WO2012029448A1 - 顆粒状脂肪族ポリエステル粒子、及び、その製造方法 - Google Patents

顆粒状脂肪族ポリエステル粒子、及び、その製造方法 Download PDF

Info

Publication number
WO2012029448A1
WO2012029448A1 PCT/JP2011/066972 JP2011066972W WO2012029448A1 WO 2012029448 A1 WO2012029448 A1 WO 2012029448A1 JP 2011066972 W JP2011066972 W JP 2011066972W WO 2012029448 A1 WO2012029448 A1 WO 2012029448A1
Authority
WO
WIPO (PCT)
Prior art keywords
pga
particles
aliphatic polyester
granular
particle size
Prior art date
Application number
PCT/JP2011/066972
Other languages
English (en)
French (fr)
Inventor
山根和行
阿部俊輔
来原なな子
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Publication of WO2012029448A1 publication Critical patent/WO2012029448A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a coating material used containing aliphatic polyester particles such as polyglycolic acid and polylactic acid, a granular aliphatic polyester particle having excellent handling properties and storage stability, useful for toners and other applications, and , And its manufacturing method.
  • aliphatic polyester particles such as polyglycolic acid and polylactic acid
  • a granular aliphatic polyester particle having excellent handling properties and storage stability, useful for toners and other applications, and , And its manufacturing method.
  • aliphatic polyesters such as polyglycolic acid and polylactic acid are decomposed by microorganisms or enzymes existing in nature such as soil and sea, they are attracting attention as biodegradable polymer materials with a low environmental impact.
  • aliphatic polyester has biodegradable absorbability, it is also used as a medical polymer material such as surgical sutures and artificial skin.
  • the aliphatic polyester examples include polylactic acid composed of repeating lactic acid units, polyglycolic acid composed of repeating glycolic acid units, lactone-based polyesters such as poly- ⁇ -caprolactone, polyhydroxybutyrate-based polyesters, and copolymers thereof.
  • a copolymer composed of glycolic acid repeating units and lactic acid repeating units is known.
  • Aliphatic polyesters can be synthesized, for example, by dehydration polycondensation of ⁇ -hydroxycarboxylic acids such as glycolic acid and lactic acid.
  • ⁇ -hydroxycarboxylic acids are used.
  • a method of synthesizing a bimolecular cyclic ester of an acid and subjecting the cyclic ester to ring-opening polymerization is employed.
  • polylactic acid hereinafter sometimes referred to as “PLA”
  • PKA polylactic acid
  • lactide which is a bimolecular cyclic ester of lactic acid.
  • PGA polyglycolic acid
  • PGA has excellent degradability, mechanical strength such as heat resistance and tensile strength, and particularly gas barrier properties when used as a film or sheet. For this reason, PGA is expected to be used as agricultural materials, various packaging (container) materials and medical polymer materials, and has been developed for use alone or in combination with other resin materials.
  • the manufacturing methods of these products include extrusion molding, injection molding, compression molding, injection compression molding, transfer molding, cast molding, stampable molding, blow molding, stretched film molding, inflation film molding, laminate molding, calendar molding, and foam molding. Melt molding and other molding methods such as RIM molding, FRP molding, powder molding or paste molding are employed.
  • PGA pellets used as a raw material for PGA melt molding are, for example, those having an average particle size of about several millimeters obtained by melt extrusion into a rod shape using a twin screw extruder and cutting into a predetermined size. is there.
  • PGA particles useful as raw materials or additives in the fields of paints, coating agents, inks, toners, agricultural chemicals, pharmaceuticals, cosmetics, mining, petroleum mining, etc. are desired by paying attention to degradability and strength of PGA. ing.
  • PGA particles applied in these fields in addition to the fact that particles having a particle size and particle size distribution that match the purpose are much smaller than the PGA pellets described above, Particles having excellent properties and storage stability have been demanded. For example, if the particle size is too small, the handleability becomes poor, the hygroscopicity is increased, the surface area is increased, the influence of the decomposition rate is increased, and the excellent characteristics of the PGA described above are obtained. It may be reduced. In addition, there was no risk of unexpected troubles occurring in the drying process or molding process.
  • aliphatic polyester resin particles having biodegradability such as PLA
  • PLA aliphatic polyester resin particles having biodegradability
  • Patent Document 1 discloses a polylactic acid resin powder in which a chip or a lump made of a polylactic acid resin is cooled to a low temperature of ⁇ 50 to ⁇ 180 ° C. and pulverized and classified. A manufacturing method is disclosed.
  • Patent Document 2 an organic solvent solution of a biodegradable polyester and an aromatic hydrocarbon having a substituent are mixed at a temperature lower than 60 ° C.
  • a method for producing a powdered polyester having biodegradability, in which a solid material to be separated is subjected to solid-liquid separation is disclosed.
  • Mw 145,000 PLA, Mw 10.0 million polybutylene succinate, and Mw 17.2 million polylactic acid / polybutylene succinate copolymer are used as raw materials.
  • particulate aliphatic polyesters that make the most of the characteristics of PLA, PGA and other aliphatic polyesters, that is, aliphatics with excellent handling properties and storage stability and having an appropriate average particle size, particle size distribution and shape Polyester particles are not known.
  • PGA particles can be obtained while depolymerizing by melting and stirring PGA with an organic solvent under heating, but the molecular weight is greatly reduced during the granulation process, and only particles with a wide particle size distribution can be obtained. It was not obtained.
  • Patent Document 3 discloses (a) a step of obtaining a solution in which a thermoplastic resin is dissolved in an organic solvent, and (b) cooling the solution to obtain an average primary particle size of 10 to 1. A step of obtaining a suspension of particles of the thermoplastic resin having a thickness of 1,000 nm, (c) a step of separating the particles from the suspension, and (d) a step of dispersing the separated particles in a solvent.
  • a method for producing a can-cover coating is disclosed, and examples of the thermoplastic resin include aromatic polyesters and aliphatic polyesters.
  • Patent Document 3 as Production Example 3, PLA and a mixture of dimethyl adipate, dimethyl glutarate, and dimethyl succinate (DBE (registered trademark), manufactured by DuPont Co., Ltd.) are used as the solvent, and the dissolution temperature is 140.
  • DBE registered trademark
  • PLA particles having an average primary particle diameter of 250 nm or less, or, as Production Example 4, using PGA and bis (2-methoxyethyl) ether as a solvent A metal can cover coating material containing PGA particles having an average primary particle diameter of 150 nm or less, obtained at 150 ° C. and a cooling temperature of ⁇ 35 ° C. is described.
  • the problem of the present invention is that it is useful as a raw material or additive in the fields of paints, coating agents, inks, toners, agricultural chemicals, pharmaceuticals, cosmetics, mining, petroleum mining, etc., having a high molecular weight, desired particle size and particle size distribution. It is an object of the present invention to provide aliphatic polyester particles having powder properties that are easy to obtain and have excellent handleability and storage stability.
  • the present inventors have found that granular aliphatic polyester particles having a predetermined particle size and powder characteristics are excellent in handling properties and storage stability, and the granular It has been found that if aliphatic polyester particles are used, aliphatic polyester particles having a high molecular weight and a desired particle size or particle size distribution can be easily obtained when necessary. Furthermore, the present inventors have found a method for producing granular aliphatic polyester particles that can easily obtain such granular aliphatic polyester particles.
  • the weight average molecular weight (Mw) is 10,000 to 800,000
  • the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) ( Mw / Mn) is an aliphatic polyester having a molecular weight distribution of 1.5 to 4.0
  • an average particle diameter (D 50 ) represented by a 50% cumulative value (D 50 ) of the number particle diameter distribution. 50 ) is 250 to 3,000 ⁇ m
  • (ii) bulk density is 0.2 to 0.9 g / cm 3
  • (iii) granular aliphatic polyester particles having an angle of repose of 15 to 50 degrees are provided. .
  • the aliphatic polyester has the formula: (—O—CH (R) —C (O) —) [R is a hydrogen atom or a methyl group. ]
  • the granular aliphatic polyester particles, wherein the polyglycolic acid is polyglycolic acid obtained by ring-opening polymerization of 70 to 100% by mass of glycolide and 30 to 0% by mass of another cyclic monomer.
  • an aliphatic solvent containing 10 to 90% by mass of an organic solvent and having an average particle diameter (D 50 ) represented by a 50% cumulative value (D 50 ) of the number particle diameter distribution is 150 ⁇ m or less.
  • the composition of the polyester particles is dried at normal temperature or reduced pressure at a temperature of 10 to 150 ° C., (A) The weight average molecular weight (Mw) is 10,000 to 800,000, and (b) the molecular weight represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn).
  • Consisting of an aliphatic polyester having a distribution of 1.5 to 4.0 (I) The average particle size (D 50 ) represented by 50% cumulative value (D 50 ) of the number particle size distribution is 250 to 3,000 ⁇ m, and (ii) the bulk density is 0.2 to 0.9 g / cm 3. And (iii) a method for producing granular aliphatic polyester particles having an angle of repose of 15 to 50 degrees.
  • the aliphatic polyester has the formula: (—O—CH (R) —C (O) —) [R is a hydrogen atom or a methyl group. ]
  • the manufacturing method of the said granular aliphatic polyester particle which has 70 mol% or more of the glycolic acid or lactic acid repeating unit represented by this.
  • polyglycolic acid is polyglycolic acid obtained by ring-opening polymerization of 70 to 100% by mass of glycolide and 30 to 0% by mass of another cyclic monomer.
  • the average particle diameter (D 50 ), characterized by ultrasonically treating a dispersion of water and / or organic solvent containing the granular aliphatic polyester particles, is 150 ⁇ m or less.
  • a method for producing aliphatic polyester particles is provided.
  • an average particle diameter (characterized by stirring the water and / or organic solvent dispersion containing the granular aliphatic polyester particles in the presence of a surfactant.
  • a method for producing aliphatic polyester particles having a D 50 ) of 150 ⁇ m or less is provided.
  • the present invention is useful as a raw material or additive in coatings and many other fields by providing granular aliphatic polyester particles, preferably granular PGA particles, having a high molecular weight and a predetermined particle size and powder characteristics. It has the effect of easily obtaining aliphatic polyester particles, preferably PGA particles, having a high molecular weight and a desired particle size or particle size distribution. Moreover, since the granular aliphatic polyester particles of the present invention are excellent in fluidity and handleability and storage stability as particles, they can be used as raw material pellets for melt molding and the like as they are.
  • the granular aliphatic polyester particles of the present invention have (a) a weight average molecular weight (Mw) of 10,000 to 800,000, and (b) a weight average molecular weight (Mw) and a number average molecular weight (Mn).
  • the average particle size (D 50 ) represented by 50% cumulative value (D 50 ) of the number particle size distribution is 250 to 3,000 ⁇ m, and (ii) the bulk density is 0.2 to 0.9 g / cm 3.
  • the method for producing granular aliphatic polyester particles of the present invention comprises a composition of aliphatic polyester particles containing 10 to 90% by mass of an organic solvent and having an average particle size (D 50 ) of 150 ⁇ m or less.
  • the weight average molecular weight (Mw) is 10,000 to 800,000
  • the weight average molecular weight (Mw) and the number average It is made of an aliphatic polyester having a molecular weight distribution expressed by a ratio (Mw / Mn) to a molecular weight (Mn) of 1.5 to 4.0, and (i) a 50% cumulative value (D 50 ) of the number particle size distribution.
  • a granular form having an average particle size (D 50 ) of 250 to 3,000 ⁇ m, (ii) a bulk density of 0.2 to 0.9 g / cm 3 , and (iii) an angle of repose of 15 to 50 degrees A method for producing aliphatic polyester particles .
  • Aliphatic polyester constituting the granular aliphatic polyester particles of the present invention is glycolic acid and glycolic acid containing glycolide (GL), which is a bimolecular cyclic ester of glycolic acid, and bimolecular cyclic of lactic acid and lactic acid.
  • GL glycolide
  • Lactic acid containing lactide ester ethylene oxalate (ie 1,4-dioxane-2,3-dione), lactones (eg ⁇ -propiolactone, ⁇ -butyrolactone, pivalolactone, ⁇ -butyrolactone, ⁇ -Valerolactone, ⁇ -methyl- ⁇ -valerolactone, ⁇ -caprolactone etc.), carbonates (eg trimethylene carbonate etc.), ethers (eg 1,3-dioxane etc.), ether esters (eg dioxanone etc.), etc.
  • lactones eg ⁇ -propiolactone, ⁇ -butyrolactone, pivalolactone, ⁇ -butyrolactone, ⁇ -Valerolactone, ⁇ -methyl- ⁇ -valerolactone, ⁇ -caprolactone etc.
  • carbonates eg trimethylene carbonate etc.
  • ethers eg 1,3-dio
  • Cyclic monomers 3-hydroxypropanoic acid, 4- Hydroxycarboxylic acids such as droxybutanoic acid and 6-hydroxycaproic acid or alkyl esters thereof; aliphatic diols such as ethylene glycol and 1,4-butanediol; and aliphatic carboxylic acids such as succinic acid and adipic acid or alkyl esters thereof
  • a homopolymer or copolymer of aliphatic ester monomers such as: Among them, the formula: (—O—CH (R) —C (O) —) [R is a hydrogen atom or a methyl group.
  • the aliphatic polyester which has a glycolic acid or lactic acid repeating unit represented by 70 mol% or more is preferable.
  • PLA that is, a homopolymer of L lactic acid (hereinafter sometimes referred to as “PLLA”), a homopolymer of D lactic acid, a copolymer having 70 mol% or more of repeating units of L lactic acid or D lactic acid.
  • a polymer, a mixture thereof, or PGA that is, a homopolymer of glycolic acid, or a copolymer having 70 mol% or more of glycolic acid repeating units is preferable.
  • PGA excellent in decomposability, heat resistance, gas barrier properties and mechanical strength.
  • the granular aliphatic polyester particles of the present invention are preferably granular PLA particles or granular PGA particles, and particularly preferably granular PGA particles.
  • the PGA particularly preferably used as a raw material for the granular aliphatic polyester particles in the present invention is a homopolymer of glycolic acid composed only of a glycolic acid repeating unit represented by the formula: (—O—CH 2 —C (O) —).
  • a polymer including a ring-opening polymer of glycolide (GL), which is a bimolecular cyclic ester of glycolic acid
  • a PGA copolymer containing 70 mol% or more of the above glycolic acid repeating units is included.
  • Examples of comonomers that give a PGA copolymer together with glycolic acid monomers such as glycolide include ethylene oxalate (ie, 1,4-dioxane-2,3-dione), lactides, lactones, carbonates, ethers.
  • the glycolic acid repeating unit in the PGA used as the raw material for the granular PGA particles of the present invention is 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more, particularly preferably. Is a substantially PGA homopolymer of 98 mol% or more, most preferably 99 mol% or more. If this ratio is too small, the strength and degradability expected for PGA will be poor.
  • the repeating unit other than the glycolic acid repeating unit is 30 mol% or less, preferably 20 mol% or less, more preferably 10 mol% or less, still more preferably 5 mol% or less, particularly preferably 2 mol% or less, and most preferably. Is used in a proportion of 1 mol% or less.
  • the PGA used as a raw material for the granular PGA particles of the present invention is obtained by polymerizing 70 to 100% by mass of glycolide and 30 to 0% by mass of the above-mentioned comonomer in order to efficiently produce a desired high molecular weight polymer.
  • PGA is preferred.
  • the comonomer may be a cyclic monomer between two molecules, or may be a mixture of both instead of a cyclic monomer, but a cyclic monomer is preferred in order to obtain the PGA particles targeted by the present invention.
  • PGA obtained by ring-opening polymerization of 70 to 100% by mass of glycolide and 30 to 0% by mass of other cyclic monomers will be described in detail.
  • glycolide that forms PGA by ring-opening polymerization is a bimolecular cyclic ester of glycolic acid, which is a kind of hydroxycarboxylic acid.
  • the manufacturing method of glycolide is not specifically limited, Generally, it can obtain by thermally depolymerizing a glycolic acid oligomer.
  • a depolymerization method for glycolic acid oligomers for example, a melt depolymerization method, a solid phase depolymerization method, a solution depolymerization method, etc. can be adopted, and glycolide obtained as a cyclic condensate of chloroacetate should also be used. Can do.
  • glycolide containing glycolic acid can be used up to 20% by mass of the glycolide amount.
  • the PGA used as the raw material for the granular PGA particles of the present invention may be formed by ring-opening polymerization of only glycolide, but simultaneously forms a copolymer by ring-opening polymerization using another cyclic monomer as a copolymerization component. May be.
  • the proportion of glycolide is 70% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and particularly preferably 98% by mass or more. And most preferably a substantially PGA homopolymer of 99% by weight or more.
  • Cyclic monomer Other cyclic monomers that can be used as a copolymerization component with glycolide include lactones (for example, ⁇ -propiolactone, ⁇ -butyrolactone, in addition to bicyclic esters of other hydroxycarboxylic acids such as lactide). Cyclic monomers such as pivalolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -methyl- ⁇ -valerolactone, ⁇ -caprolactone, trimethylene carbonate, 1,3-dioxane and the like can be used. Other preferable cyclic monomers are bimolecular cyclic esters of other hydroxycarboxylic acids.
  • hydroxycarboxylic acids include L-lactic acid, D-lactic acid, ⁇ -hydroxybutyric acid, ⁇ -hydroxyisobutyric acid, ⁇ - Hydroxyvaleric acid, ⁇ -hydroxycaproic acid, ⁇ -hydroxyisocaproic acid, ⁇ -hydroxyheptanoic acid, ⁇ -hydroxyoctanoic acid, ⁇ -hydroxydecanoic acid, ⁇ -hydroxymyristic acid, ⁇ -hydroxystearic acid, and these Examples include alkyl-substituted products.
  • Another particularly preferable cyclic monomer is lactide, which is a bimolecular cyclic ester of lactic acid, and may be any of L-form, D-form, racemate, and a mixture thereof.
  • the other cyclic monomer is 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less, further preferably 5% by mass or less, particularly preferably 2% by mass or less, and most preferably 1% by mass. Used in the following proportions.
  • the melting point of PGA (copolymer) is lowered to lower the processing temperature, and the crystallization speed is controlled to improve extrusion processability and stretch processability. can do.
  • the use ratio of these cyclic monomers is too large, the crystallinity of the formed PGA (copolymer) is impaired, and heat resistance, gas barrier properties, mechanical strength, and the like are lowered.
  • PGA is formed from glycolide 100 mass%
  • another cyclic monomer is 0 mass%, and this PGA is also included in the scope of the present invention.
  • the ring-opening polymerization or ring-opening copolymerization of glycolide (hereinafter sometimes collectively referred to as “ring-opening (co) polymerization”) is preferably carried out in the presence of a small amount of a catalyst.
  • the catalyst is not particularly limited.
  • a tin-based compound such as tin halide (for example, tin dichloride, tin tetrachloride) and organic carboxylate (for example, tin octoate such as tin 2-ethylhexanoate).
