、および、前記色成分算出値算出手段によって算出された前記色成分算出値に基づいて前記状態を判定する状態判定手段と、前記状態判定手段によって判定された前記状態を通知する表示装置とを備えており、前記色成分算出値は、前記最大値および前記最小値の差と、前記最大値および前記最小値の比と、前記最大値および前記最小値の差の前記明度による積分値と、前記最大値および前記最小値の比の前記明度による積分値との何れかであることを特徴とする。
この構成により、本発明の状態通知システムは、機械のオイルの劣化の状態と、機械の破損の状態とのうち少なくとも一方の状態を、受光素子によって検出された光の色の明度および色成分算出値に基づいて判定するので、機械のオイルの劣化の状態と、機械の破損の状態とのうち少なくとも一方の状態を従来より高精度に判定することができる。
本発明の状態判定プログラムは、機械のオイルの劣化の状態と、前記機械の破損の状態とのうち少なくとも一方の状態を判定する状態判定プログラムであって、発光素子によって発せられた白色の光が前記オイルを透過してから到達する受光素子によって検出された前記光の色の明度を算出する明度算出ステップと、前記受光素子によって検出された前記色のR値、G値およびB値のうち最大値および最小値に基づいて算出される値である色成分算出値を算出する色成分算出値算出ステップと、前記明度算出ステップによって算出された前記明度、および、前記色成分算出値算出ステップによって算出された前記色成分算出値に基づいて前記状態を判定する状態判定ステップとをコンピューターに実行させ、前記色成分算出値は、前記最大値および前記最小値の差と、前記最大値および前記最小値の比と、前記最大値および前記最小値の差の前記明度による積分値と、前記最大値および前記最小値の比の前記明度による積分値との何れかであることを特徴とする。
この構成により、本発明の状態判定プログラムを実行するコンピューターは、機械のオイルの劣化の状態と、機械の破損の状態とのうち少なくとも一方の状態を、受光素子によって検出された光の色の明度および色成分算出値に基づいて判定するので、機械のオイルの劣化の状態と、機械の破損の状態とのうち少なくとも一方の状態を従来より高精度に判定することができる
本発明の状態判定方法は、機械のオイルの劣化の状態と、機械の破損の状態とのうち少なくとも一方の状態を従来より高精度に判定することができる。
本発明の第1の実施の形態に係る状態判定方法を実現するための構成のブロック図である。 図1に示す構成の具体例の1つである状態通知システムのブロック図である。 図2に示す産業用ロボットの側面図である。 図3に示す関節部の断面図である。 アームに取り付けられた状態での図4に示すオイル状態センサーの正面断面図である。 図2に示すコンピューターのブロック図である。 図2に示すコンピューターによって算出される明度および色成分算出値の関係を確認するための実験の構成を示す図である。 図7に示す構成による実験におけるオイル状態センサーのRGBセンサーの出力を示すグラフである。 図7に示す構成による実験の結果を示すグラフである。 図2に示すコンピューターによって算出される明度および色成分最大差の関係の例を示すグラフである。 色成分算出値が色成分最大差である場合の図6に示す潤滑油劣化状態判定用閾値の一例を説明する図である。 色成分算出値が色成分最大差である場合の図6に示す減速機破損状態判定用閾値の一例を説明する図である。 図2に示すコンピューターの動作のフローチャートである。 図6に示す表示部の表示の一例を示す図である。 図2に示すコンピューターによって算出される明度および色成分最大差積分値の関係の例を示すグラフである。 色成分算出値が色成分最大差積分値である場合の図6に示す潤滑油劣化状態判定用閾値の一例を説明する図である。 色成分算出値が色成分最大差積分値である場合の図6に示す減速機破損状態判定用閾値の一例を説明する図である。 図2に示すコンピューターによって算出される明度および色成分最大比の関係の例を示すグラフである。 色成分算出値が色成分最大比である場合の図6に示す潤滑油劣化状態判定用閾値の一例を説明する図である。 色成分算出値が色成分最大比である場合の図6に示す減速機破損状態判定用閾値の一例を説明する図である。 図2に示すコンピューターによって算出される明度および色成分最大比積分値の関係の例を示すグラフである。 色成分算出値が色成分最大比積分値である場合の図6に示す潤滑油劣化状態判定用閾値の一例を説明する図である。 色成分算出値が色成分最大比積分値である場合の図6に示す減速機破損状態判定用閾値の一例を説明する図である。 本発明の第2の実施の形態に係る状態判定方法を実現するための構成の具体例の1つである状態通知システムのコンピューターのブロック図である。 図24に示す減速機破損状態判定用閾値の一例を説明する図である。 図24に示すコンピューターの動作のフローチャートである。 図26に示す動作の続きの動作のフローチャートである。 図24に示す表示部の表示の一例を示す図である。
以下、本発明の実施の形態について、図面を用いて説明する。
(第1の実施の形態)
まず、本実施の形態に係る状態判定方法を実現するための構成について説明する。
図1は、本実施の形態に係る状態判定方法を実現するための構成のブロック図である。
図1に示すように、本実施の形態に係る状態判定方法は、白色の光1aを発する発光素子1と、受けた光1aの色をRGBで検出する受光素子2と、発光素子1および受光素子2の間に配置されて間に機械のオイル9を侵入させる透過素子3、4と、受光素子2によって検出された色に基づいてオイル9の劣化の状態と、機械の破損の状態とを判定する演算処理部5と、演算処理部5による判定結果を表示する表示装置6とによって実現される。
図2は、図1に示す構成の具体例の1つである状態通知システム10のブロック図である。
図2に示すように、状態通知システム10は、産業用ロボット20と、PC(Personal Computer)などのコンピューター80と、産業用ロボット20の後述の複数のオイル状態センサーからの信号をコンピューター80に中継する中継装置11とを備えている。
図3は、産業用ロボット20の側面図である。
図3に示すように、産業用ロボット20は、床、天井などの設置部分に取り付けられる取付部21と、アーム22〜26と、取付部21およびアーム22を接続する関節部31と、アーム22およびアーム23を接続する関節部32と、アーム23およびアーム24を接続する関節部33と、アーム24およびアーム25を接続する関節部34と、アーム25およびアーム26を接続する関節部35と、アーム26および図示していないハンドを接続する関節部36とを備えている。
図4は、関節部32の断面図である。なお、以下においては、関節部32について説明するが、関節部31、33〜36についても同様である。
図4に示すように、関節部32は、アーム22およびアーム23を接続する減速機40と、ボルト49aによってアーム22に固定されたモーター49と、減速機40の可動部に生じる摩擦を軽減するための潤滑油40aの状態を検出するためのオイル状態センサー50とを備えている。減速機40は、本発明の機械の具体例の1つである。潤滑油40aは、図1に示すオイル9の具体例の1つである。
減速機40は、ボルト41aによってアーム22に固定されたケース41と、ボルト42aによってアーム23に固定された支持体42と、モーター49の出力軸に固定された歯車43と、減速機40の中心軸の周りに等間隔に3個配置されていて歯車43と噛み合う歯車44と、減速機40の中心軸の周りに等間隔に3個配置されていて歯車44に固定されたクランク軸45と、ケース41に設けられた内歯歯車と噛み合う2個の外歯歯車46とを備えている。
支持体42は、ケース41に軸受41bを介して回転可能に支持されている。ケース41と、支持体42との間には、潤滑油40aの漏れを防止するためのシール部材41cが設けられている。
クランク軸45は、支持体42に軸受42bを介して回転可能に支持されているとともに、外歯歯車46に軸受46aを介して回転可能に支持されている。
オイル状態センサー50は、アーム23に固定されている。
図5は、アーム23に取り付けられた状態でのオイル状態センサー50の正面断面図である。
図5に示すように、オイル状態センサー50は、オイル状態センサー50の各部品を支持するアルミニウム合金製の筐体51と、筐体51に固定されたアルミニウム合金製のカバー52と、筐体51にカバー52を固定するための図示していないネジと、筐体51および後述の回路基板71の間に設置されるスペーサー54と、スペーサー54を介して回路基板71を筐体51に固定するための六角穴付ボルト55と、筐体51およびアーム23の間からの潤滑油40aの漏れを防止するOリング56と、筐体51に保持された隙間形成部材60と、電子部品群70とを備えている。
筐体51は、アーム23のネジ穴23aに固定されるためのネジ部51aを備えている。
隙間形成部材60は、2つのガラス製の直角プリズム61、62によって構成されており、潤滑油40aが侵入するための隙間である油用隙間60aが2つの直角プリズム61、62の間に形成されている。直角プリズム61は、図1に示す透過素子3の具体例の1つである。直角プリズム62は、図1に示す透過素子4の具体例の1つである。
電子部品群70は、スペーサー54を介して六角穴付ボルト55によって筐体51に固定された回路基板71と、回路基板71に実装された白色LED(Light Emitting Diode)72と、回路基板71に実装されたRGBセンサー73と、カバー52に固定された防水コネクター76と、回路基板71および防水コネクター76を電気的に接続する複数本のリード線77と、筐体51に固定された温度センサー78と、回路基板71および温度センサー78を電気的に接続するリード線79とを備えている。
回路基板71には、白色LED72およびRGBセンサー73以外にも、複数の電子部品が実装されている。
白色LED72は、白色の光を発する電子部品であり、図1に示す発光素子1の具体例の1つである。白色LED72として、例えば、日亜化学工業株式会社製のNSPW500GS-K1が使用されても良い。
RGBセンサー73は、受けた光の色を検出する電子部品であり、図1に示す受光素子2の具体例の1つである。RGBセンサー73として、例えば、浜松ホトニクス株式会社製のS9032-02が使用されても良い。
防水コネクター76は、オイル状態センサー50の外部の装置のコネクターが接続されて、外部の装置のコネクターを介して外部の装置から電力が供給されるとともに、オイル状態センサー50の検出結果を電気信号として外部の装置のコネクターを介して外部の装置に出力するようになっている。
温度センサー78は、筐体51を介して潤滑油40aの温度を検出する電子部品である。
隙間形成部材60の油用隙間60aは、白色LED72からRGBセンサー73までの光路72a上に配置されている。
直角プリズム61、62は、白色LED72によって発せられる光を透過させる。直角プリズム61は、白色LED72によって発せられる光が入射する入射面と、この入射面から入射した光を反射して光の進行方向を90度曲げる反射面と、この反射面で反射した光が出射する出射面とが形成されている。直角プリズム62は、直角プリズム61の出射面から出射した光が入射する入射面と、この入射面から入射した光を反射して光の進行方向を90度曲げる反射面と、この反射面で反射した光が出射する出射面とが形成されている。
直角プリズム61の入射面、反射面および出射面と、直角プリズム62の入射面、反射面および出射面とは、光学研磨されている。また、直角プリズム61の反射面と、直角プリズム62の反射面とは、アルミ蒸着膜が施されている。そして、硬度や密着力が弱いアルミ蒸着膜を保護するために、MgF2膜、もしくはSiO2膜がアルミ蒸着膜上に更に施されている。
光路72aは、直角プリズム61の反射面で90度曲げられていて、直角プリズム62の反射面でも90度曲げられている。すなわち、光路72aは、隙間形成部材60によって180度曲げられている。
直角プリズム61の出射面と、直角プリズム62の入射面との距離、すなわち、油用隙間60aの長さは、例えば1mmである。油用隙間60aの長さが短過ぎる場合、潤滑油40a中の汚染物質が油用隙間60aを適切に流通し難いので、潤滑油40a中の汚染物質の色の検出精度が落ちる。一方、油用隙間60aの長さが長過ぎる場合、白色LED72から発せられた光が油用隙間60a内の潤滑油40a中の汚染物質によって吸収され過ぎてRGBセンサー73まで届き難いので、やはり潤滑油40a中の汚染物質の色の検出精度が落ちる。したがって、油用隙間60aの長さは、潤滑油40a中の汚染物質の色の検出精度が高くなるように、適切に設定されることが好ましい。
図6は、コンピューター80のブロック図である。
