WO2012133039A1 - 生分解性脂肪族ポリエステル粒子、及びその製造方法 - Google Patents

生分解性脂肪族ポリエステル粒子、及びその製造方法 Download PDF

Info

Publication number
WO2012133039A1
WO2012133039A1 PCT/JP2012/057167 JP2012057167W WO2012133039A1 WO 2012133039 A1 WO2012133039 A1 WO 2012133039A1 JP 2012057167 W JP2012057167 W JP 2012057167W WO 2012133039 A1 WO2012133039 A1 WO 2012133039A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
pga
aliphatic polyester
biodegradable aliphatic
temperature
Prior art date
Application number
PCT/JP2012/057167
Other languages
English (en)
French (fr)
Inventor
山▲崎▼昌博
佐藤浩幸
三枝孝拓
阿部俊輔
来原なな子
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Publication of WO2012133039A1 publication Critical patent/WO2012133039A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/10Making granules by moulding the material, i.e. treating it in the molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • B29K2995/006Bio-degradable, e.g. bioabsorbable, bioresorbable or bioerodible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Definitions

  • the present invention relates to biodegradable aliphatic polyester particles having a high anti-blocking effect and a method for producing the same.
  • aliphatic polyesters such as polyglycolic acid and polylactic acid are decomposed by microorganisms or enzymes existing in nature such as soil and sea, they are attracting attention as biodegradable polymer materials with a low environmental impact. Since these biodegradable aliphatic polyesters have biodegradable absorbability, they are also used as medical polymer materials such as surgical sutures and artificial skin.
  • polylactic acid (hereinafter sometimes referred to as “PLA”) composed of lactic acid repeating units
  • polyglycolic acid composed of glycolic acid repeating units
  • lactone polyesters such as poly- ⁇ -caprolactone, polyhydroxybutyrate polyesters, and copolymers thereof, such as copolymers comprising glycolic acid repeating units and lactic acid repeating units.
  • PLA can be obtained by using L-lactic acid as a raw material at low cost by fermentation from corn, straw, etc.
  • the resulting poly L-lactic acid (hereinafter sometimes referred to as “PLLA”) has characteristics such as high rigidity and good transparency.
  • PLAs such as PLLA have been pointed out as having a low crystallization rate and requiring a mechanical process such as stretching.
  • PGA has excellent degradability, mechanical strength such as heat resistance and tensile strength, and gas barrier properties particularly when used as a film or sheet. For this reason, PGA is expected to be used as agricultural materials, various packaging (container) materials and medical polymer materials, and has been developed for use alone or in combination with other resin materials.
  • the methods of manufacturing products from biodegradable aliphatic polyester include extrusion molding, injection molding, compression molding, injection compression molding, transfer molding, cast molding, stampable molding, blow molding, stretched film molding, inflation film molding, and lamination.
  • Melt molding and other molding methods such as molding, calendar molding, foam molding, RIM molding, FRP molding, powder molding or paste molding are employed.
  • PGA and other biodegradable aliphatic polyester pellets used as molding raw materials for melt molding are, for example, strands obtained by blending various additives with biodegradable aliphatic polyester such as PGA using a twin screw extruder.
  • the average particle diameter obtained by melt-extruding into a shape and cutting into a predetermined size is about several mm.
  • biodegradable aliphatic polyesters such as PLA and PGA
  • raw materials in fields such as paints, coating agents, inks, toners, agricultural chemicals, pharmaceuticals, cosmetics, mining, well drilling, etc.
  • Biodegradable aliphatic polyester particles useful as additives and the like are desired.
  • the biodegradable aliphatic polyester particles applied to these fields are smaller than the biodegradable aliphatic polyester pellets described above, and are relatively small having a particle size and particle size distribution suitable for the purpose. Particles are required.
  • the biodegradable aliphatic polyester particles are required to be excellent in handleability and storage stability.
  • the biodegradable aliphatic polyester used as a raw material resin for producing the biodegradable aliphatic polyester pellets by melt extrusion is a biodegradable aliphatic polyester recovered after the polymerization reaction, such as flakes. It is used in a form prepared to particles having a desired shape and size, and various additives are blended with this to produce pellets.
  • Particles with a small particle size have poor handleability, increase hygroscopicity, increase surface area, increase the effect of degradation rate, and reduce the excellent properties of biodegradable aliphatic polyesters. There was no risk of unexpected troubles occurring in the drying process or molding process.
  • Patent Document 1 discloses a polylactic acid resin powder in which a chip or block made of a PLA resin is cooled to a low temperature of ⁇ 50 to ⁇ 180 ° C., impact pulverized and classified. A manufacturing method is disclosed.
  • Patent Document 1 discloses a polylactic acid resin powder in which a chip or block made of a PLA resin is cooled to a low temperature of ⁇ 50 to ⁇ 180 ° C., impact pulverized and classified. A manufacturing method is disclosed.
  • Patent Document 2 an organic solvent solution of a biodegradable aliphatic polyester and aromatic hydrocarbons are mixed at a temperature of less than 60 ° C., and the precipitated solid matter is solidified.
  • a method for producing a liquid-degradable, powdered polyester having biodegradability In the examples, Mw of 145,000 PLA, Mw of 10.0 million polybutylene succinate, and Mw of 172,000 PLA A copolymer of polybutylene succinate is used as a raw material.
  • PLA and a solvent a mixture of dimethyl adipate, dimethyl glutarate, and dimethyl succinate (DBE (registered trademark), manufactured by DuPont
  • PGA and a solvent bis (2-methoxyethyl) as Production Example 4
  • PGA particles having an average primary particle diameter of 150 nm or less obtained by using ether) at a dissolution temperature of 150 ° C. and a cooling temperature of ⁇ 35 ° C. are disclosed.
  • biodegradable aliphatic polyester particles such as PLA and PGA can be used in products for the above-mentioned applications after obtaining particles having an average particle size, particle size distribution and shape suitable for the application.
  • the biodegradable aliphatic polyester particles sometimes aggregated (blocked) while being stored or transported in the state of particles.
  • a load is applied to the biodegradable aliphatic polyester particles in a temperature environment near the glass transition temperature of the resin or more, blocking is likely to occur.
  • a load is applied to the biodegradable aliphatic polyester particles in a temperature environment near the glass transition temperature of the resin or more, blocking is likely to occur.
  • the storage and transportation of particles in summer or containers May be exposed to a temperature of 40 ° C. or higher, and therefore antiblocking measures have been demanded.
  • the handleability of the particles deteriorates, and the average particle diameter, particle size distribution and shape of the controlled particles are lost, and the desired characteristics may not be exhibited.
  • An object of the present invention is to provide biodegradable aliphatic polyester particles having a high anti-blocking effect and a method for producing the same.
  • the present inventors have continued to analyze the phenomenon that blocking of biodegradable aliphatic polyester particles occurs, and in particular, biodegradable fat obtained by the so-called impact pulverization method.
  • the group polyester particles were found to have a softened surface and a large proportion of non-crystalline parts due to the shearing force during pulverization.
  • a biodegradable aliphatic polyester having a high degree of crystallinity as a starting material, the melting and softening of the surface due to the shearing force during pulverization is suppressed, and the disappearance of the crystal part is prevented.
  • the present inventors have found that biodegradable aliphatic polyester particles having a high degree of crystallinity can be obtained by suppressing fluctuations in crystallization characteristics, and that the above problems can be solved, thereby completing the present invention.
  • biodegradable aliphatic polyester particles are provided as embodiments.
  • biodegradable aliphatic polyester particles described above wherein the biodegradable aliphatic polyester is PGA, PLA, or a mixture thereof.
  • the biodegradable aliphatic polyester having a heat of crystal melting of 75 J / g or more is pulverized at a temperature lower than the glass transition temperature of the biodegradable aliphatic polyester.
  • a method for producing biodegradable aliphatic polyester particles is provided.
  • biodegradable aliphatic polyester particles characterized by comprising biodegradable aliphatic polyester particles such as PGA and PLA that are less likely to be blocked by storage and transport, the effect is obtained.
  • the biodegradable aliphatic polyester having a heat of crystal melting of 75 J / g or more is pulverized at a temperature lower than the glass transition temperature of the biodegradable aliphatic polyester.
  • the biodegradable aliphatic polyester constituting the biodegradable aliphatic polyester particle of the present invention is glycolic acid and glycolic acid containing glycolide (GL) which is a bimolecular cyclic ester of glycolic acid, lactic acid And lactates containing lactide which is a bimolecular cyclic ester of lactic acid, ethylene oxalate (ie, 1,4-dioxane-2,3-dione), lactones (eg, ⁇ -propiolactone, ⁇ -butyrolactone, Pivalolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -methyl- ⁇ -valerolactone, ⁇ -caprolactone, etc.), carbonates (eg, trimethylene carbonate), ethers (eg, 1,3-dioxane), ether esters Cyclic monomers such as dioxanone (eg dioxanone); 3-hydroxy
  • PGA that is, a homopolymer of glycolic acid, a copolymer having a glycolic acid repeating unit of 70% by mass or more, and a mixture of PLA and PGA are preferable. Particularly preferred is PLA or PGA from the viewpoints of decomposability, heat resistance and mechanical strength.
  • aliphatic polyesters can be synthesized, for example, by dehydration polycondensation of ⁇ -hydroxycarboxylic acids such as glycolic acid and lactic acid known per se.
  • a method of synthesizing a bimolecular cyclic ester of ⁇ -hydroxycarboxylic acid and subjecting the cyclic ester to ring-opening polymerization is employed.
  • PLA is obtained by ring-opening polymerization of lactide, which is a bimolecular cyclic ester of lactic acid.
  • PGA is obtained by ring-opening polymerization of glycolide, which is a bimolecular cyclic ester of glycolic acid.
  • PLA can be synthesized by the above-mentioned method, and commercially available products include, for example, “Lacia series” such as Lacia H-100, H-280, H-400, and H-440 (Mitsui Chemicals, Inc.). ), 3001D, 3051D, 4032D, 4042D, 6201D, 6251D, 7000D, 7032D, etc. “Ingeo” (manufactured by Nature Works), Ecoplastic U'z S-09, S-12, S-17, etc. “Plastic U′z series” (manufactured by Toyota Motor Corporation) and the like are preferably selected from the viewpoints of both strength and flexibility and heat resistance.
  • PGA is further described as an example of biodegradable aliphatic polyester, but PLA and other biodegradable aliphatic polyesters can also take a form for carrying out the invention according to PGA.
  • PGA Polyglycolic acid
  • PGA particularly preferably used as a raw material for the biodegradable aliphatic polyester particles of the present invention is a homopolymer of glycolic acid consisting only of a glycolic acid repeating unit represented by the formula: (—O—CH 2 —C (O) —).
  • a polymer including a ring-opened polymer of glycolide (GL) which is a bimolecular cyclic ester of glycolic acid
  • a PGA copolymer containing 70% by mass or more of the glycolic acid repeating unit is included.
  • Examples of comonomers that give a PGA copolymer together with glycolic acid monomers such as glycolide include ethylene oxalate (ie, 1,4-dioxane-2,3-dione), lactides, lactones, carbonates, ethers.
  • the glycolic acid repeating unit in the PGA as a raw material of the PGA particles of the present invention is 70% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, particularly preferably. Is a PGA homopolymer of 98% by weight or more, most preferably 99% by weight or more. If the proportion of glycolic acid repeating units is too small, the strength and degradability expected for PGA will be poor.
  • the repeating unit other than the glycolic acid repeating unit is 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less, and particularly preferably 2% by mass or less. Most preferably, it is used in a proportion of 1% by mass or less, and may not contain any repeating unit other than the glycolic acid repeating unit.
  • the PGA used as a raw material for the PGA particles of the present invention is obtained by polymerizing 70 to 100% by mass of glycolide and 30 to 0% by mass of the above-mentioned other comonomer in order to efficiently produce a desired high molecular weight polymer.
  • PGA is preferred.
  • the other comonomer may be a cyclic monomer between two molecules, or may be a mixture of both instead of a cyclic monomer.
  • a cyclic monomer is used. preferable.
  • PGA obtained by ring-opening polymerization of 70 to 100% by mass of glycolide and 30 to 0% by mass of other cyclic monomers will be described in detail.
  • glycolide that forms PGA by ring-opening polymerization is a bimolecular cyclic ester of glycolic acid, which is a kind of hydroxycarboxylic acid.
  • the manufacturing method of glycolide is not specifically limited, Generally, it can obtain by thermally depolymerizing a glycolic acid oligomer.
  • a depolymerization method for glycolic acid oligomers for example, a melt depolymerization method, a solid phase depolymerization method, a solution depolymerization method, etc. can be adopted, and glycolide obtained as a cyclic condensate of chloroacetate should also be used. Can do.
  • glycolide containing glycolic acid can be used up to 20% by mass of the glycolide amount.
  • the PGA used as a raw material for the PGA particles of the present invention may be formed by ring-opening polymerization of only glycolide, but may also be formed by simultaneously ring-opening polymerization using another cyclic monomer as a copolymerization component. Good.
  • the proportion of glycolide is 70% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and particularly preferably 98% by mass. % Or more, and most preferably 99% by mass or more of a substantially PGA homopolymer.
  • hydroxycarboxylic acids include L-lactic acid, D-lactic acid, ⁇ -hydroxybutyric acid, ⁇ -hydroxyisobutyric acid, ⁇ - Hydroxyvaleric acid, ⁇ -hydroxycaproic acid, ⁇ -hydroxyisocaproic acid, ⁇ -hydroxyheptanoic acid, ⁇ -hydroxyoctanoic acid, ⁇ -hydroxydecanoic acid, ⁇ -hydroxymyristic acid, ⁇ -hydroxystearic acid, and these Examples include alkyl-substituted products.
  • Another particularly preferable cyclic monomer is lactide, which is a bimolecular cyclic ester of lactic acid, and may be any of L-form, D-form, racemate, and a mixture thereof.
  • the other cyclic monomer is 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less, further preferably 5% by mass or less, particularly preferably 2% by mass or less, and most preferably 1% by mass. Used in the following proportions.
  • the melting point of PGA (copolymer) is lowered to lower the processing temperature, and the crystallization speed is controlled to improve extrusion processability and stretch processability. can do.
  • the use ratio of these cyclic monomers is too large, the crystallinity of the formed PGA (copolymer) is impaired, and heat resistance, gas barrier properties, mechanical strength, and the like are lowered.
  • PGA is formed from glycolide 100 mass%
  • another cyclic monomer is 0 mass%, and this PGA is also included in the scope of the present invention.
  • the ring-opening polymerization or ring-opening copolymerization of glycolide (hereinafter sometimes collectively referred to as “ring-opening (co) polymerization”) is preferably carried out in the presence of a small amount of catalyst.
  • the catalyst is not particularly limited.
  • a tin-based compound such as tin halide (for example, tin dichloride, tin tetrachloride) and organic carboxylate (for example, tin octoate such as tin 2-ethylhexanoate).
  • Titanium compounds such as alkoxy titanates; aluminum compounds such as alkoxy aluminum; zirconium compounds such as zirconium acetylacetone; antimony compounds such as antimony halide and antimony oxide;
  • the amount of the catalyst used is preferably about 1 to 1,000 ppm, more preferably about 3 to 300 ppm in terms of mass ratio with respect to the cyclic ester.
  • Ring-opening (co) polymerization of glycolide uses higher alcohols such as lauryl alcohol, other alcohols, and protic compounds such as water as molecular weight regulators in order to control the physical properties such as melt viscosity and molecular weight of the produced PGA.
  • Alcohols such as lauryl alcohol, other alcohols, and protic compounds
  • water molecular weight regulators
  • Glycolide usually contains trace amounts of water and hydroxycarboxylic acid compounds composed of glycolic acid and linear glycolic acid oligomers as impurities, and these compounds also act on the polymerization reaction.
  • the concentration of these impurities is determined as a molar concentration by, for example, neutralizing titration of the amount of carboxylic acid in these compounds, and alcohols and water are added as protic compounds according to the target molecular weight,
  • the molecular weight of the produced PGA can be adjusted by controlling the molar concentration of the active compound with respect to glycolide.
  • the ring-opening (co) polymerization of glycolide may be bulk polymerization or solution polymerization, but in many cases, bulk polymerization is employed.
  • bulk polymerization equipment for bulk polymerization, such as an extruder type, a vertical type with paddle blades, a vertical type with helical ribbon blades, a horizontal type such as an extruder type and a kneader type, an ampoule type, a plate type and a tubular type.
  • the device can be selected as appropriate.
  • various reaction tanks can be used for solution polymerization.
  • the polymerization temperature can be appropriately set according to the purpose within a range from 120 ° C. to 300 ° C. which is a substantial polymerization start temperature.
  • the polymerization temperature is preferably 130 to 270 ° C., more preferably 140 to 260 ° C., and particularly preferably 150 to 250 ° C. If the polymerization temperature is too low, the molecular weight distribution of the produced PGA tends to be wide. If the polymerization temperature is too high, the produced PGA is susceptible to thermal decomposition.
  • the polymerization time is in the range of 3 minutes to 50 hours, preferably 5 minutes to 30 hours. If the polymerization time is too short, the polymerization does not proceed sufficiently and a predetermined weight average molecular weight cannot be realized. If the polymerization time is too long, the produced PGA tends to be colored.
  • Solid phase polymerization means an operation of heat treatment while maintaining a solid state by heating at a temperature lower than the melting point of PGA.
  • the solid phase polymerization is preferably performed for 1 to 100 hours, more preferably 2 to 50 hours, particularly preferably 3 to 30 hours.
  • a thermal history is given by a process of melt-kneading PGA in a solid state within a temperature range of crystal melting point (Tm) + 38 ° C. or higher, preferably crystal melting point (Tm) + 38 ° C.
  • the crystallinity may be controlled accordingly.
  • biodegradable Aliphatic Polyester Particles are particles mainly composed of biodegradable aliphatic polyesters, preferably PLA particles or PGA particles, particularly preferably PGA particles. is there.
  • PGA particles will be further described as an example, but PLA particles and other biodegradable aliphatic polyester particles also have a mode for carrying out the invention according to PGA particles. Can take.
  • the PGA particles of the present invention have the following physical properties (A) to (C): (A) The average particle size is 5 to 500 ⁇ m; (B) The heat of crystal fusion is 75 J / g or more; and (C) The fracture stress of a cylindrical tablet formed by applying a load of 100 gf / cm 2 at a temperature of 40 ° C. for 24 hours in a cylindrical mold is 1500 gf / cm 2 or less; It is biodegradable aliphatic polyester particles characterized by comprising.
  • PGA As raw materials for producing the PGA particles of the present invention, in addition to PGA, other aliphatic polyesters, polyglycols such as polyethylene glycol and polypropylene glycol, modified polyvinyl alcohol, polyurethane, Other resins such as polyamides such as poly L-lysine, plasticizers, antioxidants, light stabilizers, heat stabilizers, end-capping agents, ultraviolet absorbers, lubricants, mold release agents, waxes, colorants Additives usually blended such as fillers such as crystallization accelerators, hydrogen ion concentration regulators, and reinforcing fibers can be blended as necessary.
  • polyglycols such as polyethylene glycol and polypropylene glycol
  • modified polyvinyl alcohol polyurethane
  • Other resins such as polyamides such as poly L-lysine, plasticizers, antioxidants, light stabilizers, heat stabilizers, end-capping agents, ultraviolet absorbers, lubricants, mold release agents, waxes, colorants
  • the weight average molecular weight (Mw) of the PGA contained in the PGA particles of the present invention is usually preferably in the range of 4 to 1.5 million, more preferably 5 to 1.3 million, still more preferably 6 to 1.1 million, particularly preferably. Select a value in the range of 7 to 1 million.
  • the weight average molecular weight (Mw) of PGA is determined by a gel permeation chromatography (GPC) apparatus.
  • the weight average molecular weight (Mw) of the PLA contained in the PLA particles of the present invention is preferably in the range of 8 to 1,200,000, more preferably 100,000 to 1,000,000, and still more preferably 1.2 to 800,000.
  • the crystal melting point (Tm) of PGA contained in the PGA particles of the present invention is usually from 197 to 245 ° C., and can be adjusted by weight average molecular weight (Mw), molecular weight distribution, type and content ratio of copolymerization component, and the like. .
  • the crystal melting point (Tm) of PGA is preferably 200 to 240 ° C, more preferably 205 to 235 ° C, and particularly preferably 210 to 230 ° C.
  • the crystal melting point (Tm) of a homopolymer of PGA is usually about 220 ° C. If the crystal melting point (Tm) is too low, the heat resistance and strength may be insufficient.
  • the crystal melting point (Tm) of PGA was determined in a nitrogen atmosphere using a differential scanning calorimeter (DSC). Specifically, it accompanies the crystal melting detected in the process of heating the sample PGA from about room temperature to about 280 ° C. (crystal melting point (Tm) + about 50 ° C.) at about 20 ° C./min in a nitrogen atmosphere. It means the temperature of the endothermic peak. When a plurality of endothermic peaks are observed, the peak having the largest endothermic peak area is defined as the crystalline melting point (Tm).
  • DSC differential scanning calorimeter
  • the crystal melting point (Tm) of PLA contained in the PLA particles of the present invention is preferably in the range of 145 to 185 ° C., more preferably 150 to 180 ° C., and further preferably 155 to 175 ° C.
  • the glass transition temperature (Tg) of PGA contained in the PGA particles of the present invention is usually 25 to 60 ° C., preferably 30 to 50 ° C., more preferably 35 to 45 ° C.
  • the glass transition temperature (Tg) of PGA can be adjusted by the weight average molecular weight (Mw), the molecular weight distribution, the type and content ratio of the copolymerization component, and the like.
  • the glass transition temperature (Tg) of PGA was determined in a nitrogen atmosphere using a differential scanning calorimeter (DSC), similarly to the measurement of the crystal melting point (Tm). Specifically, the sample PGA is heated to about 280 ° C.
  • glass transition temperature (hereinafter sometimes referred to as “intermediate glass transition temperature”).
  • the glass transition temperature (Tg) is too low, the crystallinity of the surface and the inside of the PGA particles may be lowered due to heat generated by the pulverization process described later, and particle blocking may easily occur. If the glass transition temperature (Tg) is too high, the properties of the surface of the PGA particles are hardly changed even by the heat treatment described later, and it may be difficult to control the particle diameter of the particles, and as a result, the blocking prevention effect is sufficiently improved. It may not be done.
  • the glass transition temperature (Tg) of PLA is preferably in the range of 45 to 70 ° C., more preferably 50 to 65 ° C., and still more preferably 52 to 63 ° C.
  • the average particle size (50% D) of biodegradable aliphatic polyester particles such as PGA particles of the present invention is 5 to 500 ⁇ m.
  • the average particle size (50% D) of the biodegradable aliphatic polyester particles is the cumulative weight from the small particle size side using the particle size distribution of the particles measured and determined using a laser diffraction particle size distribution analyzer. Means a value represented by a particle size of 50%.
  • the average particle size (50% D) of the biodegradable aliphatic polyester particles of the present invention is preferably in the range of 7 to 450 ⁇ m, more preferably 10 to 400 ⁇ m, still more preferably 20 to 300 ⁇ m, and particularly preferably 30 to 200 ⁇ m. is there. If the average particle size (50% D) is too small, the handling and storage properties of the particles become difficult. If the average particle size (50% D) is too large, it will be difficult to use in the intended application. For example, if the average particle size is too large, the dispersibility in water will deteriorate, making it difficult to use in the paint, coating and toner fields.
  • the average particle size (50% D) is in the range of 5 to 500 ⁇ m
  • the biodegradable aliphatic polyester particles have good fluidity, good particle handling and storage properties
  • particles having a desired particle size required can be obtained very easily.
  • the PGA particles of the present invention have a crystal melting heat ( ⁇ Hm) of 75 J / g or more, preferably 80 J / g or more, more preferably 85 J / g or more, still more preferably 90 J / g or more, and particularly preferably 93 J / g. g or more, most preferably 95 J / g or more.
  • the heat of crystal fusion ( ⁇ Hm) of the PGA particles was determined in a nitrogen atmosphere using DSC, as in the measurement of the crystal melting point (Tm). Specifically, the sample PGA is detected in the process of heating to about 280 ° C.
  • the PGA particles of the present invention are characterized by a high degree of crystallinity inside and on the surface of the particles.
  • the heat of crystal fusion ( ⁇ Hm) is less than 75 J / g, the degree of crystallinity inside or on the surface of the PGA particles is high. Since it is low, blocking is likely to occur, resulting in poor handling.
  • the upper limit of the heat of crystal fusion ( ⁇ Hm) of the PGA particles of the present invention is not particularly limited. However, if the crystallinity is excessively increased, the degradability expected for a product containing PGA may be reduced. It is preferable to set the degree as the upper limit.
  • the upper limit of the crystal melting heat quantity ( ⁇ Hm) of the PLA particles is about 100 J / g, and preferably about 90 J / g.
  • the biodegradable aliphatic polyester particles of the present invention are tablet fracture stress of the particles, that is, a circle formed by applying a load of 100 gf / cm 2 at a temperature of 40 ° C. to the particles for 24 hours in a cylindrical mold.
  • the fracture stress of the columnar tablet is 1500 gf / cm 2 or less.
  • a cylindrical tablet for measuring tablet breaking stress of biodegradable aliphatic polyester particles was molded by applying a load of 100 gf / cm 2 at a temperature of 40 ° C. for 24 hours in the cylindrical mold. It is a cylindrical tablet. Specifically, 1 g of biodegradable aliphatic polyester particles is placed in a stainless steel cylindrical mold (inner diameter 11.3 mm (inner cross-sectional area 1 cm 2 )), and a cylindrical weight (outer diameter) is formed from the top of the particles. In a constant temperature bath (relative humidity 10-30%) set at a predetermined temperature (40 ° C.) with a constant load (100 gf / cm 2 ) applied to the particles. It is a columnar tablet having an upper area of 1 cm 2 , a lower area of 1 cm 2 and a height of 1.5 cm, which is prepared by being allowed to stand while applying a load for 24 hours.
  • the biodegradable aliphatic polyester particles of the present invention have a breaking stress of 1500 gf / cm 2 or less of a cylindrical tablet formed by applying a load of 100 gf / cm 2 at a temperature of 40 ° C. for 24 hours in a cylindrical mold.
  • the biodegradable aliphatic polyester particles are difficult to block in the summer when exposed to high temperatures, or in storage or transportation by containers, and even if the particles are once blocked, it is extremely easy. The blocking state can be eliminated.
  • Fracture stress of the tablet is preferably 1400gf / cm 2 or less, more preferably 1000 gf / cm 2 or less, more preferably 500 gf / cm 2 or less, particularly preferably 200 gf / cm 2 or less in the range, and most preferably, Kiya It is 25 gf / cm 2 or less which is the detection limit of the type hardness meter.
  • the biodegradable aliphatic polyester particles of the present invention are preferably PLA particles or PGA particles, particularly preferably PGA particles, and (A) an average particle diameter (50% D) is 5 to 500 ⁇ m; (B) Crystal melting heat ( ⁇ Hm) of 75 J / g or more; and (C) A cylindrical tablet formed by applying a load of 100 gf / cm 2 at a temperature of 40 ° C. for 24 hours in a cylindrical mold.
  • the production method is not particularly limited as long as the biodegradable aliphatic polyester particles have a breaking stress of 1500 gf / cm 2 or less.
  • a biodegradable aliphatic polyester having a heat of crystal melting ( ⁇ Hm) of 75 J / g or more is pulverized at a temperature lower than the glass transition temperature (Tg) of the biodegradable aliphatic polyester. It is preferable.
  • the production method of PGA particles will be further described as an example.
  • the production method of PLA particles and other biodegradable aliphatic polyester particles is also an embodiment for carrying out the invention according to the production method of PGA particles. Can take.
  • the PGA which is a raw material resin for the PGA particles of the present invention is preferably a PGA having a heat of crystal fusion ( ⁇ Hm) of 75 J / g or more, more preferably 80 J / g or more, and still more preferably 85 J / g or more.
  • a forming raw material of a product containing the same it can be selected from those used in the form of a dispersion of particles, and its production method is not particularly limited.
  • it may be obtained from PGA having a shape such as powder or flakes collected after the polymerization reaction, preferably by washing and classification as required.
  • the recovered PGA may be pulverized or powdered and classified as necessary.
  • particles or powdered PGA obtained by coagulation or precipitation from an organic solvent solution or dispersion of PGA may be used.
  • PGA having a shape such as powder or flakes collected after the polymerization reaction may be used.
  • the PGA particles of the present invention are preferably produced by pulverizing, preferably impact pulverizing, the raw material resin at a temperature lower than the glass transition temperature (Tg) of the raw material resin.
  • the pulverization temperature is more preferably ⁇ 50 ° C. or higher and glass transition temperature (Tg) ⁇ 5 ° C. or lower, more preferably ⁇ 45 ° C. or higher and glass transition temperature (Tg) ⁇ 10 ° C. or lower, particularly preferably ⁇ 40 ° C. or higher.
  • Transition temperature (Tg) is ⁇ 20 ° C. or lower, most preferably ⁇ 35 ° C. or higher and glass transition temperature (Tg) ⁇ 30 ° C. or lower. Specifically, for example, ⁇ 50 ° C.
  • PGA which is a raw material resin
  • PGA is pulverized in a state of low temperature embrittlement, so heat generation during pulverization is suppressed, thermal denaturation does not occur, and fluctuations in crystallization characteristics are controlled.
  • the average particle size (50% D) is 5 to 500 ⁇ m
  • the crystal melting heat ( ⁇ Hm) is 75 J / g or more
  • the PGA particles of the present invention may have an average particle diameter (50% D) of 5 to 500 ⁇ m by classification.
  • a device for pulverizing PGA which is a raw material resin, by impact pulverization at a temperature lower than the glass transition temperature (Tg) of the PGA, a cooling part and a pulverizing part with an ultra-low temperature refrigerant such as liquid nitrogen, more preferably particle size adjustment
  • Tg glass transition temperature
  • a jet mill, a blade mill, a pin mill, etc. but it is preferable to use a main body side disk pin that rotates at high speed and a pin mill that performs crushing with a disk pin on the fixed door side.
  • the time for pulverizing PGA which is a raw material resin, by impact pulverization at a temperature lower than the glass transition temperature (Tg) of the PGA varies depending on the treatment temperature at which impact pulverization is performed, but is usually 10 seconds to 20 minutes, preferably 30 It may be in the range of from 1 to 30 minutes, more preferably from 1 to 10 minutes, particularly preferably from 1 minute and 30 seconds to 5 minutes.
  • the measuring method of the physical property or characteristic of the biodegradable aliphatic polyester particle in an Example and a comparative example is as follows.
  • the weight average molecular weight (Mw) is 10 ml by dissolving 10 mg of biodegradable aliphatic polyester particle sample particles in hexafluoroisopropanol (HFIP) in which 5 mM of sodium trifluoroacetate is dissolved, followed by filtration with a membrane filter. The sample solution was obtained, and 10 ⁇ l of this sample solution was injected into a gel permeation chromatography (GPC) apparatus, and the molecular weight was measured under the following measurement conditions.
  • HFIP hexafluoroisopropanol
  • Glass transition temperature (Tg) 10 mg of sample particles were heated to about 280 ° C. using a differential scanning calorimeter (DSC; TC-15 manufactured by METTLER TOLEDO), held at this temperature for 2 minutes, and then rapidly (about 100 ° C. / When the non-crystalline sample obtained by cooling at a rate of 20 min / min) is reheated from a room temperature atmosphere to a temperature near 100 ° C. at a rate of temperature increase of 20 ° C./min. The midpoint glass transition temperature corresponding to the transition region was defined as the glass transition temperature (Tg).
  • DSC differential scanning calorimeter
  • Crystal melting point (Tm) Using a differential scanning calorimeter (DSC; TC-15 manufactured by METTLER TOLEDO), 10 mg of the sample particles were measured from a room temperature atmosphere to a crystalline melting point (Tm) + around 50 ° C. at a temperature rising rate of 20 ° C./min. The crystal melting point (Tm) was measured from the endothermic peak that appeared when heating to a temperature of. When a plurality of crystal melting points were observed, the peak with the largest endothermic peak area was defined as the crystal melting point (Tm).
  • DSC differential scanning calorimeter
  • Crystal melting heat ( ⁇ Hm) Using a differential scanning calorimeter (DSC; TC-15 manufactured by METTLER TOLEDO), 10 mg of the sample particles were measured from a temperature near room temperature to a crystalline melting point (Tm) at a heating rate of 20 ° C./min in a nitrogen atmosphere. ) Heated to a temperature in the vicinity of + 50 ° C., and all endothermic peaks detected in the range of crystal melting point (Tm) ⁇ 40 ° C. were calculated as the amount of heat of crystal melting ( ⁇ Hm).
  • DSC differential scanning calorimeter
  • the particle size of the sample particles was determined by using a laser diffraction particle size distribution analyzer (SALADA-3000S manufactured by Shimadzu Corporation) for a particle dispersion in which the sample particles are dispersed in ion-exchanged water.
  • the particle diameter at which the cumulative weight from the small particle diameter side becomes 50% was determined as the average particle diameter (50% D).
  • the cylindrical tablet 1 g of sample particles is placed in a stainless steel cylindrical mold (inner diameter 11.3 mm (inner cross-sectional area 1 cm 2 )), and a cylindrical weight (outer diameter 11.3 mm, weight 100 g), and a constant load (100 gf / cm 2 ) is applied to the particles, and the load is continuously applied for 24 hours in a constant temperature bath (relative humidity 20%) set to a predetermined temperature (40 ° C.). Then, it was prepared by molding into a cylindrical tablet having an upper area of 1 cm 2 , a lower area of 1 cm 2 and a height of 1.5 cm.
  • the blocking property of the sample particles was measured by the following method. About 15 g of sample particles are accurately weighed and sealed in a polyethylene bag with a chuck of 70 mm under the chuck, 50 mm in bag width, and 0.04 mm in thickness, and a load of 4 kg is applied in a constant temperature bath at 40 ° C. After a lapse of time, sample particles were taken out from the polyethylene bag with a chuck, poured onto the upper surface of a sieve having an opening of 850 ⁇ m, and the state when the sieve was shaken by hand for 1 minute was evaluated according to the following criteria.
  • A The sample remaining on the mesh of the sieve is less than 30% by mass.
  • B 30 to 80% by mass of the sample remaining on the sieve mesh.
  • C The sample remaining on the mesh of the sieve exceeds 80% by mass.
  • Example 1 As raw material resin, PGA (manufactured by Kureha Co., Ltd., Mw: 170,000, Tm: 220 ° C., Tg: 43 ° C., ⁇ Hm: 106 J / g) about 20 kg is immersed in liquid nitrogen and cooled, and then cooled with liquid nitrogen during pulverization Can be milled for 2 minutes (impact pulverization) using a pin mill that can be cooled (ultra fine pin mill manufactured by Hadano Sangyo Co., Ltd .: Contraplex series) while cooling with liquid nitrogen at a pulverization temperature of -25 ° C and a peripheral speed of 187 m / sec ) To obtain PGA particles. Table 1 shows the test results of the average particle diameter (50% D, hereinafter simply referred to as “particle diameter”), crystal heat of fusion ( ⁇ Hm), tablet breaking stress, and blocking property of the obtained PGA particles.
  • particle diameter the average particle diameter
  • ⁇ Hm crystal heat of fusion
  • Example 2 PGA particles were obtained in the same manner as in Example 1 except that the temperature during impact pulverization was changed to 5 ° C. Table 1 shows the test results of the particle diameter, crystal melting heat, tablet breaking stress and blocking property of the obtained PGA particles.
  • Example 3 PGA particles were obtained in the same manner as in Example 1 except that the temperature during impact pulverization was changed to 20 ° C. Table 1 shows the test results of the particle diameter, crystal melting heat, tablet breaking stress and blocking property of the obtained PGA particles.
  • Example 4 PGA was performed in the same manner as in Example 1 except that the raw material resin was changed to PGA (manufactured by Kureha Co., Ltd., Mw: 170,000, Tm: 220 ° C., Tg: 43 ° C., ⁇ Hm: 92 J / g). Particles were obtained. Table 1 shows the test results of the particle diameter, crystal melting heat, tablet breaking stress and blocking property of the obtained PGA particles.
  • Example 5 PGA particles were obtained in the same manner as in Example 4 except that the temperature during impact pulverization was changed to 5 ° C. Table 1 shows the test results of the particle diameter, crystal melting heat, tablet breaking stress and blocking property of the obtained PGA particles.
  • Example 6 PGA particles were obtained in the same manner as in Example 4 except that the temperature during impact pulverization was changed to 20 ° C. Table 1 shows the test results of the particle diameter, crystal melting heat, tablet breaking stress and blocking property of the obtained PGA particles.
  • Example 7 PGA was carried out in the same manner as in Example 2 except that the raw material resin was changed to PGA (manufactured by Kureha Co., Ltd., Mw: 170,000, Tm: 220 ° C., Tg: 43 ° C., ⁇ Hm: 85 J / g). Particles were obtained. Table 1 shows the test results of the particle diameter, crystal melting heat, tablet breaking stress and blocking property of the obtained PGA particles.
  • PGA particles were obtained in the same manner as in Example 2 except that the raw material resin was changed to PGA (manufactured by Kureha Co., Ltd., Mw: 170,000, Tg: 43 ° C., ⁇ Hm: 65 J / g). Table 1 shows the test results of the particle diameter, crystal melting heat, tablet breaking stress and blocking property of the obtained PGA particles.
  • the PGA particles produced by pulverizing the PGA having a heat of crystal fusion ( ⁇ Hm) of 75 J / g or more by the impact pulverization method at a temperature of ⁇ 25 to 20 ° C. are shown in Table 1.
  • (50% D) is 55 to 75 ⁇ m
  • the heat of crystal fusion ( ⁇ Hm) is 82 to 106 J / g
  • the particles are subjected to a load of 100 gf / cm 2 at a temperature of 40 ° C. for 24 hours in a cylindrical mold.
  • PGA particles having a fracture stress of a cylindrical tablet formed by loading of below the detection limit to 1310 gf / cm 2 and with these characteristics, blocking of PGA particles does not occur or blocking is very easy. It turns out that there is an effect of eliminating.
  • PGA particles are particles having a crystal heat of fusion ( ⁇ Hm) as small as 62 J / g and a tablet breaking stress as large as 1690 gf / cm 2.
  • the biodegradable aliphatic polyester particles have the following physical properties (A) to (C): (A) Average particle size (50% D) is 5 to 500 ⁇ m; (B) Crystal melting heat ( ⁇ Hm) is 75 J / g or more; and (C) The fracture stress of a cylindrical tablet molded by applying a load of 100 gf / cm 2 at a temperature of 40 ° C. for 24 hours in a cylindrical mold. 1500 gf / cm 2 or less; By providing biodegradable aliphatic polyester particles characterized by comprising biodegradable aliphatic polyester particles such as PLA and PGA that are less likely to be blocked by storage or transport, industrial use Probability is high.
  • a biodegradable aliphatic polyester having a heat of crystal fusion ( ⁇ Hm) of 75 J / g or more, particularly PGA or PLA is less than the glass transition temperature (Tg) of the biodegradable aliphatic polyester.
  • Biodegradable aliphatic polyester particles, particularly PGA particles which are less susceptible to blocking even when stored or transported by the above-described method for producing biodegradable aliphatic polyester particles, characterized by being pulverized by impact pulverization at a temperature Or since the method of obtaining a PLA particle simply is provided, industrial applicability is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

 (A)平均粒子径(50%D)が5~500μm;(B)結晶融解熱量(ΔHm)が75J/g以上;かつ(C)円筒金型内で、温度40℃で100gf/cmの荷重を24時間負荷して成形した円柱状タブレットの破壊応力が、1500gf/cm以下;であることを特徴とする生分解性脂肪族ポリエステル粒子、特にポリグリコール酸、ポリ乳酸、またはそれらの混合物粒子、並びに、結晶融解熱量(ΔHm)が75J/g以上である生分解性脂肪族ポリエステルを、該生分解性脂肪族ポリエステルのガラス転移温度(Tg)未満の温度で粉砕する生分解性脂肪族ポリエステル粒子の製造方法。

Description

生分解性脂肪族ポリエステル粒子、及びその製造方法
 本発明は、ブロッキング防止効果が高い生分解性脂肪族ポリエステル粒子、及びその製造方法に関する。
 ポリグリコール酸やポリ乳酸等の脂肪族ポリエステルは、土壌や海中などの自然界に存在する微生物または酵素により分解されるため、環境に対する負荷が小さい生分解性高分子材料として注目されている。これら生分解性の脂肪族ポリエステルは、生体内分解吸収性を有しているため、手術用縫合糸や人工皮膚などの医療用高分子材料としても利用されている。
 生分解性脂肪族ポリエステルとしては、乳酸繰り返し単位からなるポリ乳酸(以下、「PLA」ということがある。)、グリコール酸繰り返し単位からなるポリグリコール酸(以下、「PGA」ということがある。)、ポリε-カプロラクトンのようなラクトン系ポリエステル、ポリヒドロキシブチレート系ポリエステル、及び、これらの共重合体、例えば、グリコール酸繰り返し単位と乳酸繰り返し単位からなる共重合体などが知られている。
 生分解性脂肪族ポリエステルの中でも、PLAは、原料となるL-乳酸が、トウモロコシ、芋等から、発酵法により安価で得られること、自然農作物由来なので総二酸化炭素排出量が少ないこと、また得られたポリL-乳酸(以下、「PLLA」ということがある。)の性能として剛性が強く透明性がよいなどの特徴がある。しかし、PLLA等のPLAは、結晶化速度が遅く、延伸などの機械的工程を行う必要がある等の課題が指摘されている。
 また、生分解性脂肪族ポリエステルの中でも、PGAは、分解性が大きいことに加えて、耐熱性、引張強度等の機械的強度、及び、特にフィルムまたはシートとしたときのガスバリア性も優れる。そのため、PGAは、農業資材、各種包装(容器)材料や医療用高分子材料としての利用が期待され、単独で、あるいは他の樹脂材料などと複合化して用途展開が図られている。
 生分解性脂肪族ポリエステルから製品を製造する方法としては、押出成形、射出成形、圧縮成形、射出圧縮成形、トランスファ成形、注型成形、スタンパブル成形、ブロー成形、延伸フィルム成形、インフレーションフィルム成形、積層成形、カレンダー成形、発泡成形、RIM成形、FRP成形、粉末成形またはペースト成形など、溶融成形その他の成形方法が採用されている。溶融成形の成形原料として使用されるPGA等の生分解性脂肪族ポリエステルのペレットは、例えば、二軸押出機を用いてPGA等の生分解性脂肪族ポリエステルに種々の添加剤を配合してストランド状に溶融押出し、所定サイズに切断して得られる平均粒子径が数mm程度の大きさのものである。
 他方、PLAやPGA等の生分解性脂肪族ポリエステルの分解性、強度などに着目して、塗料、コーティング剤、インキ、トナー、農薬、医薬、化粧品、採鉱、坑井掘削などの分野における原料または添加剤などとして有用な生分解性脂肪族ポリエステル粒子が望まれている。これらの分野に適用する生分解性脂肪族ポリエステル粒子としては、先に述べた生分解性脂肪族ポリエステルのペレットより微小サイズであって、目的に合致した粒子径や粒径分布を有する比較的小さい粒子が求められる。加えて、生分解性脂肪族ポリエステル粒子としては、取り扱い性及び保存性に優れていることが求められている。
 また、前記生分解性脂肪族ポリエステルのペレットを溶融押出によって製造するための原料樹脂となる生分解性脂肪族ポリエステルは、重合反応後に回収された、例えばフレーク状などの生分解性脂肪族ポリエステルを所望形状及び大きさの粒子に調製した形態で使用されており、これに種々の添加剤を配合してペレットを製造している。
 粒子径が小さい粒子は、取り扱い性が不良となるとともに、吸湿性が大きくなり、表面積が大きくなることもあって、分解速度の影響が大きくなり、生分解性脂肪族ポリエステルの優れた特性が低下してしまうおそれがあり、乾燥工程や成形加工において予期しないトラブルが生じるおそれが皆無ではなかった。
 PLAやPGA等の生分解性脂肪族ポリエステルの樹脂粒子の製造方法が、種々提案されている。
 生分解性脂肪族ポリエステル粒子の製造方法としては、一般に、溶融固化物の切断または粉砕による粒子の製造方法や、溶液または分散液からの析出による粒子の製造方法が知られている。特開2001-288273号公報(特許文献1)には、PLA系樹脂からなるチップまたは塊状物を、-50~-180℃の低温に冷却して、衝撃粉砕し分級するポリ乳酸系樹脂粉末の製法が開示されている。特開平11-35693号公報(特許文献2)には、生分解性脂肪族ポリエステルの有機溶媒溶液と芳香族炭化水素類とを、60℃未満の温度で混合し、析出する固体状物を固液分離する、生分解性を有する粉状ポリエステルの製造方法が開示されており、実施例において、Mw14.5万のPLA、Mw10.0万のポリブチレンサクシネート、及びMw17.2万のPLAとポリブチレンサクシネートの共重合体が原料に用いられている。特開2006-45542号公報(特許文献3)には、製造例3として、PLAと、溶媒(アジピン酸ジメチル、グルタル酸ジメチル、コハク酸ジメチルの混合物(DBE(登録商標)、デュポン株式会社製)を用いて、溶解温度を140℃、冷却温度を-35℃として得た平均1次粒子径が250nm以下のPLA粒子、または、製造例4として、PGAと、溶媒(ビス(2-メトキシエチル)エーテル)を用いて、溶解温度を150℃、冷却温度を-35℃として得た平均1次粒子径が150nm以下のPGA粒子が開示されている。
 しかし、PLAやPGA等の生分解性脂肪族ポリエステル粒子は、用途に適する平均粒子径や粒径分布及び形状をもつ粒子を得ても、その後、前記のような用途の製品に該粒子を使用するまで、粒子の状態で保管や輸送を行っている間に、生分解性脂肪族ポリエステル粒子が凝集(ブロッキング)することがあった。特に、生分解性脂肪族ポリエステル粒子に対して、樹脂のガラス転移温度付近以上の温度環境下で荷重が加わると、ブロッキングが生じやすく、例えば、夏場やコンテナでの粒子の保管や輸送では、粒子が40℃以上の温度に曝されることがあるので、ブロッキング防止対策が求められていた。ブロッキングが生じると、粒子の取り扱い性が悪化するとともに、制御された粒子の平均粒子径、粒径分布及び形状等が失われ、所期の特性を発揮することができなくなることがある。
 そのため、保管方法を変更(低温保管、平積み等)する対策が採られてきたが、保管方法の変更は生産効率が悪いという課題が残っており、一層の改善が求められていた。
特開2001-288273号公報 特開平11-35693号公報 特開2006-45542号公報
 本発明の課題は、ブロッキング防止効果が高い生分解性脂肪族ポリエステル粒子、及び、その製造方法を提供することにある。
 本発明者らは、上記の課題を解決するために、生分解性脂肪族ポリエステル粒子のブロッキングが発生する現象の解析を鋭意続けるなかで、特に、いわゆる衝撃粉砕法によって得られた生分解性脂肪族ポリエステル粒子は、粉砕時のせん断力によって、表面が溶融軟化し非結晶部の割合が大きくなっていることを見いだした。更に検討を進めた結果、結晶化度の高い生分解性脂肪族ポリエステルを出発原料として使用することで、粉砕時のせん断力による表面の溶融軟化を抑制して結晶部の消失を阻止することによって、結晶化特性の変動を抑制し、結晶化度の高い生分解性脂肪族ポリエステル粒子を得ることができ、上記課題が解決できることを見いだし、本発明を完成した。
 すなわち、本発明によれば、以下の物性(A)~(C):
(A)平均粒子径が5~500μm;
(B)結晶融解熱量が75J/g以上;かつ
(C)円筒金型内で、温度40℃で100gf/cmの荷重を24時間負荷して成形した円柱状タブレットの破壊応力が、1500gf/cm以下;
を備えることを特徴とする生分解性脂肪族ポリエステル粒子が提供される。
 また、本発明によれば、実施の態様として、以下(1)及び(2)の生分解性脂肪族ポリエステル粒子が提供される。
(1)生分解性脂肪族ポリエステルが、PGA、PLA、またはそれらの混合物である前記の生分解性脂肪族ポリエステル粒子。
(2)生分解性脂肪族ポリエステルのガラス転移温度未満の温度で粉砕することにより得られたものである前記の生分解性脂肪族ポリエステル粒子。
 さらに、本発明によれば、結晶融解熱量が75J/g以上である生分解性脂肪族ポリエステルを、該生分解性脂肪族ポリエステルのガラス転移温度未満の温度で粉砕することを特徴とする前記の生分解性脂肪族ポリエステル粒子の製造方法が提供される。
 本発明によれば、以下の物性(A)~(C):
(A)平均粒子径が5~500μm;
(B)結晶融解熱量が75J/g以上;かつ
(C)円筒金型内で、温度40℃で100gf/cmの荷重を24時間負荷して成形した円柱状タブレットの破壊応力が、1500gf/cm以下;
を備えることを特徴とする生分解性脂肪族ポリエステル粒子であることによって、保管や移送によってもブロッキングが生じにくいPGAやPLA等の生分解性脂肪族ポリエステル粒子が得られるという効果が奏される。
 また、本発明によれば、結晶融解熱量が75J/g以上である生分解性脂肪族ポリエステルを、該生分解性脂肪族ポリエステルのガラス転移温度未満の温度で粉砕することを特徴とする前記の生分解性脂肪族ポリエステル粒子の製造方法であることにより、保管や移送によってもブロッキングが生じにくいPGAやPLA等の生分解性脂肪族ポリエステル粒子を簡便に得ることができるという効果が奏される。
1.生分解性脂肪族ポリエステル
 本発明の生分解性脂肪族ポリエステル粒子を構成する生分解性脂肪族ポリエステルは、グリコール酸及びグリコール酸の2分子間環状エステルであるグリコリド(GL)を含むグリコール酸類、乳酸及び乳酸の2分子間環状エステルであるラクチドを含む乳酸類、シュウ酸エチレン(すなわち、1,4-ジオキサン-2,3-ジオン)、ラクトン類(例えば、β-プロピオラクトン、β-ブチロラクトン、ピバロラクトン、γ-ブチロラクトン、δ-バレロラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトン等)、カーボネート類(例えばトリメチレンカーボネート等)、エーテル類(例えば1,3-ジオキサン等)、エーテルエステル類(例えばジオキサノン等)などの環状モノマー;3-ヒドロキシプロパン酸、4-ヒドロキシブタン酸、6-ヒドロキシカプロン酸などのヒドロキシカルボン酸またはそのアルキルエステル;エチレングリコール、1,4-ブタンジオール等の脂肪族ジオール類と、こはく酸、アジピン酸等の脂肪族カルボン酸類またはそのアルキルエステル類との実質的に等モルの混合物;等の脂肪族エステルモノマー類の単独重合体、または共重合体が含まれる。なかでも、式:(-O-CH(R)-C(O)-)[Rは、水素原子またはメチル基である。]で表わされるグリコール酸または乳酸繰り返し単位を70質量%以上有する生分解性脂肪族ポリエステルが好ましい。具体的には、PLLA、すなわちL-乳酸の単独重合体、D-乳酸の単独重合体、L-乳酸若しくはD-乳酸の繰り返し単位を70質量%以上有する共重合体、これらの混合物等のPLA、または、PGA、すなわちグリコール酸の単独重合体、若しくは、グリコール酸繰り返し単位を70質量%以上有する共重合体、更には、PLAとPGAとの混合物が好ましい。特に好ましいのは、分解性、耐熱性、機械的強度の観点から、PLAまたはPGAである。
 これらの脂肪族ポリエステルは、例えば、それ自体公知のグリコール酸や乳酸などのα-ヒドロキシカルボン酸の脱水重縮合により合成することができる。また、高分子量の脂肪族ポリエステルを効率よく合成するには、一般に、α-ヒドロキシカルボン酸の二分子間環状エステルを合成し、該環状エステルを開環重合する方法が採用されている。例えば、乳酸の二分子間環状エステルであるラクチドを開環重合すると、PLAが得られる。グリコール酸の二分子間環状エステルであるグリコリドを開環重合すると、PGAが得られる。
 PLAは、上記方法により合成することができるものであり、市販の製品としては、例えば、レイシアH-100、H-280、H-400、H-440等の「レイシアシリーズ」(三井化学株式会社製)、3001D、3051D、4032D、4042D、6201D、6251D、7000D、7032D等の「Ingeo」(ネイチャーワークス社製)、エコプラスチックU’z S-09、S-12、S-17等の「エコプラスチックU’zシリーズ」(トヨタ自動車株式会社製)などが、強度と可撓性の両立、及び耐熱性の観点から、好ましく選択される。
 以下、生分解性脂肪族ポリエステルとして、PGAを例にとって、更に説明するが、PLAその他の生分解性脂肪族ポリエステルについても、PGAに準じて発明を実施するための形態をとることができる。
〔ポリグリコール酸(PGA)〕
 本発明の生分解性脂肪族ポリエステル粒子の原料として、特に好ましく用いられるPGAは、式:(-O-CH-C(O)-)で表わされるグリコール酸繰り返し単位のみからなるグリコール酸のホモポリマー(グリコール酸の2分子間環状エステルであるグリコリド(GL)の開環重合物を含む)に加えて、上記グリコール酸繰り返し単位を70質量%以上含むPGA共重合体を含むものである。
 上記グリコリド等のグリコール酸モノマーとともに、PGA共重合体を与えるコモノマーとしては、例えば、シュウ酸エチレン(即ち、1,4-ジオキサン-2,3-ジオン)、ラクチド類、ラクトン類、カーボネート類、エーテル類、エーテルエステル類、アミド類などの環状モノマー;乳酸、3-ヒドロキシプロパン酸、3-ヒドロキシブタン酸、4-ヒドロキシブタン酸、6-ヒドロキシカプロン酸などのヒドロキシカルボン酸またはそのアルキルエステル;エチレングリコール、1,4-ブタンジオール等の脂肪族ジオール類と、こはく酸、アジピン酸等の脂肪族ジカルボン酸類またはそのアルキルエステル類との実質的に等モルの混合物;またはこれらの2種以上を挙げることができる。これらコモノマーは、その重合体を、上記グリコリド等のグリコール酸モノマーとともに、PGA共重合体を与えるための出発原料として用いることもできる。
 本発明のPGA粒子の原料となるPGA中の上記グリコール酸繰り返し単位は70質量%以上であり、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上、特に好ましくは98質量%以上であり、最も好ましくは99質量%以上である実質的にPGAホモポリマーである。グリコール酸繰り返し単位の割合が小さ過ぎると、PGAに期待される強度や分解性が乏しくなる。グリコール酸繰り返し単位以外の繰り返し単位は、30質量%以下であり、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下、特に好ましくは2質量%以下であり、最も好ましくは1質量%以下の割合で用いられ、グリコール酸繰り返し単位以外の繰り返し単位を含まないものでもよい。
 本発明のPGA粒子の原料となるPGAとしては、所望の高分子量ポリマーを効率的に製造するために、グリコリド70~100質量%及び上記した他のコモノマー30~0質量%を重合して得られるPGAが好ましい。他のコモノマーとしては、2分子間の環状モノマーであってもよいし、環状モノマーでなく両者の混合物であってもよいが、本発明が目的とするPGA粒子とするためには、環状モノマーが好ましい。以下、グリコリド70~100質量%及び他の環状モノマー30~0質量%を開環重合して得られるPGAについて詳述する。
〔グリコリド〕
 開環重合によってPGAを形成するグリコリドは、ヒドロキシカルボン酸の1種であるグリコール酸の2分子間環状エステルである。グリコリドの製造方法は、特に限定されないが、一般的には、グリコール酸オリゴマーを熱解重合することにより得ることができる。グリコール酸オリゴマーの解重合法として、例えば、溶融解重合法、固相解重合法、溶液解重合法などを採用することができ、また、クロロ酢酸塩の環状縮合物として得られるグリコリドも用いることができる。なお、所望により、グリコリドとしては、グリコリド量の20質量%を限度として、グリコール酸を含有するものを使用することができる。
 本発明のPGA粒子の原料となるPGAは、グリコリドのみを開環重合させて形成してもよいが、他の環状モノマーを共重合成分として同時に開環重合させて共重合体を形成してもよい。共重合体を形成する場合には、グリコリドの割合は、70質量%以上であり、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上、特に好ましくは98質量%以上であり、最も好ましくは99質量%以上である実質的にPGAホモポリマーである。
〔他の環状モノマー〕
 グリコリドとの共重合成分として使用することができる他の環状モノマーとしては、ラクチドなど他のヒドロキシカルボン酸の2分子間環状エステルの外、ラクトン類(例えば、β-プロピオラクトン、β-ブチロラクトン、ピバロラクトン、γ-ブチロラクトン、δ-バレロラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトン等)、トリメチレンカーボネート、1,3-ジオキサンなどの環状モノマーを使用することができる。好ましい他の環状モノマーは、他のヒドロキシカルボン酸の2分子間環状エステルであり、ヒドロキシカルボン酸としては、例えば、L-乳酸、D-乳酸、α-ヒドロキシ酪酸、α-ヒドロキシイソ酪酸、α-ヒドロキシ吉草酸、α-ヒドロキシカプロン酸、α-ヒドロキシイソカプロン酸、α-ヒドロキシヘプタン酸、α-ヒドロキシオクタン酸、α-ヒドロキシデカン酸、α-ヒドロキシミリスチン酸、α-ヒドロキシステアリン酸、及びこれらのアルキル置換体などを挙げることができる。特に好ましい他の環状モノマーは、乳酸の2分子間環状エステルであるラクチドであり、L体、D体、ラセミ体、これらの混合物のいずれであってもよい。
 他の環状モノマーは、30質量%以下、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下、特に好ましくは2質量%以下であり、最も好ましくは1質量%以下の割合で用いられる。グリコリドと他の環状モノマーとを開環共重合することにより、PGA(共重合体)の融点を低下させて加工温度を下げたり、結晶化速度を制御して押出加工性や延伸加工性を改善することができる。しかし、これらの環状モノマーの使用割合が大きすぎると、形成されるPGA(共重合体)の結晶性が損なわれ、耐熱性、ガスバリア性、機械的強度などが低下する。なお、PGAが、グリコリド100質量%から形成される場合は、他の環状モノマーは0質量%であり、このPGAも本発明の範囲に含まれる。
〔開環重合反応〕
 グリコリドの開環重合または開環共重合(以下、総称して、「開環(共)重合」ということがある。)は、好ましくは、少量の触媒存在下に行われる。触媒は、特に限定されないが、例えば、ハロゲン化錫(例えば、二塩化錫、四塩化錫など)や有機カルボン酸錫(例えば、2-エチルヘキサン酸錫などのオクタン酸錫)などの錫系化合物;アルコキシチタネートなどのチタン系化合物;アルコキシアルミニウムなどのアルミニウム系化合物;ジルコニウムアセチルアセトンなどのジルコニウム系化合物;ハロゲン化アンチモン、酸化アンチモンなどのアンチモン系化合物;などがある。触媒の使用量は、環状エステルに対して、質量比で、好ましくは1~1,000ppm、より好ましくは3~300ppm程度である。
 グリコリドの開環(共)重合は、生成するPGAの溶融粘度や分子量などの物性を制御するために、ラウリルアルコール等の高級アルコール、その他のアルコール類や水などのプロトン性化合物を分子量調節剤として使用することができる。グリコリドには通常、微量の水分と、グリコール酸及び直鎖状のグリコール酸オリゴマーからなるヒドロキシカルボン酸化合物類が不純物として含まれていることがあり、これらの化合物も重合反応に作用する。そのため、これらの不純物の濃度を、例えばこれらの化合物中のカルボン酸量を中和滴定などによりモル濃度として定量し、また目的の分子量に応じプロトン性化合物としてアルコール類や水を添加し、全プロトン性化合物のモル濃度をグリコリドに対して制御することにより生成PGAの分子量等を調整することができる。また、物性改良のために、グリセリンなどの多価アルコールを添加してもよい。
 グリコリドの開環(共)重合は、塊状重合でも、溶液重合でもよいが、多くの場合、塊状重合が採用される。塊状重合の重合装置としては、押出機型、パドル翼を持った縦型、ヘリカルリボン翼を持った縦型、押出機型やニーダー型の横型、アンプル型、板状型、管状型など様々な装置の中から、適宜選択することができる。また、溶液重合には、各種反応槽を用いることができる。
 重合温度は、実質的な重合開始温度である120℃から300℃までの範囲内で目的に応じて適宜設定することができる。重合温度は、好ましくは130~270℃、より好ましくは140~260℃、特に好ましくは150~250℃である。重合温度が低すぎると、生成したPGAの分子量分布が広くなりやすい。重合温度が高すぎると、生成したPGAが熱分解を受けやすくなる。重合時間は、3分間~50時間、好ましくは5分間~30時間の範囲内である。重合時間が短すぎると重合が充分に進行し難く、所定の重量平均分子量を実現することができない。重合時間が長すぎると生成したPGAが着色しやすくなる。
 生成したPGAを固体状態とした後、所望により、更に固相重合を行ってもよい。固相重合とは、PGAの融点未満の温度で加熱することにより、固体状態を維持したままで熱処理する操作を意味する。この固相重合により、未反応モノマー、オリゴマーなどの低分子量成分が揮発・除去される。固相重合は、好ましくは1~100時間、より好ましくは2~50時間、特に好ましくは3~30時間で行われる。
 また、固体状態のPGAを、その結晶融点(Tm)+38℃以上、好ましくは結晶融点(Tm)+38℃から結晶融点(Tm)+100℃までの温度範囲内で溶融混練する工程により熱履歴を与えることによって、結晶性を制御してもよい。
2.生分解性脂肪族ポリエステル粒子
 本発明の生分解性脂肪族ポリエステル粒子は、生分解性脂肪族ポリエステルを主成分とする粒子であり、好ましくはPLA粒子またはPGA粒子であり、特に好ましくはPGA粒子である。以下、生分解性脂肪族ポリエステル粒子として、PGA粒子を例にとって、更に説明するが、PLA粒子その他の生分解性脂肪族ポリエステルの粒子についても、PGA粒子に準じて発明を実施するための形態をとることができる。
 本発明のPGA粒子は、以下の物性(A)~(C):
(A)平均粒子径が5~500μm;
(B)結晶融解熱量が75J/g以上;かつ
(C)円筒金型内で、温度40℃で100gf/cmの荷重を24時間負荷して成形した円柱状タブレットの破壊応力が、1500gf/cm以下;
を備えることを特徴とする生分解性脂肪族ポリエステル粒子である。
 本発明のPGA粒子を製造する原料として、PGAに加えて、本発明の目的に反しない限度において、他の脂肪族ポリエステル類、ポリエチレングリコール、ポリプロピレングリコールなどのポリグリコール類、変性ポリビニルアルコール、ポリウレタン、ポリL-リジンなどのポリアミド類などの他の樹脂や、可塑剤、酸化防止剤、光安定剤、熱安定剤、末端封止剤、紫外線吸収剤、滑剤、離型剤、ワックス類、着色剤、結晶化促進剤、水素イオン濃度調節剤、補強繊維のような充填材等の通常配合される添加剤を必要に応じて配合することができる。
〔重量平均分子量(Mw)〕
 本発明のPGA粒子に含まれるPGAの重量平均分子量(Mw)は、通常4~150万の範囲内にあるものが好ましく、より好ましくは5~130万、更に好ましくは6~110万、特に好ましくは7~100万の範囲内にあるものを選択する。PGAの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)装置によって求めたものである。また、本発明のPLA粒子に含まれるPLAの重量平均分子量(Mw)は、好ましくは8~120万、より好ましくは10~100万、更に好ましくは12~80万の範囲である。
〔結晶融点(Tm)〕
 本発明のPGA粒子に含まれるPGAの結晶融点(Tm)は、通常197~245℃であり、重量平均分子量(Mw)、分子量分布、共重合成分の種類及び含有割合等によって調整することができる。PGAの結晶融点(Tm)は、好ましくは200~240℃、より好ましくは205~235℃、特に好ましくは210~230℃である。PGAの単独重合体の結晶融点(Tm)は、通常220℃程度である。結晶融点(Tm)が低すぎると、耐熱性や強度が不十分であったりする。結晶融点(Tm)が高すぎると、加工性が不足したり、粒子の形成を十分制御することができず、得られるPGA粒子の粒子径が所望の範囲のものとならないことがある。PGAの結晶融点(Tm)は、示差走査熱量計(DSC)を用いて、窒素雰囲気中で求めたものである。具体的には、試料PGAを窒素雰囲気中、室温付近から20℃/分の昇温速度で、約280℃(結晶融点(Tm)+50℃付近)まで加熱する過程で検出される結晶融解に伴う吸熱ピークの温度を意味する。該吸熱ピークが複数みられる場合には、吸熱ピーク面積が最も大きいピークを結晶融点(Tm)とする。
 また、本発明のPLA粒子に含まれるPLAの結晶融点(Tm)は、好ましくは145~185℃、より好ましくは150~180℃、更に好ましくは155~175℃の範囲である。
〔ガラス転移温度(Tg)〕
 本発明のPGA粒子に含まれるPGAのガラス転移温度(Tg)は、通例25~60℃であり、好ましくは30~50℃、より好ましくは35~45℃である。PGAのガラス転移温度(Tg)は、重量平均分子量(Mw)、分子量分布、共重合成分の種類及び含有割合等によって調整することができる。PGAのガラス転移温度(Tg)は、結晶融点(Tm)の測定と同様に、示差走査熱量計(DSC)を用いて、窒素雰囲気中で求めたものである。具体的には、試料PGAを、約280℃(結晶融点(Tm)+50℃付近)まで加熱し、この温度で2分間保持した後、液体窒素により急速(約100℃/分)に冷却して得られた非晶試料を、DSCを用いて、窒素雰囲気中、室温付近から20℃/分の昇温速度で、100℃付近まで再加熱するときの、ガラス状態からゴム状態への転移領域に相当する二次転移領域における熱量の二次転移の開始温度と終了温度の中間点をガラス転移温度(Tg)とする(以下、「中間点ガラス転移温度」ということがある。)。ガラス転移温度(Tg)が低すぎると、後述の粉砕処理に伴う発熱などによって、PGA粒子の表面及び内部の結晶性が低くなり、粒子のブロッキングが起きやすくなることがある。ガラス転移温度(Tg)が高すぎると、後述の熱処理によってもPGA粒子表面の性状変化が生じにくく、粒子の粒子径の制御等が困難となることがあり、結果として、ブロッキング防止効果が十分改善されないことがある。
 なお、PLAのガラス転移温度(Tg)は、好ましくは45~70℃、より好ましくは50~65℃、更に好ましくは52~63℃の範囲内である。
〔平均粒子径(50%D)〕
 本発明のPGA粒子等の生分解性脂肪族ポリエステル粒子の平均粒子径(50%D)は、5~500μmである。生分解性脂肪族ポリエステル粒子の平均粒子径(50%D)は、レーザー回折式粒度分布測定装置を使用して測定し求めた粒子の粒径分布を用いて、小粒子径側からの累積重量が50%となる粒子径で表される値を意味する。
 本発明の生分解性脂肪族ポリエステル粒子の平均粒子径(50%D)は、好ましくは7~450μm、より好ましくは10~400μm、更に好ましくは20~300μm、特に好ましくは30~200μmの範囲である。平均粒子径(50%D)が小さすぎると、粒子の取り扱い性や保存性が難しくなる。平均粒子径(50%D)が大きすぎると、着目している用途での使用が難しくなる。例えば、平均粒子径が大きすぎると、水中での分散性が悪くなり、塗料、コーティング、トナー分野において、使用が難しくなる。平均粒子径(50%D)が5~500μmの範囲内にあることにより、生分解性脂肪族ポリエステル粒子の流動性がよく、粒子の取り扱い性や保存性が良好であるとともに、製品の成形やPGA粒子の使用に当たって、求められる所望の粒子径の粒子を極めて容易に得ることができる。
〔結晶融解熱量(ΔHm)〕
 本発明のPGA粒子は、結晶融解熱量(ΔHm)が、75J/g以上であり、好ましくは80J/g以上、より好ましくは85J/g以上、更に好ましくは90J/g以上、特に好ましくは93J/g以上、最も好ましくは95J/g以上である。PGA粒子の結晶融解熱量(ΔHm)は、結晶融点(Tm)の測定と同様に、DSCを用いて、窒素雰囲気中で求めたものである。具体的には、試料PGAを、DSCを用いて、窒素雰囲気中、室温付近から20℃/分の昇温速度で、約280℃(結晶融点(Tm)+50℃付近)まで加熱する過程で検出される結晶融点(Tm)±40℃の範囲に検出されるすべての吸熱ピークの面積を積算して算出される。
 本発明のPGA粒子は、粒子の内部や表面の結晶化度が高いことに特徴があり、結晶融解熱量(ΔHm)が75J/g未満であると、PGA粒子の内部や表面の結晶化度が低いため、ブロッキングが生じやすくなり、取り扱い性に劣ることとなる。本発明のPGA粒子の結晶融解熱量(ΔHm)の上限は特にないが、過度に結晶化度が上がると、PGAを含む製品等に期待される分解性が低下することがあるので、120J/g程度を上限とすることが好ましい。
 なお、PLA粒子の結晶融解熱量(ΔHm)の上限は、100J/g程度であり、好ましくは90J/g程度である。
〔タブレット破壊応力〕
 本発明の生分解性脂肪族ポリエステル粒子は、該粒子のタブレット破壊応力、すなわち、該粒子に、円筒金型内で、温度40℃で100gf/cmの荷重を24時間負荷して成形した円柱状タブレットの破壊応力が、1500gf/cm以下のものである。粒子のタブレット破壊応力は、木屋式硬度計(株式会社藤原製作所製)を用いて、所定条件で調製した円柱状タブレットを垂直方向に荷重をかけて圧縮し、該タブレットが圧砕され破壊するときの荷重(最大点荷重)として求められる値(N=3の平均値)である。
 生分解性脂肪族ポリエステル粒子のタブレット破壊応力の測定を行うための円柱状タブレットは、該粒子に、円筒金型内で、温度40℃で100gf/cmの荷重を24時間負荷して成形した円柱状タブレットである。具体的には、生分解性脂肪族ポリエステル粒子を、ステンレス製の円筒状金型(内径11.3mm(内断面積1cm))内に1g入れ、該粒子の上部から円柱状重り(外径11.3mm、重さ100g)を挿入して、該粒子に一定荷重(100gf/cm)をかけた状態で、所定温度(40℃)に設定した恒温槽内(相対湿度10~30%)で24時間荷重をかけ続けながら静置することによって成形して調製してなる、上面積1cm、下面積1cm、高さ1.5cmの円柱状タブレットである。
 本発明の生分解性脂肪族ポリエステル粒子は、円筒金型内で、温度40℃で100gf/cmの荷重を24時間負荷して成形した円柱状タブレットの破壊応力が1500gf/cm以下のものであることによって、高温に曝されることがある夏場やコンテナによる保管や輸送に際しても、該生分解性脂肪族ポリエステル粒子がブロッキングしにくく、また、一旦は粒子のブロッキングが生じても、極めて容易にブロッキング状態を解消することができる。これに対して、40℃の温度で成形した円柱状タブレットの破壊応力が1500gf/cmを超える生分解性脂肪族ポリエステル粒子では、ブロッキングした生分解性脂肪族ポリエステル粒子のブロッキング状態を解消することが困難であり、使用用途に求められる所期の粒子径の生分解性脂肪族ポリエステル粒子を容易に得ることができない。タブレットの破壊応力は、好ましくは1400gf/cm以下、より好ましくは1000gf/cm以下、更に好ましくは500gf/cm以下、特に好ましくは200gf/cm以下の範囲であり、最も好ましくは、木屋式硬度計の検出限界である25gf/cm以下である。
3.生分解性脂肪族ポリエステル粒子の製造方法
 本発明の生分解性脂肪族ポリエステル粒子は、好ましくはPLA粒子またはPGA粒子、特に好ましくはPGA粒子であり、(A)平均粒子径(50%D)が5~500μm;(B)結晶融解熱量(ΔHm)が75J/g以上;かつ(C)円筒金型内で、温度40℃で100gf/cmの荷重を24時間負荷して成形した円柱状タブレットの破壊応力が、1500gf/cm以下;である生分解性脂肪族ポリエステル粒子であれば、その製造方法は特に限定されない。製造方法の中では、結晶融解熱量(ΔHm)が75J/g以上である生分解性脂肪族ポリエステルを、該生分解性脂肪族ポリエステルのガラス転移温度(Tg)未満の温度で粉砕して製造することが好ましい。
 以下、PGA粒子の製造方法を例にとって、更に説明するが、PLA粒子やその他の生分解性脂肪族ポリエステル粒子の製造方法についても、PGA粒子の製造方法に準じて発明を実施するための形態をとることができる。
 本発明のPGA粒子の原料樹脂であるPGAは、好ましくは結晶融解熱量(ΔHm)が75J/g以上、より好ましくは80J/g以上、更に好ましくは85J/g以上のPGAであり、通常、PGAを含む製品の成形原料として、また、粒子の分散液の形態で使用されているものから選択することができ、その製造方法は特に限定されない。例えば、重合反応後に回収した粉末状またはフレーク状等の形状を有するPGAから、好ましくは洗浄を行って、必要に応じて分級して得たものでもよい。また、該回収したPGAを、粉砕または粉末化し、必要に応じて分級して得たものでもよい。また、PGAの有機溶剤溶液または分散液から、凝固または析出させて得た粒子または粉末状のPGAでもよい。簡便には、重合反応後に回収した粉末状またはフレーク状等の形状を有するPGAを用いればよい。
 本発明のPGA粒子は、前記原料樹脂を、該原料樹脂のガラス転移温度(Tg)未満の温度で粉砕、好ましくは衝撃粉砕して製造することが好ましい。粉砕を行う温度は、より好ましくは-50℃以上ガラス転移温度(Tg)-5℃以下、更に好ましくは-45℃以上ガラス転移温度(Tg)-10℃以下、特に好ましくは-40℃以上ガラス転移温度(Tg)-20℃以下、最も好ましくは-35℃以上ガラス転移温度(Tg)-30℃以下の範囲であり、具体的には、例えば、-50℃~35℃、好ましくは-45℃~30℃、より好ましくは-40℃~20℃、特に好ましくは-35℃~10℃のような温度範囲を選択することができる。粉砕を行う温度が低すぎると、得られるPGA粒子の平均粒子径(50%D)が小さくなりすぎたり、PGA粒子の粒径分布が広くなり、タブレット破壊応力が大きくなりすぎたりする結果、ブロッキング防止効果が得られないおそれがある。処理温度が高すぎると、PGA粒子の表面が軟化したり溶融したりして、PGA粒子の結晶化特性が制御されず、ブロッキング防止効果が得られなかったり、場合によっては、PGA粒子が凝集してしまったりするおそれがある。
 この温度範囲で原料樹脂であるPGAを粉砕することにより、PGAが低温脆化した状態で粉砕されるため、粉砕時の発熱が抑制され、熱的変性を生ぜず、結晶化特性の変動が制御されて、(A)平均粒子径(50%D)が5~500μm;(B)結晶融解熱量(ΔHm)が75J/g以上;かつ(C)円筒金型内で、温度40℃で100gf/cmの荷重を24時間負荷して成形した円柱状タブレットの破壊応力が、1500gf/cm以下;であるPGA粒子を容易に得ることができる。なお、本発明のPGA粒子は、分級を行うことによって、平均粒子径(50%D)が5~500μmとしたものであってもよい。
 原料樹脂であるPGAを、該PGAのガラス転移温度(Tg)未満の温度で衝撃粉砕法により粉砕するための装置としては、液体窒素等の超低温冷媒による冷却部と粉砕部、更に好ましくは粒度調整部とを兼ね備えた装置が好ましく、ジェットミル、ブレードミル、ピンミル等を用いることができるが、高速回転する本体側ディスクピンと、固定ドアー側のディスクピンにて粉砕を行うピンミルを使用することが好ましい。
 原料樹脂であるPGAを、該PGAのガラス転移温度(Tg)未満の温度で衝撃粉砕法により粉砕する時間は、衝撃粉砕を行う処理温度によっても異なるが、通例10秒間~20分間、好ましくは30秒間~15分間、より好ましくは1~10分間、特に好ましくは1分30秒間~5分間の範囲とすればよい。
 以下に実施例及び比較例を示して本発明を更に説明するが、本発明は、本実施例に限定されるものではない。実施例及び比較例における生分解性脂肪族ポリエステル粒子の物性または特性の測定方法は、以下のとおりである。
[重量平均分子量(Mw)]
 重量平均分子量(Mw)は、生分解性脂肪族ポリエステル粒子の試料粒子10mgを、トリフルオロ酢酸ナトリウムを5mM溶解させたヘキサフルオロイソプロパノール(HFIP)に溶解させて10mlとした後、メンブレンフィルターでろ過して試料溶液を得て、この試料溶液の10μlをゲルパーミエーションクロマトグラフィー(GPC)装置に注入して、下記の測定条件で分子量を測定することによって求めた。
<GPC測定条件>
 装置:昭和電工株式会社製GPC104
 カラム:昭和電工株式会社製HFIP-806M 2本(直列接続)+プレカラム:HFIP-LG 1本
 カラム温度:40℃
 溶離液:トリフルオロ酢酸ナトリウムを5mMの濃度で溶解させたHFIP溶液
 検出器:示差屈折率計
 分子量校正:分子量の異なる標準分子量のポリメタクリル酸メチル5種(Polymer laboratories Ltd.製)を用いて作成した分子量の検量線データを使用
[ガラス転移温度(Tg)]
 試料粒子10mgを、示差走査熱量計(DSC;メトラー・トレド社製TC-15)を用いて、約280℃まで加熱し、この温度で2分間保持した後、液体窒素により急速(約100℃/分)に冷却して得られた非晶試料を、窒素雰囲気中、20℃/分の昇温速度で、室温雰囲気から100℃付近の温度まで再加熱するときの、ガラス状態からゴム状態への転移領域に相当する中間点ガラス転移温度をガラス転移温度(Tg)とした。
[結晶融点(Tm)]
 試料粒子10mgを、示差走査熱量計(DSC;メトラー・トレド社製TC-15)を用いて、窒素雰囲気中、20℃/分の昇温速度で、室温雰囲気から結晶融点(Tm)+50℃付近の温度まで加熱するときに現れる吸熱ピークから、結晶融点(Tm)を測定した。結晶融点が複数みられる場合には、吸熱ピーク面積の最も大きいピークを結晶融点(Tm)とした。
[結晶融解熱量(ΔHm)]
 試料粒子10mgを、示差走査熱量計(DSC;メトラー・トレド社製TC-15)を使用して、窒素雰囲気中で、20℃/分の昇温速度で、室温付近の温度から結晶融点(Tm)+50℃付近の温度まで加熱し、結晶融点(Tm)±40℃の範囲で検出される吸熱ピークを全て結晶融解熱量(ΔHm)として、算出した。
[平均粒子径(50%D)]
 試料粒子の粒子径は、該試料粒子を、イオン交換水に分散させた粒子分散液について、レーザー回折式粒度分布測定装置(株式会社島津製作所製SALADA-3000S)を使用して求めた粒子径分布から、小粒子径側からの累積重量が50%となる粒子径を平均粒子径(50%D)として求めた。
[タブレット破壊応力]
 試料粒子のタブレット破壊応力は、木屋式硬度計(株式会社藤原製作所製)を用いて、調製した円柱状タブレットを垂直方向に圧縮し、該タブレットを破壊するに要した最大点荷重(N=3の平均値)を求めて、試料粒子のタブレット破壊応力とした。
 円柱状タブレットは、試料粒子を、ステンレス製の円筒状金型(内径11.3mm(内断面積1cm))内に1g入れ、該粒子の上部から円柱状重り(外径11.3mm、重さ100g)を挿入して、該粒子に一定荷重(100gf/cm)をかけた状態で、所定温度(40℃)に設定した恒温槽(相対湿度20%)内で24時間荷重をかけ続けながら静置することによって、上面積1cm、下面積1cm、高さ1.5cmの円柱状タブレットに成形して調製した。
[ブロッキング性]
 試料粒子のブロッキング性は、次の方法で測定した。チャック下70mm、袋幅50mm、厚み0.04mmのチャック付きポリエチレン袋に、試料粒子約15gを正確に秤量して封入し、40℃の恒温槽中で、4kgの重りを乗せて荷重をかけ1日経過した後、チャック付きポリエチレン袋から試料粒子を出して、目開き850μの篩の上面に注ぎ乗せ、該篩を1分間手で振るったときの状態を、以下の基準で評価した。
A: 篩の網目上に残った試料が30質量%未満。
B: 篩の網目上に残った試料が30~80質量%。
C: 篩の網目上に残った試料が80質量%を超える。
〔実施例1〕
 原料樹脂として、PGA(株式会社クレハ製、Mw:17万、Tm:220℃、Tg:43℃、ΔHm:106J/g)約20kgを、液体窒素に浸漬して冷却後、粉砕時に液体窒素冷却が可能なピンミル(槇野産業株式会社製の超微粉ピンミル:コントラプレックスシリーズ)を用いて、液体窒素で冷却しながら、粉砕温度-25℃、周速187m/secの条件で2分間粉砕(衝撃粉砕)して、PGA粒子を得た。得られたPGA粒子の平均粒子径(50%D、以下、単に「粒子径」という。)、結晶融解熱量(ΔHm)、タブレット破壊応力及びブロッキング性の試験結果を表1に示す。
〔実施例2〕
 衝撃粉砕時の温度を5℃に変更したこと以外は、実施例1と同様にしてPGA粒子を得た。得られたPGA粒子の粒子径、結晶融解熱量、タブレット破壊応力及びブロッキング性の試験結果を表1に示す。
〔実施例3〕
 衝撃粉砕時の温度を20℃に変更したこと以外は、実施例1と同様にしてPGA粒子を得た。得られたPGA粒子の粒子径、結晶融解熱量、タブレット破壊応力及びブロッキング性の試験結果を表1に示す。
〔実施例4〕
 原料樹脂を、PGA(株式会社クレハ製、Mw:17万、Tm:220℃、Tg:43℃、ΔHm:92J/g)に変更して使用したこと以外は、実施例1と同様にしてPGA粒子を得た。得られたPGA粒子の粒子径、結晶融解熱量、タブレット破壊応力及びブロッキング性の試験結果を表1に示す。
〔実施例5〕
 衝撃粉砕時の温度を5℃に変更したこと以外は、実施例4と同様にしてPGA粒子を得た。得られたPGA粒子の粒子径、結晶融解熱量、タブレット破壊応力及びブロッキング性の試験結果を表1に示す。
〔実施例6〕
 衝撃粉砕時の温度を20℃に変更したこと以外は、実施例4と同様にしてPGA粒子を得た。得られたPGA粒子の粒子径、結晶融解熱量、タブレット破壊応力及びブロッキング性の試験結果を表1に示す。
〔実施例7〕
 原料樹脂を、PGA(株式会社クレハ製、Mw:17万、Tm:220℃、Tg:43℃、ΔHm:85J/g)に変更して使用したこと以外は、実施例2と同様にしてPGA粒子を得た。得られたPGA粒子の粒子径、結晶融解熱量、タブレット破壊応力及びブロッキング性の試験結果を表1に示す。
〔比較例1〕
 原料樹脂を、PGA(株式会社クレハ製、Mw:17万、Tg:43℃、ΔHm:65J/g)に変更して使用したこと以外は、実施例2と同様にしてPGA粒子を得た。得られたPGA粒子の粒子径、結晶融解熱量、タブレット破壊応力及びブロッキング性の試験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、原料樹脂である、結晶融解熱量(ΔHm)が75J/g以上のPGAに対して、-25~20℃の温度で衝撃粉砕方法により粉砕して製造したPGA粒子は、平均粒子径(50%D)が55~75μm、結晶融解熱量(ΔHm)が82~106J/gであり、かつ、該粒子に、円筒金型内で、温度40℃で100gf/cmの荷重を24時間負荷して成形した円柱状タブレットの破壊応力が検出限界以下~1310gf/cmであるPGA粒子であって、これらの特性を備えることで、PGA粒子のブロッキングが生じない、または極めて容易にブロッキングが解消するという効果があることが分かった。
 他方、原料樹脂であるPGAとして、結晶融解熱量(ΔHm)が75J/g未満であるPGAを使用して、ガラス転移温度(Tg)未満の温度で衝撃粉砕法により粉砕をして得た比較例1のPGA粒子は、結晶融解熱量(ΔHm)が62J/gと小さく、また、タブレット破壊応力が1690gf/cmと大きい粒子であり、これらの特性を備えることで、粒子のブロッキングが生じ、かつ、容易にブロッキングが解消していないことが分かった。
 本発明によれば、生分解性脂肪族ポリエステル粒子が、以下の物性(A)~(C):
(A)平均粒子径(50%D)が5~500μm;
(B)結晶融解熱量(ΔHm)が75J/g以上;かつ
(C)円筒金型内で、温度40℃で100gf/cmの荷重を24時間負荷して成形した円柱状タブレットの破壊応力が、1500gf/cm以下;
を備えることを特徴とする生分解性脂肪族ポリエステル粒子であることによって、保管や移送によってもブロッキングが生じにくいPLAやPGA等の生分解性脂肪族ポリエステル粒子が提供されるので、産業上の利用可能性が高い。
 また、本発明によれば、結晶融解熱量(ΔHm)が75J/g以上である生分解性脂肪族ポリエステル、特にPGAまたはPLAを、該生分解性脂肪族ポリエステルのガラス転移温度(Tg)未満の温度で衝撃粉砕法により粉砕することを特徴とする前記の生分解性脂肪族ポリエステル粒子の製造方法であることにより、保管や移送によってもブロッキングが生じにくい生分解性脂肪族ポリエステル粒子、特にPGA粒子またはPLA粒子を簡便に得る方法が提供されるので、産業上の利用可能性が高い。

Claims (4)

  1.  以下の物性(A)~(C):
    (A)平均粒子径が5~500μm;
    (B)結晶融解熱量が75J/g以上;かつ
    (C)円筒金型内で、温度40℃で100gf/cmの荷重を24時間負荷して成形した円柱状タブレットの破壊応力が、1500gf/cm以下;
    を備えることを特徴とする生分解性脂肪族ポリエステル粒子。
  2.  生分解性脂肪族ポリエステルが、ポリグリコール酸、ポリ乳酸、またはそれらの混合物である請求項1に記載の生分解性脂肪族ポリエステル粒子。
  3.  生分解性脂肪族ポリエステルのガラス転移温度未満の温度で粉砕することにより得られたものである請求項1または2に記載の生分解性脂肪族ポリエステル粒子。
  4.  結晶融解熱量が75J/g以上である生分解性脂肪族ポリエステルを、該生分解性脂肪族ポリエステルのガラス転移温度未満の温度で粉砕することを特徴とする請求項1または2に記載の生分解性脂肪族ポリエステル粒子の製造方法。
PCT/JP2012/057167 2011-03-25 2012-03-21 生分解性脂肪族ポリエステル粒子、及びその製造方法 WO2012133039A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011068237 2011-03-25
JP2011-068237 2011-03-25

Publications (1)

Publication Number Publication Date
WO2012133039A1 true WO2012133039A1 (ja) 2012-10-04

Family

ID=46930771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057167 WO2012133039A1 (ja) 2011-03-25 2012-03-21 生分解性脂肪族ポリエステル粒子、及びその製造方法

Country Status (1)

Country Link
WO (1) WO2012133039A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201606A (ja) * 2013-04-01 2014-10-27 株式会社クレハ 徐放性成形体およびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012674A (ja) * 1999-06-25 2002-01-15 Mitsui Chemicals Inc マスターバッチ用脂肪族ポリエステル組成物及び該組成物を用いる脂肪族ポリエステルフィルムの製造方法
JP2003039428A (ja) * 2002-04-05 2003-02-13 Mitsui Chemicals Inc 耐熱性が改善された熱可塑性ポリマー組成物のペレット
JP2007197602A (ja) * 2006-01-27 2007-08-09 Asahi Kasei Chemicals Corp 生分解性樹脂粉体及びその製造方法
JP2010175841A (ja) * 2009-01-29 2010-08-12 Casio Electronics Co Ltd 電子写真用トナー及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012674A (ja) * 1999-06-25 2002-01-15 Mitsui Chemicals Inc マスターバッチ用脂肪族ポリエステル組成物及び該組成物を用いる脂肪族ポリエステルフィルムの製造方法
JP2003039428A (ja) * 2002-04-05 2003-02-13 Mitsui Chemicals Inc 耐熱性が改善された熱可塑性ポリマー組成物のペレット
JP2007197602A (ja) * 2006-01-27 2007-08-09 Asahi Kasei Chemicals Corp 生分解性樹脂粉体及びその製造方法
JP2010175841A (ja) * 2009-01-29 2010-08-12 Casio Electronics Co Ltd 電子写真用トナー及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201606A (ja) * 2013-04-01 2014-10-27 株式会社クレハ 徐放性成形体およびその製造方法

Similar Documents

Publication Publication Date Title
JP5763402B2 (ja) 生分解性脂肪族ポリエステル粒子、及びその製造方法
Hong et al. High molecular weight bio furan-based co-polyesters for food packaging applications: Synthesis, characterization and solid-state polymerization
WO2012121294A1 (ja) 坑井掘削用ポリグリコール酸樹脂粒状体組成物及びその製造方法
Corre et al. Morphology and functional properties of commercial polyhydroxyalkanoates: A comprehensive and comparative study
JP4231781B2 (ja) ポリグリコール酸及びその製造方法
EP0510998B1 (en) Porous film
EP1577346B1 (en) Polylactic acid polymer composition for thermoforming, polylactic acid polymer sheet for thermoforming, and thermoformed object obtained therefrom
CN102015250A (zh) 聚(羟基链烷酸)和热成形制品
WO2009107425A1 (ja) 逐次二軸延伸ポリグリコール酸フィルム、その製造方法、及び多層フィルム
WO2012121296A1 (ja) 生分解性脂肪族ポリエステル樹脂粒状体組成物及びその製造方法
JP3359764B2 (ja) 耐熱性乳酸系ポリマー成形物
JP2001514279A (ja) 生分解性ラクトン共重合体
JPWO2011033964A1 (ja) 積層体の製造方法
WO2012029448A1 (ja) 顆粒状脂肪族ポリエステル粒子、及び、その製造方法
WO2012133037A1 (ja) 生分解性脂肪族ポリエステル粒子、及びその製造方法
JP3167411B2 (ja) 多孔性フィルム
JP3430125B2 (ja) マスターバッチ用脂肪族ポリエステル組成物及び該組成物を用いる脂肪族ポリエステルフィルムの製造方法
WO2012133039A1 (ja) 生分解性脂肪族ポリエステル粒子、及びその製造方法
WO2012144511A1 (ja) 生分解性脂肪族ポリエステル粒子、及びその製造方法
JP2007284595A (ja) 脂肪族ポリエステルフィルム
JP3407519B2 (ja) 脂肪族ポリエステル組成物およびその製造方法
JP2009013352A (ja) 生分解性ポリエステル組成物
JP4326828B2 (ja) グリコール酸系共重合体の組成物
JP3984492B2 (ja) 熱成形用ポリ乳酸系多層シートおよびその成形物
JP4408614B2 (ja) グリコール酸系重合体の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12762978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12762978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP