JPWO2012133037A1 - 生分解性脂肪族ポリエステル粒子、及びその製造方法 - Google Patents

生分解性脂肪族ポリエステル粒子、及びその製造方法 Download PDF

Info

Publication number
JPWO2012133037A1
JPWO2012133037A1 JP2013507425A JP2013507425A JPWO2012133037A1 JP WO2012133037 A1 JPWO2012133037 A1 JP WO2012133037A1 JP 2013507425 A JP2013507425 A JP 2013507425A JP 2013507425 A JP2013507425 A JP 2013507425A JP WO2012133037 A1 JPWO2012133037 A1 JP WO2012133037A1
Authority
JP
Japan
Prior art keywords
aliphatic polyester
biodegradable aliphatic
particles
temperature
pga
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013507425A
Other languages
English (en)
Inventor
昌博 山▲崎▼
昌博 山▲崎▼
孝拓 三枝
孝拓 三枝
俊輔 阿部
俊輔 阿部
なな子 三枝
なな子 三枝
浩幸 佐藤
浩幸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Publication of JPWO2012133037A1 publication Critical patent/JPWO2012133037A1/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/10Making granules by moulding the material, i.e. treating it in the molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • B29K2995/006Bio-degradable, e.g. bioabsorbable, bioresorbable or bioerodible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A)平均粒子径が5〜500μm、かつ(B)円筒金型内で、温度40℃で4kgf/cm2の荷重を1時間負荷して成形したタブレットの破壊応力が、500gf/cm2以下、好ましくは(C)円筒金型内で、生分解性脂肪族ポリエステルのガラス転移温度(Tg)+10℃の温度で4kgf/cm2の荷重を1時間負荷して成形したタブレットの破壊応力が、2000gf/cm2以下である生分解性脂肪族ポリエステル粒子、並びに、Tg未満の温度で粉砕することにより得られたものである粒子状の生分解性脂肪族ポリエステルを該生分解性脂肪族ポリエステルの昇温結晶化温度(Tc1)−40℃以上の温度で処理する前記生分解性脂肪族ポリエステル粒子の製造方法、並びに、該製造方法によって得られる前記生分解性脂肪族ポリエステル粒子。

Description

本発明は、ブロッキング防止効果が高い生分解性脂肪族ポリエステル粒子、及びその製造方法に関する。
ポリグリコール酸やポリ乳酸等の脂肪族ポリエステルは、土壌や海中などの自然界に存在する微生物または酵素により分解されるため、環境に対する負荷が小さい生分解性高分子材料として注目されている。これら生分解性の脂肪族ポリエステルは、生体内分解吸収性を有しているため、手術用縫合糸や人工皮膚などの医療用高分子材料としても利用されている。
生分解性脂肪族ポリエステルとしては、乳酸繰り返し単位からなるポリ乳酸(以下、「PLA」ということがある。)、グリコール酸繰り返し単位からなるポリグリコール酸(以下、「PGA」ということがある。)、ポリε−カプロラクトンのようなラクトン系ポリエステル、ポリヒドロキシブチレート系ポリエステル、及び、これらの共重合体、例えば、グリコール酸繰り返し単位と乳酸繰り返し単位からなる共重合体などが知られている。
生分解性脂肪族ポリエステルの中でも、PLAは、原料となるL−乳酸が、トウモロコシ、芋等から、発酵法により安価で得られること、自然農作物由来なので総二酸化炭素排出量が少ないこと、また得られたポリL−乳酸(以下、「PLLA」ということがある。)の性能として剛性が強く透明性がよいなどの特徴がある。しかし、PLLA等のPLAは、結晶化速度が遅く、延伸などの機械的工程を行う必要がある等の課題が指摘されている。
また、生分解性脂肪族ポリエステルの中でも、PGAは、分解性が大きいことに加えて、耐熱性、引張強度等の機械的強度、及び、特にフィルムまたはシートとしたときのガスバリア性も優れる。そのため、PGAは、農業資材、各種包装(容器)材料や医療用高分子材料としての利用が期待され、単独で、あるいは他の樹脂材料などと複合化して用途展開が図られている。
生分解性脂肪族ポリエステルから製品を製造する方法としては、押出成形、射出成形、圧縮成形、射出圧縮成形、トランスファ成形、注型成形、スタンパブル成形、ブロー成形、延伸フィルム成形、インフレーションフィルム成形、積層成形、カレンダー成形、発泡成形、RIM成形、FRP成形、粉末成形またはペースト成形など、溶融成形その他の成形方法が採用されている。溶融成形の成形原料として使用されるPGA等の生分解性脂肪族ポリエステルのペレットは、例えば、二軸押出機を用いてPGA等の生分解性脂肪族ポリエステルをストランド状に溶融押出し、所定サイズに切断して得られる平均粒子径が数mm程度の大きさのものである。
他方、PLAやPGA等の生分解性脂肪族ポリエステルの分解性、強度などに着目して、塗料、コーティング剤、インキ、トナー、農薬、医薬、化粧品、採鉱、坑井掘削などの分野における原料または添加剤などとして有用な生分解性脂肪族ポリエステル粒子が望まれている。これらの分野に適用する生分解性脂肪族ポリエステル粒子としては、先に述べた生分解性脂肪族ポリエステルのペレットより微小サイズであって、目的に合致した粒子径や粒径分布を有する比較的小さい粒子が求められる。加えて、生分解性脂肪族ポリエステル粒子としては、取り扱い性及び保存性に優れていることが求められている。
また、前記生分解性脂肪族ポリエステルのペレットを溶融押出によって製造するための原料樹脂となる生分解性脂肪族ポリエステルは、重合反応後に回収された、例えばフレーク状などの生分解性脂肪族ポリエステルを所望形状及び大きさの粒子に調製した形態で使用されている。
粒子径が小さい粒子は、取り扱い性が不良となるとともに、吸湿性が大きくなり、表面積が大きくなることもあって、分解速度の影響が大きくなり、また生分解性脂肪族ポリエステルの優れた特性が低下してしまうおそれがあり、乾燥工程や成形加工において予期しないトラブルが生じるおそれが皆無ではなかった。
PLAやPGA等の生分解性脂肪族ポリエステルの樹脂粒子の製造方法が、種々提案されている。
生分解性脂肪族ポリエステル粒子の製造方法としては、一般に、溶融固化物の切断または粉砕による粒子の製造方法や、溶液または分散液からの析出による粒子の製造方法が知られている。特開2001−288273号公報(特許文献1)には、PLA系樹脂からなるチップまたは塊状物を、−50〜−180℃の低温に冷却して、衝撃粉砕し分級するポリ乳酸系樹脂粉末の製法が開示されている。特開平11−35693号公報(特許文献2)には、生分解性脂肪族ポリエステルの有機溶媒溶液と芳香族炭化水素類とを、60℃未満の温度で混合し、析出する固体状物を固液分離する、生分解性を有する粉状ポリエステルの製造方法が開示されており、実施例において、Mw14.5万のPLA、Mw10.0万のポリブチレンサクシネート、及びMw17.2万のPLAとポリブチレンサクシネートの共重合体が原料に用いられている。特開2006−45542号公報(特許文献3)には、製造例3として、PLAと、溶媒(アジピン酸ジメチル、グルタル酸ジメチル、コハク酸ジメチルの混合物(DBE(登録商標)、デュポン株式会社製)を用いて、溶解温度を140℃、冷却温度を−35℃として得た平均1次粒子径が250nm以下のPLA粒子、または、製造例4として、PGAと、溶媒(ビス(2−メトキシエチル)エーテル)を用いて、溶解温度を150℃、冷却温度を−35℃として得た平均1次粒子径が150nm以下のPGA粒子が開示されている。
しかし、PLAやPGA等の生分解性脂肪族ポリエステル粒子は、用途に適する平均粒子径や粒径分布及び形状をもつ粒子を得ても、その後、前記のような用途の製品に該粒子を使用するまで、粒子の状態で保管や輸送を行っている間に、生分解性脂肪族ポリエステル粒子が凝集(ブロッキング)することがあった。特に、生分解性脂肪族ポリエステル粒子に対して、樹脂のガラス転移温度付近以上の温度環境下で荷重が加わると、ブロッキングが生じやすく、例えば、夏場やコンテナでの粒子の保管や輸送では、粒子が40℃以上の温度に曝されることがあるので、ブロッキング防止対策が求められていた。ブロッキングが生じると、粒子の取り扱い性が悪化するとともに、制御された粒子の平均粒子径、粒径分布及び形状等が失われ、所期の特性を発揮することができなくなることがある。
そのため、保管方法を変更(低温保管、平積み等)する対策が採られてきたが、保管方法の変更は製造コストアップにつながるという課題が残っており、一層の改善が求められていた。
特開2001−288273号公報 特開平11−35693号公報 特開2006−45542号公報
本発明の課題は、ブロッキング防止効果が高い生分解性脂肪族ポリエステル粒子、及び、その製造方法を提供することにある。
本発明者らは、上記の課題を解決するために、生分解性脂肪族ポリエステル粒子のブロッキングが発生する現象の解析を鋭意続けるなかで、特に、いわゆる衝撃粉砕法によって得られた生分解性脂肪族ポリエステル粒子は、粉砕時のせん断力によって、表面が溶融軟化し非結晶部の割合が大きくなっていることを見いだした。更に検討を進めた結果、生分解性脂肪族ポリエステル粒子の表面溶融軟化を防止して、表面状態を制御することにより、上記課題が解決できることを見いだし、本発明を完成した。
すなわち、本発明によれば、以下の物性(A)及び(B):
(A)平均粒子径が5〜500μm;
(B)円筒金型内で、温度40℃で4kgf/cmの荷重を1時間負荷して成形した円柱状タブレットの破壊応力が、500gf/cm以下;
を備えることを特徴とする生分解性脂肪族ポリエステル粒子が提供される。
また、本発明によれば、実施の態様として、以下(1)〜(4)の生分解性脂肪族ポリエステル粒子が提供される。
(1)更に、物性(C)円筒金型内で、該生分解性脂肪族ポリエステル粒子に含まれる生分解性脂肪族ポリエステルのガラス転移温度+10℃の温度で4kgf/cmの荷重を1時間負荷して成形した円柱状タブレットの破壊応力が、2000gf/cm以下;を備える前記の生分解性脂肪族ポリエステル粒子。
(2)生分解性脂肪族ポリエステルが、PGA、PLA、またはそれらの混合物である前記の生分解性脂肪族ポリエステル粒子。
(3)粒子状の生分解性脂肪族ポリエステルを、該生分解性脂肪族ポリエステルの昇温結晶化温度−40℃以上の温度で処理することにより得られる前記の生分解性脂肪族ポリエステル粒子。
(4)前記粒子状の生分解性脂肪族ポリエステルが、該生分解性脂肪族ポリエステルのガラス転移温度未満の温度で粉砕することにより得られたものである前記の生分解性脂肪族ポリエステル粒子。
さらに、本発明によれば、粒子状の生分解性脂肪族ポリエステルを、該生分解性脂肪族ポリエステルの昇温結晶化温度−40℃以上の温度で処理する前記の生分解性脂肪族ポリエステル粒子の製造方法が提供され、特に、前記粒子状の生分解性脂肪族ポリエステルが、該生分解性脂肪族ポリエステルのガラス転移温度未満の温度で粉砕することにより得られたものである前記の生分解性脂肪族ポリエステル粒子の製造方法が提供される。
本発明によれば、生分解性脂肪族ポリエステル粒子が、(A)平均粒子径(50%D)が5〜500μmであり、かつ、(B)円筒金型内で、温度40℃で4kgf/cmの荷重を1時間負荷して成形した円柱状タブレットの破壊応力が、500gf/cm以下であることによって、保管や移送によってもブロッキングが生じにくいPLAやPGA等の生分解性脂肪族ポリエステル粒子が得られるという効果が奏される。
また、本発明によれば、粒子状の生分解性脂肪族ポリエステルを、該生分解性脂肪族ポリエステルの昇温結晶化温度−40℃以上の温度で処理することを特徴とする前記の生分解性脂肪族ポリエステル粒子の製造方法であることにより、保管や移送によってもブロッキングが生じにくいPLAやPGA等の生分解性脂肪族ポリエステル粒子を簡便に得ることができるという効果が奏される。
1.生分解性脂肪族ポリエステル
本発明の生分解性脂肪族ポリエステル粒子を構成する生分解性脂肪族ポリエステルは、グリコール酸及びグリコール酸の2分子間環状エステルであるグリコリド(GL)を含むグリコール酸類、乳酸及び乳酸の2分子間環状エステルであるラクチドを含む乳酸類、シュウ酸エチレン(すなわち、1,4−ジオキサン−2,3−ジオン)、ラクトン類(例えば、β−プロピオラクトン、β−ブチロラクトン、ピバロラクトン、γ−ブチロラクトン、δ−バレロラクトン、β−メチル−δ−バレロラクトン、ε−カプロラクトン等)、カーボネート類(例えばトリメチレンカーボネート等)、エーテル類(例えば1,3−ジオキサン等)、エーテルエステル類(例えばジオキサノン等)などの環状モノマー;3−ヒドロキシプロパン酸、4−ヒドロキシブタン酸、6−ヒドロキシカプロン酸などのヒドロキシカルボン酸またはそのアルキルエステル;エチレングリコール、1,4−ブタンジオール等の脂肪族ジオール類と、こはく酸、アジピン酸等の脂肪族カルボン酸類またはそのアルキルエステル類との実質的に等モルの混合物;等の脂肪族エステルモノマー類の単独重合体、または共重合体が含まれる。なかでも、式:(−O−CH(R)−C(O)−)[Rは、水素原子またはメチル基である。]で表わされるグリコール酸または乳酸繰り返し単位を70質量%以上有する生分解性脂肪族ポリエステルが好ましい。具体的には、PLLA、すなわちL−乳酸の単独重合体、D−乳酸の単独重合体、L−乳酸若しくはD−乳酸の繰り返し単位を70質量%以上有する共重合体、これらの混合物等のPLA、または、PGA、すなわちグリコール酸の単独重合体、若しくは、グリコール酸繰り返し単位を70質量%以上有する共重合体、更には、PLAとPGAとの混合物が好ましい。特に好ましいのは、分解性、耐熱性、機械的強度の観点から、PGAまたはPLAである。
これらの生分解性脂肪族ポリエステルは、例えば、それ自体公知のグリコール酸や乳酸などのα−ヒドロキシカルボン酸の脱水重縮合により合成することができる。また、高分子量の生分解性脂肪族ポリエステルを効率よく合成するには、一般に、α−ヒドロキシカルボン酸の二分子間環状エステルを合成し、該環状エステルを開環重合する方法が採用されている。例えば、乳酸の二分子間環状エステルであるラクチドを開環重合すると、PLAが得られる。グリコール酸の二分子間環状エステルであるグリコリドを開環重合すると、PGAが得られる。
PLAは、上記方法により合成することができるものであり、市販の製品としては、例えば、レイシアH−100、H−280、H−400、H−440等の「レイシアシリーズ」(三井化学株式会社製)、3001D、3051D、4032D、4042D、6201D、6251D、7000D、7032D等の「Ingeo」(ネイチャーワークス社製)、エコプラスチックU’z S−09、S−12、S−17等の「エコプラスチックU’zシリーズ」(トヨタ自動車株式会社製)などが、強度と可撓性の両立、及び耐熱性の観点から、好ましく選択される。
以下、生分解性脂肪族ポリエステルとして、PGAを例にとって、更に説明するが、PLAその他の生分解性脂肪族ポリエステルについても、PGAに準じて発明を実施するための形態をとることができる。
〔ポリグリコール酸(PGA)〕
本発明の生分解性脂肪族ポリエステル粒子の原料として、特に好ましく用いられるPGAは、式:(−O−CH−C(O)−)で表わされるグリコール酸繰り返し単位のみからなるグリコール酸のホモポリマー(グリコール酸の2分子間環状エステルであるグリコリド(GL)の開環重合物を含む)に加えて、上記グリコール酸繰り返し単位を70質量%以上含むPGA共重合体を含むものである。
上記グリコリド等のグリコール酸モノマーとともに、PGA共重合体を与えるコモノマーとしては、例えば、シュウ酸エチレン(即ち、1,4−ジオキサン−2,3−ジオン)、ラクチド類、ラクトン類、カーボネート類、エーテル類、エーテルエステル類、アミド類などの環状モノマー;乳酸、3−ヒドロキシプロパン酸、3−ヒドロキシブタン酸、4−ヒドロキシブタン酸、6−ヒドロキシカプロン酸などのヒドロキシカルボン酸またはそのアルキルエステル;エチレングリコール、1,4−ブタンジオール等の脂肪族ジオール類と、こはく酸、アジピン酸等の脂肪族ジカルボン酸類またはそのアルキルエステル類との実質的に等モルの混合物;またはこれらの2種以上を挙げることができる。これらコモノマーは、その重合体を、上記グリコリド等のグリコール酸モノマーとともに、PGA共重合体を与えるための出発原料として用いることもできる。
本発明のPGA粒子の原料となるPGA中の上記グリコール酸繰り返し単位は70質量%以上であり、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上、特に好ましくは98質量%以上であり、最も好ましくは99質量%以上である実質的にPGAホモポリマーである。グリコール酸繰り返し単位の割合が小さ過ぎると、PGAに期待される強度や分解性が乏しくなる。グリコール酸繰り返し単位以外の繰り返し単位は、30質量%以下であり、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下、特に好ましくは2質量%以下であり、最も好ましくは1質量%以下の割合で用いられ、グリコール酸繰り返し単位以外の繰り返し単位を含まないものでもよい。
本発明のPGA粒子の原料となるPGAとしては、所望の高分子量ポリマーを効率的に製造するために、グリコリド70〜100質量%及び上記した他のコモノマー30〜0質量%を重合して得られるPGAが好ましい。他のコモノマーとしては、2分子間の環状モノマーであってもよいし、環状モノマーでなく両者の混合物であってもよいが、本発明が目的とするPGA粒子とするためには、環状モノマーが好ましい。以下、グリコリド70〜100質量%及び他の環状モノマー30〜0質量%を開環重合して得られるPGAについて詳述する。
〔グリコリド〕
開環重合によってPGAを形成するグリコリドは、ヒドロキシカルボン酸の1種であるグリコール酸の2分子間環状エステルである。グリコリドの製造方法は、特に限定されないが、一般的には、グリコール酸オリゴマーを熱解重合することにより得ることができる。グリコール酸オリゴマーの解重合法として、例えば、溶融解重合法、固相解重合法、溶液解重合法などを採用することができ、また、クロロ酢酸塩の環状縮合物として得られるグリコリドも用いることができる。なお、所望により、グリコリドとしては、グリコリド量の20質量%を限度として、グリコール酸を含有するものを使用することができる。
本発明のPGA粒子の原料となるPGAは、グリコリドのみを開環重合させて形成してもよいが、他の環状モノマーを共重合成分として同時に開環重合させて共重合体を形成してもよい。共重合体を形成する場合には、グリコリドの割合は、70質量%以上であり、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上、特に好ましくは98質量%以上であり、最も好ましくは99質量%以上である実質的にPGAホモポリマーである。
〔他の環状モノマー〕
グリコリドとの共重合成分として使用することができる他の環状モノマーとしては、ラクチドなど他のヒドロキシカルボン酸の2分子間環状エステルの外、ラクトン類(例えば、β−プロピオラクトン、β−ブチロラクトン、ピバロラクトン、γ−ブチロラクトン、δ−バレロラクトン、β−メチル−δ−バレロラクトン、ε−カプロラクトン等)、トリメチレンカーボネート、1,3−ジオキサンなどの環状モノマーを使用することができる。好ましい他の環状モノマーは、他のヒドロキシカルボン酸の2分子間環状エステルであり、ヒドロキシカルボン酸としては、例えば、L−乳酸、D−乳酸、α−ヒドロキシ酪酸、α−ヒドロキシイソ酪酸、α−ヒドロキシ吉草酸、α−ヒドロキシカプロン酸、α−ヒドロキシイソカプロン酸、α−ヒドロキシヘプタン酸、α−ヒドロキシオクタン酸、α−ヒドロキシデカン酸、α−ヒドロキシミリスチン酸、α−ヒドロキシステアリン酸、及びこれらのアルキル置換体などを挙げることができる。特に好ましい他の環状モノマーは、乳酸の2分子間環状エステルであるラクチドであり、L体、D体、ラセミ体、これらの混合物のいずれであってもよい。
他の環状モノマーは、30質量%以下、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下、特に好ましくは2質量%以下であり、最も好ましくは1質量%以下の割合で用いられる。グリコリドと他の環状モノマーとを開環共重合することにより、PGA(共重合体)の融点を低下させて加工温度を下げたり、結晶化速度を制御して押出加工性や延伸加工性を改善することができる。しかし、これらの環状モノマーの使用割合が大きすぎると、形成されるPGA(共重合体)の結晶性が損なわれ、耐熱性、ガスバリア性、機械的強度などが低下する。なお、PGAが、グリコリド100質量%から形成される場合は、他の環状モノマーは0質量%であり、このPGAも本発明の範囲に含まれる。
〔開環重合反応〕
グリコリドの開環重合または開環共重合(以下、総称して、「開環(共)重合」ということがある。)は、好ましくは、少量の触媒存在下に行われる。触媒は、特に限定されないが、例えば、ハロゲン化錫(例えば、二塩化錫、四塩化錫など)や有機カルボン酸錫(例えば、2−エチルヘキサン酸錫などのオクタン酸錫)などの錫系化合物;アルコキシチタネートなどのチタン系化合物;アルコキシアルミニウムなどのアルミニウム系化合物;ジルコニウムアセチルアセトンなどのジルコニウム系化合物;ハロゲン化アンチモン、酸化アンチモンなどのアンチモン系化合物;などがある。触媒の使用量は、環状エステルに対して、質量比で、好ましくは1〜1,000ppm、より好ましくは3〜300ppm程度である。
グリコリドの開環(共)重合は、生成するPGAの溶融粘度や分子量などの物性を制御するために、ラウリルアルコール等の高級アルコール、その他のアルコール類や水などのプロトン性化合物を分子量調節剤として使用することができる。グリコリドには通常、微量の水分と、グリコール酸及び直鎖状のグリコール酸オリゴマーからなるヒドロキシカルボン酸化合物類が不純物として含まれていることがあり、これらの化合物も重合反応に作用する。そのため、これらの不純物の濃度を、例えばこれらの化合物中のカルボン酸量を中和滴定などによりモル濃度として定量し、また目的の分子量に応じプロトン性化合物としてアルコール類や水を添加し、全プロトン性化合物のモル濃度をグリコリドに対して制御することにより生成PGAの分子量等を調整することができる。また、物性改良のために、グリセリンなどの多価アルコールを添加してもよい。
グリコリドの開環(共)重合は、塊状重合でも、溶液重合でもよいが、多くの場合、塊状重合が採用される。塊状重合の重合装置としては、押出機型、パドル翼を持った縦型、ヘリカルリボン翼を持った縦型、押出機型やニーダー型の横型、アンプル型、板状型、管状型など様々な装置の中から、適宜選択することができる。また、溶液重合には、各種反応槽を用いることができる。
重合温度は、実質的な重合開始温度である120℃から300℃までの範囲内で目的に応じて適宜設定することができる。重合温度は、好ましくは130〜270℃、より好ましくは140〜260℃、特に好ましくは150〜250℃である。重合温度が低すぎると、生成したPGAの分子量分布が広くなりやすい。重合温度が高すぎると、生成したPGAが熱分解を受けやすくなる。重合時間は、3分間〜50時間、好ましくは5分間〜30時間の範囲内である。重合時間が短すぎると重合が充分に進行し難く、所定の重量平均分子量を実現することができない。重合時間が長すぎると生成したPGAが着色しやすくなる。
生成したPGAを固体状態とした後、所望により、更に固相重合を行ってもよい。固相重合とは、PGAの融点未満の温度で加熱することにより、固体状態を維持したままで熱処理する操作を意味する。この固相重合により、未反応モノマー、オリゴマーなどの低分子量成分が揮発・除去される。固相重合は、好ましくは1〜100時間、より好ましくは2〜50時間、特に好ましくは3〜30時間で行われる。
また、固体状態のPGAを、その結晶融点(Tm)+38℃以上、好ましくは結晶融点(Tm)+38℃から結晶融点(Tm)+100℃までの温度範囲内で溶融混練する工程により熱履歴を与えることによって、結晶性を制御してもよい。
2.生分解性脂肪族ポリエステル粒子
本発明の生分解性脂肪族ポリエステル粒子は、生分解性脂肪族ポリエステルを主成分とする粒子であり、好ましくはPLA粒子、PGA粒子またはPLAとPGAとの混合粒子であり、特に好ましくはPGA粒子である。以下、生分解性脂肪族ポリエステル粒子として、PGA粒子を例にとって、更に説明するが、PLA粒子やその他の生分解性脂肪族ポリエステルの粒子についても、PGA粒子に準じて発明を実施するための形態をとることができる。
本発明のPGA粒子は、平均粒子径(50%D)が5〜500μmであり、かつ、該粒子に、円筒金型内で、温度40℃で4kgf/cmの荷重を1時間負荷して成形した円柱状タブレットの破壊応力が、500gf/cm以下であることを特徴とするPGA粒子である。
本発明のPGA粒子を製造する原料として、PGAに加えて、本発明の目的に反しない限度において、他の脂肪族ポリエステル類、ポリエチレングリコール、ポリプロピレングリコールなどのポリグリコール類、変性ポリビニルアルコール、ポリウレタン、ポリL−リジンなどのポリアミド類などの他の樹脂や、可塑剤、酸化防止剤、光安定剤、熱安定剤、紫外線吸収剤、滑剤、離型剤、ワックス類、着色剤、結晶化促進剤、水素イオン濃度調節剤、末端封止剤、補強繊維のような充填材等の通常配合される添加剤を必要に応じて配合することができる。
〔重量平均分子量(Mw)〕
本発明のPGA粒子に含まれるPGAの重量平均分子量(Mw)は、通常5〜150万の範囲内にあるものが好ましく、より好ましくは6〜130万、更に好ましくは7〜110万、特に好ましくは10〜100万の範囲内にあるものを選択する。PGAの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)装置によって求めたものである。また、本発明のPLA粒子に含まれるPLAの重量平均分子量(Mw)は、好ましくは5〜120万、より好ましくは6〜100万、更に好ましくは7〜80万の範囲である。
〔結晶融点(Tm)〕
本発明のPGA粒子に含まれるPGAの結晶融点(Tm)は、通常197〜245℃であり、重量平均分子量(Mw)、分子量分布、共重合成分の種類及び含有割合等によって調整することができる。PGAの結晶融点(Tm)は、好ましくは200〜240℃、より好ましくは205〜235℃、特に好ましくは210〜230℃である。PGAの単独重合体の結晶融点(Tm)は、通常220℃程度である。結晶融点(Tm)が低すぎると、耐熱性や強度が不十分であったりする。結晶融点(Tm)が高すぎると、加工性が不足したり、粒子の形成を十分制御することができず、得られるPGA粒子の粒子径が所望の範囲のものとならないことがある。PGAの結晶融点(Tm)は、示差走査熱量計(DSC)を用いて、窒素雰囲気中で求めたものである。具体的には、試料PGAを窒素雰囲気中、室温付近から20℃/分の昇温速度で、約280℃(結晶融点(Tm)+50℃付近)まで加熱する過程で検出される結晶融解に伴う吸熱ピークの温度を意味する。該吸熱ピークが複数みられる場合には、吸熱ピーク面積が最も大きいピークを結晶融点(Tm)とする。
また、本発明のPLA粒子に含まれるPLAの結晶融点(Tm)は、好ましくは145〜185℃、より好ましくは150〜182℃、更に好ましくは155〜180℃の範囲である。
〔ガラス転移温度(Tg)〕
本発明のPGA粒子に含まれるPGAのガラス転移温度(Tg)は、通例25〜60℃であり、好ましくは30〜50℃、より好ましくは35〜45℃である。PGAのガラス転移温度(Tg)は、重量平均分子量(Mw)、分子量分布、共重合成分の種類及び含有割合等によって調整することができる。PGAのガラス転移温度(Tg)は、結晶融点(Tm)の測定と同様に、示差走査熱量計(DSC)を用いて、窒素雰囲気中で求めたものである。具体的には、試料PGAを、約280℃(結晶融点(Tm)+50℃付近)まで加熱し、この温度で2分間保持した後、液体窒素により急速(約100℃/分)に冷却して得られた非晶試料を、DSCを用いて、窒素雰囲気中、室温付近から20℃/分の昇温速度で、100℃付近まで再加熱するときの、ガラス状態からゴム状態への転移領域に相当する二次転移領域における熱量の二次転移の開始温度と終了温度の中間点をガラス転移点(Tg)とする(以下、「中間点ガラス転移温度」ということがある。)。ガラス転移温度(Tg)が低すぎると、後述の熱処理によってPGA粒子表面が過度に軟化し、粒子のブロッキングが起きやすくなることがある。ガラス転移温度(Tg)が高すぎると、後述の熱処理によってもPGA粒子表面の性状変化が生じにくく、粒子のブロッキング防止効果が十分改善されないことがある。
また、PLAのガラス転移温度(Tg)は、好ましくは45〜75℃、より好ましくは50〜70℃、更に好ましくは55〜65℃の範囲内である。
〔平均粒子径(50%D)〕
本発明のPGA粒子等の生分解性脂肪族ポリエステル粒子の平均粒子径(50%D)は、5〜500μmである。生分解性脂肪族ポリエステル粒子の平均粒子径(50%D)は、レーザー回折式粒度分布測定装置を使用して測定し求めた粒子の粒径分布を用いて、小粒子径側からの累積重量が50%となる粒子径で表される値を意味する。
本発明の生分解性脂肪族ポリエステル粒子の平均粒子径(50%D)は、好ましくは7〜450μm、より好ましくは10〜400μm、更に好ましくは20〜300μm、特に好ましくは30〜200μmの範囲である。平均粒子径(50%D)が小さすぎると、粒子の取り扱い性や保存性が難しくなる。平均粒子径(50%D)が大きすぎると、着目している用途での使用が難しくなる。例えば、平均粒子径が大きすぎると、水中での分散性が悪くなり、塗料、コーティング、トナー分野において、使用が難しくなる。平均粒子径(50%D)が5〜500μmの範囲内にあることにより、生分解性脂肪族ポリエステル粒子の流動性がよく、粒子の取り扱い性や保存性が良好であるとともに、製品の成形やPGA粒子等の生分解性脂肪族ポリエステル粒子の使用に当たって、求められる所望の粒子径の粒子を極めて容易に得ることができる。
〔結晶融解熱量(ΔHm)〕
本発明のPGA粒子は、結晶融解熱量(ΔHm)が通常50J/g以上であり、好ましくは60J/g以上、より好ましくは70J/g以上である。結晶融解熱量(ΔHm)の上限は、特に制限されるものではないが、PGA粒子全体の結晶化度が過度に大きくなると、得られる製品等に期待される分解性が低下することがあるので、通常100J/g程度である。PGA粒子の結晶融解熱量(ΔHm)は、結晶融点(Tm)の測定と同様に、示差走査熱量計(DSC)を用いて、窒素雰囲気中で求めたものである。具体的には、試料PGAを、窒素雰囲気中、室温付近から20℃/分の昇温速度で結晶融点(Tm)+50℃付近まで加熱する過程で検出される結晶融点(Tm)±40℃の範囲に検出されるすべての吸熱ピークの面積を積算して算出される。
PGA粒子の結晶融解熱量(ΔHm)が50J/g未満であると、粒子表面の結晶化度が低く、PGA粒子のブロッキングが生じやすくなり、取り扱い性に劣ることがある。本発明のPGA粒子は、粒子表面近傍の結晶化度を後述の熱処理などにより上げることによって、PGA粒子のブロッキング防止効果を実現することを特徴とするものであり、粒子内部まで結晶化度を高める必要はない。
なお、本発明のPLA粒子においては、結晶融解熱量(ΔHm)が通例40J/g以上、好ましくは45J/g以上であり、上限は70J/g程度でよい。
〔昇温結晶化温度(TC1)〕
本発明のPGA粒子の昇温結晶化温度(TC1)は、通常75〜120℃であり、好ましくは80〜115℃、より好ましくは85〜110℃、特に好ましくは88〜105℃である。PGA粒子の昇温結晶化温度(TC1)は、結晶融点(Tm)の測定と同様に、DSCを用いて、窒素雰囲気中で求めたものである。具体的には、試料PGAを、約280℃(結晶融点(Tm)+50℃付近)まで加熱し、この温度で2分間保持した後、液体窒素により急速(約100℃/分)に冷却して得られた非晶試料を、DSCを用いて、窒素雰囲気中、室温付近から20℃/分の昇温速度で、結晶融点(Tm)+50℃付近まで再加熱する過程で検出される結晶化による発熱ピークの温度を意味する。昇温結晶化温度(TC1)が低すぎると、後述の熱処理によってPGA粒子表面が過度に軟化し、粒子のブロッキングが起きやすくなることがある。昇温結晶化温度(TC1)が高すぎると、後述の熱処理によってPGA粒子表面の性状変化が生じにくく、粒子のブロッキング防止効果が十分改善されないことがある。昇温結晶化温度(TC1)の調整は、重合度(重量平均分子量(Mw))、分子量分布、PGAの分子量、重合成分の種類や量を適宜選択することなどにより行うことができる。
また、本発明のPLA粒子の昇温結晶化温度(TC1)は、通常80〜140℃であり、好ましくは85〜135℃、より好ましくは90〜130℃、特に好ましくは95〜125℃である。
〔タブレット破壊応力〕
本発明の生分解性脂肪族ポリエステル粒子は、該粒子のタブレット破壊応力、すなわち、該粒子に、円筒金型内で、温度40℃で4kgf/cmの荷重を1時間負荷して成形した円柱状タブレットの破壊応力が、500gf/cm以下のものである。粒子のタブレット破壊応力は、木屋式硬度計(株式会社藤原製作所製)を用いて、所定条件で調製した円柱状タブレットを垂直方向に荷重をかけて圧縮し、該タブレットが圧砕され破壊するときの荷重(最大点荷重)として求められる値(N=3の平均値)である。
生分解性脂肪族ポリエステル粒子のタブレット破壊応力の測定を行うための円柱状タブレットは、該粒子に、円筒金型内で、温度40℃で4kgf/cmの荷重を1時間負荷して成形した円柱状タブレットである。具体的には、生分解性脂肪族ポリエステル粒子を、ステンレス製の円筒状金型(内径11.3mm(内断面積1cm))内に1g入れ、該粒子の上部から円柱状重り(外径11.3mm、重さ4kg)を挿入して、該粒子に一定荷重(4kgf/cm)をかけた状態で、所定温度(40℃)に設定した恒温槽(相対湿度10〜30%程度)内で1時間荷重をかけ続けながら静置することによって成形して調製してなる、上面積1cm、下面積1cm、高さ1.5cmの円柱状タブレットである。
本発明の生分解性脂肪族ポリエステル粒子は、円筒金型内で、温度40℃で4kgf/cmの荷重を1時間負荷して成形した円柱状タブレットの破壊応力が500gf/cm以下のものであることによって、高温に曝されることがある夏場やコンテナによる保管や輸送に際しても、該生分解性脂肪族ポリエステル粒子がブロッキングしにくく、また、一旦は粒子のブロッキングが生じても、極めて容易にブロッキング状態を解消することができる。これに対して、40℃の温度で成形した円柱状タブレットの破壊応力が500gf/cmを超える生分解性脂肪族ポリエステル粒子では、ブロッキングした生分解性脂肪族ポリエステル粒子のブロッキング状態を解消することが困難であり、使用用途に求められる粒子径の生分解性脂肪族ポリエステル粒子を容易に得ることができない。円柱状タブレットの破壊応力は、好ましくは400gf/cm以下、より好ましくは300gf/cm以下、更に好ましくは200gf/cm以下、特に好ましくは100gf/cm以下の範囲であり、最も好ましくは、木屋式硬度計の検出限界である25gf/cm以下である。
さらに、本発明の生分解性脂肪族ポリエステル粒子は、該円柱状タブレットを調製するための成形温度を、40℃から、生分解性脂肪族ポリエステルのガラス転移温度(Tg)+10℃の温度に変更して成形した円柱状タブレットの破壊応力が、2000gf/cm以下のものであることにより、一層ブロッキング防止効果に優れたPGA粒子を提供することができる。ガラス転移温度(Tg)+10℃の温度で成形した円柱状タブレットの破壊応力は、好ましくは1900gf/cm以下、より好ましくは1800gf/cm以下、特に好ましくは1700gf/cm以下の範囲である。
3.生分解性脂肪族ポリエステル粒子の製造方法
本発明の生分解性脂肪族ポリエステル粒子は、平均粒子径(50%D)が5〜500μmであり、かつ、該粒子に、円筒金型内で、温度40℃で4kgf/cmの荷重を1時間負荷して成形した円柱状タブレットの破壊応力が、500gf/cm以下であれば、その製造方法は特に限定されないが、粒子状の生分解性脂肪族ポリエステルを、昇温結晶化温度(Tc1)−40℃以上の温度で処理する熱処理を行うことにより、生分解性脂肪族ポリエステル粒子の熱処理品(以下、「粒子熱処理品」ということがある。)として製造することが好ましい。なお、熱処理を行う前の粒子状の生分解性脂肪族ポリエステルを、「原料樹脂粒子」ということがある。粒子状の生分解性脂肪族ポリエステルは、前記熱処理によって、粒子表面の結晶化度が上昇することによって、得られる生分解性脂肪族ポリエステル粒子のブロッキング防止の効果が実現するものと推察される。また、ブロッキング防止の効果が実現できる範囲で、「粒子熱処理品」と「原料樹脂粒子」を混合して使用してもよい。「粒子熱処理品」/「原料樹脂粒子」の質量比は、50/50以上が好ましく、70/30以上がより好ましく、90/10以上が最も好ましい。
(1)粒子状の生分解性脂肪族ポリエステル
本発明の生分解性脂肪族ポリエステル粒子は、粒子状の生分解性脂肪族ポリエステルを、前記の所定温度で処理することによって容易に製造することができる。該粒子状のPGA等の原料樹脂粒子は、製品の成形原料として、また、粒子の分散液の形態で使用することを予定しているものであり、あらかじめ所定の平均粒子径、粒径分布、粒子形状に調製されているものであって、その製造方法は特に限定されない。重合反応後に回収した粉末状またはフレーク状等の形状を有するPGA等の生分解性脂肪族ポリエステルから、好ましくは洗浄を行って、分級して得たものでもよい。該回収した生分解性脂肪族ポリエステルを、機械的衝撃を加えて粉砕(衝撃粉砕)し、特に凍結粉砕して得たものでもよく、その際必要に応じて分級したものでもよい。さらに、PGA等の生分解性脂肪族ポリエステルに必要に応じて適宜配合剤を含有させ、溶融押出して得たペレット状物を衝撃粉砕して得たものでもよい。また、PGA等の生分解性脂肪族ポリエステルを有機溶剤の溶液または分散液とした後、凝固または析出させて得た粒子でもよい。本発明のPGA等の生分解性脂肪族ポリエステル粒子とすることによるブロッキング防止効果が顕著であることから、衝撃粉砕して得た粒子、特に、生分解性脂肪族ポリエステルのガラス転移温度(Tg)未満の温度で衝撃粉砕法により得られた粒子状の生分解性脂肪族ポリエステルに対して、後述の熱処理を行うことが好ましい。
原料樹脂粒子を製造するために行う衝撃粉砕の温度は、生分解性脂肪族ポリエステルのガラス転移温度(Tg)未満の温度であることが好ましく、より好ましくは−50℃以上ガラス転移温度(Tg)−5℃以下、更に好ましくは−45℃以上ガラス転移温度(Tg)−10℃以下、特に好ましくは−40℃以上ガラス転移温度(Tg)−20℃以下、最も好ましくは−35℃以上ガラス転移温度(Tg)−30℃以下の範囲の温度であり、具体的には、−45〜30℃、より好ましくは−40〜20℃、最も好ましくは−35〜10℃のような温度範囲を選択することができる。この温度範囲でPGA等の生分解性脂肪族ポリエステル粒子を粉砕することにより、樹脂の粒子が低温脆化した状態で粉砕されるため、粉砕時の発熱が抑制され、熱的変性を生じることなく微細に粉砕することができる。粉砕後の粒子は、前記のとおり所定範囲の大きさのものに分級することが好適である。低温粉砕を行う装置としては、液体窒素等の超低温冷媒による冷却部と粉砕部、更に好ましくは粒度調整部とを兼ね備えた装置が好ましく、ジェットミル、ブレードミル、ピンミル等を用いることができるが、高速回転する本体側ディスクピンと、固定ドアー側のディスクピンにて粉砕を行うピンミルを使用することが好ましい。衝撃粉砕法により粉砕を行う時間は、衝撃粉砕を行う処理温度によっても異なるが、通例10秒間〜20分間、好ましくは30秒間〜15分間、より好ましくは1〜10分間、特に好ましくは1分30秒間〜5分間の範囲とすればよい。
(2)熱処理(処理温度及び処理時間)
本発明のPGA粒子等の生分解性脂肪族ポリエステル粒子は、先の粒子状の生分解性脂肪族ポリエステル、すなわち原料樹脂粒子を、樹脂の昇温結晶化温度(Tc1)−40℃以上の温度で処理することによって製造することができる。ただし、熱処理によって原料樹脂粒子が溶融してはならない。処理温度は、好ましくは昇温結晶化温度(Tc1)−40℃以上結晶融点(Tm)−30℃以下、より好ましくは昇温結晶化温度(Tc1)−38℃以上結晶融点(Tm)−35℃以下、更に好ましくは昇温結晶化温度(Tc1)−36℃以上結晶融点(Tm)−40℃以下、特に好ましくは昇温結晶化温度(Tc1)−34℃以上結晶融点(Tm)−45℃以下の範囲である。処理温度が低すぎると、PGA等の粒子の表面性状の改良が十分行われず、ブロッキング防止効果が得られないおそれがある。処理温度が高すぎると、PGA等の粒子の表面が軟化したり溶融したりして凝集してしまうことがある。処理時間は、処理温度によって異なるが、通例1分間〜10時間、好ましくは2分間〜5時間、より好ましくは3〜180分間、特に好ましくは4〜120分間の範囲とすればよい。処理を行う装置は、過度のせん断力を及ぼすことなく、PGA等の粒子に所定の熱エネルギーを与えることができれば特に限定されず、通常の攪拌機や混合機、混練機を使用することができ、ヘンシェルミキサ、リボンミキサなどを使用することができる。
以下に実施例及び比較例を示して本発明を更に説明するが、本発明は、本実施例に限定されるものではない。
実施例及び比較例における生分解性脂肪族ポリエステル粒子の物性または特性の測定方法は、以下のとおりである。
[重量平均分子量(Mw)]
重量平均分子量(Mw)は、生分解性脂肪族ポリエステル粒子の試料粒子10mgを、トリフルオロ酢酸ナトリウムを5mM溶解させたヘキサフルオロイソプロパノール(HFIP)に、溶解させて10mlとした後、メンブレンフィルターでろ過して試料溶液を得て、この試料溶液の10μlをゲルパーミエーションクロマトグラフィー(GPC)装置に注入して、下記の測定条件で分子量を測定することによって求めた。
<GPC測定条件>
装置:昭和電工株式会社製GPC104
カラム:昭和電工株式会社製HFIP−806M 2本(直列接続)+プレカラム:HFIP−LG 1本
カラム温度:40℃
溶離液:トリフルオロ酢酸ナトリウムを5mMの濃度で溶解させたHFIP溶液
検出器:示差屈折率計
分子量校正:分子量の異なる標準分子量のポリメタクリル酸メチル5種(Polymer laboratories Ltd.製)を用いて作成した分子量の検量線データを使用
[結晶融点(Tm)]
試料粒子10mgを、示差走査熱量計(DSC;メトラー・トレド社製TC−15)を使用して、窒素雰囲気中、20℃/分の昇温速度で、室温付近の温度から結晶融点(Tm)+50℃付近の温度(試料がPGAのときは約280℃、試料がPLAのときは約220℃)まで加熱するときに現れる吸熱ピークから、結晶融点(Tm)を測定した。結晶融点が複数みられる場合には、吸熱ピーク面積が最も大きいピークを結晶融点(Tm)とした。
[ガラス転移温度(Tg)]
試料粒子10mgを、示差走査熱量計(DSC;メトラー・トレド社製TC−15)を使用して、試料がPGAのときは約280℃、試料がPLAのときは約220℃まで加熱し、この温度で2分間保持した後、液体窒素により急速(約100℃/分)に冷却して得られた非晶試料を、窒素雰囲気中、20℃/分の昇温速度で、室温付近の温度から100℃付近の温度まで再加熱するときの、ガラス状態からゴム状態への転移領域に相当する中間点ガラス転移温度をガラス転移温度(Tg)とした。
[昇温結晶化温度(Tc1)]
試料粒子10mgを、示差走査熱量計(DSC;メトラー・トレド社製TC−15)を使用して、試料がPGAのときは約280℃、試料がPLAのときは約220℃まで加熱し、この温度で2分間保持した後、液体窒素により急速(約100℃/分)に冷却して得られた非晶試料を、窒素雰囲気中、20℃/分昇温速度で、室温付近の温度から結晶融点(Tm)+50℃付近の温度まで再加熱するときに現れる発熱ピークから、昇温結晶化温度(Tc1)を測定した。
[結晶融解熱量(ΔHm)]
試料粒子10mgを、示差走査熱容量計(DSC;メトラー・トレド社製TC−15)を使用して、窒素雰囲気中で、20℃/分の昇温速度で、室温付近の温度から結晶融点(Tm)+50℃付近の温度まで加熱し、結晶融点(Tm)±40℃の範囲で検出される吸熱ピークを全て結晶融解熱量(ΔHm)として、算出した。
[平均粒子径(50%D)]
試料粒子の粒子径は、該試料粒子を、イオン交換水に分散させた粒子分散液について、レーザー回折式粒度分布測定装置(株式会社島津製作所製SALADA−3000S)を使用して求めた粒子径分布から、小粒子径側からの累積重量が50%となる粒子径を平均粒子径(50%D)として求めた。
[タブレット破壊応力]
試料粒子のタブレット破壊応力は、木屋式硬度計(株式会社藤原製作所製)を用いて、調製した円柱状タブレットを垂直方向に圧縮し、該タブレットを破壊するに要した最大点荷重(N=3の平均値)を求めて、試料粒子のタブレット破壊応力とした。
円柱状タブレットは、試料粒子を、ステンレス製の円筒状金型(内径11.3mm(内断面積1cm))内に1g入れ、該粒子の上部から円柱状重り(外径11.3mm、重さ4kg)を挿入して、該粒子に一定荷重(4kgf/cm)をかけた状態で、所定温度(40℃またはガラス転移温度(Tg)+10℃)に設定した恒温槽(相対湿度20%)内で1時間荷重をかけ続けながら静置することによって、上面積1cm、下面積1cm、高さ1.5cmの円柱状タブレットに成形して調製した。
[ブロッキング性]
試料粒子のブロッキング性は、次の方法で測定した。チャック下70mm、袋幅50mm、厚み0.04mmのチャック付きポリエチレン袋に、試料粒子約15gを正確に秤量して封入し、40℃の恒温槽中で、4kgの重りを乗せて荷重をかけ1日経過した後、チャック付きポリエチレン袋から試料粒子を出して、目開き850μの篩の上面に注ぎ乗せ、該篩を1分間手で振るったときの状態を、以下の基準で評価した。
A: 篩の網目上に残った試料20質量%未満。
B: 篩の網目上に残った試料が20〜70質量%。
C: 篩の網目上に残った試料が70質量%を超える。
〔実施例1〕
PGA(株式会社クレハ製、Mw:17万、Tg:40℃、Tc1:98℃、Tm:220℃、ΔHm:70J/g)約20kgを、液体窒素に浸漬して冷却後、粉砕時に液体窒素冷却が可能なピンミル(槇野産業株式会社製の超微粉ピンミル:コントラプレックスシリーズ)を用いて、液体窒素で冷却しながら、粉砕温度−25℃、周速187m/secの条件で2分間粉砕(衝撃粉砕)して、粒子状のPGAを得た。得られた粒子状のPGA約3kgを、攪拌機(三井鉱山株式会社製MITUI HENCHEL FM10B/L)を用いて、攪拌機速度(回転数)900rpm、攪拌中の粒子温度60℃で5分間攪拌処理して、熱処理を行い、PGA粒子を得た。得られた粒子の平均粒子径(50%D、以下、単に「粒子径」という。)、結晶融解熱量(ΔHm)、タブレット破壊応力(40℃成形品及び50℃成形品)及びブロッキング性の試験結果を表1に示す。
〔実施例2〕
攪拌機中での攪拌中の粒子温度を80℃に変更したこと以外は、実施例1と同様にしてPGA粒子を得た。得られた粒子の粒子径、結晶融解熱量、タブレット破壊応力及びブロッキング性の試験結果を表1に示す。
〔実施例3〕
攪拌機中での攪拌中の粒子温度を120℃に変更したこと以外は、実施例1と同様にしてPGA粒子を得た。得られた粒子の粒子径、結晶融解熱量、タブレット破壊応力及びブロッキング性の試験結果を表1に示す。
〔実施例4〕
攪拌機中での攪拌時間を60分間に変更したこと以外は、実施例3と同様にしてPGA粒子を得た。得られた粒子の粒子径、結晶融解熱量、タブレット破壊応力及びブロッキング性の試験結果を表1に示す。
〔実施例5〕
攪拌機中での攪拌中の粒子温度を160℃に変更したこと以外は、実施例1と同様にしてPGA粒子を得た。得られた粒子の粒子径、結晶融解熱量、タブレット破壊応力及びブロッキング性の試験結果を表1に示す。
〔実施例6〕
衝撃粉砕の温度を5℃に変更したこと以外は、実施例2と同様にしてPGA粒子を得た。得られた粒子の粒子径、結晶融解熱量、タブレット破壊応力及びブロッキング性の試験結果を表1に示す。
〔実施例7〕
攪拌機中での攪拌中の粒子温度を120℃に変更したこと以外は、実施例6と同様にしてPGA粒子を得た。得られた粒子の粒子径、結晶融解熱量、タブレット破壊応力及びブロッキング性の試験結果を表1に示す。
〔比較例1〕
実施例1において、衝撃粉砕を行って得た粒子状のPGA(攪拌機を用いた熱処理は実施していない。)の粒子径、結晶融解熱量、タブレット破壊応力及びブロッキング性の試験結果を表1に示す。
〔比較例2〕
攪拌機中での攪拌中の粒子温度を40℃に変更したこと以外は、実施例1と同様にしてPGA粒子を得た。得られた粒子の粒子径、結晶融解熱量、タブレット破壊応力及びブロッキング性の試験結果を表1に示す。
〔比較例3〕
攪拌機中での攪拌中の粒子温度を200℃に変更したこと以外は、実施例1と同様にしてPGA粒子を得た。得られた粒子の粒子径、結晶融解熱量、タブレット破壊応力及びブロッキング性の試験結果を表1に示す。
〔比較例4〕
粉砕温度を5℃に変更したこと以外は、比較例1と同様にして調製した粒子状のPGAの粒子径、結晶融解熱量、タブレット破壊応力及びブロッキング性の試験結果を表1に示す。
Figure 2012133037
表1から、粒子状のPGAに対して、60〜160℃の温度で処理を行って得たPGA粒子は、粒子径(50%D)が150μmで、かつ、該PGA粒子を40℃の温度で成形した円柱状タブレットのタブレット破壊応力が100gf/cmまたは25gf/cm以下のPGA粒子であることによって、更に、PGAのガラス転移温度(Tg)+10℃に相当する50℃で成形した円柱状タブレットのタブレット破壊応力が150gf/cmまたは25gf/cm以下のPGA粒子であり、これらの特性を備えることで、粒子のブロッキングが生じないまたは極めて容易にブロッキングが解消するという効果があることが分かった。
他方、粒子状のPGAに対して、PGAの昇温結晶化温度(Tc1)−40℃以上の温度の範囲外の温度で処理を行った比較例2のPGA粒子、及び、原料樹脂粒子に対する熱処理を全く行わなかった比較例1及び4の粒子状のPGAは、40℃または50℃で成形した円柱状タブレットのタブレット破壊応力が大きいものであり、粒子のブロッキングが生じ、かつ、容易にブロッキングが解消していないことが分かった。また、比較例3のPGA粒子は溶融凝集したものであった。
〔実施例8〕
使用する生分解性脂肪族ポリエステルを、PGAから、PLA(Nature Works社製7000D、Mw:12万、Tg:60℃、Tc1:118℃、Tm:165℃、ΔHm:35J/g)に変更したこと、及び、攪拌機中での攪拌時間を5分間から60分間に変更したこと以外は、実施例2と同様にして、PLA粒子を得た。得られた粒子の粒子径、結晶融解熱量、タブレット破壊応力(40℃成形品及び70℃成形品)及びブロッキング性の試験結果を表2に示す。
〔実施例9〕
攪拌機中での攪拌中の粒子温度を120℃に変更したこと以外は、実施例8と同様にして、PLA粒子を得た。得られた粒子の粒子径、結晶融解熱量、タブレット破壊応力及びブロッキング性の試験結果を表2に示す。
〔比較例5〕
攪拌機中での攪拌処理による熱処理を行なう前の粒子状のPLA(攪拌機を用いた熱処理は実施していない。)の粒子径、結晶融解熱量、タブレット破壊応力及びブロッキング性の試験結果を表2に示す。
Figure 2012133037
表2の結果から、粒子状のPLAに対して、PLAの昇温結晶化温度(Tc1)−40℃以上の範囲内に当たる温度で処理を行って得たPLA粒子は、粒子径(50%D)が150μmで、かつ、該粒子を40℃で成形した円柱状タブレットの破壊応力が200gf/cmまたは25gf/cm以下のPLA粒子であり、更に、PLAのガラス転移温度(Tg)+10℃に相当する70℃で該粒子を成形した円柱状タブレットの破壊応力が1600gf/cmまたは1000gf/cmのPLA粒子であり、これらの特性を備えることで、粒子のブロッキングが生じない、または、極めて容易にブロッキングが解消するという効果があることが分かった。
他方、攪拌機中での熱処理を行わなかった比較例5の粒子状のPLAは、40℃または70℃で成形した円柱状タブレットの破壊応力が大きいものであり、この結果、粒子のブロッキングが生じ、かつ、容易にブロッキングが解消していないことが分かった。
本発明によれば、PLAやPGA等の生分解性脂肪族ポリエステル粒子が、平均粒子径(50%D)が5〜500μmであり、かつ、円筒金型内で、温度40℃で4kgf/cmの荷重を1時間負荷して成形した円柱状タブレットの破壊応力が、500gf/cm以下であることによって、保管や移送によってもブロッキングが生じにくいPLAやPGA等の生分解性脂肪族ポリエステル粒子が提供されるので、産業上の利用可能性が高い。
また、本発明によれば、粒子状の生分解性脂肪族ポリエステルを、昇温結晶化温度(Tc1)−40℃以上の温度で処理することを特徴とする前記の生分解性脂肪族ポリエステル粒子の製造方法であることにより、保管や移送によってもブロッキングが生じにくいPLAやPGA等の生分解性脂肪族ポリエステル粒子を簡便に得る方法が提供されるので、産業上の利用可能性が高い。

Claims (7)

  1. 以下の物性(A)及び(B):
    (A)平均粒子径が5〜500μm;
    (B)円筒金型内で、温度40℃で4kgf/cmの荷重を1時間負荷して成形した円柱状タブレットの破壊応力が、500gf/cm以下;
    を備えることを特徴とする生分解性脂肪族ポリエステル粒子。
  2. 更に、以下の物性(C):
    (C)円筒金型内で、該生分解性脂肪族ポリエステル粒子に含まれる生分解性脂肪族ポリエステルのガラス転移温度+10℃の温度で4kgf/cmの荷重を1時間負荷して成形した円柱状タブレットの破壊応力が、2000gf/cm以下;
    を備える請求項1に記載の生分解性脂肪族ポリエステル粒子。
  3. 生分解性脂肪族ポリエステルが、ポリグリコール酸、ポリ乳酸、またはそれらの混合物である請求項1または2に記載の生分解性脂肪族ポリエステル粒子。
  4. 粒子状の生分解性脂肪族ポリエステルを、該生分解性脂肪族ポリエステルの昇温結晶化温度−40℃以上の温度で処理することにより得られる請求項1または2に記載の生分解性脂肪族ポリエステル粒子。
  5. 前記粒子状の生分解性脂肪族ポリエステルが、該生分解性脂肪族ポリエステルのガラス転移温度未満の温度で粉砕することにより得られたものである請求項1または2に記載の生分解性脂肪族ポリエステル粒子。
  6. 粒子状の生分解性脂肪族ポリエステルを、該生分解性脂肪族ポリエステルの昇温結晶化温度−40℃以上の温度で処理することを特徴とする請求項1または2に記載の生分解性脂肪族ポリエステル粒子の製造方法。
  7. 前記粒子状の生分解性脂肪族ポリエステルが、該生分解性脂肪族ポリエステルのガラス転移温度未満の温度で粉砕することにより得られたものである請求項6に記載の生分解性脂肪族ポリエステル粒子の製造方法。
JP2013507425A 2011-03-25 2012-03-21 生分解性脂肪族ポリエステル粒子、及びその製造方法 Pending JPWO2012133037A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011068235 2011-03-25
JP2011068235 2011-03-25
PCT/JP2012/057165 WO2012133037A1 (ja) 2011-03-25 2012-03-21 生分解性脂肪族ポリエステル粒子、及びその製造方法

Publications (1)

Publication Number Publication Date
JPWO2012133037A1 true JPWO2012133037A1 (ja) 2014-07-28

Family

ID=46930769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013507425A Pending JPWO2012133037A1 (ja) 2011-03-25 2012-03-21 生分解性脂肪族ポリエステル粒子、及びその製造方法

Country Status (3)

Country Link
US (1) US20140017495A1 (ja)
JP (1) JPWO2012133037A1 (ja)
WO (1) WO2012133037A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6109622B2 (ja) * 2013-04-01 2017-04-05 株式会社クレハ 徐放性成形体およびその製造方法
WO2016195099A1 (ja) * 2015-06-05 2016-12-08 三菱化学株式会社 脂肪族ポリエステル粒子
CN105088408B (zh) * 2015-08-11 2018-02-27 安徽省康宁医疗用品有限公司 一种可吸收医用缝合线的制备方法
EP3456311B1 (en) * 2016-05-10 2021-12-08 Sumitomo Seika Chemicals Co., Ltd. Cosmetic

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4073052B2 (ja) * 1996-04-30 2008-04-09 株式会社クレハ ポリグリコール酸シート及びその製造方法
JP3861500B2 (ja) * 1998-04-23 2006-12-20 大日本インキ化学工業株式会社 生分解性ポリエステルからなる自己水分散性粒子の製法
JP3430125B2 (ja) * 1999-06-25 2003-07-28 三井化学株式会社 マスターバッチ用脂肪族ポリエステル組成物及び該組成物を用いる脂肪族ポリエステルフィルムの製造方法
US6699963B2 (en) * 2002-03-18 2004-03-02 The Procter & Gamble Company Grinding process for plastic material and compositions therefrom
JP2003039428A (ja) * 2002-04-05 2003-02-13 Mitsui Chemicals Inc 耐熱性が改善された熱可塑性ポリマー組成物のペレット
JP5093834B2 (ja) * 2006-01-27 2012-12-12 旭化成ケミカルズ株式会社 生分解性樹脂粉体及びその製造方法
JP2010175841A (ja) * 2009-01-29 2010-08-12 Casio Electronics Co Ltd 電子写真用トナー及びその製造方法

Also Published As

Publication number Publication date
US20140017495A1 (en) 2014-01-16
WO2012133037A1 (ja) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5763402B2 (ja) 生分解性脂肪族ポリエステル粒子、及びその製造方法
JP4231781B2 (ja) ポリグリコール酸及びその製造方法
WO2012121294A1 (ja) 坑井掘削用ポリグリコール酸樹脂粒状体組成物及びその製造方法
Tsuji Poly (lactic acid)
EP1484356B1 (en) Polylactic acid molding and process for producing the same
TWI429679B (zh) Preparation method of polylactic acid block copolymer
WO2012121296A1 (ja) 生分解性脂肪族ポリエステル樹脂粒状体組成物及びその製造方法
JP2004204128A (ja) 熱成形用ポリ乳酸系重合体組成物、熱成形用ポリ乳酸系重合体シート、及びこれを用いた熱成形体
CN102015250A (zh) 聚(羟基链烷酸)和热成形制品
WO2009107425A1 (ja) 逐次二軸延伸ポリグリコール酸フィルム、その製造方法、及び多層フィルム
JP3359764B2 (ja) 耐熱性乳酸系ポリマー成形物
JP2001514279A (ja) 生分解性ラクトン共重合体
JPWO2008096895A1 (ja) ポリ乳酸の製造方法
WO2012029448A1 (ja) 顆粒状脂肪族ポリエステル粒子、及び、その製造方法
CN107522852A (zh) 一种含二聚酸聚酯链段的生物基可生物降解三嵌段、多嵌段共聚物及其制备方法和应用
JPWO2012133037A1 (ja) 生分解性脂肪族ポリエステル粒子、及びその製造方法
Behera et al. Characterization of poly (lactic acid) s with reduced molecular weight fabricated through an autoclave process
WO2007043547A1 (ja) ポリ乳酸組成物
JPH05247245A (ja) 多孔性フィルム
JP3430125B2 (ja) マスターバッチ用脂肪族ポリエステル組成物及び該組成物を用いる脂肪族ポリエステルフィルムの製造方法
WO2012133039A1 (ja) 生分解性脂肪族ポリエステル粒子、及びその製造方法
WO2012144511A1 (ja) 生分解性脂肪族ポリエステル粒子、及びその製造方法
JP2007284595A (ja) 脂肪族ポリエステルフィルム
JP3407519B2 (ja) 脂肪族ポリエステル組成物およびその製造方法
JP2009013352A (ja) 生分解性ポリエステル組成物