図6に示すように、コンピューター80は、コンピューター80の使用者による種々の操作が入力されるマウス、キーボードなどの入力デバイスである操作部81と、種々の情報を表示するLCD(Liquid Crystal Display)などの表示デバイスである表示部82と、LAN(Local Area Network)などのネットワーク経由で中継装置11と通信を行うネットワーク通信デバイスであるネットワーク通信部83と、各種のデータを記憶しているHDD(Hard Disk Drive)などの記憶デバイスである記憶部84と、コンピューター80全体を制御する制御部85とを備えている。表示部82は、図1に示す表示装置6の具体例の1つである。制御部85は、図1に示す演算処理部5の具体例の1つである。
記憶部84は、産業用ロボット20の減速機40の潤滑油40aの劣化の状態と、産業用ロボット20の減速機40の破損の状態とを判定する状態判定プログラム84aを記憶している。
状態判定プログラム84aは、コンピューター80の製造段階でコンピューター80にインストールされていても良いし、USB(Universal Serial Bus)メモリー、CD(Compact Disc)、DVD(Digital Versatile Disc)などの記憶媒体からコンピューター80に追加でインストールされても良いし、ネットワーク上からコンピューター80に追加でインストールされても良い。
また、記憶部84は、潤滑油40aの劣化の状態を判定するための潤滑油劣化状態判定用閾値84bと、減速機40の破損の状態を判定するための減速機破損状態判定用閾値84cとを記憶している。
制御部85は、例えば、CPU(Central Processing Unit)と、プログラムおよび各種のデータを予め記憶しているROM(Read Only Memory)と、CPUの作業領域として用いられるRAM(Random Access Memory)とを備えている。CPUは、ROMまたは記憶部84に記憶されているプログラムを実行するようになっている。
制御部85は、記憶部84に記憶されている状態判定プログラム84aを実行することによって、RGBセンサー73によって検出された色の明度を算出する明度算出手段85a、RGBセンサー73によって検出された色のR値、G値およびB値のうち最大値および最小値に基づいて算出される値である色成分算出値を算出する色成分算出値算出手段85b、明度算出手段85aによって算出された明度および色成分算出値算出手段85bによって算出された色成分算出値に基づいて状態を判定する状態判定手段85c、状態判定手段85cによって判定された状態を通知する状態通知手段85d、および、減速機40の動作状況を判定する動作状況判定手段85eとして機能する。
明度算出手段85aは、RGBセンサー73によって検出された色のR、G、Bの各値を使用して、次の数1で示す式で明度を算出することができる。
Figure 2013191273
色成分算出値算出手段85bは、RGBセンサー73によって検出された色のR、Bの各値を使用して、次の数2で示す式で色成分最大差を色成分算出値として算出することができる。数2において、MAX(R,G,B)は、RGBセンサー73によって検出された光の色のR値、G値およびB値のうち最大値を示している。MIN(R,G,B)は、RGBセンサー73によって検出された光の色のR値、G値およびB値のうち最小値を示している。すなわち、色成分最大差は、RGBセンサー73によって検出された色のR値、G値およびB値のうち最大値および最小値の差である。
Figure 2013191273
次に、潤滑油劣化状態判定用閾値84bの決定方法について説明する。
図7は、コンピューター80によって算出される明度および色成分算出値の関係を確認するための実験の構成を示す図である。
図7に示す構成は、減速機40と同一の種類の減速機91と、減速機91に回転力を入力するモーター92と、減速機91にトルクを付加するトルク付加装置93と、トルク付加装置93によって減速機91に付加されているトルクを計測するトルクメーター94とを備えている。
減速機91は、ケースが固定されているとともに、支持体がトルクメーター94を介してトルク付加装置93に接続されている。減速機91は、オイル状態センサー50と同一の種類のオイル状態センサーが取り付けられている。
減速機91に一定のトルクを付加しながら、オイル状態センサーのRGBセンサーの出力をコンピューター80と同一の構成であるコンピューターに入力する。ここで、オイル状態センサーのRGBセンサーの出力は、後述の調整と同一の調整が実行されたものである。
図8は、図7に示す構成による実験におけるオイル状態センサーのRGBセンサーの出力を示すグラフである。
図8において、縦軸の単位は、オイル状態センサーのRGBセンサーによって検出された色のR、G、Bの各値の最大値を1とし最小値を0とした任意単位である。
図8に示すように、オイル状態センサーのRGBセンサーによって検出された色のR、G、Bの各値は、実験の経過とともに減少する。
図9は、図7に示す構成による実験の結果を示すグラフである。
図9において、縦軸の単位は、色成分最大差の最大値を1とし最小値を0とした任意単位である。横軸の単位は、明度の最大値を1とし最小値を0とした任意単位である。
図9においては、減速機91が故障するまでの実験の5回分の結果を示している。図9における各グラフが各回の実験の結果を示している。実際には、実験の回数は、5回に限らず、多いほど潤滑油劣化状態判定用閾値84bおよび減速機破損状態判定用閾値84cの適切性が向上する。
図9に示すように、実験の開始時は、オイル状態センサーのRGBセンサーによって検出された色のR、G、Bの各値が出力のフルスケールの最大値であるので、明度が1.0であり、色成分最大差が0である
図9に示す実験の結果によれば、明度は、減速機91が故障するまで、潤滑油の劣化に伴って減少し続ける。
一方、色成分最大差は、初期の段階では潤滑油の劣化に伴って増加し続けて、ある時点からは減速機91が故障するまで、潤滑油の劣化に伴って減少し続ける。
図10は、コンピューター80によって算出される明度および色成分最大差の関係の例を示すグラフである。
図10において、縦軸の単位は、色成分最大差の最大値を1とし最小値を0とした任意単位である。横軸の単位は、明度の最大値を1とし最小値を0とした任意単位である。
上述したように、オイル状態センサー50のRGBセンサー73の出力に基づいてコンピューター80によって算出される明度および色成分最大差の関係を示すグラフの形状は、図10に示すグラフ101のような形状になる。
グラフ102は、減速機40を駆動させずに潤滑油40aの温度を一定の高温に保った実験の結果を示すグラフである。減速機40を駆動させずに潤滑油40aの温度を一定の高温に保った場合、すなわち、潤滑油40aを熱のみによって徐々に劣化させた場合、オイル状態センサー50のRGBセンサー73の出力に基づいてコンピューター80によって算出される明度および色成分最大差の関係を示すグラフの形状は、グラフ102のような形状になる。グラフ102において、明度は、潤滑油40aの劣化に伴って減少し続ける。また、色成分最大差は、潤滑油40aの劣化に伴って増加し続ける。しかしながら、明度の減少量に対する色成分最大差の増加量は、グラフ101の初期の段階より極端に多い。すなわち、熱によって潤滑油40a自体が酸化して劣化した場合、明度および色成分最大差の変化のうち主に色成分最大差の増加が生じることが実験によって明らかになった。
グラフ103は、減速機40を駆動させずに潤滑油40aへの不純物の混入量を増加させた実験の結果を示すグラフである。減速機40を駆動させずに潤滑油40aへの不純物の混入量を増加させた場合、すなわち、潤滑油40aを不純物の混入のみによって劣化させた場合、オイル状態センサー50のRGBセンサー73の出力に基づいてコンピューター80によって算出される明度および色成分最大差の関係を示すグラフの形状は、グラフ103のような形状になる。グラフ103において、明度は、潤滑油40aの劣化に伴って減少し続ける。また、色成分最大差は、潤滑油40aの劣化に伴って増加し続ける。しかしながら、明度の減少量に対する色成分最大差の増加量は、グラフ101の初期の段階より極端に少ない。すなわち、潤滑油40aが不純物の混入によって劣化した場合、明度および色成分最大差の変化のうち主に明度の減少が生じることが実験によって明らかになった。
本願の発明者は、減速機40の潤滑油40aの劣化の状態と、RGBセンサー73によって検出された光の色の明度および色成分最大差との間に強い関連が存在することを、上述した実験によって見出した。
図11は、色成分算出値が色成分最大差である場合の潤滑油劣化状態判定用閾値84bの一例を説明する図である。
図11において、縦軸の単位は、色成分最大差の最大値を1とし最小値を0とした任意単位である。横軸の単位は、明度の最大値を1とし最小値を0とした任意単位である。
潤滑油劣化状態判定用閾値84bを決定する者は、上述した実験の結果に基づいて、潤滑油40aの劣化に伴ってオイル状態センサー50のRGBセンサー73によって検出された色の明度および色成分最大差がなり得る組み合わせを、図11に示すように例えば8つの範囲111〜118に分ける。範囲111は、潤滑油40aの劣化が無いと推定される範囲である。範囲112は、潤滑油40aの劣化度が低いと推定される範囲である。範囲113は、潤滑油40aの劣化度が中程度であると推定される範囲である。範囲114は、潤滑油40aの劣化度が高いと推定される範囲である。範囲115および範囲116は、熱によって潤滑油40a自体が酸化して劣化していると推定される範囲である。範囲117は、熱によって潤滑油40a自体が酸化して異常に劣化していると推定される範囲である。範囲118は、潤滑油40aが不純物の混入によって異常に劣化していると推定される範囲である。
範囲111、112、113、114は、図7に示す構成による実験の結果に基づいて決定される。範囲115、116、117は、図7に示す構成による実験の結果と、減速機40を駆動させずに潤滑油40aの温度を一定の高温に保った実験の結果とに基づいて決定される。範囲118は、図7に示す構成による実験の結果と、減速機40を駆動させずに潤滑油40aへの不純物の混入量を増加させた実験の結果とに基づいて決定される。
潤滑油劣化状態判定用閾値84bは、オイル状態センサー50のRGBセンサー73によって検出された色の明度および色成分最大差が範囲111〜118の何れに存在するかを判断することができるように決定される。
なお、上述した実験の結果は、減速機40の種類毎、および、潤滑油40aの種類毎に異なる。したがって、潤滑油劣化状態判定用閾値84bは、減速機40の種類毎、および、潤滑油40aの種類毎に決定される。
次に、減速機破損状態判定用閾値84cの決定方法について説明する。
本願の発明者は、減速機40の破損の状態と、RGBセンサー73によって検出された光の色の明度および色成分最大差との間に強い関連が存在することを、図7に示す構成による実験によって見出した。
図12は、色成分算出値が色成分最大差である場合の減速機破損状態判定用閾値84cの一例を説明する図である。
図12において、縦軸の単位は、色成分最大差の最大値を1とし最小値を0とした任意単位である。横軸の単位は、明度の最大値を1とし最小値を0とした任意単位である。
減速機破損状態判定用閾値84cを決定する者は、図7に示す構成による実験の結果に基づいて、潤滑油40aの劣化に伴ってオイル状態センサー50のRGBセンサー73によって検出された色の明度および色成分最大差がなり得る組み合わせのうち、減速機40が故障していると推定される組み合わせの範囲121と、減速機40が故障していないが減速機40の点検・修理が必要であると推定される組み合わせの範囲122とを決定する。
減速機破損状態判定用閾値84cは、オイル状態センサー50のRGBセンサー73によって検出された色の明度および色成分最大差が範囲121または範囲122に存在するか否かを判断することができるように決定される。
なお、図7に示す構成による実験の結果は、減速機40の種類毎、および、潤滑油40aの種類毎に異なる。したがって、減速機破損状態判定用閾値84cは、減速機40の種類毎、および、潤滑油40aの種類毎に決定される。
次に、産業用ロボット20の関節部32の動作について説明する。なお、以下においては、関節部32について説明するが、関節部31、33〜36についても同様である。
関節部32のモーター49の出力軸が回転すると、モーター49の回転力は、減速機40によって減速されて、減速機40のケース41に固定されたアーム22に対して、減速機40の支持体42に固定されたアーム23を動かす。
次に、オイル状態センサー50の動作について説明する。
オイル状態センサー50は、防水コネクター76を介して外部の装置から供給される電力によって白色LED72から白色の光を発する。
そして、オイル状態センサー50は、RGBセンサー73によって受けた光のRGBの各色の光量を電気信号として防水コネクター76を介して外部の装置に出力する。
なお、オイル状態センサー50は、温度センサー78によって検出された温度も電気信号として防水コネクター76を介して外部の装置に出力することができる。
オイル状態センサー50は、RGBセンサー73および温度センサー78以外のセンサーを別途搭載していても良い。オイル状態センサー50は、別途搭載しているセンサーによる検出結果も電気信号として防水コネクター76を介して外部の装置に出力することができる。
なお、コンピューター80は、RGBセンサー73によって検出された色に基づいて減速機40の潤滑油40a中の汚染物質の種類および量を特定することができる。すなわち、オイル状態センサー50は、潤滑油40a中の汚染物質の色を検出することによって、潤滑油40aの劣化の程度を検出することができる。
次に、オイル状態センサー50のRGBセンサー73の出力の調整について説明する。
オイル状態センサー50の使用者は、白色LED72によって発せられた光を油用隙間60aにおいて遮った状態で、オイル状態センサー50のRGBセンサー73によって検出された色のR値、G値およびB値をコンピューター80に取得させることができる。すなわち、コンピューター80は、白色LED72によって発せられた光のRGBセンサー73への到達が遮られた状態でRGBセンサー73によって検出された色のR値、G値およびB値を取得することができる。
また、オイル状態センサー50の使用者は、潤滑油40aが未使用である状態で、RGBセンサー73によって検出された色のR値、G値およびB値をコンピューター80に取得させることができる。すなわち、コンピューター80は、潤滑油40aが減速機40に導入された状態でRGBセンサー73によって検出された色のR値、G値およびB値を取得することができる。
そして、コンピューター80は、白色LED72によって発せられた光のRGBセンサー73への到達が遮られた状態でRGBセンサー73によって検出された色のR値、G値、B値がそれぞれ出力のフルスケールの最小値、すなわち黒色になり、潤滑油40aが減速機40に導入された状態でRGBセンサー73によって検出された色のR値、G値、B値がそれぞれ出力のフルスケールの最大値、すなわち白色になるように、オイル状態センサー50の使用者の指示に応じてRGBセンサー73の出力を調整する。すなわち、コンピューター80は、白色LED72によって発せられた光のRGBセンサー73への到達が遮られた時点でのRGBセンサー73の出力がBlackになり、潤滑油40aが減速機40に導入された時点でのRGBセンサー73の出力がWhiteになるように、オイル状態センサー50のRGBセンサー73の出力を調整する。
次に、本実施の形態に係る状態判定方法について説明する。
図13は、コンピューター80の動作のフローチャートである。
なお、コンピューター80は、産業用ロボット20に含まれる複数のオイル状態センサー50毎に図13に示す動作を実行する。以下においては、1つのオイル状態センサー50に対するコンピューター80の動作について説明する。
コンピューター80は、状態判定プログラム84aを実行することによって、オイル状態センサー50毎に所定の周期で図13に示す動作を実行する。この周期は、例えば6時間毎など、コンピューター80の使用者によって任意に設定可能である。
図13に示すように、コンピューター80の制御部85の動作状況判定手段85eは、減速機40が動作しているか否かを判定する(S200)。ここで、動作状況判定手段85eは、温度センサー78によって検出された潤滑油40aの温度が所定の温度以上である場合に、減速機40が動作していると判定し、温度センサー78によって検出された潤滑油40aの温度が所定の温度未満である場合に、減速機40が動作していると判定する。
制御部85の明度算出手段85aは、減速機40が動作しているとS200において判定されると、RGBセンサー73によって検出された色の明度を算出する(S201)。すなわち、明度算出手段85aは、RGBセンサー73によって検出された色のR、G、Bの各値を使用して、数1で示す式で明度を算出することができる。
次いで、制御部85の色成分算出値算出手段85bは、RGBセンサー73によって検出された色のR値、G値およびB値のうち最大値および最小値の差である色成分最大差を算出する(S202)。すなわち、色成分算出値算出手段85bは、RGBセンサー73によって検出された色のR、G、Bの各値を使用して、数2で示す式で色成分最大差を算出することができる。
次いで、制御部85の状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大差との組み合わせが図11に示す範囲111〜118の何れに存在するかを、潤滑油劣化状態判定用閾値84bに基づいて判断する。すなわち、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大差との組み合わせに対して予め定められている状態を潤滑油40aの劣化の状態として判定する(S203)。
例えば、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大差との組み合わせが範囲111に存在する場合、潤滑油40aの劣化が無いと判定する。また、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大差との組み合わせが範囲112に存在する場合、潤滑油40aの劣化度が低いと判定する。また、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大差との組み合わせが範囲113に存在する場合、潤滑油40aの劣化度が中程度であると判定する。また、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大差との組み合わせが範囲114に存在する場合、潤滑油40aの劣化度が高いと判定する。また、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大差との組み合わせが範囲115または範囲116に存在する場合、熱によって潤滑油40a自体が酸化して劣化していると判定する。また、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大差との組み合わせが範囲117に存在する場合、熱によって潤滑油40a自体が酸化して異常に劣化していると判定する。また、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大差との組み合わせが範囲118に存在する場合、潤滑油40aが不純物の混入によって異常に劣化していると判定する。
次いで、制御部85の状態通知手段85dは、S203において判定された潤滑油40aの劣化の状態を、例えば図14に示すように表示部82に通知する(S204)。
図14は、表示部82の表示の一例を示す図である。
図14において、減速機Aの潤滑油40aの劣化の状態は、「劣化無し」と表示されている。減速機Bおよび減速機Cの潤滑油40aの劣化の状態は、「劣化度高」と表示されている。減速機Dの潤滑油40aの劣化の状態は、「不純物混入による異常」と表示されている。
図13に示すように、状態通知手段85dは、S204の処理の後、潤滑油40aが異常に劣化しているか否かを判断する(S205)。ここで、状態通知手段85dは、熱によって潤滑油40a自体が酸化して異常に劣化しているとS204において判定したか、潤滑油40aが不純物の混入によって異常に劣化しているとS204において判定した場合、潤滑油40aが異常に劣化していると判断する。
状態通知手段85dは、潤滑油40aが異常に劣化しているとS205において判断した場合、表示部82の表示を反転させるなどして警報を実行する(S206)。
図14に示す表示においては、減速機Dの潤滑油40aの劣化の状態が反転されることによって警報が実行されている。したがって、コンピューター80の使用者は、減速機Dの故障などによって潤滑油40aにスラッジや摩耗粉などの不純物が大量に混入していることを容易に認識することができる。
図13に示すように、潤滑油40aが異常に劣化しているとS205において状態通知手段85dが判断しなかった場合、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大差との組み合わせが図12に示す範囲121または範囲122に存在するか否かを、減速機破損状態判定用閾値84cに基づいて判断する。すなわち、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大差との組み合わせに対して予め定められている状態を減速機40の破損の状態として判定する(S207)。
例えば、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大差との組み合わせが範囲121に存在する場合、減速機40が故障していると判定する。また、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大差との組み合わせが範囲122に存在する場合、減速機40の点検・修理が必要であると判定する。また、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大差との組み合わせが範囲121および範囲122の何れにも存在しない場合、減速機40が故障していないと判定する。
次いで、制御部85の状態通知手段85dは、S207において判定された減速機40の破損の状態を、例えば図14に示すように「減速機の状態」として表示部82に通知する(S208)。
図14において、減速機Aの状態は、「正常」と表示されている。減速機Bの状態は、「点検・修理が必要」と表示されている。減速機Cの状態は、「故障」と表示されている。なお、減速機Dについては、潤滑油40aが異常に劣化しているので、減速機の状態が表示されていない。
図13に示すように、状態通知手段85dは、S208の処理の後、警報が必要であるか否かを判断する(S209)。ここで、状態通知手段85dは、減速機40の点検・修理が必要であるとS207において判定した場合、または、減速機40が故障しているとS207において判定した場合、警報が必要であると判断する。
状態通知手段85dは、警報が必要であるとS209において判断した場合、表示部82の表示を反転させるなどして警報を実行する(S206)。
図14に示す表示においては、減速機Bの状態および減速機Cの状態が反転されることによって警報が実行されている。したがって、コンピューター80の使用者は、減速機Bの点検・修理が必要であることや、減速機Cが故障していることを容易に認識することができる。
図13に示すように、制御部85は、減速機40が動作していないとS200において判定されるか、S206の処理が終了するか、警報が必要ではないとS209において判断されると、図13に示す処理を終了する。
以上に説明したように、本実施の形態に係る状態判定方法は、RGBセンサー73によって検出された光の色の明度および色成分最大差に基づいて減速機40の潤滑油40aの劣化の状態を判定する(S203)ので、減速機40の潤滑油40aの劣化の状態を即時に、しかも従来より高精度に判定することができる。
潤滑油40aには、摩擦面の摩擦を低減するためのモリブデンジチオカルバメート(MoDTC)、モリブデンジチオホスフェート(MoDTP)などの有機モリブデン(Mo)などの摩擦低減剤、摩擦面の焼き付きを抑える性能である極圧性を向上するためのSP系添加剤などの極圧添加剤、スラッジの発生や付着を抑えるためのCaスルフォネートなどの分散剤など、各種の添加剤が添加される場合がある。これらの添加剤は、潤滑油40aの劣化とともに、例えば、産業用ロボット20および減速機40の金属表面に付着、結合したり、沈降したりして潤滑油40aから分離される。オイル状態センサー50は、潤滑油40a中の鉄粉の量だけでなく、潤滑油40aに添加されている各種の添加剤の減少に伴う基油の劣化度やスラッジ等の汚染物質の増加を、検出した色に基づいて特定することができる。
本実施の形態に係る状態判定方法は、RGBセンサー73によって検出された光の色の明度および色成分最大差の組み合わせに基づいて減速機40の潤滑油40aの劣化の状態を判定する(S203)ので、減速機40の潤滑油40aの劣化の状態を判定するために複雑な処理が必要ない。したがって、本実施の形態に係る状態判定方法は、減速機40の潤滑油40aの劣化の状態を判定する負担を低減することができる。
一般的に、産業用ロボットは、関節部に使用されている減速機の性能によってアームの軌跡の精度などが大きく左右される。したがって、産業用ロボット用の減速機は、性能が落ちた場合に適切に交換されることが大切である。しかしながら、産業用ロボット用の減速機が交換される場合、その減速機を備えている産業用ロボットや、その産業用ロボットが設置されている生産ラインが停止されなければならない。そこで、産業用ロボット用の減速機の交換時期を把握するために、産業用ロボット用の減速機の故障が適切に予知されることは非常に重要である。
本実施の形態に係る状態判定方法は、RGBセンサー73によって検出された光の色の明度および色成分最大差に基づいて減速機40の破損の状態を判定する(S207)ので、減速機40の破損の状態を即時に、しかも従来より高精度に判定することができる。
なお、減速機40の故障の予知の精度は、オイル状態センサー50のRGBセンサー73によって検出された光の色と、潤滑油40aの温度を測定する温度センサー78やモーター49の電流値等のモニタリング機構などとが併用されることによって、更に向上させられることができる。
また、本実施の形態に係る状態判定方法は、RGBセンサー73によって検出された光の色の明度および色成分最大差の組み合わせに基づいて減速機40の破損の状態を判定する(S207)ので、減速機40の破損の状態を判定するために複雑な処理が必要ない。したがって、本実施の形態に係る状態判定方法は、減速機40の破損の状態を判定する負担を低減することができる。
また、本実施の形態に係る状態判定方法は、色成分最大差を算出する際(S202)に、RGBセンサー73によって検出された光の色のR値、G値およびB値のうち何れが最大値であって何れが最小値であるかを都度判断して色成分最大差を算出している。しかしながら、RGBセンサー73によって検出された色のR値、G値およびB値のうち最大値が通常R値であることが実験によって判明している(図8参照。)。また、RGBセンサー73によって検出された色のR値、G値およびB値のうち最小値が通常B値であることも実験によって判明している(図8参照。)。したがって、本実施の形態に係る状態判定方法は、RGBセンサー73によって検出された色のR値およびB値の差を色成分最大差として色成分算出値算出手段85bがS202において算出する構成であっても良い。この構成である場合、本実施の形態に係る状態判定方法は、RGBセンサー73によって検出された色のR値、G値およびB値のうち何れが最大値であって何れが最小値であるかを都度判断する必要がないので、色成分最大差を算出する負担を低減することができる。
また、本実施の形態に係る状態判定方法は、RGBセンサー73への光の到達が遮られた時点でのRGBセンサー73の出力が黒色となり、潤滑油40aが減速機40に導入された時点でのRGBセンサー73の出力が白色となるように、潤滑油40a毎にRGBセンサー73の出力を調整するので、状態の判定に対する潤滑油40aの個体差の影響を低減することができる。
明度算出手段85aによって算出される明度は、潤滑油40aが交換された場合、潤滑油40aの交換前と比較して、潤滑油40aの交換後に大幅に高くなる。そのため、コンピューター80の制御部85は、明度算出手段85aによって算出される明度の変化に基づいて、潤滑油40aが交換されたことを自動的に判断することができる。なお、以上においては、明度について説明しているが、RGBセンサー73によって検出された色のR、G、Bの各値も、潤滑油40aが交換された場合、潤滑油40aの交換前と比較して、潤滑油40aの交換後に大幅に高くなる。そのため、コンピューター80の制御部85は、RGBセンサー73によって検出された色のR値、G値およびB値の何れかの変化に基づいて、潤滑油40aが交換されたことを自動的に判断することもできる。
本実施の形態に係る状態判定方法は、減速機40が動作している場合(S200でYES)、すなわち、減速機40の動作によって減速機40の潤滑油40aが攪拌されて潤滑油40a内の不純物が潤滑油40a内で均一に存在させられている場合に、RGBセンサー73によって検出された色の明度の算出(S201)と、RGBセンサー73によって検出された色のR値、G値およびB値のうち最大値および最小値の差である色成分最大差の算出(S202)とを実行するので、S201において算出する明度の精度と、S202において算出する色成分最大差の精度とが向上する。したがって、本実施の形態に係る状態判定方法は、潤滑油40aの劣化の状態の判定(S203)と、減速機40の破損の状態の判定(S207)とを高精度に実行することができる。しかしながら、本実施の形態に係る状態判定方法は、図13に示す動作において、減速機40が動作しているか否かの判断を省略するようになっていても良い。
なお、減速機40が動作している場合には、減速機40の動作によって潤滑油40aの温度が上昇するので、動作状況判定手段85eは、本実施の形態において、減速機40が動作しているか否かを潤滑油40aの温度に基づいて判定するようになっている。しかしながら、動作状況判定手段85eは、潤滑油40aの温度以外の情報に基づいて、減速機40が動作しているか否かを判定するようになっていても良い。例えば、動作状況判定手段85eは、減速機40に取り付けられた振動センサーからの信号、減速機40に取り付けられた加速度センサーからの信号、減速機40を駆動するモーター49の駆動電流を示す信号などの情報に基づいて、減速機40が動作しているか否かを判定するようになっていても良い。また、オイル状態センサー50の検出対象である機械が減速機40ではなく空圧で駆動される機械である場合には、動作状況判定手段85eは、機械を駆動させる空圧を検出するセンサーからの信号に基づいて、減速機40が動作しているか否かを判定するようになっていても良い。また、オイル状態センサー50の検出対象である機械が油圧で駆動される機械である場合には、動作状況判定手段85eは、機械を駆動させる油圧を検出するセンサーからの信号に基づいて、減速機40が動作しているか否かを判定するようになっていても良い。
動作状況判定手段85eは、本実施の形態において、オイル状態センサー50の筐体51に固定されている温度センサー78によって検出された温度に基づいて、減速機40が動作しているか否かを判定するようになっている。しかしながら、動作状況判定手段85eは、温度センサー78によって検出された温度から、図示していない温度センサーによって検出された、オイル状態センサー50の周囲の空気の温度を差し引いた温度差に基づいて、減速機40が動作しているか否かを判定する構成であっても良い。この構成である場合、動作状況判定手段85eは、潤滑油40aの温度の変化のうち、オイル状態センサー50の周囲の空気の温度に影響された変化の分を除外することができるので、減速機40が動作しているか否かを更に正確に判定することができる。
なお、オイル状態センサー50の設置位置は、本実施の形態において示した位置に限らず、産業用ロボット20の用途などに合わせて適宜設定されることが好ましい。
また、オイル状態センサー50は、電力の供給手段として、例えば、電池を使用しても良い。
また、オイル状態センサー50は、外部の装置への検出結果の出力手段として、例えば、ワイヤレス通信を使用しても良い。
以上においては、RGBセンサー73によって検出された色のR値、G値およびB値のうち最大値および最小値に基づいて算出される値である色成分算出値が色成分最大差である例について説明している。しかしながら、本実施の形態に係る状態判定方法は、色成分算出値が色成分最大差以外の値であっても良い。例えば、本実施の形態に係る状態判定方法は、色成分算出値が、RGBセンサー73によって検出された色のR値、G値およびB値のうち最大値および最小値の比である色成分最大比であっても良いし、色成分最大差の明度による積分値(以下「色成分最大差積分値」と言う。)であっても良いし、色成分最大比の明度による積分値(以下「色成分最大比積分値」と言う。)であっても良いし、色成分最大差の明度による微分値であっても良いし、色成分最大比の明度による微分値であっても良い。
以下、色成分算出値が色成分最大差積分値である場合について説明する。
色成分算出値算出手段85bは、RGBセンサー73によって検出された色のR、G、Bの各値を使用して、色成分最大差の明度による積分値である色成分最大差積分値を色成分算出値として算出することができる。具体的には、色成分算出値算出手段85bは、RGBセンサー73によって検出された色のR、G、Bの各値を使用して明度算出手段85aによって算出された明度が変化する度に、その時点でRGBセンサー73によって検出されている色のR値、G値およびB値のうち最大値および最小値の差である色成分最大差を加算することによって、色成分最大差積分値を算出することができる。
図15は、コンピューター80によって算出される明度および色成分最大差積分値の関係の例を示すグラフである。
図15において、縦軸の単位は、任意単位である。横軸の単位は、明度の最大値を1とし最小値を0とした任意単位である。
オイル状態センサー50のRGBセンサー73の出力に基づいてコンピューター80によって算出される明度および色成分最大差積分値の関係を示すグラフの形状は、例えば、図15に示す3つのグラフのような形状になる。
図15においては、減速機91が故障するまでの実験の3回分の結果を示している。図15における各グラフが各回の実験の結果を示している。実際には、実験の回数は、3回に限らず、多いほど潤滑油劣化状態判定用閾値84bおよび減速機破損状態判定用閾値84cの適切性が向上する。
図15に示すように、実験の開始時は、オイル状態センサーのRGBセンサーによって検出された色のR、G、Bの各値が出力のフルスケールの最大値であるので、明度が1.0である。また、実験の開始時の色成分最大差積分値は0である。
図15に示す実験の結果によれば、明度は、減速機91が故障するまで、潤滑油の劣化に伴って減少し続ける。
一方、色成分最大差積分値は、減速機91が故障するまで、潤滑油の劣化に伴って増加し続ける。
次に、潤滑油劣化状態判定用閾値84bの決定方法について説明する。
本願の発明者は、減速機40の潤滑油40aの劣化の状態と、RGBセンサー73によって検出された光の色の明度および色成分最大差積分値との間に強い関連が存在することを、色成分最大差に関する上述した実験と同様の実験によって見出した。
図16は、色成分算出値が色成分最大差積分値である場合の潤滑油劣化状態判定用閾値84bの一例を説明する図である。
図16において、縦軸の単位は、任意単位である。横軸の単位は、明度の最大値を1とし最小値を0とした任意単位である。
潤滑油劣化状態判定用閾値84bを決定する者は、上述した実験の結果に基づいて、潤滑油40aの劣化に伴ってオイル状態センサー50のRGBセンサー73によって検出された色の明度および色成分最大差積分値がなり得る組み合わせを、複数の範囲に分ける。範囲131は、熱によって潤滑油40a自体が酸化して異常に劣化していると推定される範囲である。範囲132は、潤滑油40aが不純物の混入によって異常に劣化していると推定される範囲である。図16には、示していないが、図11に示す例と同様に、潤滑油40aの劣化が無いと推定される範囲、潤滑油40aの劣化度が低いと推定される範囲、潤滑油40aの劣化度が中程度であると推定される範囲、潤滑油40aの劣化度が高いと推定される範囲などの範囲も設けられる。
潤滑油劣化状態判定用閾値84bは、オイル状態センサー50のRGBセンサー73によって検出された色の明度および色成分最大差積分値が範囲131、132を含む複数の範囲の何れに存在するかを判断することができるように決定される。
なお、上述した実験の結果は、減速機40の種類毎、および、潤滑油40aの種類毎に異なる。したがって、潤滑油劣化状態判定用閾値84bは、減速機40の種類毎、および、潤滑油40aの種類毎に決定される。
次に、減速機破損状態判定用閾値84cの決定方法について説明する。
本願の発明者は、減速機40の破損の状態と、RGBセンサー73によって検出された光の色の明度および色成分最大差積分値との間に強い関連が存在することを、色成分最大差に関する上述した実験と同様の実験によって見出した。
図17は、色成分算出値が色成分最大差積分値である場合の減速機破損状態判定用閾値84cの一例を説明する図である。
図17において、縦軸の単位は、任意単位である。横軸の単位は、明度の最大値を1とし最小値を0とした任意単位である。
減速機破損状態判定用閾値84cを決定する者は、上述した実験の結果に基づいて、潤滑油40aの劣化に伴ってオイル状態センサー50のRGBセンサー73によって検出された色の明度および色成分最大差積分値がなり得る組み合わせのうち、減速機40が故障していると推定される組み合わせの範囲141と、減速機40が故障していないが減速機40の点検・修理が必要であると推定される組み合わせの範囲142とを決定する。
減速機破損状態判定用閾値84cは、オイル状態センサー50のRGBセンサー73によって検出された色の明度および色成分最大差積分値が範囲141または範囲142に存在するか否かを判断することができるように決定される。
なお、上述した実験の結果は、減速機40の種類毎、および、潤滑油40aの種類毎に異なる。したがって、減速機破損状態判定用閾値84cは、減速機40の種類毎、および、潤滑油40aの種類毎に決定される。
そして、制御部85は、色成分算出値が色成分最大差ではなく色成分最大差積分値であるとして図13に示す動作を実行する。
具体的には、色成分算出値算出手段85bは、RGBセンサー73によって検出された色のR値、G値およびB値のうち最大値および最小値の差の明度による積分値である色成分最大差積分値を色成分算出値として算出する(S202)。
また、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大差積分値との組み合わせが図16に示す範囲131、132を含む複数の範囲の何れに存在するかを、潤滑油劣化状態判定用閾値84bに基づいて判断する。すなわち、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大差積分値との組み合わせに対して予め定められている状態を潤滑油40aの劣化の状態として判定する(S203)。
また、潤滑油40aが異常に劣化しているとS205において状態通知手段85dが判断しなかった場合、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大差積分値との組み合わせが図17に示す範囲141または範囲142に存在するか否かを、減速機破損状態判定用閾値84cに基づいて判断する。すなわち、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大差積分値との組み合わせに対して予め定められている状態を減速機40の破損の状態として判定する(S207)。
以下、色成分算出値が色成分最大比である場合について説明する。
色成分算出値算出手段85bは、RGBセンサー73によって検出された色のR、G、Bの各値を使用して、次の数3で示す式で色成分算出値として色成分最大比を算出することができる。
Figure 2013191273
図18は、コンピューター80によって算出される明度および色成分最大比の関係の例を示すグラフである。
図18において、縦軸の単位は、任意単位である。横軸の単位は、明度の最大値を1とし最小値を0とした任意単位である。
オイル状態センサー50のRGBセンサー73の出力に基づいてコンピューター80によって算出される明度および色成分最大比の関係を示すグラフの形状は、例えば、図18に示す3つのグラフのような形状になる。
図18においては、減速機91が故障するまでの実験の3回分の結果を示している。図18における各グラフが各回の実験の結果を示している。実際には、実験の回数は、3回に限らず、多いほど潤滑油劣化状態判定用閾値84bおよび減速機破損状態判定用閾値84cの適切性が向上する。
図18に示すように、実験の開始時は、オイル状態センサーのRGBセンサーによって検出された色のR、G、Bの各値が出力のフルスケールの最大値であるので、明度が1.0である。また、実験の開始時の色成分最大比は1である。
図18に示す実験の結果によれば、明度は、減速機91が故障するまで、潤滑油の劣化に伴って減少し続ける。
一方、色成分最大比は、減速機91が故障するまで、潤滑油の劣化に伴って増加し続ける。
次に、潤滑油劣化状態判定用閾値84bの決定方法について説明する。
本願の発明者は、減速機40の潤滑油40aの劣化の状態と、RGBセンサー73によって検出された光の色の明度および色成分最大比との間に強い関連が存在することを、色成分最大差に関する上述した実験と同様の実験によって見出した。
図19は、色成分算出値が色成分最大比である場合の潤滑油劣化状態判定用閾値84bの一例を説明する図である。
図19において、縦軸の単位は、任意単位である。横軸の単位は、明度の最大値を1とし最小値を0とした任意単位である。
潤滑油劣化状態判定用閾値84bを決定する者は、上述した実験の結果に基づいて、潤滑油40aの劣化に伴ってオイル状態センサー50のRGBセンサー73によって検出された色の明度および色成分最大比がなり得る組み合わせを、複数の範囲に分ける。範囲151は、潤滑油40aが不純物の混入によって異常に劣化していると推定される範囲である。図19には、示していないが、図11に示す例と同様に、潤滑油40aの劣化が無いと推定される範囲、潤滑油40aの劣化度が低いと推定される範囲、潤滑油40aの劣化度が中程度であると推定される範囲、潤滑油40aの劣化度が高いと推定される範囲などの範囲も設けられる。
潤滑油劣化状態判定用閾値84bは、オイル状態センサー50のRGBセンサー73によって検出された色の明度および色成分最大比が範囲151を含む複数の範囲の何れに存在するかを判断することができるように決定される。
なお、上述した実験の結果は、減速機40の種類毎、および、潤滑油40aの種類毎に異なる。したがって、潤滑油劣化状態判定用閾値84bは、減速機40の種類毎、および、潤滑油40aの種類毎に決定される。
次に、減速機破損状態判定用閾値84cの決定方法について説明する。
本願の発明者は、減速機40の破損の状態と、RGBセンサー73によって検出された光の色の明度および色成分最大比との間に強い関連が存在することを、色成分最大差に関する上述した実験と同様の実験によって見出した。
図20は、色成分算出値が色成分最大比である場合の減速機破損状態判定用閾値84cの一例を説明する図である。
図20において、縦軸の単位は、任意単位である。横軸の単位は、明度の最大値を1とし最小値を0とした任意単位である。
減速機破損状態判定用閾値84cを決定する者は、上述した実験の結果に基づいて、潤滑油40aの劣化に伴ってオイル状態センサー50のRGBセンサー73によって検出された色の明度および色成分最大比がなり得る組み合わせのうち、減速機40が故障していると推定される組み合わせの範囲161と、減速機40が故障していないが減速機40の点検・修理が必要であると推定される組み合わせの範囲162とを決定する。
減速機破損状態判定用閾値84cは、オイル状態センサー50のRGBセンサー73によって検出された色の明度および色成分最大比が範囲161または範囲162に存在するか否かを判断することができるように決定される。
なお、上述した実験の結果は、減速機40の種類毎、および、潤滑油40aの種類毎に異なる。したがって、減速機破損状態判定用閾値84cは、減速機40の種類毎、および、潤滑油40aの種類毎に決定される。
そして、制御部85は、色成分算出値が色成分最大差ではなく色成分最大比であるとして図13に示す動作を実行する。
具体的には、色成分算出値算出手段85bは、RGBセンサー73によって検出された色のR値、G値およびB値のうち最大値および最小値の比である色成分最大比を色成分算出値として算出する(S202)。
また、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大比との組み合わせが図19に示す範囲151を含む複数の範囲の何れに存在するかを、潤滑油劣化状態判定用閾値84bに基づいて判断する。すなわち、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大比との組み合わせに対して予め定められている状態を潤滑油40aの劣化の状態として判定する(S203)。
また、潤滑油40aが異常に劣化しているとS205において状態通知手段85dが判断しなかった場合、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大比との組み合わせが図20に示す範囲161または範囲162に存在するか否かを、減速機破損状態判定用閾値84cに基づいて判断する。すなわち、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大比との組み合わせに対して予め定められている状態を減速機40の破損の状態として判定する(S207)。
以下、色成分算出値が色成分最大比積分値である場合について説明する。
色成分算出値算出手段85bは、RGBセンサー73によって検出された色のR、G、Bの各値を使用して、色成分最大比の明度による積分値である色成分最大比積分値を色成分算出値として算出することができる。具体的には、色成分算出値算出手段85bは、RGBセンサー73によって検出された色のR、G、Bの各値を使用して明度算出手段85aによって算出された明度が変化する度に、その時点でRGBセンサー73によって検出されている色のR値、G値およびB値のうち最大値および最小値の比である色成分最大比を加算することによって、色成分最大比積分値を算出することができる。
図21は、コンピューター80によって算出される明度および色成分最大比積分値の関係の例を示すグラフである。
図21において、縦軸の単位は、任意単位である。横軸の単位は、明度の最大値を1とし最小値を0とした任意単位である。
オイル状態センサー50のRGBセンサー73の出力に基づいてコンピューター80によって算出される明度および色成分最大比積分値の関係を示すグラフの形状は、例えば、図21に示す3つのグラフのような形状になる。
図21においては、減速機91が故障するまでの実験の3回分の結果を示している。図21における各グラフが各回の実験の結果を示している。実際には、実験の回数は、3回に限らず、多いほど潤滑油劣化状態判定用閾値84bおよび減速機破損状態判定用閾値84cの適切性が向上する。
図21に示すように、実験の開始時は、オイル状態センサーのRGBセンサーによって検出された色のR、G、Bの各値が出力のフルスケールの最大値であるので、明度が1.0である。また、実験の開始時の色成分最大比積分値は0である。
図21に示す実験の結果によれば、明度は、減速機91が故障するまで、潤滑油の劣化に伴って減少し続ける。
一方、色成分最大比積分値は、減速機91が故障するまで、潤滑油の劣化に伴って増加し続ける。
次に、潤滑油劣化状態判定用閾値84bの決定方法について説明する。
本願の発明者は、減速機40の潤滑油40aの劣化の状態と、RGBセンサー73によって検出された光の色の明度および色成分最大比積分値との間に強い関連が存在することを、色成分最大差に関する上述した実験と同様の実験によって見出した。
図22は、色成分算出値が色成分最大比積分値である場合の潤滑油劣化状態判定用閾値84bの一例を説明する図である。
図22において、縦軸の単位は、任意単位である。横軸の単位は、明度の最大値を1とし最小値を0とした任意単位である。
潤滑油劣化状態判定用閾値84bを決定する者は、上述した実験の結果に基づいて、潤滑油40aの劣化に伴ってオイル状態センサー50のRGBセンサー73によって検出された色の明度および色成分最大比積分値がなり得る組み合わせを、複数の範囲に分ける。範囲171は、潤滑油40aが不純物の混入によって異常に劣化していると推定される範囲である。図22には、示していないが、図11に示す例と同様に、潤滑油40aの劣化が無いと推定される範囲、潤滑油40aの劣化度が低いと推定される範囲、潤滑油40aの劣化度が中程度であると推定される範囲、潤滑油40aの劣化度が高いと推定される範囲などの範囲も設けられる。
潤滑油劣化状態判定用閾値84bは、オイル状態センサー50のRGBセンサー73によって検出された色の明度および色成分最大比積分値が範囲171を含む複数の範囲の何れに存在するかを判断することができるように決定される。
なお、上述した実験の結果は、減速機40の種類毎、および、潤滑油40aの種類毎に異なる。したがって、潤滑油劣化状態判定用閾値84bは、減速機40の種類毎、および、潤滑油40aの種類毎に決定される。
次に、減速機破損状態判定用閾値84cの決定方法について説明する。
本願の発明者は、減速機40の破損の状態と、RGBセンサー73によって検出された光の色の明度および色成分最大比積分値との間に強い関連が存在することを、色成分最大差に関する上述した実験と同様の実験によって見出した。
図23は、色成分算出値が色成分最大比積分値である場合の減速機破損状態判定用閾値84cの一例を説明する図である。
図23において、縦軸の単位は、任意単位である。横軸の単位は、明度の最大値を1とし最小値を0とした任意単位である。
減速機破損状態判定用閾値84cを決定する者は、上述した実験の結果に基づいて、潤滑油40aの劣化に伴ってオイル状態センサー50のRGBセンサー73によって検出された色の明度および色成分最大比積分値がなり得る組み合わせのうち、減速機40が故障していると推定される組み合わせの範囲181と、減速機40が故障していないが減速機40の点検・修理が必要であると推定される組み合わせの範囲182とを決定する。
減速機破損状態判定用閾値84cは、オイル状態センサー50のRGBセンサー73によって検出された色の明度および色成分最大比積分値が範囲181または範囲182に存在するか否かを判断することができるように決定される。
なお、上述した実験の結果は、減速機40の種類毎、および、潤滑油40aの種類毎に異なる。したがって、減速機破損状態判定用閾値84cは、減速機40の種類毎、および、潤滑油40aの種類毎に決定される。
そして、制御部85は、色成分算出値が色成分最大差ではなく色成分最大比積分値であるとして図13に示す動作を実行する。
具体的には、色成分算出値算出手段85bは、RGBセンサー73によって検出された色のR値、G値およびB値のうち最大値および最小値の比の明度による積分値である色成分最大比積分値を色成分算出値として算出する(S202)。
また、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大比積分値との組み合わせが図22に示す範囲171を含む複数の範囲の何れに存在するかを、潤滑油劣化状態判定用閾値84bに基づいて判断する。すなわち、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大比積分値との組み合わせに対して予め定められている状態を潤滑油40aの劣化の状態として判定する(S203)。
また、潤滑油40aが異常に劣化しているとS205において状態通知手段85dが判断しなかった場合、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大比積分値との組み合わせが図23に示す範囲181または範囲182に存在するか否かを、減速機破損状態判定用閾値84cに基づいて判断する。すなわち、状態判定手段85cは、S201において算出された明度と、S202において算出された色成分最大比積分値との組み合わせに対して予め定められている状態を減速機40の破損の状態として判定する(S207)。
(第2の実施の形態)
まず、本実施の形態に係る状態判定方法を実現するための構成について説明する。
本実施の形態に係る状態判定方法を実現するための構成は、第1の実施の形態に係る状態判定方法を実現するための構成とほぼ同様である。本実施の形態に係る状態判定方法を実現するための構成のうち第1の実施の形態に係る状態判定方法を実現するための構成と同様の構成については、第1の実施の形態に係る状態判定方法を実現するための構成と同一の符号を付して詳細な説明を省略する。以下、本実施の形態に係る状態判定方法を実現するための構成のうち、第1の実施の形態に係る状態判定方法を実現するための構成と異なる箇所について説明する。
本実施の形態に係る状態判定方法を実現するための構成の具体例の1つである状態通知システムの構成は、第1の実施の形態に係る状態通知システム10(図2参照。)がコンピューター80(図6参照。)に代えて図24に示すコンピューター380を備えた構成と同様である。
図24は、コンピューター380のブロック図である。
図24に示すように、コンピューター380は、コンピューター80(図6参照。)と比較して、産業用ロボット20の減速機40の潤滑油40aの劣化の状態と、産業用ロボット20の減速機40の破損の状態とを判定する状態判定プログラム384aと、減速機40の破損の状態を判定するための減速機破損状態判定用閾値384bと、明度算出手段85aによって算出された明度および色成分算出値算出手段85bによって算出された色成分最大差に基づいて状態を判定する状態判定手段385aとを、状態判定プログラム84a(図6参照。)、減速機破損状態判定用閾値84c(図6参照。)および状態判定手段85c(図6参照。)に代えて備えている。
また、コンピューター380の記憶部84は、前回の明度である前回明度384cと、前回の色成分最大差である前回色成分最大差384dと、減速機40の破損の状態の基準となる基準色成分最大差384eとを記憶することができる。記憶部84は、産業用ロボット20に含まれる複数のオイル状態センサー50毎に前回明度384c、前回色成分最大差384dおよび基準色成分最大差384eを記憶することができる。
制御部85は、記憶部84に記憶されている状態判定プログラム384aを実行することによって、明度算出手段85a、色成分算出値算出手段85b、状態判定手段385a、状態通知手段85dおよび動作状況判定手段85eとして機能する。
次に、減速機破損状態判定用閾値384bの決定方法について説明する。
本願の発明者は、減速機40の破損の状態と、RGBセンサー73によって検出された光の色の明度および色成分最大差との間に強い関連が存在することを、図7に示す構成による実験によって見出した。
図25は、減速機破損状態判定用閾値384bの一例を説明する図である。
図25において、縦軸の単位は、色成分最大差の最大値を1とし最小値を0とした任意単位である。横軸の単位は、明度の最大値を1とし最小値を0とした任意単位である。
減速機破損状態判定用閾値384bを決定する者は、図7に示す構成による実験の結果に基づいて、図25に示すように、潤滑油40aの劣化に伴ってオイル状態センサー50のRGBセンサー73によって検出された色の明度および色成分最大差が両方とも低下を開始してから、減速機40が故障していると推定されるまでに、低下した色成分最大差の量を減速機破損状態判定用閾値384bとして決定する。例えば、減速機破損状態判定用閾値384bは、“0.05”である。
なお、図7に示す構成による実験の結果は、減速機40の種類毎、および、潤滑油40aの種類毎に異なる。したがって、減速機破損状態判定用閾値384bは、減速機40の種類毎、および、潤滑油40aの種類毎に決定される。
次に、本実施の形態に係る状態判定方法について説明する。
図26は、コンピューター380の動作のフローチャートである。図27は、図26に示す動作の続きの動作のフローチャートである。
なお、コンピューター380は、産業用ロボット20に含まれる複数のオイル状態センサー50毎に図26および図27に示す動作を実行する。以下においては、1つのオイル状態センサー50に対するコンピューター380の動作について説明する。
また、図26および図27に示す動作のうち図13に示す動作と同様の動作については、図13に示す動作と同一の符号を付して詳細な説明を省略する。
コンピューター380は、状態判定プログラム384aを実行することによって、オイル状態センサー50毎に所定の周期で図26および図27に示す動作を実行する。この周期は、例えば6時間毎など、コンピューター380の使用者によって任意に設定可能である。
図26および図27に示すように、コンピューター380は、図13に示すS200〜S206と同様の動作を実行する。
潤滑油40aが異常に劣化しているとS205において状態通知手段85dが判断しなかった場合、状態判定手段385aは、S201において算出された現在の明度から、前回の図26および図27に示す動作の後述するS232において記憶された前回明度384cを引くことによって、明度変化を算出する(S221)。ただし、状態判定手段385aは、前回明度384cが記憶されていない場合、明度変化をゼロとする。
次いで、状態判定手段385aは、S202において算出された現在の色成分最大差から、前回の図26および図27に示す動作の後述するS233において記憶された前回色成分最大差384dを引くことによって、色成分最大差変化を算出する(S222)。ただし、状態判定手段385aは、前回色成分最大差384dが記憶されていない場合、色成分最大差変化をゼロとする。
次いで、状態判定手段385aは、S222において算出された色成分最大差変化を、S221において算出された明度変化で割ることによって、傾きを算出する(S223)。ただし、状態判定手段385aは、S221において算出された明度変化がゼロである場合、S222において算出された色成分最大差変化が正の値であるときに傾きを負の値とし、S222において算出された色成分最大差変化がゼロであるときに傾きをゼロとし、S222において算出された色成分最大差変化が負の値であるときに傾きを正の値とする。
次いで、状態判定手段385aは、S223において算出した傾きが正の値であるか否かを判断する(S224)。
状態判定手段385aは、S223において算出した傾きが正の値ではないとS224において判断すると、減速機40が故障していないと判定する(S225)。
一方、状態判定手段385aは、S223において算出した傾きが正の値であるとS224において判断すると、基準色成分最大差384eが記憶されているか否かを判断する(S226)。
状態判定手段385aは、基準色成分最大差384eが記憶されていないとS226において判断すると、S202において算出された現在の色成分最大差を基準色成分最大差384eとして記憶部84に記憶させる(S227)。
状態判定手段385aは、基準色成分最大差384eが記憶されているとS226において判断するか、S227の処理を終了すると、基準色成分最大差384eから、S202において算出された現在の色成分最大差を引くことによって、基準色成分最大差384eからの色成分最大差の低下量を算出する(S228)。
次いで、状態判定手段385aは、S228において算出した低下量が減速機破損状態判定用閾値384b以上であるか否かを判断する(S229)。
状態判定手段385aは、S228において算出した低下量が減速機破損状態判定用閾値384b未満であるとS229において判断すると、図26および図27に示す動作の実行の周期と、減速機破損状態判定用閾値384bと、S222において算出された色成分最大差変化と、S228において算出した低下量とに基づいて、減速機40の故障までの時間を判定する(S230)。すなわち、状態判定手段385aは、減速機破損状態判定用閾値384bから、S228において算出した低下量を引くことによって、現時点から減速機40の故障までの色成分最大差の減少量を算出し、この減少量を、S222において算出された色成分最大差変化で割ることによって、現時点から減速機40の故障までの図26および図27に示す動作の残りの実行の回数を算出し、この残りの実行の回数に、図26および図27に示す動作の実行の周期を掛けることによって、現時点から減速機40の故障までの時間を算出する。
例えば、図26および図27に示す動作の実行の周期が“6時間”であって、減速機破損状態判定用閾値384bが“0.05”であって、S222において算出された色成分最大差変化が“0.005”であって、S228において算出した低下量が“0.03”である場合、状態判定手段385aは、減速機破損状態判定用閾値384bである“0.05”から、S228において算出した低下量である“0.03”を引くことによって、現時点から減速機40の故障までの色成分最大差の減少量である“0.02”を算出し、この減少量を、S222において算出された色成分最大差変化である“0.005”で割ることによって、現時点から減速機40の故障までの図26および図27に示す動作の残りの実行の回数である“4”を算出し、この残りの実行の回数に、図26および図27に示す動作の実行の周期である“6時間”を掛けることによって、現時点から減速機40の故障までの時間である“24時間”を算出する。
状態判定手段385aは、S228において算出した低下量が減速機破損状態判定用閾値384b以上であるとS229において判断すると、減速機40が故障していると判定する(S231)。
状態判定手段385aは、S225またはS230の処理を終了すると、S201において算出された現在の明度を、前回明度384cとして記憶部84に記憶させる(S232)。ここで、状態判定手段385aは、記憶部84が既に前回明度384cを記憶している場合、S201において算出された現在の明度を新たな前回明度384cとして上書きする。
次いで、状態判定手段385aは、S202において算出された現在の色成分最大差を、前回色成分最大差384dとして記憶部84に記憶させる(S233)。ここで、状態判定手段385aは、記憶部84が既に前回色成分最大差384dを記憶している場合、S202において算出された現在の色成分最大差を新たな前回色成分最大差384dとして上書きする。
状態判定手段385aがS231またはS233の処理を終了すると、状態通知手段85dは、S225、S230またはS231において判定された減速機40の破損の状態を、例えば図28に示すように「減速機の状態」として表示部82に通知する(S208)。
図28は、表示部82の表示の一例を示す図である。
図28において、減速機Aの状態は、「正常」と表示されている。減速機Bの状態は、「故障まで24時間」と表示されている。減速機Cの状態は、「故障」と表示されている。
図26および図27に示すように、状態通知手段85dは、S208の処理の後、警報が必要であるか否かを判断する(S209)。ここで、状態通知手段85dは、S230において判定した減速機40の故障までの時間が例えば1週間以下である場合、または、減速機40が故障しているとS231において判定した場合、警報が必要であると判断する。
状態通知手段85dは、警報が必要であるとS209において判断した場合、表示部82の表示を反転させるなどして警報を実行する(S206)。
図28に示す表示においては、減速機Bの状態および減速機Cの状態が反転されることによって警報が実行されている。したがって、コンピューター380の使用者は、減速機Bが故障まで24時間であって減速機Bの点検・修理が必要であることや、減速機Cが故障していることを容易に認識することができる。
図26および図27に示すように、制御部85は、減速機40が動作していないとS200において判定されるか、S206の処理が終了するか、警報が必要ではないとS209において判断されると、図26および図27に示す動作を終了する。
なお、コンピューター380の使用者は、潤滑油40aまたは減速機40を交換した場合、交換した潤滑油40aまたは減速機40に対応する前回明度384c、前回色成分最大差384dおよび基準色成分最大差384eを記憶部84から削除するように、操作部81を介してコンピューター380に指示する。したがって、コンピューター380の制御部85は、使用者からの指示に応じた前回明度384c、前回色成分最大差384dおよび基準色成分最大差384eを記憶部84から削除する。
明度算出手段85aによって算出される明度は、潤滑油40aが交換された場合、潤滑油40aの交換前と比較して、潤滑油40aの交換後に大幅に高くなる。そのため、コンピューター380の制御部85は、明度算出手段85aによって算出される明度の変化に基づいて、潤滑油40aが交換されたことを自動的に判断することができる。なお、以上においては、明度について説明しているが、RGBセンサー73によって検出された色のR、G、Bの各値も、潤滑油40aが交換された場合、潤滑油40aの交換前と比較して、潤滑油40aの交換後に大幅に高くなる。そのため、コンピューター380の制御部85は、RGBセンサー73によって検出された色のR値、G値およびB値の何れかの変化に基づいて、潤滑油40aが交換されたことを自動的に判断することもできる。コンピューター380の制御部85は、潤滑油40aの交換を自動的に判断する構成である場合には、潤滑油40aが交換されたと判断したときに、前回明度384c、前回色成分最大差384dおよび基準色成分最大差384eを記憶部84から自動的に削除することもできる。
以上に説明したように、本実施の形態に係る状態判定方法は、S201によって算出された明度と、S202によって算出された色成分最大差とが両方とも低下を開始した(S224でYES)時点と比較して色成分最大差が低下した量、すなわち、S228において算出した低下量に応じて、減速機40の破損の状態を判定する(S229)。すなわち、本実施の形態に係る状態判定方法は、第1の実施の形態に係る状態判定方法のようにRGBセンサー73によって検出された光の色の明度および色成分最大差の単純な組み合わせではなく、RGBセンサー73によって検出された光の色の明度および色成分最大差の変化に基づいて減速機40の破損の状態を判定する。したがって、本実施の形態に係る状態判定方法は、減速機40の破損の状態の判定に対する減速機40の個体差および潤滑油40aの個体差の影響を低減することができるので、減速機40の破損の状態の判定の精度を向上することができる。
また、本実施の形態に係る状態判定方法は、S201によって算出された明度と、S202によって算出された色成分最大差とが両方とも低下している場合(S224でYES)、図26および図27に示す動作の実行の周期と、この周期で色成分最大差が低下した量、すなわち、S222において算出された色成分最大差変化とに応じて、減速機40の破損の状態として減速機40の故障までの時間を判定する(S230)。したがって、本実施の形態に係る状態判定方法は、減速機40の故障までの時間を判定するので、減速機40の使用者の利便性を向上することができる。
なお、図1に示す演算処理部5は、上述した各実施の形態においてコンピューター80またはコンピューター380の制御部85によって実現されているが、コンピューターの制御部以外の構成によって実現されるようになっていても良い。例えば、図1に示す演算処理部5は、オイル状態センサー50の電子部品群70内の電子部品によって実現されるようになっていても良い。この場合、この電子部品は、潤滑油劣化状態判定用閾値84bなどの各種のデータを記憶し、図13に示す動作、または、図26および図27に示す動作を実行し、PCの表示部などの外部の表示装置6に判定結果を表示させるようになっていれば良い。
また、本発明の機械は、上述した各実施の形態において産業用ロボット用の減速機であるが、産業用ロボット用の減速機以外の機械であっても良い。例えば、鉄道車両において用いられる圧縮空気を生成する空気圧縮装置が本発明の機械として採用される場合、本発明のオイルは、この空気圧縮装置の潤滑油であっても良い。また、建築機械用走行モーターや建築機械用バルブが本発明の機械として採用される場合、本発明のオイルは、この建築機械用走行モーターの潤滑油や、この建築機械用バルブの作動油であっても良い。また、本発明の機械として風車が採用される場合、本発明のオイルは、この風車の潤滑油であっても良い。また、船舶などの乗り物のエンジンが本発明の機械として採用される場合、本発明のオイルは、このエンジンのエンジンオイルであっても良い。また、航空機の飛行姿勢を制御するフライトコントロールアクチュエーターが本発明の機械として採用される場合、本発明のオイルは、このフライトコントロールアクチュエーターの作動油であっても良い。また、本発明の機械として工作機械が採用される場合、本発明のオイルは、この工作機械の切削油であっても良い。また、本発明の機械として真空ポンプが採用される場合、本発明のオイルは、この真空ポンプの潤滑油であっても良い。
1 発光素子
1a 光
2 受光素子
6 表示装置
9 オイル
10 状態通知システム
40 減速機(機械)
40a 潤滑油(オイル)
60 隙間形成部材
60a 油用隙間
72 白色LED(発光素子)
72a 光路
73 RGBセンサー(受光素子)
80 コンピューター
82 表示部
84a 状態判定プログラム
85a 明度算出手段
85b 色成分算出値算出手段
85c 状態判定手段
380 コンピューター
384a 状態判定プログラム
385a 状態判定手段

Claims (9)

  1. 機械のオイルの劣化の状態と、前記機械の破損の状態とのうち少なくとも一方の状態を判定する状態判定方法であって、
    発光素子によって発せられる白色の光を前記オイルに透過させる発光ステップと、前記発光ステップによって前記オイルを透過させた前記光の色を受光素子に検出させる受光ステップと、前記受光ステップによって検出された前記色の明度を算出する明度算出ステップと、前記受光ステップによって検出された前記色のR値、G値およびB値のうち最大値および最小値に基づいて算出される値である色成分算出値を算出する色成分算出値算出ステップと、前記明度算出ステップによって算出された前記明度、および、前記色成分算出値算出ステップによって算出された前記色成分算出値に基づいて前記状態を判定する状態判定ステップとを備えており、
    前記色成分算出値は、前記最大値および前記最小値の差と、前記最大値および前記最小値の比と、前記最大値および前記最小値の差の前記明度による積分値と、前記最大値および前記最小値の比の前記明度による積分値との何れかであることを特徴とする状態判定方法。
  2. 前記状態判定ステップは、前記オイルの劣化の状態を判定するオイル劣化状態判定ステップを備えており、
    前記オイル劣化状態判定ステップは、前記明度算出ステップによって算出された前記明度、および、前記色成分算出値算出ステップによって算出された前記色成分算出値の組み合わせに対して予め定められている状態を前記オイルの劣化の状態として判定するステップであることを特徴とする請求項1に記載の状態判定方法。
  3. 前記状態判定ステップは、前記機械の破損の状態を判定する機械破損状態判定ステップを備えており、
    前記機械破損状態判定ステップは、前記明度算出ステップによって算出された前記明度、および、前記色成分算出値算出ステップによって算出された前記色成分算出値の組み合わせに対して予め定められている状態を前記機械の破損の状態として判定するステップであることを特徴とする請求項1に記載の状態判定方法。
  4. 前記状態判定ステップは、前記機械の破損の状態を判定する機械破損状態判定ステップを備えており、
    前記色成分算出値は、前記最大値および前記最小値の差であり、
    前記機械破損状態判定ステップは、前記明度算出ステップによって算出された前記明度、および、前記色成分算出値算出ステップによって算出された前記色成分算出値が両方とも低下を開始した時点と比較して前記色成分算出値が低下した量に応じて、前記機械の破損の状態を判定するステップであることを特徴とする請求項1に記載の状態判定方法。
  5. 前記機械破損状態判定ステップは、前記明度算出ステップによって算出された前記明度、および、前記色成分算出値算出ステップによって算出された前記色成分算出値が両方とも低下している場合、前記機械破損状態判定ステップの実行の周期と、この周期で前記色成分算出値が低下した量とに応じて、前記機械の破損の状態として前記機械の故障までの時間を判定するステップであることを特徴とする請求項4に記載の状態判定方法。
  6. 前記受光素子の出力を調整する受光出力調整ステップを備えており、
    前記受光出力調整ステップは、前記受光素子への前記光の到達が遮られた時点での前記受光素子の出力を黒色とし、前記オイルが前記機械に導入された時点での前記受光素子の出力を白色とするステップであることを特徴とする請求項1に記載の状態判定方法。
  7. 前記色成分算出値は、前記最大値および前記最小値の差であり、
    前記色成分算出値算出ステップは、前記受光ステップによって検出された前記色のR値およびB値の差を前記色成分算出値として算出するステップであることを特徴とする請求項1に記載の状態判定方法。
  8. 機械のオイルの劣化の状態と、前記機械の破損の状態とのうち少なくとも一方の状態を通知する状態通知システムであって、
    白色の光を発する発光素子と、受けた光の色を検出する受光素子と、前記オイルが侵入するための隙間であって前記発光素子から前記受光素子までの光路上に配置されている油用隙間が形成された隙間形成部材と、前記受光素子によって検出された前記色の明度を算出する明度算出手段と、前記受光素子によって検出された前記色のR値、G値およびB値のうち最大値および最小値に基づいて算出される値である色成分算出値を算出する色成分算出値算出手段と、前記明度算出手段によって算出された前記明度、および、前記色成分算出値算出手段によって算出された前記色成分算出値に基づいて前記状態を判定する状態判定手段と、前記状態判定手段によって判定された前記状態を通知する表示装置とを備えており、
    前記色成分算出値は、前記最大値および前記最小値の差と、前記最大値および前記最小値の比と、前記最大値および前記最小値の差の前記明度による積分値と、前記最大値および前記最小値の比の前記明度による積分値との何れかであることを特徴とする状態通知システム。
  9. 機械のオイルの劣化の状態と、前記機械の破損の状態とのうち少なくとも一方の状態を判定する状態判定プログラムであって、
    発光素子によって発せられた白色の光が前記オイルを透過してから到達する受光素子によって検出された前記光の色の明度を算出する明度算出ステップと、前記受光素子によって検出された前記色のR値、G値およびB値のうち最大値および最小値に基づいて算出される値である色成分算出値を算出する色成分算出値算出ステップと、前記明度算出ステップによって算出された前記明度、および、前記色成分算出値算出ステップによって算出された前記色成分算出値に基づいて前記状態を判定する状態判定ステップとをコンピューターに実行させ、
    前記色成分算出値は、前記最大値および前記最小値の差と、前記最大値および前記最小値の比と、前記最大値および前記最小値の差の前記明度による積分値と、前記最大値および前記最小値の比の前記明度による積分値との何れかであることを特徴とする状態判定プログラム。
JP2014521520A 2012-06-22 2013-06-21 状態判定方法、状態通知システムおよび状態判定プログラム Active JP6175433B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012141486 2012-06-22
JP2012141486 2012-06-22
PCT/JP2013/067069 WO2013191273A1 (ja) 2012-06-22 2013-06-21 状態判定方法、状態通知システムおよび状態判定プログラム

Publications (2)

Publication Number Publication Date
JPWO2013191273A1 true JPWO2013191273A1 (ja) 2016-05-26
JP6175433B2 JP6175433B2 (ja) 2017-08-02

Family

ID=49768864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014521520A Active JP6175433B2 (ja) 2012-06-22 2013-06-21 状態判定方法、状態通知システムおよび状態判定プログラム

Country Status (5)

Country Link
US (2) US9201055B2 (ja)
EP (1) EP2866021B1 (ja)
JP (1) JP6175433B2 (ja)
AU (1) AU2013278311B2 (ja)
WO (1) WO2013191273A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2920380T3 (es) * 2013-07-02 2022-08-03 Nabtesco Corp Métodos de determinación de estado y dispositivo de determinación de estado
DE102015014087B4 (de) * 2015-11-03 2017-11-09 Sew-Eurodrive Gmbh & Co Kg Getriebe
JP6701909B2 (ja) * 2016-04-15 2020-05-27 株式会社Ihi 油判定装置、および、油判定方法
JP6701910B2 (ja) * 2016-04-15 2020-05-27 株式会社Ihi 油判定装置、および、油判定方法
JP2017208750A (ja) * 2016-05-20 2017-11-24 ローム株式会社 映像監視装置、映像表示システム、及び車両
CN107452039B (zh) * 2016-06-01 2023-03-31 上海东方传媒技术有限公司 压缩rgb颜色空间的方法及装置
JP6784063B2 (ja) * 2016-06-01 2020-11-11 株式会社Ihi 潤滑状態識別装置及び潤滑状態識別方法
JPWO2018012431A1 (ja) * 2016-07-12 2019-04-11 ナブテスコ株式会社 油脂状態測定装置及びフライヤー及び油脂状態測定方法
JP6752070B2 (ja) * 2016-07-12 2020-09-09 ナブテスコ株式会社 歯車装置
WO2018042495A1 (ja) * 2016-08-29 2018-03-08 三菱電機株式会社 冷凍サイクル装置
JP7099816B2 (ja) * 2017-10-27 2022-07-12 株式会社日立製作所 潤滑油の劣化診断方法、回転機械の潤滑油の監視システムおよび方法
CN111989198B (zh) * 2018-03-29 2023-06-27 日产自动车株式会社 异常检测装置以及异常检测方法
JP7252737B2 (ja) * 2018-11-08 2023-04-05 株式会社日立製作所 風力発電機のグリースの監視システムおよび方法
CN113614513A (zh) * 2019-03-29 2021-11-05 出光兴产株式会社 润滑油劣化判定系统和润滑油劣化判定方法
US11860878B2 (en) * 2019-08-21 2024-01-02 Fanuc Corporation Inquiry system and relay device
NL2025680B1 (nl) * 2020-05-26 2021-12-13 Admesy B V Inrichting, werkwijze en lichtbron voor reflectieve en transmissieve en referentie metingen

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634541A (ja) * 1992-07-14 1994-02-08 Nippon Oil Co Ltd 潤滑油劣化モニター装置
JPH0720049A (ja) * 1993-07-05 1995-01-24 Nippondenso Co Ltd 液体性状検出装置
JP2000146696A (ja) * 1998-11-05 2000-05-26 Mk Seiko Co Ltd オイル等の劣化判定方法および装置
JP2007192769A (ja) * 2006-01-23 2007-08-02 Ntn Corp 潤滑剤劣化検出装置および検出装置付き軸受
JP2007198767A (ja) * 2006-01-24 2007-08-09 Ntn Corp 潤滑剤劣化検出装置および検出装置付き軸受
US20080024761A1 (en) * 2006-07-27 2008-01-31 Hosung Kong Method and apparatus for monitoring oil deterioration in real time
WO2010150526A1 (ja) * 2009-06-23 2010-12-29 国立大学法人福井大学 油状態監視方法および油状態監視装置
JP2012107898A (ja) * 2010-11-15 2012-06-07 Viscas Corp 電力ケーブル接続部の劣化診断方法
JP2012117951A (ja) * 2010-12-02 2012-06-21 Nabtesco Corp 潤滑油劣化センサ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621414B1 (ko) * 2004-06-09 2006-09-08 삼성전자주식회사 채도 적응적인 영상 향상장치 및 그 방법
US7551799B2 (en) * 2005-05-13 2009-06-23 Seiko Epson Corporation Apparatus and method for image noise reduction
US20100157304A1 (en) 2006-01-23 2010-06-24 Ntn Corporation Lubricant deterioration detecting device and detecting device incorporated bearing assembly
CN101539528B (zh) * 2009-04-22 2012-03-28 西安交通大学 利用图像传感器检测润滑油含水率的方法
KR20130122749A (ko) * 2010-12-02 2013-11-08 나부테스코 가부시키가이샤 산업 로봇용 감속기
JP5743696B2 (ja) * 2011-05-06 2015-07-01 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634541A (ja) * 1992-07-14 1994-02-08 Nippon Oil Co Ltd 潤滑油劣化モニター装置
JPH0720049A (ja) * 1993-07-05 1995-01-24 Nippondenso Co Ltd 液体性状検出装置
JP2000146696A (ja) * 1998-11-05 2000-05-26 Mk Seiko Co Ltd オイル等の劣化判定方法および装置
JP2007192769A (ja) * 2006-01-23 2007-08-02 Ntn Corp 潤滑剤劣化検出装置および検出装置付き軸受
JP2007198767A (ja) * 2006-01-24 2007-08-09 Ntn Corp 潤滑剤劣化検出装置および検出装置付き軸受
US20080024761A1 (en) * 2006-07-27 2008-01-31 Hosung Kong Method and apparatus for monitoring oil deterioration in real time
WO2010150526A1 (ja) * 2009-06-23 2010-12-29 国立大学法人福井大学 油状態監視方法および油状態監視装置
JP2012107898A (ja) * 2010-11-15 2012-06-07 Viscas Corp 電力ケーブル接続部の劣化診断方法
JP2012117951A (ja) * 2010-12-02 2012-06-21 Nabtesco Corp 潤滑油劣化センサ

Also Published As

Publication number Publication date
US20160041088A1 (en) 2016-02-11
US20150177219A1 (en) 2015-06-25
JP6175433B2 (ja) 2017-08-02
US9201055B2 (en) 2015-12-01
EP2866021A1 (en) 2015-04-29
AU2013278311A1 (en) 2015-01-22
EP2866021A4 (en) 2016-06-15
EP2866021B1 (en) 2018-08-08
WO2013191273A1 (ja) 2013-12-27
AU2013278311B2 (en) 2016-03-03
US9435731B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
JP6175433B2 (ja) 状態判定方法、状態通知システムおよび状態判定プログラム
JP5973786B2 (ja) 産業用ロボットの集中監視装置、集中監視プログラムおよびメンテナンスシステム
KR102105947B1 (ko) 감속기 파손 상태 통지 장치, 감속기 파손 상태 통지 기능을 가진 기계 시스템 및 감속기 파손 상태 통지 프로그램을 기록한 매체
US20130250303A1 (en) Speed reducer for industrial robot
JP6148436B2 (ja) 潤滑油劣化センサーおよびそれを備えた機械
EP3018469B1 (en) State determination methods and state determination device
JP2014008569A (ja) 産業用ロボット用潤滑油状態センサーおよび産業用ロボット遠隔監視システム
JP5956169B2 (ja) 潤滑油劣化センサーを備えた機械
JP5886653B2 (ja) 潤滑油劣化センサーおよびそれを備えた機械
JP5956152B2 (ja) 潤滑油劣化センサーを備えた機械
TWI582405B (zh) Lubricating oil deterioration sensor and machinery with its
JP6110604B2 (ja) 光センサーおよびそれを備えた機械、産業用ロボット用減速機、産業用ロボット
JP5814748B2 (ja) 潤滑油劣化センサー、産業用ロボット用減速機および産業用ロボット
JP2008270002A (ja) 冷陰極管点灯用インバータの検査方法及び検査装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170215

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170710

R150 Certificate of patent or registration of utility model

Ref document number: 6175433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250