  • Titanium compounds such as alkoxy titanates; aluminum compounds such as alkoxy aluminum; zirconium compounds such as zirconium acetylacetone; antimony compounds such as antimony halide and antimony oxide;
  • the amount of the catalyst used is preferably about 1 to 1,000 ppm, more preferably about 3 to 300 ppm in terms of mass ratio with respect to the cyclic ester.
  • Glycolide usually contains a trace amount of water and a hydroxycarboxylic acid compound composed of glycolic acid and a linear glycolic acid oligomer as impurities.
  • a hydroxycarboxylic acid compound composed of glycolic acid and a linear glycolic acid oligomer as impurities.
  • the physical properties such as melt viscosity and molecular weight of the produced PGA can be controlled. Adjustment of the total proton concentration can also be performed by adding water to the purified glycolide.
  • the ring-opening (co) polymerization of glycolide may be bulk polymerization or solution polymerization, but in many cases, bulk polymerization is employed.
  • a higher alcohol such as lauryl alcohol or water can be used as the molecular weight regulator.
  • polyhydric alcohols such as glycerol
  • the device can be selected as appropriate.
  • various reaction tanks can be used for solution polymerization.
  • the polymerization temperature can be appropriately set according to the purpose within a range from 120 ° C. to 300 ° C. which is a substantial polymerization start temperature.
  • the polymerization temperature is preferably 130 to 270 ° C., more preferably 140 to 260 ° C., and particularly preferably 150 to 250 ° C. If the polymerization temperature is too low, the molecular weight distribution of the produced PGA tends to be wide. If the polymerization temperature is too high, the produced PGA is susceptible to thermal decomposition.
  • the polymerization time is in the range of 3 minutes to 20 hours, preferably 5 minutes to 18 hours. If the polymerization time is too short, the polymerization does not proceed sufficiently and a predetermined weight average molecular weight cannot be realized. If the polymerization time is too long, the produced PGA tends to be colored.
  • Solid phase polymerization means an operation of heat treatment while maintaining a solid state by heating at a temperature lower than the melting point of PGA.
  • the solid phase polymerization is preferably performed for 1 to 100 hours, more preferably 2 to 50 hours, particularly preferably 3 to 30 hours.
  • the crystallinity may be controlled by giving a thermal history to the solid state PGA by a melt kneading step within a temperature range of the melting point Tm + 38 ° C. or more, preferably Tm + 38 ° C. to Tm + 100 ° C.
  • the PGA obtained by these polymerization methods is used as a raw material to produce granular PGA particles having a high molecular weight and excellent handleability and storage stability.
  • the molecular weight may decrease, so the PGA obtained by polymerization, which is the raw material of the PGA particles of the present invention, has a weight average molecular weight (Mw) of 100,000 to 1 , 500,000, preferably 120,000 to 1,300,000, more preferably 150,000 to 1,100,000, particularly preferably 180,000 to 1,000,000. Select one within the range of 000.
  • the terminal carboxyl group concentration of the PGA used as the raw material for the granular PGA particles of the present invention is preferably 0.1 to 300 eq / 10 6 g, more preferably 1 to 250 eq / 10 6 g, and still more preferably 6 to 200 eq / 10.
  • the amount is preferably 0.1 to 300 eq / 10 6 g, more preferably 1 to 250 eq / 10 6 g, and still more preferably 6 to 200 eq / 10.
  • the concentration of the carboxyl group at the molecular end that is, the concentration of the terminal carboxyl group is too small, the hydrolyzability is too low, so the degradation rate decreases. If the terminal carboxyl group concentration is too large, hydrolysis proceeds quickly, so that the performance of the molded product, the coating film strength and the toner performance cannot be exhibited over a long period of time, and the initial strength of PGA is low. , Strength decreases faster.
  • a method such as changing the type or addition amount of the catalyst or molecular weight regulator may be used.
  • the amount of residual glycolide of PGA used as the raw material of the granular PGA particles of the present invention is preferably controlled to 0.2% by mass or less, more preferably 0.15% by mass or less, and particularly preferably 0.12% by mass or less. Therefore, it is possible to suppress the molecular weight of the PGA from being lowered during the melt molding process or the process for forming the toner particles or the coating film, thereby improving the water resistance.
  • the polymerization temperature is below 200 ° C. so that the system is in solid phase.
  • the temperature is adjusted to 140 to 195 ° C., more preferably 160 to 190 ° C., and it is also preferable to subject the produced PGA to a step of desorbing and removing residual glycolide into the gas phase. If the amount of residual glycolide is too large, the molecular weight of PGA is lowered during molding or processing for forming toner particles or a coating film, and performance cannot be exhibited over a long period of time.
  • thermogravimetric decrease starting temperature of the PGA used as the raw material of the granular PGA particles of the present invention preferably 210 ° C. or higher, more preferably 213 ° C. or higher, particularly preferably 215 ° C. or higher, molding processing or toner It is suppressed that the molecular weight of PGA falls during the process for forming particle
  • the upper limit of the 1% thermogravimetric decrease starting temperature is usually 235 ° C, preferably 230 ° C.
  • the 1% thermogravimetric decrease starting temperature is used as an indicator of the heat resistance of PGA. When PGA is heated at a rate of temperature increase from 50 ° C.
  • thermogravimetric decrease start temperature of PGA contained in PGA particles is too low, the molecular weight of PGA will decrease during molding and processing to form toner particles and coating film, and performance over a long period of time Can not demonstrate.
  • the amount of additives such as catalyst deactivator, crystal nucleating agent, plasticizer, and antioxidant should be minimized when polymerizing PGA. Or the like.
  • polylactic acid, polybutylene succinate, polyethylene succinate, poly ⁇ -propiolactone, polycaprolactone, etc. as long as they do not contradict the purpose of the present invention
  • resins such as aliphatic polyesters, polyglycols such as polyethylene glycol and polypropylene glycol, modified polyvinyl alcohol, polyurethane, polyamides such as poly L-lysine, plasticizers, antioxidants, heat stabilizers, ultraviolet rays
  • Additives usually blended such as absorbents, lubricants, mold release agents, waxes, colorants, crystallization accelerators, hydrogen ion concentration regulators, fillers such as reinforcing fibers can be blended as needed. it can.
  • the granular PGA particles of the present invention are granular PGA particles obtained from PGA described in “1. Aliphatic polyester”.
  • the granular PGA particles of the present invention have (a) a weight average molecular weight (Mw) of 10,000 to 800,000, and (b) a ratio (Mw) of the weight average molecular weight (Mw) to the number average molecular weight (Mn). / Mn) has a molecular weight distribution of 1.5 to 4.0, and (c) 70 mol% of glycolic acid repeating units represented by the formula: (—O—CH 2 —C (O) —) It consists of PGA which has the above.
  • the granular PGA particles of the present invention have a PGA weight average molecular weight (Mw) in the range of 10,000 to 800,000.
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) is preferably 30,000 to 600,000, more preferably 40,000 to 500,000, still more preferably 50,000 to 300,000, and in many cases 60,000 to 200.
  • Good physical properties can be obtained in the range of 1,000. If the weight average molecular weight is too small, the strength is insufficient, and if it is too large, it becomes difficult to perform molding or formation of a coating film.
  • a more preferable weight average molecular weight (Mw) of PGA may be selected depending on the application. For example, when used for molding, the range of 80,000 to 400,000 is most preferable, and when used for paint or toner, 60 is preferable. The range of 50,000 to 350,000 is most preferred, and the range of 50,000 to 300,000 is most preferred when used for oil extraction.
  • the granular PGA particles of the present invention have a molecular weight distribution (Mw / Mn) represented by a ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of PGA of 1.5 to 4.0.
  • Mw / Mn molecular weight distribution
  • the molecular weight distribution is preferably 1.6 to 3.7, more preferably 1.65 to 3.5.
  • Controlling the particle size and particle size distribution of the granular PGA particles by adjusting the weight average molecular weight of the PGA contained in the granular PGA particles of the present invention within the above range and adjusting the molecular weight distribution within the above range. It is also possible to control decomposition performance and the like.
  • the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of PGA contained in the granular PGA particles of the present invention is performed.
  • the type and amount of the catalyst, the type and amount of the molecular weight regulator, polymerization conditions such as polymerization apparatus, polymerization temperature, polymerization time, post-polymerization post-treatment, and combinations thereof may be devised.
  • the melting point (Tm) of PGA contained in the granular PGA particles of the present invention is 197 to 245 ° C., and is preferably adjusted according to the type and content ratio of the copolymer component.
  • the temperature is more preferably 200 to 240 ° C, still more preferably 203 to 235 ° C, and particularly preferably 205 to 230 ° C.
  • the melting point (Tm) is preferably 207 to 230 ° C., more preferably 210 to 230 ° C.
  • melting point (Tm) is too low, the strength when used as a molded product, paint or toner becomes insufficient, or temperature management becomes difficult when molding or the like is performed. If the melting point (Tm) is too high, the moldability may be insufficient or the flexibility of the coating film may be insufficient. If the melting point is too high, melt molding, coating film formation and the like may be difficult.
  • the melt crystallization temperature (T C2 ) of PGA contained in the granular PGA particles of the present invention is preferably 105 to 195 ° C.
  • the temperature is more preferably 106 to 193 ° C, more preferably 107 to 192 ° C, and particularly preferably 108 to 190 ° C.
  • a melt crystallization temperature (T C2 ) of 130 to 195 ° C., further 135 to 192 ° C., particularly 138 to 190 ° C. may be suitable.
  • the melt crystallization temperature (TC 2 ) of PGA was determined by increasing the PGA from room temperature to 255 ° C.
  • melt crystallization temperature (T C2 ) is too high, the particle size, particle size distribution and particle shape of the granular PGA particles cannot be controlled.
  • the granular PGA particles of the present invention have (i) an average particle size (D 50 ) represented by a 50% cumulative value (D 50 ) of the number particle size distribution of 250 to 3,000 ⁇ m, ( ii) Granular PGA particles having a bulk density of 0.2 to 0.9 g / cm 3 and (iii) an angle of repose of 15 to 50 degrees.
  • the particle size of the PGA particles of the present invention was determined by measuring the particle size distribution by a laser diffraction / scattering method.
  • the average particle size (D 50 ) of the granular PGA particles of the present invention means a value represented by a 50% cumulative value (D 50 ) of the number particle size distribution, and the value ranges from 250 to 3,000 ⁇ m.
  • the range is preferably 260 to 2,500 ⁇ m, more preferably 270 to 2,000 ⁇ m, and particularly preferably 280 to 1,500 ⁇ m.
  • the average particle size (D 50 ) may be preferably in the range of 310 to 2,000 ⁇ m, more preferably 350 to 1,500 ⁇ m. If the average particle size is too small, the handleability and storage stability may be poor. Further, if the average particle size is too large, the granular particles may collapse with the passage of time or by mechanical stimulation to generate fine particles, and the excellent properties as granular PGA particles may be lost. There is.
  • the particle size distribution of the granular PGA particles of the present invention can be evaluated by the 90% cumulative value (D 90 ) of the number particle size distribution and the 10% cumulative value (D 10 ) of the number particle size distribution.
  • D 90 is preferably 500 to 3,500 ⁇ m, more preferably 510 to 3,000 ⁇ m, and still more preferably 520 to 2,500 ⁇ m.
  • D 10 represent respectively the particle diameters is preferably 90 ⁇ 300 [mu] m, and more preferably 95 ⁇ 280 .mu.m, more preferably 100 ⁇ 250 [mu] m.
  • the particle size distribution of the granular PGA particles may be evaluated by the value of D 90 / D 10 .
  • the value of D 90 / D 10 is in the range of 1.2 to 12, preferably 1.2 to 11, more preferably 1.2 to 10, and particularly preferably 1.2 to 9.5. If the particle size distribution is too large, the variation in the particle size of the PGA particles is large. As a result, the fluidity is insufficient, and the handleability and storage stability may be lowered. Granular PGA particles having a particle size distribution smaller than 1.2 tend to be difficult to produce efficiently at low cost.
  • the bulk density of the granular PGA particles of the present invention is 0.2 to 0.9 g / cm 3 .
  • the bulk density was measured according to JIS K6721 using a powder tester PT-S manufactured by Hosokawa Powder Research Co., Ltd.
  • the bulk density value of the granular PGA particles is preferably 0.2 to 0.8 g / cm 3 , more preferably 0.2 to 0.7 g / cm 3 , still more preferably 0.2 to 0.6 g / cm 3 . 3 , particularly preferably 0.2 to 0.5 g / cm 3 . If the bulk density is too small, the handleability deteriorates, or the granular particles are destroyed with the passage of time or mechanically stimulated to generate fine particles.
  • the angle of repose of the granular PGA particles of the present invention is 15 to 50 degrees.
  • the repose angle is 120 cm 3 of sample particles placed in the funnel of the previous bulk density measuring device, the damper is pulled out, and the sample particles are dropped entirely onto a repose angle measurement table with a diameter of 14 mm and a diameter of 40 cm.
  • the angle with the ridgeline by the particle sample was measured with a protractor.
  • the angle of repose of the granular PGA particles is preferably 18 to 45 degrees, more preferably 19 to 43 degrees, still more preferably 20 to 41 degrees, and particularly preferably 21 to 39 degrees.
  • the fluidity of the granular PGA particles may be insufficient.
  • granular PGA particles having an angle of repose of less than 15 degrees are difficult to produce efficiently at low cost. Since the granular PGA particles of the present invention have very good fluidity and excellent handling properties, they can be used as raw material pellets for melt molding and the like as they are.
  • the granular PGA particles of the present invention preferably have a powder fluidity of 40 seconds or less.
  • the powder fluidity is more preferably 35 seconds or less, still more preferably 30 seconds or less, and particularly preferably 25 seconds or less, the handleability is excellent.
  • the powder flowability is the time required for putting 120 cm 3 of sample particles into the funnel of the previous bulk density measuring device, pulling out the damper, and dropping the sample particles to the repose angle measuring table 14 cm directly below.
  • the average particle diameter (D 50 ) is a particle having a small particle diameter such as 10 ⁇ m or less
  • the sample particles may be blocked due to aggregation, charging, etc., blocked in the funnel, and not fall from the funnel. is there.
  • the granular PGA particles of the present invention preferably contain substantially no fine particles having a particle size of 10 ⁇ m or less.
  • the phrase “substantially free of fine particles having a particle size of 10 ⁇ m or less” means that the cumulative value of particles having a particle size of 10 ⁇ m or less is less than 1.0% in the number particle size distribution.
  • the cumulative value of particles having a particle size of 10 ⁇ m or less is preferably less than 0.8%, more preferably less than 0.6%, and particularly preferably less than 0.4%. If there are too many fine particles having a particle size of 10 ⁇ m or less, the fluidity of the granular PGA particles may be lowered, and the handleability and storage stability may be lowered.
  • the granular PGA particles of the present invention have a polyglycolic acid particle 90 to 90 having an average particle size (D 50 ) represented by a 50% cumulative value (D 50 ) of the number particle size distribution of 150 ⁇ m or less.
  • a composition of PGA particles containing 10% by mass and 10 to 90% by mass of an organic solvent, for example, a wet cake can be produced by drying at a temperature of 10 to 150 ° C. under normal pressure or reduced pressure.
  • average particle diameter (D 50) is 150 ⁇ m or less
  • an average particle diameter (D 50) is fabricated from PGA particles is 150 ⁇ m or less.
  • the PGA particles if PGA particle average particle diameter (D 50) is 150 ⁇ m or less, the production method is not particularly limited.
  • PGA particles produced by cutting or pulverizing a PGA melt-solidified product obtained by polymerization may be used.
  • PGA particles produced by precipitation from a PGA solution or dispersion may also be used.
  • grain may be sufficient.
  • PGA particles produced by the method described in Patent Document 3 above are preferable because it is easy to realize the shape, particle size, and uniformity of particle size distribution of the PGA particles.
  • the average particle size and particle size distribution of the PGA particles obtained Etc. can be adjusted.
  • grains, a particle size distribution, etc. can be adjusted also by classifying the PGA particle isolate
  • aprotic polar organic solvents include aromatic carboxylic acid esters such as dibutyl phthalate, dioctyl phthalate, dibenzyl phthalate, benzyl butyl phthalate, and benzyl benzoate; aliphatics such as ethyl acetate, butyl acetate, dimethyl adipate, and dimethyl succinate Carboxylic acid esters; ether solvents such as ethylene glycol monobutyl ether, dipropylene glycol butyl ether, 2- (2-methoxyethoxy) ethanol (Triglyme), bis (2-methoxyethyl) ether, dibutyldiethylene glycol (DBDG); dimethylformamide; Amido solvents such as dimethylacetamide; Pyrrolidone solvents such as N-methyl-2-pyrrolidone; and mixtures thereof include, but are not limited to It is not.
  • aromatic carboxylic acid esters such as dibutyl phthalate,
  • the aprotic polar organic solvent is also used as a solvent for the depolymerization reaction of PGA.
  • the boiling point since it is necessary to dissolve PGA under heating conditions, the boiling point must be within the range of 230 to 450 ° C. Is preferable, more preferably 260 to 430 ° C., and particularly preferably 280 to 420 ° C. If the boiling point of the aprotic polar organic solvent is too low, the heating temperature cannot be set high for the dissolution of PGA, the dissolution rate of PGA decreases, and the solution formation process takes a long time, All of the PGA may not dissolve and a solution may not be formed. On the other hand, if the boiling point of the aprotic polar organic solvent is too high, it may take a long time to remove the solvent in a later step.
  • the water content of the aprotic polar organic solvent is small.
  • the water content is usually 1,200 ppm or less, preferably 1,000 ppm or less, more preferably 700 ppm or less, even more preferably 600 ppm or less, and if necessary, dehydration may be performed by a conventional method. .
  • NMP N-methyl-2-pyrrolidone
  • the cooling step it is not necessary to use a commonly used dispersant in obtaining a suspension in which PGA particles are suspended.
  • a dispersant is used in the cooling step, a suspension can be obtained at a relatively high cooling rate, and therefore the time for the cooling step can be shortened.
  • the amount of the dispersant used is not particularly limited, but is usually 0.05 to 1.5 parts by weight, preferably 0.1 to 1.0 parts by weight, and more preferably 0.2 to 0.00 parts by weight with respect to 100 parts by weight of PGA. 5 parts by weight of a dispersant can be added before starting the cooling process or during the cooling process.
  • dispersant examples include aliphatic alcohols such as decanol and glycerin; aromatic alcohols such as cresol and chlorophenol; polyalkylene glycol monoethers such as octyltriethylene glycol; and the like.
  • the stirring speed of stirring in the cooling step is usually 30 to 130 rpm, preferably 35 to 120 rpm, more preferably 40 to 110 rpm, and particularly preferably 45 to 100 rpm.
  • the particle size distribution and shape can be controlled.
  • operations such as ultrasonic dispersion and dispersion using a stirrer, which are usually employed when producing a dispersion of particles, may be performed.
  • a stirrer which are usually employed when producing a dispersion of particles
  • examples thereof include a homogenizer, a homomixer, a roll mill, a bead mill, and a high-pressure wet pulverization apparatus.
  • sulfonic acids such as p-toluenesulfonic acid and dodecylbenzenesulfonic acid
  • acid catalysts such as phosphoric acids such as alkylphosphoric acid
  • an amine block of the acid catalyst may be used as a curing aid.
  • An additive such as an agent, a leveling agent, an antifoaming agent and a lubricant, a colorant such as a pigment, and the like may be added in the cooling step and supported on the PGA particles.
  • methods for separating the PGA particles from the suspension include filtration, particularly suction filtration, centrifugation, and the like, but are not limited thereto.
  • the filter for filtration include cellulose filter paper and ceramic filter.
  • the separated PGA particles are usually washed with an organic solvent.
  • an organic solvent for cleaning the PGA particles acetone, ethanol, or the like can be used.
  • the PGA particles are dried to remove the organic solvent.
  • a conventional method such as vacuum drying, natural drying, drying with a dryer or oven can be adopted, and it is not particularly limited.
  • it is necessary to set the temperature so that the PGA particles do not melt, and it is usually in the temperature range of 70 to 180 ° C, preferably 80 to 160 ° C, more preferably 90 to 140 ° C. .
  • the aprotic polar organic solvent such as NMP contained in the suspension is replaced with a more volatile solvent prior to separation of the PGA particles by filtration or the like.
  • the more volatile solvent include ketones such as methyl ethyl ketone and acetone; alcohols such as methanol and ethanol; hydrocarbons such as hexane, cyclohexane, benzene and toluene; ethers such as diethyl ether and tetrahydrofuran; Is mentioned.
  • Methyl ethyl ketone is preferable because the powder property of the granular PGA particles can be easily controlled.
  • the granular PGA particles of the present invention having the desired average particle size, particle size distribution, bulk density, angle of repose, etc. Can be easily obtained.
  • the average particle size of PGA particles having an average particle size (D 50) is 150 ⁇ m or less (D 50) may be selected size suitable for end use, may be a 50 ⁇ m or less, it may be a 30 ⁇ m or less, 15 [mu] m Depending on the application, it may be particularly preferably 10 ⁇ m or less.
  • composition of PGA particles containing 10 to 90% by mass of organic solvent and having an average particle size (D 50 ) of 150 ⁇ m or less The granular PGA particles of the present invention have the above average particle size (D 50 ) of 150 ⁇ m.
  • the following polyglycolic acid particles can be produced by drying at normal pressure or reduced pressure in a state where the composition is a composition of PGA particles containing 10 to 90% by mass of an organic solvent.
  • the aprotic polar organic solvent remains in the PGA particles obtained through the solution forming step, the cooling step, and the separation step described above, even after the separation step.
  • the polyglycolic acid particles having an average particle diameter (D 50 ) of 150 ⁇ m or less are preferably in the state of a composition of PGA particles containing 10 to 90% by mass of an organic solvent and 90 to 10% by mass of PGA particles, preferably 20 to 80% by mass of organic solvent and 80 to 20% by mass of PGA particles, more preferably 30 to 70% by mass of organic solvent and 70 to 30% by mass of PGA particles, particularly preferably 40 to 60% by mass of organic solvent and 60 to 60% by mass of PGA particles.
  • Granular PGA particles may be produced in a state of a composition of PGA particles containing 40% by mass.
  • a composition of PGA particles containing 10 to 90% by mass of an organic solvent exhibits a state from a so-called wet cake state to a state of slightly flowing. If the amount of organic solvent is too small, the organic solvent will be removed quickly even after performing atmospheric pressure or reduced pressure drying, which will be described later, and particles will not aggregate, and granular PGA particles having an average particle size of 250 ⁇ m or more cannot be obtained. There is. If there are too many organic solvents, it may take a long time to remove the solvent by atmospheric pressure or drying under reduced pressure, which will be described later, and the particle size distribution of the granules may be wide.
  • organic solvents examples include aprotic polar organic solvents such as NMP, ketones such as methyl ethyl ketone and acetone, which have been shown as solvents having higher volatility, alcohols such as methanol and ethanol, hexane, cyclohexane and benzene. Hydrocarbons such as toluene; ethers such as diethyl ether and tetrahydrofuran; and methyl ethyl ketone are particularly preferred.
  • aprotic polar organic solvents such as NMP
  • ketones such as methyl ethyl ketone and acetone
  • alcohols such as methanol and ethanol, hexane, cyclohexane and benzene.
  • Hydrocarbons such as toluene
  • ethers such as diethyl ether and tetrahydrofuran
  • methyl ethyl ketone are particularly preferred.
  • the granular PGA particles of the present invention comprise a composition of PGA particles containing 10 to 90% by mass of the organic solvent and having an average particle size (D 50 ) of 150 ⁇ m or less. It is produced by drying at normal temperature or reduced pressure at a temperature of 150 ° C.
  • the pressure reduction is not particularly limited as long as the organic solvent can be efficiently removed, and is preferably 50 torr or less, more preferably 30 torr or less, still more preferably 20 torr or less, and particularly preferably 10 torr or less.
  • the environment is preferably 50 torr or less, more preferably 30 torr or less, still more preferably 20 torr or less, and particularly preferably 10 torr or less.
  • the normal pressure or reduced pressure drying time depends on the temperature and the degree of reduced pressure, but usually ranges from 6 to 48 hours, preferably 8 to 40 hours, more preferably 10 to 30 hours, particularly preferably 12 to 24 hours. You can adjust it.
  • the granular PGA particles of the present invention are obtained by sonicating the dispersion liquid as a dispersion liquid dispersed in water, an organic solvent, or a mixture of water and an organic solvent.
  • Dispersion liquid of PGA particles having an average particle diameter (D 50 ) represented by a 50% cumulative value (D 50 ) of the number particle diameter distribution in a short time of 150 ⁇ m or less without the structure in which granular PGA particles are aggregated Can be obtained.
  • the PGA particles can be obtained by separating from the dispersion by filtration, centrifugation, etc., washing if necessary, and drying.
  • Examples of the organic solvent used for producing a dispersion of granular PGA particles include acetone, methanol, ethanol, isopropanol, and the like.
  • the granular PGA particles are 0.05 to 30% by mass, preferably 0.1 to 20% by mass, more preferably 0.2 to 15% by mass, particularly preferably 0.5%. Disperse to 10% by mass to obtain a dispersion of granular PGA particles.
  • a surfactant can be added to the dispersion, and a wide variety of cationic surfactants, anionic surfactants, amphoteric surfactants, nonionic surfactants, and the like can be used.
  • Preferred surfactants include SN Dispersant 7347-c diluent (cationic surfactant) and 22% sodium alkyl ether sulfate (anionic surfactant).
  • the addition amount of the surfactant is 0.01 to 5% by mass, preferably 0.03 to 3% by mass, more preferably 0.05 to 2% by mass, and further preferably 0.1 to 2% by mass in the dispersion. %.
  • the duration of the ultrasonic treatment is 1 second to 1 hour, preferably 10 seconds to 30 minutes. If necessary, a stirring process may be performed.
  • the granular PGA particles of the present invention can also be obtained by stirring the PGA dispersion in the presence of a surfactant as a dispersion in which PGA particles are dispersed in water and / or an organic solvent.
  • a surfactant as a dispersion in which PGA particles are dispersed in water and / or an organic solvent.
  • the structure in which the particles in the PGA particles are aggregated disappears, and a dispersion of PGA particles having an average particle size of 150 ⁇ m or less can be obtained in a short time.
  • ultrasonic treatment may be performed in combination with the stirring treatment.
  • PGA particles can be separated from the dispersion by filtration, centrifugation, etc., washed if necessary, dried and collected.
  • the surfactant those listed above can be used, and the amount added to water or an organic solvent is the same.
  • the stirring treatment for producing PGA particles from granular PGA particles is usually about 50 to 2,000 rpm, preferably 60 to 1,800 rpm, more preferably 80 to 1,500 rpm.
  • Weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) The weight average molecular weight (Mw) of PGA, and the weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) of granular PGA particles and PGA particles are measured by gel permeation chromatography ( GPC) was performed under the following conditions using an analyzer.
  • Sodium hexafluoroacetate (manufactured by Kanto Chemical Co., Ltd.) is added to hexafluoroisopropanol (used after distilling a product manufactured by Central Glass Co., Ltd.) and dissolved to prepare a 5 mM sodium trifluoroacetate salt solvent (A). To do.
  • the solvent (A) was allowed to flow through a column (HFIP-LG + HFIP-806M ⁇ 2: manufactured by SHODEX) at a flow rate of 1 ml / min at 40 ° C., and the molecular weight was 827,000, 101,000, 34,000, 1.0 10 and 10 million each of polymethylmethacrylate (POLYMER ⁇ ⁇ ⁇ ⁇ ⁇ LABORATORIES LTD.) With 5 and 20,000 known molecular weights and a solvent (A) were made into 10 ml solutions, and 100 ⁇ l of them was passed through the column, and the refractive index (RI) The detection peak time by detection is obtained. A calibration curve of molecular weight is created by plotting detection peak times and molecular weights of five standard samples.
  • the solvent (A) is added to 10 mg of the sample PGA to make a 10 ml solution, and 100 ⁇ l of the solution is passed through the column. From the elution curve, the weight average molecular weight (Mw), the number average molecular weight (Mn), and the molecular weight Distribution (Mw / Mn) is determined. For the calculation, C-R4AGPC program Ver1.2 manufactured by Shimadzu Corporation was used.
  • Terminal carboxyl group concentration The terminal carboxyl group concentration of the PGA used as the raw material for the granular PGA particles was measured by heating about 300 mg of PGA at 150 ° C. for about 3 minutes and completely dissolving it in 10 ml of dimethyl sulfoxide. After cooling, add 2 drops of indicator (0.1% by weight bromothymol blue / alcohol solution), then add 0.02N sodium hydroxide / benzyl alcohol solution, and the color of the solution is yellow. The point that changed from green to green was the end point. The terminal carboxyl group concentration was calculated as the equivalent per 1 ton (10 6 g) of PGA from the amount dropped at that time.
  • Amount of residual glycolide The amount of residual glycolide in PGA used as the raw material for granular PGA particles was measured by adding 2 g of dimethyl sulfoxide containing 0.2 g / l of the internal standard substance 4-chlorobenzophenone to about 100 mg of PGA. The solution is dissolved by heating at 150 ° C. for about 5 minutes, cooled to room temperature, and then filtered. 1 ⁇ l of the solution was sampled and injected into a gas chromatography (GC) apparatus for measurement. From the numerical value obtained by this measurement, the amount of glycolide was calculated as mass% contained in PGA.
  • the GC analysis conditions are as follows.
  • thermogravimetric decrease start temperature The 1% thermogravimetric decrease start temperature of the PGA used as the raw material for the granular PGA particles was measured by using a thermogravimetric apparatus TG50 manufactured by METTLER and flowing nitrogen at a flow rate of 10 ml / min. In this nitrogen atmosphere, PGA was heated from 50 ° C. at a rate of temperature increase of 2 ° C./min, and the weight loss rate was measured. With respect to the weight of the PGA at 50 ° C. (W50), the temperature when the weight is reduced by 1% is accurately read, and the temperature is set as the 1% thermal weight reduction start temperature of the PGA.
  • Average particle size and particle size distribution of the granular PGA particles and PGA particles are obtained by changing the granular PGA particles or PGA particles into a surfactant (diluted solution of SN Dispersant 7347-c. Interface).
  • a surfactant diluted solution of SN Dispersant 7347-c. Interface.
  • SALD-3000S manufactured by Shimadzu Corporation
  • Angle of repose and powder flowability The angle of repose and powder flowability of granular PGA particles and PGA particles are measured according to JIS K6721 in the measuring funnel of the bulk density measuring device described in (7). A powder sample of 120 cm 3 was placed, the damper was pulled out, and the sample particles were all dropped onto a repose angle measurement table having a diameter of 40 mm and a height of 14 cm. Powder flowability was determined from the time (unit: seconds) required for the whole amount of granules to fall, and the angle of repose was determined by measuring the angle between this table and the ridge line of the particle sample.
  • the glycolic acid oligomer prepared above was charged into a reaction vessel, diethylene glycol dibutyl ether was added as a solvent, and octyl tetraethylene glycol was further added as a solubilizer.
  • the depolymerization reaction was performed under heating and reduced pressure to co-distill the produced glycolide and the solvent.
  • the distillate was condensed by a double tube condenser in which hot water was circulated and received in a receiver.
  • the condensate in the receiver was separated into two liquids, with the upper layer being a solvent and the lower layer being condensed to a glycolide layer.
  • Liquid glycolide was extracted from the bottom of the receiver, and the resulting glycolide was purified using a tower-type purification apparatus.
  • the recovered purified glycolide had a purity of 99.99% or more as determined by DSC measurement.
  • the obtained PGA had a weight average molecular weight (Mw) of 200,000, a terminal carboxyl group concentration of 37 eq / 10 6 g, a residual glycolide amount of 0.07% by mass, and a 1% thermogravimetric decrease starting temperature of 217 ° C. .
  • the separable flask containing the PGA solution was removed from the mantle heater, 700 g of NMP cooled to about ⁇ 30 ° C. with dry ice was stirred, and then the PGA solution was poured into it at once to perform rapid cooling.
  • the NMP into which the solution was poured was allowed to stand in a refrigerator at a temperature of 5 ° C. for 2 hours to obtain a suspension of PGA particles (PGA concentration 10% by mass).
  • the average particle size and particle size distribution of the PGA particles were measured, the average particle size (D 50 ) was 4.0 ⁇ m, D 90 was 10.5 ⁇ m, and D 10 was 1.1 ⁇ m (D 90 / D 10 was 9. 5).
  • the NMP suspension in which the PGA particles are dispersed and suspended is subjected to solvent substitution with methyl ethyl ketone (hereinafter referred to as “MEK”) using a solvent displacement device, and the MEK suspension of PGA particles (PGA concentration 10 mass%). )
  • MEK methyl ethyl ketone
  • the MEK suspension of PGA particles was suction filtered using cellulose filter paper to separate the PGA particles. As a result, a wet cake containing 40% by mass of PGA and 60% by mass of MEK was obtained.
  • grains are fine, it was not able to fall smoothly from the funnel of a bulk density measuring apparatus, and the bulk density, powder fluidity
  • the obtained granular PGA particles have a weight average molecular weight (Mw) of 66,900, a molecular weight distribution (Mw / Mn) of 1.7, a melting point (Tm) of 207 ° C., and a melt crystallization temperature (T C2 ) of 110.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • Tm melting point
  • T C2 melt crystallization temperature
  • the average particle size (D 50 ) of the granular PGA particles is 339 ⁇ m, D 90 is 716 ⁇ m, D 10 is 113 ⁇ m (D 90 / D 10 is 6.33), and the cumulative value of particles having a particle size of 10 ⁇ m or less is , Less than 0.1%.
  • the granular PGA particles of the present invention are stable in shape.
  • 1 kg of the granular PGA particles produced in the example was put and stored in a warehouse adjusted to 30 ° C. for 60 days. It was found that the granule structure was stable.
  • 0.1 g of granular PGA particles produced in the examples were dispersed in 10 ml of deionized water, and this dispersion liquid sample was put into a particle size distribution measuring apparatus.
  • the average particle size and particle size distribution of the particles at the beginning of charging (referring to standing for 30 seconds after charging) and after standing for 1 minute or 5 minutes were measured over time. The measurement results are shown in Table 1.
  • [Granular PLA particles] A wet cake obtained by using 30% by mass of PLA (PLLA) particles having an average particle size (D 50 ) of 33 ⁇ m and 70% by mass of acetone was placed in a vacuum drying chamber adjusted to a temperature of 23 ° C. and a pressure of 7 torr. Then, a reduced-pressure drying treatment was performed for 18 hours to obtain granular PLA particles.
  • the obtained granular PLA particles have a weight average molecular weight (Mw) of 21,400, a molecular weight distribution (Mw / Mn) of 1.9, a melting point (Tm) of 181 ° C., and a bulk density of 0.30 g / cm. 3.
  • the angle of repose was 45 degrees, the powder fluidity was 18 seconds, and the fluidity was excellent.
  • the average particle size (D 50 ) of the granular PLA particles was 659 ⁇ m, and the cumulative value of particles having a particle size of 10 ⁇ m or less was less than 0.1%.
  • granular PLA particles having an average particle diameter (D 50 ) of 603 ⁇ m were obtained.
  • Table 4 shows the average particle size and particle size distribution of the granular PLA particles.
  • the granular aliphatic polyester particles of the present invention are particles excellent in handleability and storage stability, and are subjected to stirring treatment (stirring speed, stirring time, etc.), the type and amount of surfactant added,
  • the average particle size and particle size distribution of the resulting aliphatic polyester particles can be controlled by combining ultrasonic treatment (frequency, output, treatment time, etc.).
  • the aliphatic polyester particles having an average particle size and particle size distribution suitable for paints, toners, petroleum mining and the like are dispersed by dispersing them in an organic solvent or water. Can be easily obtained.
  • the granular aliphatic polyester particles of the present invention are excellent in handleability and storage stability and have excellent fluidity, they can be used as raw material pellets for melt molding and the like.
  • the weight average molecular weight (Mw) is 10,000 to 800,000
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 250 to Granular aliphatic polyester particles having a diameter of 3,000 ⁇ m, (ii) a bulk density of 0.2 to 0.9 g / cm 3 , and (iii) an angle of repose of 15 to 50 degrees are easy to handle and store.
  • Excellent aliphatic polyester particles especially in the industrial fields such as paints, coating agents, inks, toners, agricultural chemicals, pharmaceuticals, cosmetics, mining, petroleum mining, utilizing the characteristics of PGA such as biodegradability and strength
  • Aliphatic polyester particles which can be usefully employed as, since it is readily available, among others PGA or PLA particles, has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

 (a)重量平均分子量(Mw)が10,000~800,000、かつ、(b)分子量分布(Mw/Mn)が1.5~4.0である脂肪族ポリエステル、好ましくは、ポリグリコール酸またはポリ乳酸からなり、(i)平均粒径(D50)が250~3,000μm、(ii)嵩密度が0.2~0.9g/cm、及び、(iii)安息角が15~50度である顆粒状脂肪族ポリエステル粒子、並びに、有機溶剤10~90質量%を含有する平均粒径(D50)が150μm以下の脂肪族ポリエステル粒子の組成物を、10~150℃の温度で常圧または減圧乾燥する該顆粒状脂肪族ポリエステル粒子の製造方法。

Description

顆粒状脂肪族ポリエステル粒子、及び、その製造方法
 本発明は、ポリグリコール酸、ポリ乳酸等の脂肪族ポリエステルの粒子を含有して使用される塗料、トナーその他の用途に有用な、取り扱い性及び保存性に優れた顆粒状脂肪族ポリエステル粒子、及び、その製造方法に関する。
 ポリグリコール酸やポリ乳酸等の脂肪族ポリエステルは、土壌や海中などの自然界に存在する微生物または酵素により分解されるため、環境に対する負荷が小さい生分解性高分子材料として注目されている。また、脂肪族ポリエステルは、生体内分解吸収性を有しているため、手術用縫合糸や人工皮膚などの医療用高分子材料としても利用されている。
 脂肪族ポリエステルとしては、乳酸繰り返し単位からなるポリ乳酸、グリコール酸繰り返し単位からなるポリグリコール酸、ポリε-カプロラクトンのようなラクトン系ポリエステル、ポリヒドロキシブチレート系ポリエステル、及び、これらの共重合体、例えば、グリコール酸繰り返し単位と乳酸繰り返し単位からなる共重合体などが知られている。
 脂肪族ポリエステルは、例えば、グリコール酸や乳酸などのα-ヒドロキシカルボン酸の脱水重縮合により合成することができるが、高分子量の脂肪族ポリエステルを効率よく合成するには、一般に、α-ヒドロキシカルボン酸の二分子間環状エステルを合成し、該環状エステルを開環重合する方法が採用されている。例えば、乳酸の二分子間環状エステルであるラクチドを開環重合すると、ポリ乳酸(以下、「PLA」ということがある。)が得られる。グリコール酸の二分子間環状エステルであるグリコリドを開環重合すると、ポリグリコール酸(以下、「PGA」ということがある。)が得られる。
 脂肪族ポリエステルの中でも、PGAは、分解性が大きいことに加えて、耐熱性、引張強度等の機械的強度、及び、特に、フィルムまたはシートとしたときのガスバリア性も優れる。そのため、PGAは、農業資材、各種包装(容器)材料や医療用高分子材料としての利用が期待され、単独で、あるいは他の樹脂材料などと複合化して用途展開が図られている。これら製品の製造方法としては、押出成形、射出成形、圧縮成形、射出圧縮成形、トランスファ成形、注型成形、スタンパブル成形、ブロー成形、延伸フィルム成形、インフレーションフィルム成形、積層成形、カレンダー成形、発泡成形、RIM成形、FRP成形、粉末成形またはペースト成形など、溶融成形その他の成形方法が採用されている。PGAの溶融成形の成形原料として使用されるPGAペレットは、例えば、二軸押出機を用いて棒状に溶融押出し、所定サイズに切断して得られる平均粒径が数mm程度の大きさのものである。
 他方、PGAの分解性、強度などに着目して、塗料、コーティング剤、インキ、トナー、農薬、医薬、化粧品、採鉱、石油採掘などの分野における原料または添加剤などとして有用なPGA粒子が望まれている。これらの分野に適用するPGA粒子としては、先に述べたPGAペレットよりはるかに微小サイズであって、目的に合致した粒径や粒径分布を有する粒子が求められていることに加えて、取り扱い性及び保存性に優れた粒子が求められていた。例えば、粒径が小さすぎると、取り扱い性が不良となり、しかも、吸湿性が大きくなり、表面積が大きくなることもあって、分解速度の影響が大きくなり、先に述べたPGAの優れた特性が低下してしまうことも考えられる。また、乾燥工程や成形加工において予期しないトラブルが生じるおそれが皆無ではなかった。
 PGAの粒子を溶媒中に分散させることにより、粒子の保存性を向上させる方法があるが、容積が増大するとともに、使用の都度、溶媒を除去するための加熱、ろ過、洗浄、乾燥などの工程が必要となるという問題があった。
 PGAに限らず、PLAなどの生分解性を有する脂肪族ポリエステル樹脂粒子は、例えば、自然環境中で使用される分野、使用後の回収及び再利用が困難な分野、樹脂の特殊な機能を生かした分野などで使用することが期待されるため、樹脂粒子の製造方法が、種々提案されている。
 樹脂粒子の製造方法としては、一般に、溶融固化物の切断または粉砕による粒子の製造方法や、溶液または分散液からの析出による粒子の製造方法が知られている。特開2001-288273号公報(特許文献1)には、ポリ乳酸系樹脂からなるチップまたは塊状物を、-50~-180℃の低温に冷却して、粉砕し分級するポリ乳酸系樹脂粉末の製法が開示されている。特開平11-35693号公報(特許文献2)には、生分解性を有するポリエステルの有機溶媒溶液と、置換基を有する芳香族炭化水素類とを、60℃よりも低い温度で混合し、析出する固体状物を固液分離する、生分解性を有する粉状ポリエステルの製造方法が開示されている。実施例において、Mw14.5万のPLA、Mw10.0万のポリブチレンサクシネート、及びMw17.2万のポリ乳酸とポリブチレンサクシネートの共重合体が原料に用いられている。
 しかし、PLA、PGA及びその他の脂肪族ポリエステルの特性をより活かすための粒子状の脂肪族ポリエステル、すなわち、取り扱い性と保存性に優れ、適度な平均粒径や粒径分布及び形状をもつ脂肪族ポリエステル粒子は知られていない。
 例えば、粉砕によってPGA粒子を製造すると、粒径分布が広い粒子が得られ、特に、極めて微細な粒子が少なからず含まれたり、粉砕面や切断面の不規則さのために吸湿性が増したりするなどの問題点があり、取り扱い性や保存性が十分ではなかった。また、大量の有機溶媒を必要とする粒子の製造方法では、有機溶媒の除去の工程が必要であり、有機溶媒がポリマー中に残存することが懸念される。
 また、PGAを有機溶剤とともに加熱下で溶融攪拌することにより、解重合を進行させながら、PGA粒子を得ることができるが、造粒の過程で分子量が大きく低下し、粒径分布が広い粒子しか得られなかった。
 すなわち、PLA、PGA及びその他の脂肪族ポリエステルの強度特性を活かすためには、重量平均分子量(Mw)が10,000以上である高分子量の脂肪族ポリエステル粒子が望まれていた。
 特開2006-45542号公報(特許文献3)には、(a)熱可塑性樹脂を、有機溶媒に溶解した溶液を得る工程、(b)該溶液を冷却して平均1次粒子径10~1,000nmの該熱可塑性樹脂の粒子の懸濁液を得る工程、(c)該懸濁液から粒子を分離する工程、及び(d)該分離した粒子を溶媒中に分散させる工程からなる金属製缶蓋被覆用塗料の製造方法が開示され、熱可塑性樹脂として、芳香族ポリエステル、脂肪族ポリエステルなどが例示されている。特許文献3には、製造例3として、PLAと、溶媒として、アジピン酸ジメチル、グルタル酸ジメチル、コハク酸ジメチルの混合物〔DBE(登録商標)、デュポン株式会社製〕を用いて、溶解温度を140℃、冷却温度を-35℃として得た平均1次粒子径が250nm以下のPLA粒子、または、製造例4として、PGAと、溶媒としてビス(2-メトキシエチル)エーテルを用いて、溶解温度を150℃、冷却温度を-35℃として得た平均1次粒子径が150nm以下のPGA粒子を含む金属製缶蓋被覆用塗料が記載されている。
 しかし、特許文献3に記載されたPLA粒子、または、PGA粒子は、いずれも微細粒子を多く含有しているため、取り扱い性と保存性に劣るものであった。
特開2001-288273号公報 特開平11-35693号公報 特開2006-45542号公報
 本発明の課題は、塗料、コーティング剤、インキ、トナー、農薬、医薬、化粧品、採鉱、石油採掘などの分野における原料または添加剤などとして有用な、高分子量で、所望の粒径や粒径分布を有する脂肪族ポリエステル粒子を容易に得ることができるとともに、取り扱い性と保存性に優れた粉体性状を有する脂肪族ポリエステル粒子を提供することにある。
 本発明者らは、上記の課題について、鋭意研究を重ねた結果、所定の粒径や粉体特性を備える顆粒状脂肪族ポリエステル粒子が、取り扱い性と保存性に優れ、かつ、該顆粒状の脂肪族ポリエステル粒子を用いれば、必要なときに、高分子量で所望の粒径や粒径分布を有する脂肪族ポリエステル粒子を容易に得ることができることを見いだした。更に、本発明者らは、かかる顆粒状の脂肪族ポリエステル粒子を容易に得ることができる顆粒状脂肪族ポリエステル粒子の製造方法を見いだした。
 すなわち、本発明によれば、(a)重量平均分子量(Mw)が10,000~800,000であり、かつ、(b)重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布が1.5~4.0である脂肪族ポリエステルからなり、(i)個数粒径分布の50%累積値(D50)で表される平均粒径(D50)が250~3,000μm、(ii)嵩密度が0.2~0.9g/cm、及び、(iii)安息角が15~50度である顆粒状脂肪族ポリエステル粒子が提供される。
 本発明によれば、顆粒状脂肪族ポリエステル粒子について、以下の実施態様が提供される。
(1)前記脂肪族ポリエステルが、式:(-O-CH(R)-C(O)-)[Rは、水素原子またはメチル基である。]で表わされるグリコール酸または乳酸繰り返し単位を70モル%以上有するものである前記の顆粒状脂肪族ポリエステル粒子。
(2)前記脂肪族ポリエステルが、式:(-O-CH-C(O)-)で表わされるグリコール酸繰り返し単位を70モル%以上有するポリグリコール酸である前記の顆粒状脂肪族ポリエステル粒子。
(3)前記ポリグリコール酸が、グリコリド70~100質量%及び他の環状モノマー30~0質量%を開環重合して得られるポリグリコール酸である前記の顆粒状脂肪族ポリエステル粒子。
 また、本発明によれば、有機溶剤10~90質量%を含有する、個数粒径分布の50%累積値(D50)で表される平均粒径(D50)が150μm以下である脂肪族ポリエステル粒子の組成物を、10~150℃の温度で常圧または減圧乾燥することを特徴とする、
(a)重量平均分子量(Mw)が10,000~800,000であり、かつ、(b)重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布が1.5~4.0である脂肪族ポリエステルからなり、
(i)個数粒径分布の50%累積値(D50)で表される平均粒径(D50)が250~3,000μm、(ii)嵩密度が0.2~0.9g/cm、及び、(iii)安息角が15~50度である顆粒状脂肪族ポリエステル粒子の製造方法が提供される。
 本発明によれば、顆粒状脂肪族ポリエステル粒子の製造方法について、以下の実施態様が提供される。
(1)前記脂肪族ポリエステルが、式:(-O-CH(R)-C(O)-)[Rは、水素原子またはメチル基である。]で表わされるグリコール酸または乳酸繰り返し単位を70モル%以上有するものである前記の顆粒状脂肪族ポリエステル粒子の製造方法。
(2)前記脂肪族ポリエステルが、式:(-O-CH-C(O)-)で表わされるグリコール酸繰り返し単位を70モル%以上有するポリグリコール酸である前記の顆粒状脂肪族ポリエステル粒子の製造方法。
(3)前記ポリグリコール酸が、グリコリド70~100質量%及び他の環状モノマー30~0質量%を開環重合して得られるポリグリコール酸である前記の顆粒状脂肪族ポリエステル粒子の製造方法。
 更に、本発明によれば、前記の顆粒状脂肪族ポリエステル粒子を含有する水及び/または有機溶剤の分散液を超音波処理することを特徴とする平均粒径(D50)が150μm以下である脂肪族ポリエステル粒子の製造方法が提供される。
 また更に、本発明によれば、前記の顆粒状脂肪族ポリエステル粒子を含有する水及び/または有機溶剤の分散液を、界面活性剤の存在下で攪拌処理することを特徴とする平均粒径(D50)が150μm以下である脂肪族ポリエステル粒子の製造方法が提供される。
 本発明は、高分子量で所定の粒径や粉体特性を備える顆粒状脂肪族ポリエステル粒子、好ましくは顆粒状PGA粒子を提供することにより、塗料その他多くの分野における原料または添加剤などとして有用な、高分子量で、所望の粒径や粒径分布を有する脂肪族ポリエステル粒子、好ましくはPGA粒子を容易に得ることができる効果を奏する。また、本発明の顆粒状脂肪族ポリエステル粒子は、流動性その他粒子としての取り扱い性及び保存性が優れているため、そのまま溶融成形等を行う原料ペレットとしても使用することができる効果を奏する。
 本発明の顆粒状脂肪族ポリエステル粒子は、(a)重量平均分子量(Mw)が10,000~800,000であり、かつ、(b)重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布が1.5~4.0である脂肪族ポリエステルからなり、
(i)個数粒径分布の50%累積値(D50)で表される平均粒径(D50)が250~3,000μm、(ii)嵩密度が0.2~0.9g/cm、及び、(iii)安息角が15~50度である顆粒状脂肪族ポリエステル粒子である。
 また、本発明の顆粒状脂肪族ポリエステル粒子の製造方法は、有機溶剤10~90質量%を含有する平均粒径(D50)が150μm以下である脂肪族ポリエステル粒子の組成物を、10~150℃の温度で常圧または減圧乾燥することを特徴とする、(a)重量平均分子量(Mw)が10,000~800,000であり、かつ、(b)重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布が1.5~4.0である脂肪族ポリエステルからなり、(i)個数粒径分布の50%累積値(D50)で表される平均粒径(D50)が250~3,000μm、(ii)嵩密度が0.2~0.9g/cm、及び、(iii)安息角が15~50度である顆粒状脂肪族ポリエステル粒子の製造方法である。
1.脂肪族ポリエステル
 本発明の顆粒状脂肪族ポリエステル粒子を構成する脂肪族ポリエステルは、グリコール酸及びグリコール酸の2分子間環状エステルであるグリコリド(GL)を含むグリコール酸類、乳酸及び乳酸の2分子間環状エステルであるラクチドを含む乳酸類、シュウ酸エチレン(すなわち、1,4-ジオキサン-2,3-ジオン)、ラクトン類(例えば、β-プロピオラクトン、β-ブチロラクトン、ピバロラクトン、γ-ブチロラクトン、δ-バレロラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトン等)、カーボネート類(例えばトリメチレンカーボネート等)、エーテル類(例えば1,3-ジオキサン等)、エーテルエステル類(例えばジオキサノン等)などの環状モノマー;3-ヒドロキシプロパン酸、4-ヒドロキシブタン酸、6-ヒドロキシカプロン酸などのヒドロキシカルボン酸またはそのアルキルエステル;エチレングリコール、1,4-ブタンジオール等の脂肪族ジオール類と、こはく酸、アジピン酸等の脂肪族カルボン酸類またはそのアルキルエステル類との実質的に等モルの混合物;等の脂肪族エステルモノマー類の単独重合体、または共重合体が含まれる。なかでも、式:(-O-CH(R)-C(O)-)[Rは、水素原子またはメチル基である。]で表わされるグリコール酸または乳酸繰り返し単位を70モル%以上有する脂肪族ポリエステルが好ましい。具体的には、PLA、すなわち、L乳酸の単独重合体(以下、「PLLA」ということがある。)、D乳酸の単独重合体、L乳酸若しくはD乳酸の繰り返し単位を70モル%以上有する共重合体、これらの混合物、または、PGA、すなわち、グリコール酸の単独重合体、若しくは、グリコール酸繰り返し単位を70モル%以上有する共重合体が好ましい。特に好ましいのは、分解性、耐熱性、ガスバリア性、機械的強度に優れたPGAである。
 したがって、本発明の顆粒状脂肪族ポリエステル粒子は、好ましくは顆粒状PLA粒子または顆粒状PGA粒子であり、特に好ましくは顆粒状PGA粒子である。
 以下、脂肪族ポリエステルについての発明を実施するための形態を、PGAを例にとって、更に説明するが、PLAその他についても、PGAに準じて発明を実施するための形態をとることができる。
〔ポリグリコール酸(PGA)〕
 本発明で、顆粒状脂肪族ポリエステル粒子の原料として、特に好ましく用いられるPGAは、式:(-O-CH-C(O)-)で表わされるグリコール酸繰り返し単位のみからなるグリコール酸のホモポリマー(グリコール酸の2分子間環状エステルであるグリコリド(GL)の開環重合物を含む)に加えて、上記グリコール酸繰り返し単位を70モル%以上含むPGA共重合体を含むものである。
 上記グリコリド等のグリコール酸モノマーとともに、PGA共重合体を与えるコモノマーとしては、例えば、シュウ酸エチレン(即ち、1,4-ジオキサン-2,3-ジオン)、ラクチド類、ラクトン類、カーボネート類、エーテル類、エーテルエステル類、アミド類などの環状モノマー;乳酸、3-ヒドロキシプロパン酸、3-ヒドロキシブタン酸、4-ヒドロキシブタン酸、6-ヒドロキシカプロン酸などのヒドロキシカルボン酸またはそのアルキルエステル;エチレングリコール、1,4-ブタンジオール等の脂肪族ジオール類と、こはく酸、アジピン酸等の脂肪族ジカルボン酸類またはそのアルキルエステル類との実質的に等モルの混合物;またはこれらの2種以上を挙げることができる。これらコモノマーは、その重合体を、上記グリコリド等のグリコール酸モノマーとともに、PGA共重合体を与えるための出発原料として用いることもできる。
 本発明の顆粒状PGA粒子の原料となるPGA中の上記グリコール酸繰り返し単位は70モル%以上、好ましくは80モル%以上、より好ましくは90モル%以上、更に好ましくは95モル%以上、特に好ましくは98モル%以上であり、最も好ましくは99モル%以上である実質的にPGAホモポリマーである。この割合が小さ過ぎると、PGAに期待される強度や分解性が乏しくなる。グリコール酸繰り返し単位以外の繰り返し単位は、30モル%以下、好ましくは20モル%以下、より好ましくは10モル%以下、更に好ましくは5モル%以下、特に好ましくは2モル%以下であり、最も好ましくは1モル%以下の割合で用いられる。
 本発明の顆粒状PGA粒子の原料となるPGAとしては、所望の高分子量ポリマーを効率的に製造するために、グリコリド70~100質量%及び上記したコモノマー30~0質量%を重合して得られるPGAが好ましい。コモノマーとしては、2分子間の環状モノマーであってもよいし、環状モノマーでなく両者の混合物であってもよいが、本発明が目的とするPGA粒子とするためには、環状モノマーが好ましい。以下、グリコリド70~100質量%及び他の環状モノマー30~0質量%を開環重合して得られるPGAについて詳述する。
〔グリコリド〕
 開環重合によってPGAを形成するグリコリドは、ヒドロキシカルボン酸の1種であるグリコール酸の2分子間環状エステルである。グリコリドの製造方法は、特に限定されないが、一般的には、グリコール酸オリゴマーを熱解重合することにより得ることができる。グリコール酸オリゴマーの解重合法として、例えば、溶融解重合法、固相解重合法、溶液解重合法などを採用することができ、また、クロロ酢酸塩の環状縮合物として得られるグリコリドも用いることができる。なお、所望により、グリコリドとしては、グリコリド量の20質量%を限度として、グリコール酸を含有するものを使用することができる。
 本発明の顆粒状PGA粒子の原料となるPGAは、グリコリドのみを開環重合させて形成してもよいが、他の環状モノマーを共重合成分として同時に開環重合させて共重合体を形成してもよい。共重合体を形成する場合には、グリコリドの割合は、70質量%以上、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上、特に好ましくは98質量%以上であり、最も好ましくは99質量%以上である実質的にPGAホモポリマーである。
〔環状モノマー〕
 グリコリドとの共重合成分として使用することができる他の環状モノマーとしては、ラクチドなど他のヒドロキシカルボン酸の2分子間環状エステルの外、ラクトン類(例えば、β-プロピオラクトン、β-ブチロラクトン、ピバロラクトン、γ-ブチロラクトン、δ-バレロラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトン等)、トリメチレンカーボネート、1,3-ジオキサンなどの環状モノマーを使用することができる。好ましい他の環状モノマーは、他のヒドロキシカルボン酸の2分子間環状エステルであり、ヒドロキシカルボン酸としては、例えば、L-乳酸、D-乳酸、α-ヒドロキシ酪酸、α-ヒドロキシイソ酪酸、α-ヒドロキシ吉草酸、α-ヒドロキシカプロン酸、α-ヒドロキシイソカプロン酸、α-ヒドロキシヘプタン酸、α-ヒドロキシオクタン酸、α-ヒドロキシデカン酸、α-ヒドロキシミリスチン酸、α-ヒドロキシステアリン酸、及びこれらのアルキル置換体などを挙げることができる。特に好ましい他の環状モノマーは、乳酸の2分子間環状エステルであるラクチドであり、L体、D体、ラセミ体、これらの混合物のいずれであってもよい。
 他の環状モノマーは、30質量%以下、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下、特に好ましくは2質量%以下であり、最も好ましくは1質量%以下の割合で用いられる。グリコリドと他の環状モノマーとを開環共重合することにより、PGA(共重合体)の融点を低下させて加工温度を下げたり、結晶化速度を制御して押出加工性や延伸加工性を改善することができる。しかし、これらの環状モノマーの使用割合が大きすぎると、形成されるPGA(共重合体)の結晶性が損なわれて、耐熱性、ガスバリヤー性、機械的強度などが低下する。なお、PGAが、グリコリド100質量%から形成される場合は、他の環状モノマーは0質量%であり、このPGAも本発明の範囲に含まれる。
〔開環重合反応〕
 グリコリドの開環重合または開環共重合(以下、総称して、「開環(共)重合」ということがある。)は、好ましくは、少量の触媒の存在下に行われる。触媒は、特に限定されないが、例えば、ハロゲン化錫(例えば、二塩化錫、四塩化錫など)や有機カルボン酸錫(例えば、2-エチルヘキサン酸錫などのオクタン酸錫)などの錫系化合物;アルコキシチタネートなどのチタン系化合物;アルコキシアルミニウムなどのアルミニウム系化合物;ジルコニウムアセチルアセトンなどのジルコニウム系化合物;ハロゲン化アンチモン、酸化アンチモンなどのアンチモン系化合物;などがある。触媒の使用量は、環状エステルに対して、質量比で、好ましくは1~1,000ppm、より好ましくは3~300ppm程度である。
 グリコリドには通常、微量の水分と、グリコール酸及び直鎖状のグリコール酸オリゴマーからなるヒドロキシカルボン酸化合物とが不純物として含まれている。これら不純物の全プロトン濃度を、好ましくは0.01~0.5モル%、より好ましくは0.02~0.4モル%、特に好ましくは0.03~0.35モル%に調整することにより、生成するPGAの溶融粘度や分子量等の物性を制御することができる。全プロトン濃度の調整は、精製したグリコリドに水を添加することによっても実施することができる。
 グリコリドの開環(共)重合は、塊状重合でも、溶液重合でもよいが、多くの場合、塊状重合が採用される。分子量調節のために、ラウリルアルコールなどの高級アルコールや水などを分子量調節剤として使用することができる。また、物性改良のために、グリセリンなどの多価アルコールを添加してもよい。塊状重合の重合装置としては、押出機型、パドル翼を持った縦型、ヘリカルリボン翼を持った縦型、押出機型やニーダー型の横型、アンプル型、板状型、管状型など様々な装置の中から、適宜選択することができる。また、溶液重合には、各種反応槽を用いることができる。
 重合温度は、実質的な重合開始温度である120℃から300℃までの範囲内で目的に応じて適宜設定することができる。重合温度は、好ましくは130~270℃、より好ましくは140~260℃、特に好ましくは150~250℃である。重合温度が低すぎると、生成したPGAの分子量分布が広くなりやすい。重合温度が高すぎると、生成したPGAが熱分解を受けやすくなる。重合時間は、3分間~20時間、好ましくは5分間~18時間の範囲内である。重合時間が短すぎると重合が充分に進行し難く、所定の重量平均分子量を実現することができない。重合時間が長すぎると生成したPGAが着色しやすくなる。
 生成したPGAを固体状態とした後、所望により、更に固相重合を行ってもよい。固相重合とは、PGAの融点未満の温度で加熱することにより、固体状態を維持したままで熱処理する操作を意味する。この固相重合により、未反応モノマー、オリゴマーなどの低分子量成分が揮発・除去される。固相重合は、好ましくは1~100時間、より好ましくは2~50時間、特に好ましくは3~30時間で行われる。
 また、固体状態のPGAを、その融点Tm+38℃以上、好ましくはTm+38℃からTm+100℃までの温度範囲内で溶融混練する工程により熱履歴を与えることによって、結晶性を制御してもよい。
〔重量平均分子量(Mw)〕
 本発明においては、これらの重合方法によって得られたPGAを原料として、高分子量で、取り扱い性及び保存性に優れた顆粒状PGA粒子を製造する。顆粒状PGA粒子を製造する過程では、分子量が低下する場合もあるので、本発明のPGA粒子の原料となる、重合で得られたPGAは、重量平均分子量(Mw)が、100,000~1,500,000の範囲内にあるものが好ましく、より好ましくは120,000~1,300,000、更に好ましくは150,000~1,100,000、特に好ましくは180,000~1,000,000の範囲内にあるものを選択する。
〔末端カルボキシル基濃度〕
 本発明の顆粒状PGA粒子の原料となるPGAの末端カルボキシル基濃度を、好ましくは0.1~300eq/10g、より好ましくは1~250eq/10g、更に好ましくは6~200eq/10g、特に好ましくは12~75eq/10g、とすることによって、得られる顆粒状PGA粒子の分解性を最適な程度に調整することができる。PGAの分子中には、カルボキシル基及び水酸基が存在している。このうち分子末端にあるカルボキシル基の濃度、すなわち、末端カルボキシル基濃度が小さすぎると加水分解性が低すぎるため、分解速度が低下する。末端カルボキシル基濃度が大きすぎると、加水分解が早く進行するため、長期間に亘って、成形品性能、塗膜強度やトナー性能を発揮することができず、また、PGAの初期強度が低いため、強度の低下が速くなる。末端カルボキシル基濃度を調整するには、例えば、PGAを重合するときに、触媒または分子量調節剤の種類や添加量を変更するなどの方法によればよい。
〔残留グリコリド量〕
 本発明の顆粒状PGA粒子の原料となるPGAの残留グリコリド量を、好ましくは0.2質量%以下、より好ましくは0.15質量%以下、特に好ましくは0.12質量%以下に抑制することによって、溶融成形加工や、トナー粒子や塗膜を形成するための加工中にPGAの分子量が低下することを抑制し、耐水性を向上させることができる。この目的のためには、例えば、PGAを重合するときに、重合の終期(好ましくはモノマーの反応率として50%以上において)に、重合温度を、系が固相となるように、200℃未満、より好ましくは140~195℃、更に好ましくは160~190℃となるように調節することが好ましく、また生成したPGAを残留グリコリドの気相への脱離除去工程に付すことも好ましい。残留グリコリド量が多すぎると、成形加工や、トナー粒子や塗膜を形成するための加工中にPGAの分子量が低下し、長期間に亘って、性能を発揮することができない。
〔1%熱重量減少開始温度〕
 本発明の顆粒状PGA粒子の原料となるPGAの1%熱重量減少開始温度を好ましくは210℃以上、より好ましくは213℃以上、特に好ましくは215℃以上とすることによって、成形加工や、トナー粒子や塗膜を形成するための加工中にPGAの分子量が低下することが抑制される。1%熱重量減少開始温度の上限としては、通常235℃、好ましくは230℃である。1%熱重量減少開始温度は、PGAの耐熱性の指標として使用されるものであり、PGAを流速10ml/分の窒素気流下、50℃から2℃/分の昇温速度で加熱したとき、50℃でのPGAの重量(初期重量)からの重量減少率が1%になる温度である。PGA粒子に含まれるPGAの1%熱重量減少開始温度が低すぎると、成形加工や、トナー粒子や塗膜を形成するための加工中にPGAの分子量が低下し、長期間に亘って、性能を発揮することができない。1%熱重量減少開始温度を210℃以上とするためには、PGAを重合するときに、触媒失活剤、結晶核剤、可塑剤、酸化防止剤などの添加剤の添加量をできるだけ少なくするなどの方法によればよい。
 本発明の顆粒状PGA粒子を製造する原料として、PGAに加えて、本発明の目的に反しない限度において、ポリ乳酸、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリβ-プロピオラクトン、ポリカプロラクトンなどの脂肪族ポリエステル類、ポリエチレングリコール、ポリプロピレングリコールなどのポリグリコール類、変性ポリビニルアルコール、ポリウレタン、ポリL-リジンなどのポリアミド類などの他の樹脂や、可塑剤、酸化防止剤、熱安定剤、紫外線吸収剤、滑剤、離型剤、ワックス類、着色剤、結晶化促進剤、水素イオン濃度調節剤、補強繊維のような充填材等の通常配合される添加剤を必要に応じて配合することができる。
2.ポリグリコール酸からなる顆粒状ポリグリコール酸粒子
 本発明の顆粒状PGA粒子は、「1.脂肪族ポリエステル」で述べたPGAから得られた顆粒状PGA粒子である。
 本発明の顆粒状PGA粒子は、(a)重量平均分子量(Mw)が10,000~800,000であり、(b)重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布が1.5~4.0であり、かつ、(c)式:(-O-CH-C(O)-)で表わされるグリコール酸繰り返し単位を70モル%以上有するPGAからなるものである。
〔重量平均分子量(Mw)〕
 本発明の顆粒状PGA粒子は、PGAの重量平均分子量(Mw)が、10,000~800,000の範囲にあるものである。重量平均分子量(Mw)が10,000~800,000の範囲にあることにより、成形加工性や塗膜形成性能、及び、機械的強度が良好となり、また、重量平均分子量(Mw)を調整することにより分解速度を制御することができる。重量平均分子量(Mw)は、好ましくは30,000~600,000、より好ましくは40,000~500,000、更に好ましくは50,000~300,000であり、多くの場合60,000~200,000の範囲で良好な物性を得ることができる。重量平均分子量が小さすぎると、強度が不足し、大きすぎると、成形加工や塗膜の形成などが困難になる。
 用途によって、より好ましいPGAの重量平均分子量(Mw)を選択すればよく、例えば、成形加工に用いる場合は、80,000~400,000の範囲が最も好ましく、塗料またはトナーに用いる場合は、60,000~350,000の範囲が最も好ましく、石油採掘に用いる場合は、50,000~300,000の範囲が最も好ましい。
〔分子量分布(Mw/Mn)〕
 本発明の顆粒状PGA粒子は、PGAの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布(Mw/Mn)を1.5~4.0の範囲内にすることによって、早期に生分解を受けやすい低分子量領域の重合体成分(低分子量物)の量を低減させて、分解速度を制御することができる。分子量分布が大きすぎると、分解速度がPGAの重量平均分子量に依存しなくなりやすい。分子量分布が小さすぎると、長期間に亘って、成形品の強度や塗膜強度等の性能を持続することが困難となる。分子量分布は、好ましくは1.6~3.7、より好ましくは1.65~3.5である。
 本発明の顆粒状PGA粒子に含まれるPGAの重量平均分子量を上記範囲内とし、かつ、分子量分布を上記範囲内に調整することにより、顆粒状PGA粒子の粒径や粒径分布を制御することができ、また、分解性能等を制御することができる。
 本発明の顆粒状PGA粒子に含まれるPGAの重量平均分子量(Mw)及び分子量分布(Mw/Mn)を所定の範囲内になるように調整するには、例えば、PGAを重合するときに、重合触媒の種類と量、分子量調節剤の種類と量、重合装置や重合温度、重合時間などの重合条件、重合後の後処理、及びこれらの組み合わせなどを工夫すればよい。
〔融点(Tm)〕
 本発明の顆粒状PGA粒子に含まれるPGAの融点(Tm)は、197~245℃であり、共重合成分の種類及び含有割合によって調整することが好ましい。より好ましくは200~240℃、更に好ましくは203~235℃、特に好ましくは205~230℃である。顆粒状PGA粒子の用途によっては、融点(Tm)が、207~230℃、更には210~230℃が好適な場合もある。融点(Tm)が低すぎると、成形品や塗料やトナーとして用いた場合の強度が不十分であったり、成形加工等を行う場合の温度管理が難しくなる。融点(Tm)が高すぎると、成形加工性が不足したり、塗膜の柔軟性が不足したりすることがある。融点が高すぎると、溶融成形や塗膜の形成等が困難となることがある。
〔溶融結晶化温度(TC2)〕
 本発明の顆粒状PGA粒子に含まれるPGAの溶融結晶化温度(TC2)は、105~195℃であることが好ましい。より好ましくは106~193℃、より好ましくは107~192℃、特に好ましくは108~190℃である。顆粒状PGA粒子の用途によっては、溶融結晶化温度(TC2)が、130~195℃、更には135~192℃、特には138~190℃が好適な場合もある。PGAの溶融結晶化温度(TC2)は、示差走査熱量測定機(DSC)を使用して、PGAを室温から255℃まで、10℃/分で昇温し、次いで、5℃/分の速度で室温まで降温するときに、降温過程に現れる発熱ピークを意味する。溶融結晶化温度(TC2)が高すぎると、顆粒状PGA粒子の粒径や粒径分布及び粒子形状の制御が行えなくなる。
3.顆粒状ポリグリコール酸粒子
 本発明の顆粒状PGA粒子は、(i)個数粒径分布の50%累積値(D50)で表される平均粒径(D50)が250~3,000μm、(ii)嵩密度が0.2~0.9g/cm、及び、(iii)安息角が15~50度である顆粒状PGA粒子である。なお、本発明のPGA粒子の粒径は、レーザー光回折/散乱法によって、粒径分布を測定して求めた。
〔平均粒径(D50)〕
 本発明の顆粒状PGA粒子の平均粒径(D50)は、個数粒径分布の50%累積値(D50)で表される値を意味し、その値は、250~3,000μmの範囲、好ましくは260~2,500μm、より好ましくは270~2,000μm、特に好ましくは280~1,500μmの範囲である。顆粒状PGA粒子の用途によっては、平均粒径(D50)が、310~2,000μm、更には350~1,500μmの範囲であることが好適な場合がある。平均粒径が小さすぎると、取り扱い性や保存性が不良となることがある。また、平均粒径が大きすぎると、時間の経過に伴って、または、機械的な刺激で顆粒状粒子が崩壊して、微粒子が発生し、顆粒状PGA粒子としての優れた性質が失われるおそれがある。
〔粒径分布〕
 本発明の顆粒状PGA粒子の粒径分布は、個数粒径分布の90%累積値(D90)及び個数粒径分布の10%累積値(D10)によって評価することができる。D90は、好ましくは500~3,500μm、より好ましくは510~3,000μm、更に好ましくは520~2,500μmである。D10は、好ましくは90~300μm、より好ましくは95~280μm、更に好ましくは100~250μmである。また、顆粒状PGA粒子の粒径分布は、D90/D10の値によって評価してもよい。例えば、D90/D10の値が1.2~12の範囲、好ましくは1.2~11、より好ましくは1.2~10、特に好ましくは1.2~9.5の範囲である。粒径分布が大きすぎると、PGA粒子の粒径のバラツキが大きい結果、流動性が不足して、取り扱い性や保存性が低下することがある。粒径分布が1.2より小さい顆粒状PGA粒子は、低コストで効率よく製造することが困難になりやすい。
〔嵩密度〕
 本発明の顆粒状PGA粒子の嵩密度は、0.2~0.9g/cmである。嵩密度は、株式会社細川粉体研究所製のパウダテスタPT-Sを使用して、JIS K6721に準じて測定した。顆粒状PGA粒子の嵩密度の値は、好ましくは0.2~0.8g/cm、より好ましくは0.2~0.7g/cm、更に好ましくは0.2~0.6g/cm、特に好ましくは0.2~0.5g/cmである。嵩密度が小さすぎると、取り扱い性が低下したり、時間の経過に伴って、または、機械的な刺激で顆粒状粒子が崩壊して、微粒子が発生することから保存性が低下し、顆粒状PGA粒子としての優れた性質が失われるおそれがある。0.9g/cmを超える嵩密度を有する顆粒状PGA粒子の製造は困難である。なお、0.4g/cmを超える範囲の嵩密度を有する顆粒状PGA粒子は、そのまま溶融成形等を行う原料ペレットとしても使用することができる。
〔安息角〕
 本発明の顆粒状PGA粒子の安息角は、15~50度である。安息角は、JIS K6721に従い、先の嵩密度測定装置のロートに試料粒子120cmを入れ、ダンパーを引き抜いて試料粒子を直下14cmの径40mmの安息角測定用テーブルに全量落下させ、このテーブルと粒子試料による稜線との角度を分度器により測定した。安息角の数値が小さいほど流動性は優れる。顆粒状PGA粒子の安息角の値は、好ましくは18~45度、より好ましくは19~43度、更に好ましくは20~41度、特に好ましくは21~39度である。安息角が大きすぎると、顆粒状PGA粒子の流動性が不足することがある。他方、安息角が15度を下回る顆粒状PGA粒子は、低コストで効率よく製造することが困難である。本発明の顆粒状PGA粒子は、流動性が極めてよく、取り扱い性に優れているので、そのまま溶融成形等を行う原料ペレットしても使用することができる。
〔粉体流動性〕
 本発明の顆粒状PGA粒子は、40秒以下の粉体流動性を有することが好ましい。より好ましくは35秒以下、更に好ましくは30秒以下、特に好ましくは25秒以下の粉体流動性を有すると、取り扱い性が優れている。粉体流動性は、JIS K6721に従い、先の嵩密度測定装置のロートに試料粒子120cmを入れ、ダンパーを引き抜いて試料粒子を直下14cmの安息角測定用テーブルに全量落下するのに要した時間(単位:秒)として求める。なお、平均粒径(D50)が、例えば10μm以下のように粒径が小さい粒子の場合は、凝集や帯電などにより試料粒子がブロッキングを起こし、ロート中で閉塞し、ロートから落下しないこともある。
〔粒径が10μm以下である微粒子の含有量〕
 本発明の顆粒状PGA粒子においては、粒径が10μm以下である微粒子を実質的に含まないことが好ましい。粒径が10μm以下である微粒子を実質的に含まないとは、個数粒径分布において、粒径が10μm以下の粒子の累積値が、1.0%未満であることを意味する。粒径が10μm以下の粒子の累積値は、好ましくは0.8%未満、より好ましくは0.6%未満、特に好ましくは0.4%未満である。粒径が10μm以下である微粒子が多すぎると、顆粒状PGA粒子の流動性が低下して、取り扱い性や保存性が低下することがある。
4.顆粒状PGA粒子の製造
 本発明の顆粒状PGA粒子は、個数粒径分布の50%累積値(D50)で表される平均粒径(D50)が150μm以下であるポリグリコール酸粒子90~10質量%及び有機溶剤10~90質量%とを含有するPGA粒子の組成物、例えば、ウエットケーキを、10~150℃の温度で常圧または減圧乾燥することにより製造することができる。
(1)平均粒径(D50)が150μm以下であるPGA粒子
 本発明の顆粒状PGA粒子は、平均粒径(D50)が150μm以下であるPGA粒子から製造される。
 このPGA粒子は、平均粒径(D50)が150μm以下であるPGA粒子であれば、その製造方法は特に限定されない。例えば、重合して得られたPGAの溶融固化物を切断または粉砕して製造したPGA粒子でもよい。PGAの溶液または分散液から析出させて製造したPGA粒子でもよい。また、先の特許文献3として挙げた、PGAを有機溶媒に溶解した溶液を冷却して粒子の懸濁液を得る方法で製造したPGA粒子でもよい。
 PGA粒子の形状、粒径や粒径分布の均一性を実現することが容易であることから、先に特許文献3として挙げた方法により製造したPGA粒子が好ましい。
 具体的には、「1.脂肪族ポリエステル」で説明した方法により重合を行って製造したPGAを、非プロトン性極性有機溶媒に150~240℃の温度で溶解する溶液形成工程;該溶液を、攪拌しながら140℃以下に冷却して、PGAの粒子を含有する懸濁液を得る冷却工程;及び、該懸濁液からPGAの粒子を分離する分離工程;とによって、PGA粒子を得ることができる。原料であるPGA、非プロトン性極性有機溶媒の種類、溶液形成工程における溶解温度、冷却工程における冷却速度や攪拌速度などの条件を選択することによって、得られるPGA粒子の平均粒径や粒径分布などを調整することができる。また、分離工程で分離したPGA粒子を分級することによっても、PGA粒子の平均粒径や粒径分布などを調整することができる。
 非プロトン性極性有機溶媒としては、ジブチルフタレート、ジオクチルフタレート、ジベンジルフタレート、ベンジルブチルフタレート、ベンジルベンゾエートなどの芳香族カルボン酸エステル;酢酸エチル、酢酸ブチル、アジピン酸ジメチル、コハク酸ジメチルなどの脂肪族カルボン酸エステル;エチレングリコールモノブチルエーテル、ジプロピレングリコールブチルエーテル、2-(2-メトキシエトキシ)エタノール(Triglyme)、ビス(2-メトキシエチル)エーテル、ジブチルジエチレングリコール(DBDG)などのエーテル系溶媒;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド系溶媒;N-メチル-2-ピロリドンなどのピロリドン系溶媒;及びこれらの混合物などがあげられるが、これらに限定されない。非プロトン性極性有機溶媒は、PGAの解重合反応の溶媒としても用いられるものであるが、PGAを加熱条件下に溶解させる必要があることから、沸点が230~450℃の範囲内にあることが好ましく、より好ましくは260~430℃、特に好ましくは280~420℃の範囲内である。非プロトン性極性有機溶媒の沸点が低すぎると、PGAの溶解のために加熱温度を高く設定することができず、PGAの溶解速度が低下して、溶液形成工程に長時間を要したり、PGAがすべて溶解せず、溶液が形成されないことがある。一方、非プロトン性極性有機溶媒の沸点が高すぎると、後の工程において、該溶媒の除去に長時間を要することがある。
 PGA粒子におけるPGAの重量平均分子量(Mw)を所定の範囲内とし、平均粒径及び粒径分布を所定の範囲内とするためには、非プロトン性極性有機溶媒の水分量が少ないことが好ましく、水分量が、通常1,200ppm以下、好ましくは1,000ppm以下、より好ましくは700ppm以下、更に好ましくは600ppm以下、特に必要な場合には400ppm以下となるように、定法により脱水を行うとよい。
 非プロトン性極性有機溶媒としては、溶液形成工程に続く冷却工程において、PGAの粒子を含有する懸濁液を得やすいこと、及び、続く分離工程において分離したPGAの粒子から、除去しやすいことから、N-メチル-2-ピロリドン(以下、「NMP」ということがある。)が好ましい。
 冷却工程によって、PGA粒子が懸濁した懸濁液を得るに当たり、一般的に使用されている分散剤を用いる必要はない。しかし、冷却工程において、分散剤を使用すると、比較的早い冷却速度で、懸濁液を得ることができるので、冷却工程の時間を短縮することができる。分散剤の使用量は特に限定されないが、PGA100質量部に対して、通常0.05~1.5質量部、好ましくは0.1~1.0質量部、より好ましくは0.2~0.5質量部の分散剤を、冷却工程を開始する前、または冷却工程の途中で、添加することができる。使用することができる分散剤としては、デカノール、グリセリン等の脂肪族アルコール;クレゾール、クロロフェノール等の芳香族アルコール;オクチルトリエチレングリコール等のポリアルキレングリコールモノエーテル;などが挙げられる。
 冷却工程において行う攪拌の攪拌速度は、通常30~130rpm、好ましくは35~120rpm、より好ましくは40~110rpm、特に好ましくは45~100rpmの範囲の速度で攪拌することにより、PGA粒子の粒径や粒径分布及び形状を制御することができる。
 冷却工程においては、粒子の分散液を製造する際に通常採用される、超音波による分散、攪拌機による分散などの操作を行ってもよい。例えば、ホモジナイザー、ホモミキサー、ロールミル、ビーズミル、高圧型湿式微粉化装置などが挙げられる。しかし、過度に分散の操作を行うと、PGA粒子の平均粒径が小さくなりすぎたり、微細な粒子の割合が増加することがあるので、留意が必要である。
 更に、冷却工程においては、必要により、例えば、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸などのスルホン酸類、アルキルリン酸などのリン酸類などの酸触媒、該酸触媒のアミンブロック体などの硬化助剤、レベリング剤、消泡剤、滑剤などの添加剤、顔料などの着色剤などを、冷却工程において添加して、PGA粒子に担持させてもよい。
 続いて、分離工程において、懸濁液から、PGA粒子を分離する方法としては、ろ過、特に、吸引ろ過や、遠心分離などの方法があげられるが、これらに限定されるものではない。ろ過するためのフィルターとしては、例えばセルロースろ紙やセラミックフィルターなどがあげられる。
 分離工程においては、分離されたPGA粒子を、通常、有機溶剤で洗浄する。PGA粒子を洗浄するための有機溶剤としては、アセトンやエタノールなどを使用することができる。
 洗浄を行った後に、PGA粒子を乾燥させて、有機溶剤を除去する。乾燥方法としては、真空乾燥、自然乾燥、ドライヤーまたはオーブンによる乾燥などの定法を採用することができ、特に限定されない。ただし、ドライヤーまたはオーブンによる乾燥を行う際は、PGA粒子が溶融しない温度に設定する必要があり、通常70~180℃、好ましくは80~160℃、より好ましくは90~140℃の温度範囲である。
 得られるPGA粒子から溶媒を除去しやすくするために、ろ過等によるPGA粒子の分離に先立って、懸濁液に含まれるNMP等の非プロトン性極性有機溶媒を、より揮発性が高い溶剤に置換してもよい。より揮発性が高い溶剤としては、例えば、メチルエチルケトン、アセトン等のケトン類;メタノール、エタノール等のアルコール類;ヘキサン、シクロヘキサン、ベンゼン、トルエン等の炭化水素類;ジエチルエーテル、テトラヒドロフラン等のエーテル類;などが挙げられる。顆粒状PGA粒子の粉体性状を制御しやすいことから、メチルエチルケトンが好ましい。
 平均粒径(D50)が150μm以下であるPGA粒子から製造することによって、所期の平均粒径、粒径分布、嵩密度及び安息角等の粉体性状を有する本発明の顆粒状PGA粒子を容易に得ることができる。
 平均粒径(D50)が150μm以下であるPGA粒子の平均粒径(D50)は、最終用途に適した大きさを選択すればよく、50μm以下でもよいし、30μm以下でもよいし、15μm以下でもよく、用途により特に好ましくは10μm以下のものでもよい。
(2)有機溶剤10~90質量%を含有する平均粒径(D50)が150μm以下であるPGA粒子の組成物
 本発明の顆粒状PGA粒子は、上記の平均粒径(D50)が150μm以下であるポリグリコール酸粒子が、有機溶剤10~90質量%を含有するPGA粒子の組成物である状態で、常圧または減圧乾燥することによって製造することができる。
 例えば、先に述べた溶液形成工程、冷却工程、及び、分離工程を経て得られたPGA粒子は、分離工程を経た後にも、非プロトン性極性有機溶媒が残留している。本発明の顆粒状PGA粒子を製造するためには、後述の常圧または減圧乾燥処理により、溶媒を除去する必要がある。PGA粒子中に、多量の溶媒が残留していると、溶媒の除去に多くのエネルギーを要するとともに、長時間にわたる溶媒の除去のための加熱により、所期の特性を備える顆粒状PGA粒子が得られないことがある。他方、PGA粒子中に残留している溶媒が少なすぎると、常圧または減圧乾燥処理を行っても、PGA粒子の凝集が生じないなどの結果、所期の特性を備える顆粒状PGA粒子が得られないことがある。
 したがって、平均粒径(D50)が150μm以下であるポリグリコール酸粒子は、有機溶剤を10~90質量%とPGA粒子90~10質量%とを含有するPGA粒子の組成物の状態、好ましくは有機溶剤20~80質量%とPGA粒子80~20質量%、より好ましくは有機溶剤30~70質量%とPGA粒子70~30質量%、特に好ましくは有機溶剤40~60質量%とPGA粒子60~40質量%を含有するPGA粒子の組成物の状態で、顆粒状PGA粒子を製造するとよい。
 有機溶剤を10~90質量%含有するPGA粒子の組成物は、いわゆるウエットケーキ状態から、僅かに流動する程度までの状態を示す。有機溶剤が少なすぎると、後述する常圧または減圧乾燥を行っても、有機溶剤が早く除去されて、粒子の凝集が生じず、平均粒径が250μm以上の顆粒状PGA粒子が得られないことがある。有機溶剤が多すぎると、後述する常圧または減圧乾燥による溶剤除去に長時間を要し、かつ、顆粒の粒径分布が広くなることがある。
 有機溶剤としては、NMP等の非プロトン性極性有機溶媒や、先に、より揮発性が高い溶剤として示した、メチルエチルケトン、アセトン等のケトン類;メタノール、エタノール等のアルコール類;ヘキサン、シクロヘキサン、ベンゼン、トルエン等の炭化水素類;ジエチルエーテル、テトラヒドロフラン等のエーテル類;などを使用することができ、特にメチルエチルケトンが好ましい。
(3)常圧または減圧乾燥
 本発明の顆粒状PGA粒子は、上記の有機溶剤10~90質量%を含有する平均粒径(D50)が150μm以下であるPGA粒子の組成物を、10~150℃の温度で常圧または減圧乾燥することによって製造される。
 常圧または減圧乾燥を行う温度が高すぎると、有機溶剤の除去が早く進行して、PGA粒子の十分な凝集が生じないなどの結果、所期の粉体性状を有する顆粒状PGA粒子が得られないことがある。減圧乾燥を行う温度が低すぎると、有機溶剤の除去に長時間を要するとともに、PGA粒子の十分な凝集が生じず、所期の特性を備える顆粒状PGA粒子が得られないことがある。常圧または減圧乾燥を行う温度と圧力の組み合わせは多様であるが、好ましくは12~80℃、より好ましくは15~60℃であり、常温で減圧乾燥すればよい場合が多い。
 減圧としては、有機溶剤の除去を効率的に行うことができれば、特に制限はなく、好ましくは50torr以下、より好ましくは30torr以下、更に好ましくは20torr以下とすればよく、特に好ましくは10torr以下の真空環境である。
 常圧または減圧乾燥を行う時間は、温度と減圧の程度にもよるが、通常6~48時間、好ましくは8~40時間、より好ましくは10~30時間、特に好ましくは12~24時間の範囲内で、調整すればよい。
(4)顆粒状PGA粒子の回収
 ウエットケーキのPGA粒子を常圧または減圧乾燥処理を行い、顆粒状PGA粒子を回収する。
5.顆粒状PGA粒子からのPGA粒子の製造
 本発明の顆粒状PGA粒子は、水、有機溶剤、または水と有機溶剤との混合物に分散した分散液として、該分散液を超音波処理することで、顆粒状PGA粒子における粒子が凝集した構造がなくなり、短時間で個数粒径分布の50%累積値(D50)で表される平均粒径(D50)が150μm以下であるPGA粒子の分散液を得ることができる。PGA粒子は、ろ過、遠心分離等により、分散液から分離し、必要により洗浄を行い、乾燥させて得ることができる。
 顆粒状PGA粒子の分散液を製造するために使用する有機溶剤としては、アセトン、メタノール、エタノール、イソプロパノールなどが挙げられる。これらの有機溶剤及び/または水に、顆粒状PGA粒子を0.05~30質量%、好ましくは0.1~20質量%、より好ましくは0.2~15質量%、特に好ましくは0.5~10質量%分散させて、顆粒状PGA粒子の分散液とする。
 分散液には、界面活性剤を添加することができ、カチオン性界面活性剤、アニオン性界面活性剤、両性界面活性剤及びノニオン性界面活性剤などを幅広く使用することができる。好ましい界面活性剤は、SNディスパーサント7347-c希釈液(カチオン性界面活性剤)や22%アルキルエーテル硫酸エステルナトリウム(アニオン性界面活性剤)などがある。界面活性剤の添加量は、分散液中に0.01~5質量%、好ましくは0.03~3質量%、より好ましくは0.05~2質量%、更に好ましくは0.1~2質量%である。
 超音波処理は、容器に入れた分散液に対して、発振周波数が、通常15~100kHz、好ましくは20~80kHz、より好ましくは25~60kHzの超音波を、出力が、通常10~200W、好ましくは20~150W、より好ましくは30~100Wの範囲で、適宜調整して賦課すればよい。超音波処理を行う時間は、1秒間~1時間、好ましくは10秒間~30分間である。必要により、併せて攪拌処理を行ってもよい。
 また、本発明の顆粒状PGA粒子は、PGA粒子を、水及び/または有機溶剤に分散した分散液として、このPGA分散液を、界面活性剤の存在下で攪拌処理することによっても、顆粒状PGA粒子における粒子が凝集した構造がなくなり、短時間で平均粒径150μm以下であるPGA粒子の分散液を得ることができる。必要により、攪拌処理と併せて超音波処理を行ってもよい。PGA粒子は、ろ過、遠心分離等により、分散液から分離し、必要により洗浄を行い、乾燥させて回収することができる。界面活性剤としては、先に挙げたものを使用することができ、水または有機溶剤に対する添加量も同様である。
 顆粒状PGA粒子からPGA粒子を製造するための攪拌処理は、通常50~2,000rpm程度であり、好ましくは60~1,800rpm、より好ましくは80~1,500rpmである。
 以下に、実施例及び比較例を挙げて、本発明についてより具体的に説明するが、本発明はこれら実施例に限られるものではない。
 実施例及び比較例における顆粒状PGA粒子、PGA粒子及びPGAの物性及び特性の測定方法は、以下のとおりである。
(1)重量平均分子量(Mw)、数平均分子量(Mn)及び分子量分布(Mw/Mn):
 PGAの重量平均分子量(Mw)、並びに、顆粒状PGA粒子及びPGA粒子の重量平均分子量(Mw)、数平均分子量(Mn)及び分子量分布(Mw/Mn)の測定は、ゲルパーミエーションクロマトグラフィー(GPC)分析装置を用いて、以下の条件で行った。
 ヘキサフルオロイソプロパノール(セントラル硝子株式会社製の製品を蒸留してから使用)に、トリフルオロ酢酸ナトリウム塩(関東化学株式会社製)を加えて溶解し、5mMトリフルオロ酢酸ナトリウム塩溶媒(A)を作成する。
 溶媒(A)を40℃、1ml/分の流速でカラム(HFIP-LG+HFIP-806M×2:SHODEX製)中に流し、分子量82.7万、10.1万、3.4万、1.0万、及び0.2万の5つの分子量既知のポリメタクリル酸メチル(POLYMER LABORATORIES LTD.製)の各10mgと溶媒(A)とで10mlの溶液とし、そのうちの100μlをカラム中に通し、屈折率(RI)検出による検出ピーク時間を求める。5つの標準試料の検出ピーク時間と分子量とをプロットすることにより、分子量の検量線を作成する。
 次に、試料であるPGA10mgに溶媒(A)を加えて10mlの溶液とし、そのうちの100μlをカラム中に通して、その溶出曲線から重量平均分子量(Mw)、数平均分子量(Mn)、及び分子量分布(Mw/Mn)を求める。計算には、株式会社島津製作所製C-R4AGPCプログラムVer1.2を用いた。
(2)末端カルボキシル基濃度
 顆粒状PGA粒子の原料となるPGAの末端カルボキシル基濃度の測定は、PGA約300mgを、150℃で約3分間加熱してジメチルスルホキシド10mlに完全に溶解させ、室温まで冷却した後、指示薬(0.1質量%のブロモチモールブルー/アルコール溶液)を2滴加えた後、0.02規定の水酸化ナトリウム/ベンジルアルコール溶液を加えていき、目視で溶液の色が黄色から緑色に変わった点を終点とした。その時の滴下量よりPGA1トン(10g)あたりの当量として末端カルボキシル基濃度を算出した。
(3)残留グリコリド量
 顆粒状PGA粒子の原料となるPGAの残留グリコリド量の測定は、PGA約100mgに、内部標準物質4-クロロベンゾフェノンを0.2g/lの濃度で含むジメチルスルホキシド2gを加え、150℃で約5分間加熱して溶解させ、室温まで冷却した後、ろ過を行う。その溶液を1μl採取し、ガスクロマトグラフィ(GC)装置に注入して測定を行った。この測定により得られた数値より、PGA中に含まれる質量%として、グリコリド量を算出した。GC分析条件は以下のとおりである。
装置:株式会社島津製作所製「GC-2010」
カラム:「TC-17」(0.25mmφ×30m)
カラム温度:150℃で5分保持後、20℃/分で270℃まで昇温して、270℃で3分間保持。
気化室温度:180℃
検出器:FID(水素炎イオン化検出器)、温度:300℃。
(4)1%熱重量減少開始温度
 顆粒状PGA粒子の原料となるPGAの1%熱重量減少開始温度の測定は、メトラー社製熱重量測定装置TG50を用い、流速10ml/分で窒素を流し、この窒素雰囲気下、PGAを50℃から2℃/分の昇温速度で加熱して、重量減少率を測定した。50℃におけるPGAの重量(W50)に対し、該重量が1%減少したときの温度を正確に読み取り、その温度をPGAの1%熱重量減少開始温度とする。
(5)融点(Tm)及び溶融結晶化温度(TC2
 顆粒状PGA粒子に含まれるPGAの融点(Tm)及び溶融結晶化温度(TC2)の測定は、株式会社島津製作所製示差走査熱量測定機(DSC)を使用し、PGA粒子試料約10mgを正確に秤量し、室温から255℃まで、10℃/分で昇温し、次いで、5℃/分の速度で室温まで降温するときの、昇温過程に現れる吸熱ピーク(融点)と降温過程に現れる発熱ピーク(溶融結晶化温度)を検出することにより行った。
(6)平均粒径及び粒径分布
 顆粒状PGA粒子及びPGA粒子の平均粒径及び粒径分布は、顆粒状PGA粒子またはPGA粒子を、界面活性剤(SNディスパーサント7347-c希釈液。界面活性剤濃度20質量%)を含有する水に分散させたPGA粒子分散液として、レーザー回折式粒度分布測定装置SALD-3000S(株式会社島津製作所製)を使用して、以下の条件で粒径分布を測定し、個数粒度分布を求めた。
入力屈折率: 1.70~0.20i
設定: STIRRER  ON メモリ=3
    SONICATOR  ON
    PUMP     ON メモリ=3
(7)嵩密度
 顆粒状PGA粒子及びPGA粒子の嵩密度の測定は、株式会社細川粉体工学研究所製のパウダテスタPT-Sを使用して、JIS K6721に準じて測定した。
(8)安息角及び粉体流動性
 顆粒状PGA粒子及びPGA粒子の安息角及び粉体流動性の測定は、JIS K6721に従い、(7)で述べた嵩密度測定装置の測定用ロートに顆粒または粉末試料120cmを入れ、ダンパーを引き抜いて試料粒子を直下14cmの径40mmの安息角測定用テーブルに全量落下させて行った。顆粒全量が落下するのに要した時間(単位:秒)から粉体流動性を求め、このテーブルと粒子試料による稜線との角度を分度器により測定して安息角を求めた。
[参考例]PGAの合成
〔グリコリドの合成〕
 ジャケット付き撹拌槽に、濃度70質量%のグリコール酸水溶液を仕込み、缶内液を200℃まで加熱昇温し、水を系外に留出させながら縮合反応を行った。次いで、缶内圧を段階的に減圧しながら、生成水、未反応原料などの低沸点物質を留去し、グリコール酸オリゴマーを得た。
 上記で調製したグリコール酸オリゴマーを反応槽に仕込み、溶媒としてジエチレングリコールジブチルエーテルを加え、更に、可溶化剤としてオクチルテトラエチレングリコールを加えた。加熱及び減圧下で解重合反応させて、生成グリコリドと溶媒とを共留出させた。留出物は、温水を循環させた二重管式コンデンサーで凝縮し、受器に受けた。受器内の凝縮液は、二液に層分離し、上層が溶媒で、下層がグリコリド層に凝縮された。受器の底部から液状グリコリドを抜き出し、得られたグリコリドを、塔型精製装置を用いて精製した。回収した精製グリコリドは、DSC測定による純度が99.99%以上であった。
〔重合〕
 ジャケット構造を有し、密閉可能な容積56lの容器内に、上記グリコリド22.5kg、二塩化錫2水和物0.68g(30ppm)、及び水1.49gを加え、全プロトン濃度を0.13モル%に調整した。容器を密閉し、撹拌しながらジャケットにスチームを循環させ、100℃になるまで加熱して、内容物を溶融し、均一な液体とした。内容物の温度を100℃に保持したまま、内径24mmの金属(SUS304)製管からなる装置に移した。170℃熱媒体油を循環させ、7時間保持して重合を行った。ジャケットに循環させている熱媒体油を冷却することにより、重合装置を冷却した後、生成PGAの塊状物を取り出した。収率は、ほぼ100%であった。塊状物を、粉砕機により粉砕した。得られたPGAの重量平均分子量(Mw)は200,000、末端カルボキシル基濃度は37eq/10g、残留グリコリド量は0.07質量%、1%熱重量減少開始温度は217℃であった。
[平均粒径(D50)が150μm以下であるPGA粒子の製造]
[製造例]
 温度計、ポリテトラフルオロエチレン製攪拌羽根(羽根幅75mm、高さ20mm、厚み4mmの半円状)を備えた容量500mlのセパラブルフラスコに、参考例によって製造したPGA30gと、溶媒としてNMP(水分含量550ppm)270gとを、正確に秤量して加えた。その後、窒素を通気しながら、マントルヒータで温度を210℃に設定して、加熱と攪拌を行った。攪拌速度は80rpmとした。液温が210℃に達した後、更に10分間、攪拌を継続して、PGAをNMPに溶解させて、PGAの溶液を形成した。得られたPGA溶液は、透明な薄茶色であった。
 PGA溶液を入れたセパラブルフラスコをマントルヒータから外し、ドライアイスにより約-30℃に冷却したNMP700gを攪拌しながら、これに、PGAの溶液を一気に注ぎ入れて急冷を行い、次いで、このPGAの溶液を注ぎ入れたNMPを、温度5℃の冷蔵庫内に2時間静置して、PGA粒子の懸濁液(PGA濃度10質量%)を得た。PGA粒子の平均粒径及び粒径分布を測定したところ、平均粒径(D50)が4.0μm、D90は10.5μm及びD10は1.1μm(D90/D10は、9.5)であった。
 PGA粒子が分散懸濁しているNMP懸濁液を、溶媒置換装置を用いてメチルエチルケトン(以下、「MEK」という。)との溶媒置換を行い、PGA粒子のMEK懸濁液(PGA濃度10質量%)を得た。
 PGA粒子のMEK懸濁液を、セルロースろ紙を使用して吸引ろ過し、PGA粒子を分離したところ、PGA40質量%及びMEK60質量%を含有するウエットケーキが得られた。なお、PGA粒子は微細であるため、嵩密度測定装置のロートからスムーズな落下ができず、嵩密度、粉体流動性及び安息角の測定ができなかった。
[顆粒状PGA粒子の製造]
[実施例]
 製造例によって製造したPGA粒子を含有するウエットケーキを、有機溶剤(MEK)60質量%及びPGA粒子40質量%を含有するPGA粒子の組成物として用いて、温度20℃、圧力7torrに調整した減圧乾燥室の中で、18時間減圧乾燥処理を行って、顆粒状PGA粒子を得た。
 得られた顆粒状PGA粒子は、重量平均分子量(Mw)は66,900、分子量分布(Mw/Mn)は1.7、融点(Tm)は207℃、溶融結晶化温度(TC2)は110℃であり、嵩密度は0.33g/cm、安息角は37度、粉体流動性は17秒で、優れた流動性を有していた。顆粒状PGA粒子の平均粒径(D50)は339μm、D90は716μm及びD10は113μm(D90/D10は、6.33)であり、粒径が10μm以下の粒子の累積値は、0.1%未満であった。
〔顆粒状PGA粒子の安定性〕
 本発明の顆粒状PGA粒子は、その形状が安定である。ポリエチレン製の袋に、実施例で製造した顆粒状PGA粒子1kgを入れて、30℃に温度調節した倉庫に60日間保存したところ、平均粒径及び粒径分布に変化がなく、乾燥状態での顆粒構造が安定していることが分かった。
 また、実施例で製造した顆粒状PGA粒子0.1gを脱イオン水10mlに分散させ、この分散液サンプルを、粒度分布測定装置に投入した。投入当初(投入後30秒間静置時をいう。)と、1分間または5分間静置後の粒子の平均粒径及び粒径分布を経時的に測定した。測定結果は、表1のとおりだった。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、顆粒状PGA粒子は、水に分散しても、投入当初(投入後30秒間静置時をいう。)の顆粒状PGA粒子と比較して、平均粒径や粒度分布に顕著な変化はなく、ほぼ形状の安定が保たれていた。本発明の顆粒状PGA粒子は、水分散状態での顆粒構造が安定していることが分かった。
〔超音波処理によるPGA粒子の製造〕
 実施例で製造した顆粒状PGA粒子0.1gを脱イオン水10mlに分散させ、この分散液サンプルを、粒度分布測定装置に投入した。
 投入後30秒間静置後に、80rpmで攪拌を行いながら、周波数42kHz、出力40Wの超音波処理を行った。超音波処理を30秒間または60秒間行ったPGA粒子の平均粒径及び粒径分布を経時的に測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、30秒間の超音波処理により、平均粒径(D50)が10μm程度であるPGA粒子が得られたことが分かる。また、60秒間の超音波処理を行うことで、PGA粒子の平均粒径や粒径分布がほぼ安定した状態になったことが分かる。
〔界面活性剤を使用するPGA粒子の製造〕
 更に、実施例で製造した顆粒状PGA粒子0.1gを、脱イオン水10mlと界面活性剤(SNディスパーサント7347-c希釈液。界面活性剤濃度20質量%)1mlとの混合液に分散させ、この分散液サンプルを、粒度分布測定装置に投入した。投入後30秒間静置後に、80rpmで攪拌を行いながら、周波数42kHz、出力40Wの超音波処理を行った。超音波処理を30秒間または60秒間行ったPGA粒子の平均粒径及び粒径分布を経時的に測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、界面活性剤の存在下で攪拌処理を行うことにより、より平均粒径(D50)が小さいPGA粒子が得られたことが分かる。
[顆粒状PLA粒子]
 平均粒径(D50)が33μmであるPLA(PLLA)粒子30質量%と、アセトン70質量%とを用いて得たウエットケーキを、温度23℃、圧力7torrに調整した減圧乾燥室の中で、18時間減圧乾燥処理を行って、顆粒状PLA粒子を得た。得られた顆粒状PLA粒子は、重量平均分子量(Mw)は21,400、分子量分布(Mw/Mn)は1.9、融点(Tm)は181℃であり、嵩密度は0.30g/cm、安息角は45度、粉体流動性は18秒で、優れた流動性を有していた。また、粒度分布を測定したところ、顆粒状PLA粒子の平均粒径(D50)は659μmであり、粒径が10μm以下の粒子の累積値は、0.1%未満であった。また、上記のPLA粒子を含むウエットケーキを、40℃の常圧状態下で18時間乾燥処理を行ったところ、平均粒径(D50)が603μmの顆粒状PLA粒子が得られた。顆粒状PLA粒子の平均粒径及び粒径分布を表4に示す。
 これらの顆粒状PLA粒子は、乾燥状態または水分散させて静置した状態においても、形状の安定が保たれていた。
[顆粒状PLA粒子からのPLA粒子の製造]
 これらの顆粒状PLA粒子0.1gを、脱イオン水10mlと界面活性剤(22%アルキルエーテル硫酸エステルナトリウム)1mlとの混合液に分散させ、この分散液サンプルを、粒度分布測定装置に投入した。投入後30秒間静置後に、80rpmで攪拌を行いながら、周波数42kHz、出力40Wの超音波処理を行った。この界面活性剤の存在下での攪拌処理を60秒間行ったところ、平均粒径(D50)が38.3μmまたは39.6μmであるPLA粒子が得られた。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 以上の結果から、本発明の顆粒状脂肪族ポリエステル粒子は、取り扱い性及び保存性に優れた粒子であり、かつ、攪拌処理(攪拌速度、攪拌時間等)、界面活性剤の種類及び添加量、及び超音波処理(周波数、出力、処理時間等)を組み合わせることにより、得られる脂肪族ポリエステル粒子の平均粒径や粒径分布を制御することができるものであった。
 これにより、本発明の顆粒状脂肪族ポリエステル粒子からは、有機溶剤または水に分散することにより、塗料、トナー、及び石油採掘などに適した平均粒径及び粒径分布を有する脂肪族ポリエステル粒子を容易に得ることができる。
 また、本発明の顆粒状脂肪族ポリエステル粒子は、取り扱い性や保存性に優れ、優れた流動性を備えているので、溶融成形等を行う原料ペレットとしても使用することができる。
 本発明による、(a)重量平均分子量(Mw)が10,000~800,000であり、かつ(b)重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布が1.5~4.0である脂肪族ポリエステルからなり、(i)個数粒径分布の50%累積値(D50)で表される平均粒径(D50)が250~3,000μm、(ii)嵩密度が0.2~0.9g/cm、及び、(iii)安息角が15~50度である顆粒状脂肪族ポリエステル粒子は、取り扱い性、及び保存性に優れた脂肪族ポリエステル粒子であって、特に、生分解性や強度などのPGAの特性を活かした、塗料、コーティング剤、インク、トナー、農薬、医薬、化粧品、採鉱、石油採掘などの産業分野における原料または添加剤などとして有用に利用できる脂肪族ポリエステル粒子、中でもPGAまたはPLA粒子を容易に入手することができるので、産業上の利用可能性が高い。

Claims (10)

  1.  (a)重量平均分子量(Mw)が10,000~800,000であり、かつ、(b)重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布が1.5~4.0である脂肪族ポリエステルからなり、
    (i)個数粒径分布の50%累積値(D50)で表される平均粒径(D50)が250~3,000μm、(ii)嵩密度が0.2~0.9g/cm、及び、(iii)安息角が15~50度である
    顆粒状脂肪族ポリエステル粒子。
  2.  前記脂肪族ポリエステルが、式:(-O-CH(R)-C(O)-)[Rは、水素原子またはメチル基である。]で表わされるグリコール酸または乳酸繰り返し単位を70モル%以上有するものである
    請求項1に記載の顆粒状脂肪族ポリエステル粒子。
  3.  前記脂肪族ポリエステルが、式:(-O-CH-C(O)-)で表わされるグリコール酸繰り返し単位を70モル%以上有するポリグリコール酸である
    請求項1に記載の顆粒状脂肪族ポリエステル粒子。
  4.  前記ポリグリコール酸が、グリコリド70~100質量%及び他の環状モノマー30~0質量%を開環重合して得られるポリグリコール酸である請求項3に記載の顆粒状脂肪族ポリエステル粒子。
  5.  有機溶剤10~90質量%を含有する、個数粒径分布の50%累積値(D50)で表される平均粒径(D50)が150μm以下である脂肪族ポリエステル粒子の組成物を、10~150℃の温度で常圧または減圧乾燥することを特徴とする、
    (a)重量平均分子量(Mw)が10,000~800,000であり、かつ、(b)重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布が1.5~4.0である脂肪族ポリエステルからなり、
    (i)個数粒径分布の50%累積値(D50)で表される平均粒径(D50)が250~3,000μm、(ii)嵩密度が0.2~0.9g/cm、及び、(iii)安息角が15~50度である
    顆粒状脂肪族ポリエステル粒子の製造方法。
  6.  前記脂肪族ポリエステルが、式:(-O-CH(R)-C(O)-)[Rは、水素原子またはメチル基である。]で表わされるグリコール酸または乳酸繰り返し単位を70モル%以上有するものである
    請求項5に記載の顆粒状脂肪族ポリエステル粒子の製造方法。
  7.  前記脂肪族ポリエステルが、式:(-O-CH-C(O)-)で表わされるグリコール酸繰り返し単位を70モル%以上有するポリグリコール酸である
    請求項5に記載の顆粒状脂肪族ポリエステル粒子の製造方法。
  8.  前記ポリグリコール酸が、グリコリド70~100質量%及び他の環状モノマー30~0質量%を開環重合して得られるポリグリコール酸である請求項7に記載の顆粒状脂肪族ポリエステル粒子の製造方法。
  9.  請求項1乃至4のいずれか1項に記載の顆粒状脂肪族ポリエステル粒子を含有する水及び/または有機溶剤の分散液を、超音波処理することを特徴とする平均粒径(D50)が150μm以下である脂肪族ポリエステル粒子の製造方法。
  10.  請求項1乃至4のいずれか1項に記載の顆粒状脂肪族ポリエステル粒子を含有する水及び/または有機溶剤の分散液を、界面活性剤の存在下で攪拌処理することを特徴とする平均粒径(D50)が150μm以下である脂肪族ポリエステル粒子の製造方法。
PCT/JP2011/066972 2010-09-03 2011-07-26 顆粒状脂肪族ポリエステル粒子、及び、その製造方法 WO2012029448A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010198080 2010-09-03
JP2010-198080 2010-09-03

Publications (1)

Publication Number Publication Date
WO2012029448A1 true WO2012029448A1 (ja) 2012-03-08

Family

ID=45772557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066972 WO2012029448A1 (ja) 2010-09-03 2011-07-26 顆粒状脂肪族ポリエステル粒子、及び、その製造方法

Country Status (1)

Country Link
WO (1) WO2012029448A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160048783A (ko) * 2013-08-29 2016-05-04 에보니크 룀 게엠베하 분말 형태의 생체재흡수성 폴리에스테르를 제조하는 방법
WO2016195099A1 (ja) * 2015-06-05 2016-12-08 三菱化学株式会社 脂肪族ポリエステル粒子
KR20170084061A (ko) * 2014-11-14 2017-07-19 에보니크 룀 게엠베하 미립자 형태의 생체재흡수성 폴리에스테르를 제조하는 방법
WO2019094738A1 (en) * 2017-11-09 2019-05-16 Vinventions Usa, Llc Thermoplastic material and use thereof in the production of a cork composite material
JP2019137855A (ja) * 2018-02-14 2019-08-22 株式会社リコー 粒子の製造方法及びその製造装置、粒子及び組成物、並びに、粒子分散液及びその製造方法
WO2021176941A1 (ja) * 2020-03-02 2021-09-10 株式会社カネカ ポリヒドロキシアルカン酸の製造方法およびその利用
US11465325B2 (en) 2017-11-09 2022-10-11 Vinventions Usa, Llc Method for manufacturing a closure for a product-retaining container
US11565853B2 (en) 2017-11-09 2023-01-31 Vinventions Usa, Llc Method for manufacturing a closure for a product-retaining container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110678A (ja) * 1995-10-19 1997-04-28 Tanabe Seiyaku Co Ltd 被覆マイクロスフェア製剤およびその製法
JP2004018744A (ja) * 2002-06-18 2004-01-22 Mitsui Chemicals Inc ポリ乳酸系樹脂水分散体
JP2004231760A (ja) * 2003-01-29 2004-08-19 Dai Ichi Kogyo Seiyaku Co Ltd 生分解性樹脂粉末及びその製造方法
JP2006045542A (ja) * 2004-07-05 2006-02-16 Sakuranomiya Kagaku Kk 金属製缶蓋被覆用塗料、該塗料を塗布した金属製缶蓋およびそれらの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110678A (ja) * 1995-10-19 1997-04-28 Tanabe Seiyaku Co Ltd 被覆マイクロスフェア製剤およびその製法
JP2004018744A (ja) * 2002-06-18 2004-01-22 Mitsui Chemicals Inc ポリ乳酸系樹脂水分散体
JP2004231760A (ja) * 2003-01-29 2004-08-19 Dai Ichi Kogyo Seiyaku Co Ltd 生分解性樹脂粉末及びその製造方法
JP2006045542A (ja) * 2004-07-05 2006-02-16 Sakuranomiya Kagaku Kk 金属製缶蓋被覆用塗料、該塗料を塗布した金属製缶蓋およびそれらの製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160048783A (ko) * 2013-08-29 2016-05-04 에보니크 룀 게엠베하 분말 형태의 생체재흡수성 폴리에스테르를 제조하는 방법
KR102104306B1 (ko) * 2013-08-29 2020-04-24 에보니크 오퍼레이션즈 게엠베하 분말 형태의 생체재흡수성 폴리에스테르를 제조하는 방법
KR20170084061A (ko) * 2014-11-14 2017-07-19 에보니크 룀 게엠베하 미립자 형태의 생체재흡수성 폴리에스테르를 제조하는 방법
KR102468902B1 (ko) * 2014-11-14 2022-11-18 에보닉 오퍼레이션스 게엠베하 미립자 형태의 생체재흡수성 폴리에스테르를 제조하는 방법
WO2016195099A1 (ja) * 2015-06-05 2016-12-08 三菱化学株式会社 脂肪族ポリエステル粒子
EP3305833A4 (en) * 2015-06-05 2018-07-04 Mitsubishi Chemical Corporation Aliphatic polyester particles
WO2019094738A1 (en) * 2017-11-09 2019-05-16 Vinventions Usa, Llc Thermoplastic material and use thereof in the production of a cork composite material
US11465325B2 (en) 2017-11-09 2022-10-11 Vinventions Usa, Llc Method for manufacturing a closure for a product-retaining container
US11565853B2 (en) 2017-11-09 2023-01-31 Vinventions Usa, Llc Method for manufacturing a closure for a product-retaining container
US12023839B2 (en) 2017-11-09 2024-07-02 Vinventions Usa, Llc Method for manufacturing a closure for a product-retaining container
JP2019137855A (ja) * 2018-02-14 2019-08-22 株式会社リコー 粒子の製造方法及びその製造装置、粒子及び組成物、並びに、粒子分散液及びその製造方法
WO2021176941A1 (ja) * 2020-03-02 2021-09-10 株式会社カネカ ポリヒドロキシアルカン酸の製造方法およびその利用

Similar Documents

Publication Publication Date Title
WO2012029448A1 (ja) 顆粒状脂肪族ポリエステル粒子、及び、その製造方法
JP5763402B2 (ja) 生分解性脂肪族ポリエステル粒子、及びその製造方法
JP4231781B2 (ja) ポリグリコール酸及びその製造方法
WO2012121294A1 (ja) 坑井掘削用ポリグリコール酸樹脂粒状体組成物及びその製造方法
CA2975073C (en) Method of extracting underground resources by using hydrolysable particles
JPWO2005090438A1 (ja) 残留環状エステルの少ない脂肪族ポリエステルの製造方法
JP4711828B2 (ja) 脂肪族ポリエステルの製造方法
JP4672554B2 (ja) 脂肪族ポリエステルの製造方法
JP2004277698A (ja) 生分解性ポリエステル重合体及び圧縮気体を用いたその製造方法
JP5651026B2 (ja) ポリグリコール酸組成物、ポリグリコール酸を含む樹脂成形品及び成形体、並びに、ポリグリコール酸の分解方法
WO2012121296A1 (ja) 生分解性脂肪族ポリエステル樹脂粒状体組成物及びその製造方法
WO2007043547A1 (ja) ポリ乳酸組成物
WO2007114459A1 (ja) ポリ乳酸組成物
WO2012017832A1 (ja) ポリグリコール酸粒子、ポリグリコール酸粒子の製造方法、及び、その用途
Abdelwahab et al. Poly [(R)‐3‐hydroxybutyrate)]/poly (styrene) blends compatibilized with the relevant block copolymer
CA2970596C (en) Polyoxalate copolymer
JPWO2012133037A1 (ja) 生分解性脂肪族ポリエステル粒子、及びその製造方法
JP4711745B2 (ja) ポリエチレンテレフタレートおよびその製造方法
WO2020013163A1 (ja) ポリ乳酸共重合体及びその製造方法
WO2012133039A1 (ja) 生分解性脂肪族ポリエステル粒子、及びその製造方法
WO2012144511A1 (ja) 生分解性脂肪族ポリエステル粒子、及びその製造方法
TW200302237A (en) Method for treating polyester polymers and polyester polymers with low content of low-boiling components
JP2012149208A (ja) ポリグリコール酸の分解方法
JP2012139835A (ja) 脂肪族ポリヒドロキシカルボン酸ペレット及びその製造方法
JP4408614B2 (ja) グリコール酸系重合体の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP