WO2020013163A1 - ポリ乳酸共重合体及びその製造方法 - Google Patents

ポリ乳酸共重合体及びその製造方法 Download PDF

Info

Publication number
WO2020013163A1
WO2020013163A1 PCT/JP2019/027091 JP2019027091W WO2020013163A1 WO 2020013163 A1 WO2020013163 A1 WO 2020013163A1 JP 2019027091 W JP2019027091 W JP 2019027091W WO 2020013163 A1 WO2020013163 A1 WO 2020013163A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
acid
acid copolymer
releasing
copolymer
Prior art date
Application number
PCT/JP2019/027091
Other languages
English (en)
French (fr)
Inventor
幸樹 柴田
成志 吉川
傳喜 片山
Original Assignee
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐グループホールディングス株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Priority to EP19834289.1A priority Critical patent/EP3822300B1/en
Priority to CN201980046179.5A priority patent/CN112399979B/zh
Priority to US17/258,790 priority patent/US20210269587A1/en
Publication of WO2020013163A1 publication Critical patent/WO2020013163A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/02Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonates or saturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/05Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a polylactic acid copolymer and a method for producing the same, and more particularly, to a polylactic acid copolymer having improved polylactic acid hydrophilicity and a method for producing the same.
  • Polylactic acid is known as an environmentally friendly biodegradable resin.
  • it is used as a fracturing fluid. It has been proposed to use it in addition (Patent Document 1). That is, even if it remains in the ground, it is quickly decomposed, so that it does not adversely affect the environment, for example, when it is used for mining shale gas or the like existing in a shallow layer from the ground surface.
  • Patent Document 2 Lactic acid produced by hydrolysis of polylactic acid is a nutrient source for microorganisms. Therefore, by spreading polylactic acid and infiltrating it into soil, it is possible to promote the growth and activity of microorganisms.
  • a high affinity for water is required in addition to an appropriate hydrolyzability. That is, in the application used in the resource mining field, when polylactic acid is put into a large amount of water at a mining site, it is required to be promptly dispersed in the water. In addition, the soil purification method requires prompt penetration into soil. In order to satisfy such requirements, high affinity (ie, hydrophilicity) for water is required.
  • polylactic acid does not have such a high hydrolyzability and is not sufficiently hydrophilic, and for example, has a problem that it does not settle when poured into water and floats on the water surface. ing.
  • Patent Document 3 discloses a lactic acid-oxalate block copolymer composed of a polylactic acid block and a polyoxalate block, wherein the number average molecular weight of the polylactic acid block is in the range of 2,000 to 50,000, respectively.
  • This copolymer has high toughness as compared with polylactic acid by giving high crystallinity.
  • Patent Document 4 proposed by the present applicant includes, in Patent Document 4, a hardly hydrolyzable biodegradable resin (A), an ester decomposition accelerator (B) comprising an easily hydrolysable polymer, and an ester decomposition accelerator ( A biodegradable resin composition containing C) is disclosed.
  • Patent Document 4 discloses that polylactic acid is used as the hardly hydrolyzable biodegradable resin (A), and an acid-releasing polyester such as polyoxalate is used as the ester decomposition accelerator (B). Further, it is described that a basic inorganic compound such as calcium carbonate or sodium carbonate is used as the ester decomposition promoting aid (C). In the technique of Patent Document 4, the hydrolyzability of a hardly hydrolyzable resin such as polylactic acid is improved.
  • the lactic acid-oxalate block copolymer of Patent Literature 3 and the biodegradable resin composition of Patent Literature 4 are both obtained by melt-kneading polylactic acid and other components. Although it improves mechanical properties and hydrolyzability, it does not increase the hydrophilicity of polylactic acid. That is, the fact is that attempts to improve the hydrophilicity of polylactic acid have hardly been studied.
  • an object of the present invention is to provide a polylactic acid copolymer having improved hydrolyzability and hydrophilicity as compared with polylactic acid, and a method for producing the same.
  • the present inventors have conducted a number of experiments on the hydrolyzability and hydrophilicity of polylactic acid, and as a result, using polylactic acid having a low molecular weight to some extent, melt-kneading this polylactic acid and acid-releasing polyester to form an ester. It has been found that when copolymerization is carried out by exchange, a polylactic acid copolymer having improved amorphousness and improved hydrophilicity and hydrolyzability can be obtained, thereby completing the present invention.
  • ⁇ H is in the range of 20 J / g or less.
  • the following embodiments are preferable.
  • the content of the copolymerized unit derived from the acid-releasing ester polymer is 0.5 to 35% by mass and the weight average molecular weight is 15,000 to 40,000.
  • the floatability concentration using methanol is less than 50% by mass.
  • the acid-releasing ester polymer is a polyoxalate.
  • It has a form of granular material having a median particle diameter (D50) of 20 ⁇ m or less.
  • a polylactic acid having a weight average molecular weight of 50,000 to 300,000, an acid-releasing ester polymer capable of releasing an acid other than lactic acid by hydrolysis, and a basic inorganic compound are used.
  • the polylactic acid copolymer of the present invention is obtained by copolymerizing an acid-releasing ester segment with polylactic acid, has a heat of fusion ⁇ H at the time of the second temperature rise by DSC measurement in the range of 20 J / g or less, and is high. It is amorphous. That is, this polylactic acid copolymer is produced by transesterification by melt-kneading a relatively low-molecular-weight polylactic acid with an acid-releasing ester polymer, while the polylactic acid is reduced in molecular weight by melt-kneading. Copolymerization is carried out by transesterification. As a result, high amorphousness is secured. In addition, since the heat of fusion ⁇ H at the first temperature rise varies depending on the presence or degree of the heat history, the amorphousness is specified by the heat of fusion ⁇ H at the second temperature rise in the present invention. I have.
  • such a polylactic acid copolymer has a content of copolymerized units derived from an acid-releasing ester polymer of 0.5 to 35% by mass, and the polylactic acid used for copolymerization has a low molecular weight. And its weight average molecular weight is as low as 15,000 to 40,000. That is, the polylactic acid copolymer of the present invention does not have a higher-ordered structure, and therefore, the crystal is rapidly decomposed, and further, compared to conventionally known polylactic acid or polylactic acid copolymer. Shows extremely high hydrophilicity.
  • the polylactic acid copolymer of the present invention has a short TOC release life of a material calculated from a sustained release TOC amount (organic substance sustained release amount) per unit day, as shown in Examples described later.
  • a sustained release TOC amount organic substance sustained release amount
  • the crystallinity decreases with time.
  • the polylactic acid copolymer exhibits a property of quickly settling in still water even when it becomes a fine powder.
  • a conventionally known fine powder of polylactic acid floats when put into still water.
  • the polylactic acid copolymer of the present invention has high hydrophilicity (water dispersibility) and decomposability, it is extremely suitable for use as a soil modifier or an aqueous dispersion for mining underground resources. .
  • the polylactic acid copolymer of the present invention is excellent in mechanical pulverizability despite its high non-crystallinity, and can be used, for example, in the form of a granular material having a median particle diameter (D50) of 20 ⁇ m or less. . That is, the use of such a granular form is extremely advantageous in controlling the rate of infiltration into the soil and the hydrolysis rate. This is a great advantage in the preparation of an aqueous dispersion for use.
  • D50 median particle diameter
  • the polylactic acid copolymer of the present invention is produced by melt-kneading polylactic acid and an acid-releasing ester polymer in the presence of a basic inorganic compound. That is, by such a melt kneading, the copolymerization of the polylactic acid by reducing the molecular weight and transesterification with the acid-releasing ester polymer occurs, and the desired polylactic acid copolymer can be obtained.
  • Polylactic acid may be either 100% poly-L-lactic acid or 100% poly-D-lactic acid, or a melt blend of poly-L-lactic acid and poly-D-lactic acid. It may be a random copolymer or a block copolymer of -lactic acid and D-lactic acid.
  • a polylactic acid is prepared by freeze-grinding and pulverizing a sample to prepare an aqueous dispersion having a concentration of 10 mg / 10 ml. After incubating at 45 ° C. for one week, the TOC (total organic carbon content) of the remaining liquid is 5 ppm or less. And the hydrolyzability is not very high.
  • the weight average molecular weight is in the range of 50,000 to 300,000, particularly 150,000 to 250,000.
  • This weight average molecular weight is calculated using GPC (gel permeation chromatography) using polystyrene as a standard substance.
  • polylactic acid is copolymerized with a small amount of various aliphatic polyhydric alcohols, aliphatic polybasic acids, hydroxycarboxylic acids, lactones, and the like, as long as the transesterification with the acid-releasing ester polymer described below is not impaired. It may be.
  • polyhydric alcohols include ethylene glycol, propylene glycol, butanediol, octanediol, dodecanediol, neopentyl glycol, glycerin, pentaerythritol, sorbitan, and polyethylene glycol.
  • polybasic acids examples include oxalic acid, succinic acid, adipic acid, sebacic acid, glutaric acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, and terephthalic acid.
  • hydroxycarboxylic acids examples include glycolic acid and hydroxypropionic acid. , Hydroxyvaleric acid, hydroxycaproic acid and mandelic acid.
  • lactone include caprolactone, butyrolactone, valerolactone, polopiolactone, undecalactone, glycolide, and mandelide.
  • the acid-releasing ester polymer used as a component to be copolymerized with the above-mentioned polylactic acid is a polyester that releases an acid other than lactic acid by hydrolysis, and the release of such an acid promotes hydrolysis. That is, by using an acid-releasing ester polymer as a copolymer component of polylactic acid, the molecular weight of polylactic acid at the time of melt-kneading is promoted, and further, a polylactic acid copolymer obtained by transesterification has an organic compound. Sustained release (lactic acid release) can be provided.
  • the acid released from such an ester polymer is typically oxalic acid, glycolic acid or the like, and particularly promotes the reduction of the molecular weight of polylactic acid during melt-kneading and the sustained release of a high organic substance into the polylactic acid copolymer.
  • Oxalic acid is most preferred in that it imparts properties and does not adversely affect the environment.
  • a polyoxalate having oxalic acid as an acid unit is most preferably used as the acid-releasing ester polymer.
  • This polyoxalate is not particularly limited as long as it has oxalic acid as an acid unit.
  • an alcohol unit ethylene glycol, propylene glycol, butanediol, octanediol, dodecanediol, neopentyl glycol, glycerin
  • Homopolymers or copolymers having polyhydric alcohols such as pentaerythritol, sorbitan, bisphenol A and polyethylene glycol can be used.
  • homopolymers containing no aromatic alcohols such as bisphenol A or Copolymers are preferred, and those containing ethylene glycol, propylene glycol and butanediol as alcohol units are most preferred.
  • the above acid-releasing ester polymer can effectively promote the reduction of molecular weight by decomposing polylactic acid, and at the same time, obtain a low molecular weight polylactic acid copolymer having high amorphousness and high hydrophilicity.
  • those having a reduced viscosity of about 0.4 to 1.0 dL / g are preferably used, and the amount of the reduced viscosity is 1 to 50 parts by weight, especially 100 parts by weight of the above-mentioned polylactic acid. It is preferable to use the acid-releasing ester polymer in an amount of 2 to 20 parts by mass.
  • the reduced viscosity of the acid-releasing ester polymer is determined by using a solvent such as chloroform or 1,1,1,2,2,2-hexafluoro-2-propanol which dissolves the acid-releasing ester polymer. Measured by measurement.
  • Basic inorganic compounds In the present invention, a basic inorganic compound is used together with the acid-releasing ester polymer, and the polylactic acid and the basic inorganic compound are melt-kneaded in the presence of the basic inorganic compound.
  • the basic inorganic compound is a component for accelerating the decomposition of the polylactic acid and the acid-releasing ester polymer, whereby the molecular weight of each polymer component is reduced upon melt-kneading.
  • Such a basic inorganic compound include, for example, a basic compound containing an alkali metal or an alkaline earth metal, zeolite that releases ions of an alkali metal or an alkaline earth metal, and an ion-releasing filler.
  • Examples of the basic compound containing an alkali metal or an alkaline earth metal include sodium carbonate, potassium carbonate, calcium carbonate, magnesium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium silicate, potassium silicate, calcium silicate, and magnesium silicate , Sodium phosphate, calcium hydroxide, magnesium hydroxide and the like.
  • zeolite various natural or synthetic zeolites containing alkali metal or alkaline earth metal ions as exchangeable ions can be used.
  • alkali metal or alkaline earth metal can be used.
  • Oxide glass such as aluminosilicate glass, borosilicate glass, and sorter lime glass, and fluoride glass such as zirconium fluoride glass.
  • These basic inorganic compounds can be used alone or in combination of two or more.
  • calcium and calcium are exemplified above.
  • a basic compound containing sodium and / or a zeolite capable of releasing calcium ions and / or sodium ions, and a filler capable of releasing calcium ions and / or sodium ions are preferable, and calcium carbonate and sodium carbonate are particularly preferable.
  • such a basic inorganic compound is preferably used in an amount of 3 to 20 parts by weight, particularly 5 to 15 parts by weight, per 100 parts by weight of polylactic acid. If the amount of the inorganic compound is too large, the reduction of the molecular weight of the polylactic acid at the time of melt-kneading will be excessively promoted, and the mechanical crushability and the like of the resulting polylactic acid copolymer will be impaired, resulting in granulation and the like. May be difficult. When the amount of the inorganic compound is too small, the molecular weight of the polylactic acid is insufficiently reduced, and accordingly, the resulting polylactic acid copolymer is insufficiently amorphized, and the desired high hydrophilicity is obtained. This may make it difficult to secure such conditions.
  • the polylactic acid and the acid-releasing ester polymer are melt-kneaded in the presence of the above-mentioned basic inorganic compound, whereby the decomposition of the polylactic acid or the acid-releasing ester polymer due to the presence of the basic inorganic compound is performed. Is generated, and the generated acid further decomposes the polylactic acid, and furthermore, a reaction (ester exchange) between the ester polymer from which the acid is released and the residue and the polylactic acid occurs. Coalescence is obtained.
  • melt-kneading can be easily performed, for example, in a kneading section of an extruder or the like. C., and the melt-kneading is performed for at least 2 minutes or more, particularly for about 3 to 10 minutes so that all the above reactions are completed. This makes it possible to effectively reduce the molecular weight and copolymerize the polylactic acid and the acid-releasing polyester.
  • the polylactic acid copolymer thus obtained has a polylactic acid block made of polylactic acid having a reduced molecular weight, and a copolymer block derived from transesterification with an acid-releasing ester polymer.
  • a polylactic acid block is represented by the following formula (1)
  • a copolymer block by an acid-releasing ester polymer is represented by the following formula (2), taking the case of using polyoxalate as an example. —CH (CH 3 ) —COO— (1) -CO-CO-ORO- (2)
  • the polylactic acid copolymer has a heat of fusion ⁇ H measured from the curve at the second temperature rise of the DSC of 20 J / g or less, particularly 10 J / g or less.
  • the heat of fusion ⁇ H is represented by the following equation.
  • ⁇ Hm ⁇ Hm′ ⁇ Hc
  • ⁇ Hm ′ is a heat of fusion (J / g) including crystallization during temperature rise
  • ⁇ Hc is a calorific value (J / g) due to crystallization.
  • the value of ⁇ H′m is particularly discussed during the second heating, in order to focus on the easiness of crystal formation. I do.
  • the polylactic acid copolymer of the present invention is obtained by copolymerization of known polylactic acid with low molecular weight and transesterification, the weight average molecular weight is 15,000 to 40,000.
  • the content of the copolymer unit derived from the acid-releasing ester polymer, for example, the copolymer unit represented by the formula (2) is in the range of 0.5 to 35% by mass.
  • the weight average molecular weight of the polylactic acid copolymer is measured by GPC using polystyrene as a standard substance, and the production of the copolymer can be confirmed by 1 H NMR.
  • Such a polylactic acid copolymer of the present invention does not have a high-order structure, and therefore, the crystal is rapidly decomposed. Unlike in the case of having a higher-order structure, the crystal is easily decomposed from any part of the crystal and lactic acid is easily released. As shown in the examples described later, the amount of sustained release TOC per unit number of days The TOC release life expected from (organic substance sustained release) is short. In addition, it has been confirmed that the degree of crystallinity measured by X-ray diffraction decreases with time due to such decomposition.
  • this polylactic acid copolymer has excellent mechanical pulverizability.
  • the polylactic acid copolymer is formed into a granular material having a median particle diameter (D50) of 20 ⁇ m or less, particularly 10 ⁇ m or less. can do.
  • D50 median particle diameter
  • the polylactic acid copolymer sediments quickly.
  • the water into which the polylactic acid copolymer has been added is stirred to disperse the particulate matter of the polylactic acid copolymer, and then, when left still for 1 hour, the particles do not settle or float. Is stably maintained.
  • conventionally known polylactic acid does not sediment when poured into still water, and when left standing for one hour after stirring, particles sediment and separate.
  • the polylactic acid copolymer of the present invention is excellent in mechanical pulverizability, and therefore, is excellent in handling and transportability (packing properties) by being granulated by mechanical pulverization. Furthermore, due to its excellent water dispersibility, it is extremely useful as a soil modifier or an aqueous dispersion for mining underground resources. For example, when this polylactic acid copolymer is sprayed on the surface of the earth, it can quickly penetrate and stably release an organic component (lactic acid) serving as a nutrient source of microorganisms.
  • an organic component lactic acid
  • the polylactic acid copolymer when added to water, it can be rapidly dispersed, and after a certain period of time, it is rapidly hydrolyzed, so this dispersion is used as an aqueous dispersion for mining underground resources, For example, it can be effectively used as a fracturing fluid.
  • such a polylactic acid copolymer of the present invention can be obtained in a form containing a basic non-compound in an amount not more than the amount used, and such a basic inorganic compound is a polylactic acid copolymer described above. It does not adversely affect water dispersibility, sustained release of organic substances, mechanical pulverizability, etc., and can be used as it is for the above applications without being separated. It can also be separated by washing with water.
  • the polylactic acid copolymer of the present invention can be formed into various forms by thermoforming, for example, depending on the application, it is blended with various polymers and molded into a predetermined form for use. You can also.
  • various additives depending on the application, for example, a known plasticizer, a carboxyl group sealing agent, a heat stabilizer, a light stabilizer, an antioxidant, an ultraviolet absorber, a flame retardant, a colorant, a pigment, a filler, Fillers, release agents, antistatic agents, fragrances, lubricants, foaming agents, antibacterial and antifungal agents, nucleating agents, layered silicates, enzymes and the like can also be used in combination.
  • polymerization was performed under reduced pressure at a liquid temperature of 200 ° C. and a degree of reduced pressure of 0.1 kPa to 0.8 kPa, and the obtained polymer was taken out and heat-treated at 90 ° C. for 2 hours and at 120 ° C. for 2 hours.
  • the acid-releasing ester copolymerization rate in PLA was calculated by removing the compound polymer by reprecipitation with a solvent and then quantifying the aqueous solution decomposed into monomers by 1 H NMR.
  • the method for preparing the sample and the NMR measurement conditions are described below. 1 g of the sample was dropped and dissolved in 15 mL of chloroform. After the change in the dissolved state was no longer visually observed, the solution was filtered with a 0.45 ⁇ m filter. When the filtrate was dropped into 300 mL of methanol, a string-like precipitate or turbidity of the liquid was visually observed.
  • the string-like precipitate was collected by suction filtration, and the cloudy matter was collected by centrifugation.
  • the collected product was washed with water, dried in vacuum at 40 ° C., and heat-treated at 120 ° C. together with 1 g of water in a 20 mL pressure-resistant vial. The heat treatment was performed until the solid content was completely decomposed and became invisible.
  • NMR measurement was performed using the decomposed aqueous solution as a sample.
  • Apparatus JNM-ECA manufactured by JEOL Solvent: heavy water accumulation frequency: 16 times Measurement temperature: room temperature
  • Sample preparation About 0.1 mL of the sample was dropped into an NMR sample tube, and then 0.5 mL of heavy water was dropped to obtain a sample.
  • Quantitative method When the peak area derived from hydrogen of the CH group of the main chain of lactic acid is 1.00, the peak area derived from the hydrogen of methylene group of ethylene glycol or butanediol is A EG or ABDO , and the following formula (1) , (2), the copolymerization ratio was calculated. Since the peaks derived from the methylene group hydrogen of butanediol are observed in two places with the same area, the total area of the two places is defined as ABDO .
  • the ratio of the copolymerized and non-copolymerized PEOx components is the ratio of the copolymerized and non-copolymerized PEOx components. (Calculation of PEOx copolymerization ratio): The copolymerized PEOx ratio was calculated by subtracting the PEOx non-copolymerized ratio from the ratio of the copolymerized and non-copolymerized PEOx components obtained above.
  • Apparatus EXTAR6000 manufactured by Seiko Instruments Inc. Evaluation: The heat of fusion ( ⁇ H) calculated from the peak area of the endothermic peak observed in the first heating curve when the temperature was raised from 0 ° C. at a heating rate of 10 ° C./min was calculated as the polylactic acid crystal. The value obtained by dividing by the heat of fusion value of 94 J / g and multiplying by 100 was defined as the crystallinity (%).
  • C B ⁇ (1/5) ⁇ (1/7) (3)
  • C is the amount of organic carbon released (mg) per 1 g of the sample per day
  • B is the TOC value (ppm) of the adjusted sample.
  • the TOC release life X (day) of the material was evaluated by the following equation (4).
  • X 1000 / (C ⁇ 6)
  • TC total carbon
  • IC organic carbon
  • ⁇ Measurement of floatability concentration using methanol> In order to evaluate the dispersibility of the fine powder sample in water, the floatability concentration was measured. 0.5 g of a sample having a median particle size (D50) of 20 ⁇ m or less measured by a laser diffraction scattering method was dropped into a methanol aqueous solution in a 100-mL glass bottle, and was finely pulverized with a jet mill, and was then stirred with a magnetic stirrer at 280 rpm for 3 minutes. Stirred. After that, it was left still for 3 minutes, and it was confirmed whether or not a floating substance of the powder remained on the water surface.
  • D50 median particle size
  • PLA polylactic acid resin
  • REVODE101 manufactured by Kaisei Biomaterials.
  • the molecular weight when used as a raw material was in the range of 120,000 ⁇ Mw ⁇ 170,000.
  • PEOx and PBOx which are one type of acid-releasing ester resin, used were those polymerized in the above section. Each reduced viscosity was 0.84 dL / g for PEOx and 0.49 dL / g for PBOx.
  • Sodium carbonate is sodium carbonate (purity 99.8 +%) manufactured by Wako Pure Chemical Industries, 50% lactic acid is Musashino Lactic Acid 50F (50% by mass) manufactured by Musashino Chemical Laboratory, and heavy water is heavy water manufactured by Sigma-Aldrich (“100%”). 99.96 atom% D), methanol was methanol (99.7 +% for high performance liquid chromatography) manufactured by Wako Pure Chemical Industries, and chloroform was chloroform (99.7 +% for high performance liquid chromatography) manufactured by Wako Pure Chemical Industries. .
  • Example 5 100 g of PLA, 100 g of PEOx, and 20 g of sodium carbonate were each weighed and melt-kneaded by a batch-type twin-screw extruder. After the temperature of the resin reached 230 ° C. and the time at which sodium carbonate was charged was used as the starting point of the reaction time, kneading was performed for 2 minutes, and then a sample was taken out.
  • Example 2 180 g of PLA, 20 g of PEOx, and 20 g of sodium carbonate were each weighed and melt-kneaded in the same batch type twin screw extruder as in Example 5. The time when the temperature of the resin reached 230 ° C. and sodium carbonate was charged was set as the starting point of the reaction time, and a sample was taken out after kneading for 5 minutes.
  • PLA and PEOx were quantitatively supplied to a continuous twin-screw extruder by a coil feeder and were melt-kneaded.
  • the supply rates of PLA and PEOx were 45 kg / hour and 5 kg / hour, respectively, and the kneading temperature was 230 ° C.
  • 250 kg of the kneaded material was put into a 2000 L reactor, 500 kg of 50% lactic acid was added, and the mixture was heated at 100 ° C. for 5 hours to reduce the molecular weight. Thereafter, the solvent was filtered off, washed with water, and dried at 70 ° C. under reduced pressure.
  • Example 1 the TOC release life calculated from the TOC release amount after 30 days was in the range of 300 to 900 days, which was higher than Comparative Examples 1 and 3 in which the acid-releasing ester was not copolymerized.
  • Example 5 has a very high acid-releasing ester copolymerization rate compared to Examples 1 to 4, is expected to be particularly excellent in water dispersibility, and has a high hydrolyzability due to its short TOC release life. I understood.
  • Comparative Example 2 could not be ground to 20 ⁇ m or less due to its high molecular weight.
  • FIG. 1 shows the second heating curve by DSC of the samples obtained in Example 1 and Comparative Example 3.
  • Comparative Example 3 a crystal melting peak was detected even at the second heating, whereas in Example 1, no crystal melting peak was observed.
  • Example 1 and Comparative Example 3 were immersed in water, and the crystallinity before and after storage at 25 ° C. for 180 days was quantified by wide-angle X-ray diffraction measurement. Table 4 shows the results.
  • Comparative Example 3 the crystallinity was already high at the start of water immersion, that is, at the time of sample preparation, but the crystallinity was further increased by water immersion for 180 days.
  • Example 1 the degree of crystallinity at the time of sample preparation was lower than that of Comparative Example 3, and the degree of crystallinity was reduced by water immersion for 180 days to fall below 20%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

本発明では、ポリ乳酸に比して、加水分解性及び親水性が向上したポリ乳酸共重合体を提供する。本発明は、ポリ乳酸と、加水分解により乳酸以外の酸を放出し得る酸放出性エステルポリマーとの共重合により得られるポリ乳酸共重合体において、DSC測定による2回目昇温時の融解熱量ΔHが20J/g以下の範囲にあり、前記酸放出性エステルポリマーに由来する共重合単位の含有率が0.5~35質量%且つ共重合体の重量平均分子量が15,000~40,000の範囲にあることを特徴とする。

Description

ポリ乳酸共重合体及びその製造方法
 本発明は、ポリ乳酸共重合体及びその製造方法に関するものであり、より詳細には、ポリ乳酸の親水性が高められたポリ乳酸共重合体及びその製造方法に関する。
 ポリ乳酸は、環境に優しい生分解性樹脂として知られているが、近年では、この特性を活かして、シェールガス等の資源採掘分野では、粉体や繊維の形態で、フラクチュアリング流体などに添加しての使用が提案されている(特許文献1)。即ち、地中に残存した場合も、速やかに分解するため、例えば、地表から浅い層に存在するシェールガス等の採掘に利用した場合にも、環境に悪影響を与えないためである。
 また、最近では、微生物を活用した土壌浄化法(バイオレメディエーションと呼ばれる)にポリ乳酸を利用することも提案されている(特許文献2)。ポリ乳酸が加水分解して生成する乳酸は、微生物の栄養源となるため、ポリ乳酸を散布して土壌に浸透させることにより、微生物の繁殖や活動を促進することができるというものである。
 ところで、上記のような用途では、適度な加水分解性と共に、何れも水に対して高い親和性が要求される。即ち、資源採掘分野で使用される用途では、採掘現場で多量の水にポリ乳酸を投入した時、速やかに水に分散することが要求される。また、土壌浄化法では、速やかに土壌中に浸透することが要求される。このような要求を満足するために、水に対して高い親和性(即ち、親水性)が要求されるわけである。
 しかしながら、従来公知のポリ乳酸は、加水分解性がそれほど高くなく、また、親水性も十分とは言えず、例えば、水に投入した時に沈降せずに、水面に浮いてしまうという問題を有している。
 ポリ乳酸の特性を改善するために、他のポリエステルと共重合するという手段は、従来から採用されている。
 例えば、特許文献3には、ポリ乳酸ブロックとポリオキサレートブロックから構成され、ポリ乳酸ブロックの数平均分子量がそれぞれ2000~50000の範囲である乳酸-オキサレートブロック共重合体が開示されている。この共重合体は、高い結晶性を持たせることにより、ポリ乳酸に比して、高いタフネスを有している。
 また、本出願人が提案している特許文献4には、難加水分解性生分解性樹脂(A)と、易加水分解性ポリマーからなるエステル分解促進剤(B)及びエステル分解促進助剤(C)を含む生分解性樹脂組成物が開示されている。この特許文献4には、難加水分解性生分解性樹脂(A)としてポリ乳酸を使用することが記載されており、エステル分解促進剤(B)としてポリオキサレートなどの酸放出性ポリエステルを使用することが記載され、さらに、エステル分解促進助剤(C)として、炭酸カルシウムや炭酸ナトリウム等の塩基性無機化合物を使用することが記載されている。
 この特許文献4の技術では、ポリ乳酸等の難加水分解性樹脂の加水分解性が向上している。
 特許文献3の乳酸-オキサレートブロック共重合体及び特許文献4の生分解性樹脂組成物は、何れもポリ乳酸と、他の成分とを溶融混練することにより得られるものであり、ポリ乳酸の機械的特性や加水分解性を向上させたものであるが、ポリ乳酸の親水性を高めるものではない。即ち、ポリ乳酸の親水性を改善するという試みは、ほとんど検討されていないというのが実情である。
米国特許第7,833,950号 特開2011-104551号 特開2008-101032号 特許第5633291号
 従って、本発明の目的は、ポリ乳酸に比して、加水分解性及び親水性が向上したポリ乳酸共重合体及びその製造方法を提供することにある。
 本発明者等はポリ乳酸の加水分解性や親水性について、多くの実験を行った結果、ある程度分子量の低いポリ乳酸を使用し、このポリ乳酸と酸放出性ポリエステルとを溶融混練してのエステル交換による共重合させたときには、非晶性が高められ、親水性や加水分解性が向上したポリ乳酸共重合体が得られることを見出し、本発明を完成させるに至った。
 本発明によれば、ポリ乳酸と加水分解により乳酸以外の酸を放出し得る酸放出性エステルポリマーとの共重合により得られるポリ乳酸共重合体において、DSC測定による2回目昇温時の融解熱量ΔHが20J/g以下の範囲にあることを特徴とするポリ乳酸共重合体が提供される。
 本発明のポリ乳酸共重合体においては、次の態様が好適である。
(1)前記酸放出性エステルポリマーに由来する共重合単位の含有率が0.5~35質量%且つ重量平均分子量が15,000~40,000の範囲にあること。
(2)レーザー回折法散乱法により測定したメジアン粒径(D50)が20μm以下の微粉体となった際に、メタノールを用いたフロータビリティ濃度が50質量%未満であること。
(3)前記酸放出性エステルポリマーがポリオキサレートであること。
(4)メジアン粒径(D50)が20μm以下の粒状物の形態を有していること。
(5)土壌改質剤として使用されること。
(6)地下資源採掘用水分散液に使用されること。
 本発明によれば、また、重量平均分子量が50,000~300,000のポリ乳酸と、加水分解により乳酸以外の酸を放出し得る酸放出性エステルポリマーと、塩基性無機化合物とを、200℃以上の温度で溶融混練することを特徴とする上記ポリ乳酸共重合体の製造方法が提供される。
 本発明のポリ乳酸共重合体は、ポリ乳酸に酸放出性エステルセグメントが共重合されたものであり、DSC測定による2回目昇温時の融解熱量ΔHが20J/g以下の範囲にあり、高い非晶性を有している。即ち、このポリ乳酸共重合体は、比較的低分子量のポリ乳酸を酸放出性エステルポリマーと溶融混練してのエステル交換により製造されるものであり、溶融混練によりポリ乳酸が低分子量化されながらエステル交換による共重合が行われる、この結果として、高い非晶性が確保されているわけである。なお、1回目昇温時の融解熱量ΔHでは、熱履歴の有無或いは程度により、融解熱量にバラツキを生じるため、本発明では、2回目昇温時の融解熱量ΔHにより非晶性を特定している。
 また、このようなポリ乳酸共重合体は、酸放出性エステルポリマーに由来する共重合単位の含有率が0.5~35質量%であると共に、共重合に供するポリ乳酸の低分子量化に伴い、その重量平均分子量が15,000~40,000と低い範囲にある。即ち、本発明のポリ乳酸共重合体は、高次の規則構造を有しておらず、このため、結晶の分解が速く、しかも従来公知のポリ乳酸或いはポリ乳酸共重合体に比して、極めて高い親水性を示す。
 また、本発明のポリ乳酸共重合体は、後述する実施例に示されているように、単位日数当りの徐放TOC量(有機物徐放量)から計算される材料のTOC放出寿命が短く、X線回折により結晶化度を測定すると、経時と共にその結晶化度は低下していく。
 さらに、このポリ乳酸共重合体は、微粉体となった際にも静水中に速やかに沈降するという性質を示す。従来公知のポリ乳酸の微粉体は、静水中に投入した時に浮遊してしまう。
 このように、本発明のポリ乳酸共重合体は、高い親水性(水分散性)と分解性を有しているため、土壌改質剤や地下資源採掘用水分散液の用途に極めて適している。
 さらに、本発明のポリ乳酸共重合体は、非晶性が高いにも関わらず、機械的粉砕性に優れ、例えばメジアン粒径(D50)が20μm以下の粒状物の形態として使用することができる。即ち、このような粒状形態としての使用は、土壌への浸透や加水分解速度の制御において極めて有利であり、特に土壌改質剤として使用する時の散布や、水に投入しての地下資源採掘用水分散液の調製作業等において、大きな利点となる。
実施例1および比較例3で得られたポリ乳酸共重合体のDSCによる2回目昇温曲線を示す図。
<ポリ乳酸共重合体の製造>
 本発明のポリ乳酸共重合体は、ポリ乳酸と酸放出性エステルのポリマーとを、塩基性無機化合物との存在下で溶融混練することにより製造される。即ち、このような溶融混練により、ポリ乳酸の低分子量化と酸放出性エステルポリマーとのエステル交換による共重合が生じ、目的とするポリ乳酸共重合体を得ることができる。
ポリ乳酸;
 用いるポリ乳酸は、100%ポリ-L-乳酸或いは100%ポリ-D-乳酸の何れであってもよいし、ポリ-L-乳酸とポリ-D-乳酸の溶融ブレンド物でもよく、また、L-乳酸とD-乳酸とのランダム共重合体やブロック共重合体であってもよい。このようなポリ乳酸は、凍結粉砕し粉体化した試料で、10mg/10ml濃度の水分散液を作製し、45℃で一週間インキュベート後、残液のTOC(総有機炭素量)が5ppm以下であり、加水分解性はさほど高くない。また、その重量平均分子量が50,000~300,000、特に150,000~250,000の範囲にあることが望ましい。この重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)を用いて、ポリスチレンを標準物質として算出される。
 また、かかるポリ乳酸は、後述する酸放出性エステルポリマーとのエステル交換性が損なわれない限りにおいて、各種の脂肪族多価アルコール、脂肪族多塩基酸、ヒドロキシカルボン酸、ラクトンなどが少量共重合されていてもよい。
 このような多価アルコールとしては、エチレングリコール、プロピレングリコール、ブタンジオール、オクタンジオール、ドデカンジオール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ソルビタン、ポリエチレングリコールなどを例示することができる。
 多塩基酸としては、シュウ酸、コハク酸、アジピン酸、セバシン酸、グルタル酸、デカンジカルボン酸、シクロヘキサンジカルボン酸、テレフタル酸を例示することができ、ヒドロキシカルボン酸としては、グリコール酸、ヒドロキシプロピオン酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、マンデル酸を挙げることができる。
 ラクトンとしては、カプロラクトン、ブチロラクトン、バレロラクトン、ポロピオラクトン、ウンデカラクトン、グリコリド、マンデライドなどを挙げることができる。
酸放出性エステルポリマー;
 上記のポリ乳酸に共重合すべき成分として用いる酸放出性エステルポリマーは、加水分解により乳酸以外の酸を放出するポリエステルであり、このような酸の放出により加水分解が促進される。即ち、酸放出性エステルポリマーをポリ乳酸の共重合成分として使用することにより、溶融混練時のポリ乳酸の低分子量化を促進させ、さらには、エステル交換により得られるポリ乳酸共重合体に、有機物徐放性(乳酸放出性)を与えることができる。
 このようなエステルポリマーから放出される酸は、シュウ酸、グリコール酸などが代表的であり、特に溶融混練時でのポリ乳酸の低分子量化を促進させ且つポリ乳酸共重合体に高い有機物徐放性を与え、さらには環境に悪影響を与えないという点で、シュウ酸が最も好適である。
 従って、本発明では、上記の酸放出性エステルポリマーとしては、シュウ酸を酸単位として有するポリオキサレートが最も好適に使用される。
 このポリオキサレートは、シュウ酸を酸単位として有している限り、特に制限されず、例えば、アルコール単位として、エチレングリコール、プロピレングリコール、ブタンジオール、オクタンジオール、ドデカンジオール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ソルビタン、ビスフェノールA、ポリエチレングリコールなどの多価アルコールを有するホモポリマーもしくは共重合体を使用できるが、特に環境に対する影響を考えると、ビスフェノールAなどの芳香族アルコールを含んでいないホモポリマーもしくは共重合体が好ましく、特に、エチレングリコール、プロピレングリコール、ブタンジオールをアルコール単位として含むものが最も好適である。
 また、上記の酸放出性エステルポリマーは、ポリ乳酸の分解による低分子量化を効果的に促進し得ると同時に、非晶質性が高く且つ親水性も高い低分子量のポリ乳酸共重合体を得ることができるという観点から、その還元粘度が0.4乃至1.0dL/g程度のものが好適に使用され、その使用量は、前述したポリ乳酸100質量部当り、1~50質量部、特に2~20質量部となる量で、酸放出性エステルポリマーを使用することが好ましい。
 なお、酸放出性エステルポリマーの還元粘度は、クロロホルムや1,1,1,2,2,2,-ヘキサフルオロ 2-プロパノールなどといった該酸放出性エステルポリマーを溶解する溶媒を用いて、溶液粘度測定によって測定される。
塩基性無機化合物;
 本発明では、前記酸放出性エステルポリマーと共に、塩基性無機化合物が使用され、この塩基無機化合物の存在下で、ポリ乳酸と塩基性無機化合物との溶融混練が行われる。
 この塩基性無機化合物は、ポリ乳酸と酸放出性エステルポリマーの分解を促進するための成分であり、これにより、溶融混練に際して、各ポリマー成分の低分子量化が生じる。
 このような塩基性無機化合物としては、例えば、アルカリ金属またはアルカリ土類金属を含む塩基性化合物や、アルカリ金属やアルカリ土類金属のイオンを放出するゼオライトやイオン放出性フィラーが代表的である。
 アルカリ金属またはアルカリ土類金属を含む塩基性化合物としては、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸マグネシウム、炭酸水素ナトリウム、炭酸水素カリウム、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸カルシウム、ケイ酸マグネシウム、リン酸ナトリウム、水酸化カルシウム、水酸化マグネシウム等を挙げることができる。
 また、上記のゼオライトとしては、交換性イオンとしてアルカリ金属やアルカリ土類金属イオンを含む天然或いは合成の各種ゼオライトを使用することができ、イオン放出性のフィラーとしては、アルカリ金属やアルカリ土類金属を含むアルミノシリケートガラス、ホウケイ酸ガラス、ソータ石灰ガラス等の酸化物ガラスや、フッ化ジルコニウムガラス等のフッ化物ガラスを挙げることができる。
 これらの塩基性無機化合物は、単独で使用しても、2種以上を併用することもできる。
 本発明においては、環境に対する影響が少なく、また、生成するポリ乳酸共重合体の特性に悪影響を与えず、しかも、溶融混練時に分解等を生じないという観点から、上記で例示した中でも、カルシウムおよび/またはナトリウムを含有する塩基性化合物、カルシウムイオンおよび/またはナトリウムイオンを放出し得るゼオライト、カルシウムイオンおよび/またはナトリウムイオン放出性フィラーが好ましく、特に、炭酸カルシウム、炭酸ナトリウムが最適である。
 また、上記の塩基性無化合物は、溶融混練時に均一に分散させるという観点から、そのメジアン粒径(D50)が10μm以下、特に、0.01μm乃至5μmの範囲にあるものが好ましい。
 本発明において、このような塩基性無機化合物は、ポリ乳酸100重量部当り、3乃至20重量部、特に5乃至15重量部の量で使用することが好ましい。この無機化合物の量が多すぎると、溶融混練時のポリ乳酸の低分子量化が過度に促進されてしまい、得られるポリ乳酸共重合体の機械的粉砕性等が損なわれてしまい、粒状化等が困難となるおそれがある。また、この無機化合物の量が少なすぎると、ポリ乳酸の低分子量化が不十分となり、これに伴い、得られるポリ乳酸共重合体の非晶質化が不十分となり、目的とする高い親水性等を確保することが困難となるおそれが生じる。
溶融混練;
 本発明においては、ポリ乳酸と酸放出性エステルポリマーとを、上記の塩基性無機化合物の存在下で溶融混練し、これにより、塩基性無機化合物の存在によるポリ乳酸や酸放出性エステルポリマーの分解が生じ、生じた酸によってさらにポリ乳酸の分解が生じ、さらに、酸が放出されたエステルポリマーと残基とポリ乳酸との反応(エステル交換)が生じ、これにより、目的とするポリ乳酸共重合体が得られる。
 上記の溶融混練は、例えば押出機等の混練部で容易に行うことができ、特に、ポリ乳酸や酸放出性エステルポリマーの熱分解が生じない程度の温度、例えば200℃以上、特に220~250℃の温度で行われ、上記の全ての反応が完了するように、少なくとも2分間以上、特に3~10分間程度、溶融混練が行われる。これにより、ポリ乳酸および酸放出性ポリエステルの低分子量化および共重合反応を有効に行うことができる。
<ポリ乳酸共重合体>
 かくして得られるポリ乳酸共重合体は、低分子量化されたポリ乳酸によるポリ乳酸ブロックと、酸放出性エステルポリマーとのエステル交換に由来する共重合ブロックとを有している。例えば、ポリ乳酸ブロックは、下記式(1)で表され、酸放出エステルポリマーによる共重合ブロックは、ポリオキサレートを使用した場合を例に取って、下記式(2)で表される。
   -CH(CH)-COO-    (1)
   -CO-CO-O-R-O-    (2)
 本発明において、このポリ乳酸共重合体は、DSCの2回目昇温時曲線より測定される融解熱量ΔHが、20J/g以下、特に10J/g以下の範囲にある。
 一般に、DSCの2回目昇温時曲線では、融解熱量ΔHは、下記式で表される。
   ΔHm=ΔHm’-ΔHc
 式中、ΔHm’は、昇温中の結晶化を含む融解熱量(J/g)であり、
    ΔHcは、結晶化による発熱量(J/g)である。
 結晶化度に注目する場合は△Hmの数値で議論すべきであるが、本発明では結晶の形成しやすさに注目するため、2回目昇温時の中でも特に△H’mの数値で議論する。この値が小さい程低結晶性であり、長期の水中分解でも結晶を形成しにくいことを意味している。従って、本発明のポリ乳酸共重合体は、長期の水中分解でも結晶化度が上がりにくいことが理解される。
 また、本発明のポリ乳酸共重合体は、公知のポリ乳酸を低分子量化してのエステル交換による共重合によって得られたものであるため、この重量平均分子量は、15,000~40,000の範囲にあり、且つ酸放出性エステルポリマーに由来する共重合単位、例えば前記式(2)で示される共重合単位の含有率が0.5~35質量%の範囲にある。
 なお、上記のポリ乳酸共重合体の重量平均分子量は、GPCを用いて、ポリスチレンを標準物質として測定され、また、共重合体の生成は、H NMRにより確認することができる。
 このような本発明のポリ乳酸共重合体は、高次の規則構造を有しておらず、このため、結晶の分解が速い。高次の規則構造を有している場合と異なり結晶のいかなる部分からも分解を受けやすく、乳酸を放出し易く、後述する実施例に示されているように、単位日数当りの徐放TOC量(有機物徐放量)から予想されるTOC放出寿命が短い。また、このような分解に伴い、X線回折で測定される結晶化度も経時と共に低下していくことが確認されている。
 また、上記のような低分子量化により、このポリ乳酸共重合体は、機械的粉砕性に優れ、例えば機械的粉砕により、メジアン粒径(D50)が20μm以下、特に10μm以下の粒状物に成形することができる。
 さらに、親水性の著しい向上により、このポリ乳酸共重合体の粒状物を静水中に投入した時、このポリ乳酸共重合体は、速やかに沈降する。しかも、ポリ乳酸共重合体が投入された水を撹拌し、ポリ乳酸共重合体の粒状物を分散させ、その後、1時間静置したとき、粒子の沈降或いは浮遊を生じることなく、この分散状態が安定に保持される。例えば、従来公知のポリ乳酸では、静水中への投入により沈降せず、また、撹拌後1時間静置した時には、粒子は沈降分離してしまう。
 このように、本発明のポリ乳酸共重合体は、機械的粉砕性に優れているため、機械的粉砕として粒状物とすることにより、その取り扱いや輸送性(梱包性)に優れている。
 さらに、その優れた水分散性により、土壌改質剤や地下資源採掘用水分散液として、極めて有用である。例えば、このポリ乳酸共重合体を地表に散布した時、速やかに浸透し且つ微生物の栄養源となる有機成分(乳酸)を安定して放出できる。また、このポリ乳酸共重合体を水に投入した場合、速やかに分散させることができ、しかも一定時間経過後は速やかに加水分解していくため、この分散液を、地下資源採掘用水分散液、例えばフラクチュアリング流体として、有効に使用することができる。
 また、このような本発明のポリ乳酸共重合体は、使用量以下の量で塩基性無化合物を含んだ形態で得られるが、このような塩基性無機化合物は、上述したポリ乳酸共重合体の水分散性、有機物徐放性、機械的粉砕性等に悪影響を与えるものではないため、これを分離せず、そのままの形で上記用途に使用することができる。水での洗浄などによって分離することもできる。
 さらに、本発明のポリ乳酸共重合体は、熱成形により、種々の形態に成形することができるため、例えば、用途に応じて、各種のポリマーとブレンドして、所定の形成に成形して使用することもできる。また、用途に応じた各種の添加剤、例えば、公知の可塑剤、カルボキシル基封止剤、熱安定剤、光安定剤、酸化防止剤、紫外線吸収剤、難燃剤、着色剤、顔料、フィラー、充填剤、離型剤、帯電防止剤、香料、滑剤、発泡剤、抗菌・抗カビ剤、核形成剤、層状硅酸塩、酵素などを配合して使用に供することもできる。
 本発明を次の実験例で説明する。
<材料の合成方法>
<PEOxの合成>
 熱媒によって加熱可能な150L容の反応釜にシュウ酸ジメチル40kg(339モル)、エチレングリコール23.2kg(374モル)、1,4-ブタンジオールを2.9kg(32.2モル)、ジブチルスズオキシド8.4gを入れ、窒素気流下で液温110℃に加温し、常圧重合を行った。メタノールの留去が始まった後、そのまま1時間30分保温し反応させた。1時間30分後から10℃/時間の昇温速度で130℃まで昇温し、さらに20℃/時間で190℃まで昇温させた。回収した液量は21.2kgであった。
 その後、液温190℃、減圧度0.1kPa~0.8kPaで減圧重合し、得られたポリマーを取り出し、90℃で2時間、120℃で2時間加熱処理した。
<PBOxの合成>
 上記と同様の反応釜にシュウ酸ジメチル40kg(339モル)、1,4-ブタンジオールを30.5kg(339モル)、ジブチルスズオキシド5.7gを入れ、窒素気流下で液温100℃に加温し、常圧重合を行った。メタノールの留去が始まった後、そのまま1時間保温し反応させた。1時間後から10℃/時間の昇温速度で110℃まで昇温し、さらに20℃/時間で180℃まで昇温させた。回収した液量は21.9kgであった。
 その後、液温200℃、減圧度0.1kPa~0.8kPaで減圧重合し、得られたポリマーを取り出し、90℃で2時間、120℃で2時間加熱処理した。
<各種評価方法>
<PEOxおよびPBOxの還元粘度の測定>
装置:キャノンフェンスケ型粘度計
溶媒:1,1,1,2,2,2,-ヘキサフルオロ 2-プロパノール(PEOx)、クロロホルム(PBOx)
温度:25℃
試料調製:試料40mgに溶媒10mLを加え、室温で緩やかに攪拌した。目視で溶解していることを確認した後、0.45μmフィルターにて濾過して測定試料とした。
<PLAおよびPLA共重合体の分子量測定>
 以下に示す条件下で測定し、PLA及びPLA共重合体の分子量を測定した。
装置:東ソー製 高速GPC装置 HLC-8320
検出器:示差屈折率検出器RI
カラム:SuperMultipore HZ-M(2本)
溶媒:クロロホルム
流速:0.5mL/min
カラム温度:40℃
試料調製:試料約10mgに溶媒3mLを加え、室温で放置した。目視で溶解していることを確認した後、0.45μmフィルターにて濾過した。スタンダードはポリスチレンを用いた。
HNMRによるPLA中の共重合率の定量方法>
 PLA中の酸放出性エステル共重合率は、溶媒による再沈殿でコンパウンドポリマーを除いた後、モノマーに分解した水溶液をH NMRで定量することで算出した。以下にサンプルの調整方法とNMR測定条件を記す。
 試料1gをクロロホルム15mL中に落とし溶解させた。目視で溶解状態に変化が見られなくなった後、0.45μmのフィルターで濾過した。ろ液を300mLのメタノールに落とすと、ひも状の沈殿物または液の白濁が目視できた。ひも状の沈殿物の場合は吸引濾過によって、白濁物の場合は遠心分離によってそれぞれ回収した。回収物を水で洗浄した後40℃で真空乾燥し、20mL容の耐圧バイアル瓶中で水1gと共に120℃で熱処理した。熱処理は固形分が完全に分解し目視できなくなるまで行った。分解した水溶液を試料としてNMR測定を行った。
装置:日本電子製 JNM-ECA
溶媒:重水
積算回数:16回
測定温度:室温
試料調製:試料約0.1mLをNMR試料管に滴下し、次に重水を0.5mL滴下しサンプルとした。
定量方法:乳酸の主鎖CH基の水素に由来するピーク面積を1.00とした時のエチレングリコールまたはブタンジオールのメチレン基水素由来ピーク面積をAEG、ABDOとし、以下の式(1),(2)により共重合率を算出した。ブタンジオールのメチレン基水素由来ピークは2箇所に等面積で観測されるため、2箇所の総面積をABDOとした。
  (PEOx共重合率)
 =(29×AEG)/(72+29×AEG)・・ (1)
  (PBOx共重合率)
 =(18×ABDO)/(72+18×ABDO)・・ (2)
H NMRと溶解残渣量によるPLA中の共重合率の定量方法>
 後述の実施例5のみ、本項の方法で酸放出性エステル共重合率を測定した。
(非共重合PEOx成分):
 試料0.05gをクロロホルム/1,1,1,2,2,2,-ヘキサフルオロ 2-プロパノール = 9/1溶液1.5mLに溶解し、4時間静置した。その後濾過により不溶成分を回収し、40℃減圧下で乾燥した。得られた固形分を非共重合PEOx成分とし、質量を測定し、非共重合率を算出した。
(共重合および非共重合PEOx成分):
 試料0.1gを20mL容の耐圧バイアル瓶中で水1gと共に120℃で熱処理した。
 熱処理は固形分が完全に分解し見えなくなるまで行った。分解した水溶液を試料としてH NMR測定を行った。
装置:日本電子製 JNM-ECA
溶媒:重水
積算回数:16回
測定温度:室温
試料調製:試料約0.1mLをNMR試料管に滴下し、次に重水を0.5mL滴下しサンプルとした。
定量方法:前記式(1)によりPEOx成分を定量した。ここで定量されるのは共重合および非共重合のPEOx成分の比率である。
(PEOx共重合率の算出):
 上記で得られた共重合および非共重合のPEOx成分の比率から、上記のPEOx非共重合率を減算することにより、共重合PEOx率を算出した。
<50℃、30日後の結晶化度の測定>
 長期間水浸漬後の結晶化度の変化は、加速試験として50℃30日間水浸漬後の結晶化度を用い評価した。
 カッターミルにより粗大な粉体とした試料1gと純水約2gを、20mL容のバイアル瓶で混合し、50℃に設定したオーブンに静置した。30日後に混合物を取り出し、純水で洗浄しながら遠心分離により粉体試料を取り出した。遠心分離後の試料は40℃、減圧下で4時間乾燥した。乾燥した試料をDSCにより評価した。
装置:セイコーインスツルメント株式会社製 EXTAR6000
評価:0℃から10℃/分の昇温速度で昇温したときの1回目の昇温曲線で観測される吸熱ピークのピーク面積から算出される融解熱量(△H)を、ポリ乳酸結晶の融解熱量値94J/gで除し、100倍した値を結晶化度(%)とした。
<2回目昇温時の融解熱量△Hの測定>
装置:セイコーインスツルメント株式会社製 EXTAR6000
評価:0℃から10℃/分の昇温速度で昇温したときの1回目の昇温曲線で吸熱ピークを観測したのち、170℃~180℃で1分間保持した後、10℃/分の降温速度で0℃まで冷却する。その後、再度上記と同様の昇温速度で昇温した時の2回目昇温曲線で観測される吸熱ピークのピーク面積を2回目昇温時の融解熱量(△H)とした。
<単位日数あたりの徐放TOC量の測定>
 試料150mgを純水30mLに浸し、25℃で静置した。1週間ごとに純水を新しいものに取り替えた。4週間目の純水をTOC測定し、これを元に以下の式(3)で単位日数あたりの徐放TOCを算出した。
  C=B×(1/5)×(1/7)・・・(3)
 ただし、Cは1日あたり、試料1g当りの有機炭素放出量(mg)、Bは調整した試料が示したTOC値(ppm)である。
 また、4週間目以降もこの一定値で有機炭素が徐放されると仮定し、さらに放出された有機炭素が全て乳酸モノマーであると仮定することで、各試料が徐放によって消滅する日、すなわち材料のTOC放出寿命X(日)を以下の式(4)で評価した。
   X=1000/(C×6)・・・(4)
 以下に示す条件でTC(全炭素)およびIC(無機炭素)を測定し、TCからICを差し引くことでTOCを得た。
装置:株式会社島津製作所製TOC―L
キャリアガス:高純度空気
キャリアガス流量:150mL/min
キャリブレーション物質:フタル酸水素ナトリウムおよび炭酸水素ナトリウム
燃焼温度:680℃
測定試料調製:浸漬液約20mLを直接試料バイアルにとり測定した。
<X線回折測定による結晶化度の評価>
装置:リガク社製 X線回折装置 SmartLab9kW
電圧・電流:45kV・200mA
X線波長:CuKα
光学系:平行ビーム法 カウンターモノクロ法
結晶化度算出方法:結晶性ピークの面積と非晶性ピークの面積を用いて以下の式(5)で算出した。
   Xc=100×Ac/(Ac+Aa)・・・(5)
 ただし、Xcは結晶化度(%)、Acは結晶性ピークの面積、Aaは非晶性ピークの面積である。
<メタノールを用いたフロータビリティ濃度の測定>
 微粉体試料の水への分散性を評価するために、フロータビリティ濃度の測定を行った。
 ジェットミルにて微粉砕し、レーザー回折散乱法により測定したメジアン粒径(D50)が20μm以下となった試料0.5gを、100mL容ガラス瓶中のメタノール水溶液に落とし、マグネティックスターラーで280rpm、3分間攪拌した。その後3分間静置し、水面に粉体の浮遊物が残っているか確認した。粉体の浮遊物が見られている場合は沈殿していないと判定し、メタノールを5g追加し同様の実験を行った。水50g、メタノール30gから測定を開始し、粉体の浮遊物が見られなくなった際のメタノール濃度をフロータビリティ濃度と定義し、水分散性を比較検討した。
<使用材料>
 PLA(ポリ乳酸樹脂)は海正生物材料製REVODE101を用いた。原料として用いる際の分子量は、120000<Mw<170000の範囲であった。
 酸放出性エステル樹脂の一種であるPEOxおよびPBOxは、上記項で重合されたものを用いた。それぞれの還元粘度は、PEOxで0.84dL/g、PBOxで0.49dL/gであった。
 炭酸ナトリウムは和光純薬工業製炭酸ナトリウム(純度99.8+%)を、50%乳酸は武蔵野化学研究所製ムサシノ乳酸50F(50質量%)を、重水はシグマ・アルドリッチ製重水(“100%”99.96atom%D)を、メタノールは和光純薬工業製メタノール(99.7+%高速液体クロマトグラフ用)、クロロホルムは和光純薬工業製クロロホルム(99.7+%高速液態クロマトグラフ用)を用いた。
<ポリ乳酸共重合体の合成>
(実施例1~4)
 PLA、酸放出性エステル、炭酸ナトリウムを、それぞれ定量フィーダーによって連続式の二軸押出機に定量供給し溶融混練した。各実施例での条件は以下の表1に示した。
Figure JPOXMLDOC01-appb-T000001
(実施例5)
 PLA100g、PEOx100g、炭酸ナトリウム20gをそれぞれ秤量し、バッチ式の二軸押出機で溶融混練した。樹脂の温度が230℃に到達し、炭酸ナトリウムを投入した時刻を反応時間の開始点とし2分間混練した後、試料を取り出した。
(比較例1)
 PLAと炭酸ナトリウムを、実施例1~4と同様にして定量フィーダーで連続式押出機に定量供給し溶融混練した。各条件は以下の表2に示した。
Figure JPOXMLDOC01-appb-T000002
(比較例2)
 PLA180g、PEOx20g、炭酸ナトリウム20gをそれぞれ秤量し、実施例5と同様のバッチ式二軸押出機で溶融混練した。樹脂の温度が230℃に到達し、炭酸ナトリウムを投入した時刻を反応時間の開始点とし、5分間混練後に試料を取り出した。
(比較例3)
 PLAとPEOxをコイルフィーダーで連続式の二軸押出機に定量供給し溶融混練した。PLAとPEOxの供給速度はそれぞれ45kg/時間、5kg/時間、混練温度は230℃であった。さらに混練後の材料250kgを2000L容の反応釜に投入し、50%乳酸500kgを加えた後、100℃で5時間加熱することで低分子量化した。その後溶媒をろ別し水で洗浄、70℃で減圧乾燥した。
<ポリ乳酸共重合体の物性>
 得られた試料の重量平均分子量Mw、酸放出性エステル共重合率、2回目昇温時融解熱量△H、50℃30日水中保管後の結晶化度、粉体沈殿時のメタノール濃度、およびTOC放出寿命を表3に示した。
 実施例1~4おいて、50℃30日水中保管後の結晶化度が30%以下と低い値を示した。またメタノール濃度45%以下の水溶液に粉体が沈殿し、良好な水分散性を示した。さらに実施例1~3では、30日後のTOC放出量から計算されるTOC放出寿命が300~900日の範囲となり、酸放出性エステルを共重合しない比較例1および比較例3と比べて高い加水分解性を示した。実施例5は実施例1~4と比較して酸放出性エステル共重合率が非常に高く、水分散性に特に優れることが予想され、TOC放出寿命が短いことから高い加水分解性を有することがわかった。比較例2は高分子量ゆえに20μm以下に粉砕することができなかった。
Figure JPOXMLDOC01-appb-T000003
 実施例1および比較例3で得られた試料のDSCによる2回目昇温曲線を図1に示した。比較例3では2回目昇温時でも結晶融解のピークが検出されているのに対し、実施例1では結晶融解のピークは観察されなかった。
 実施例1および比較例3で得られた試料を水中に浸し、25℃で180日間保管する前後の結晶化度を広角X線回折測定により定量した。結果を表4に示す。
 比較例3では水浸漬開始時、すなわちサンプル作成時にすでに高い結晶化度を示したが、180日間の水浸漬でさらに結晶化度が上昇した。一方で実施例1では、サンプル作成時の結晶化度も比較例3と比較して低く、180日間の水浸漬で結晶化度が減少し20%を下回った。
Figure JPOXMLDOC01-appb-T000004

Claims (7)

  1.  ポリ乳酸と、加水分解により乳酸以外の酸を放出し得る酸放出性エステルポリマーとの共重合により得られるポリ乳酸共重合体において、DSC測定による2回目昇温時の融解熱量ΔHが20J/g以下の範囲にあり、前記酸放出性エステルポリマーに由来する共重合単位の含有率が0.5~35質量%且つ共重合体の重量平均分子量が15,000~40,000の範囲にあるポリ乳酸共重合体。
  2.  レーザー回折法散乱法により測定したメジアン粒径(D50)が20μm以下の粒状物となった際のメタノールを用いたフロータビリティ濃度が50質量%未満である請求項1に記載のポリ乳酸共重合体。
  3.  前記酸放出性エステルポリマーがポリオキサレートである請求項1に記載のポリ乳酸共重合体。
  4.  レーザー回折法散乱法により測定したメジアン粒径(D50)が20μm以下の粒状物の形態を有している請求項1に記載のポリ乳酸共重合体。
  5.  土壌改質剤として使用される請求項1に記載のポリ乳酸共重合体。
  6.  地下資源採掘用水分散液に使用される請求項1に記載のポリ乳酸共重合体。
  7.  重量平均分子量が50,000~300,000のポリ乳酸と、加水分解により乳酸以外の酸を放出し得る酸放出性エステルポリマーと、塩基性無機化合物とを、200℃以上の温度で溶融混練することを特徴とする請求項1に記載のポリ乳酸共重合体の製造方法。
PCT/JP2019/027091 2018-07-10 2019-07-09 ポリ乳酸共重合体及びその製造方法 WO2020013163A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19834289.1A EP3822300B1 (en) 2018-07-10 2019-07-09 Polylactic acid copolymer and method for producing same
CN201980046179.5A CN112399979B (zh) 2018-07-10 2019-07-09 聚乳酸共聚物及其生产方法
US17/258,790 US20210269587A1 (en) 2018-07-10 2019-07-09 Polylactic acid copolymer and method of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-130660 2018-07-10
JP2018130660A JP6844591B2 (ja) 2018-07-10 2018-07-10 ポリ乳酸共重合体及びその製造方法

Publications (1)

Publication Number Publication Date
WO2020013163A1 true WO2020013163A1 (ja) 2020-01-16

Family

ID=69142854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027091 WO2020013163A1 (ja) 2018-07-10 2019-07-09 ポリ乳酸共重合体及びその製造方法

Country Status (6)

Country Link
US (1) US20210269587A1 (ja)
EP (1) EP3822300B1 (ja)
JP (1) JP6844591B2 (ja)
CN (1) CN112399979B (ja)
TW (1) TWI823967B (ja)
WO (1) WO2020013163A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3950839B1 (en) * 2019-03-29 2024-05-01 Toyo Seikan Group Holdings, Ltd. Solid poly(lactic acid) composition and production method therefor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633291B2 (ja) 1975-11-07 1981-08-03
WO2006083044A1 (ja) * 2005-02-07 2006-08-10 Ube Industries, Ltd. 乳酸−オキサレートブロック共重合体
JP2008247956A (ja) * 2007-03-29 2008-10-16 Dic Corp ポリエステル組成物
JP2010116482A (ja) * 2008-11-13 2010-05-27 Toyo Seikan Kaisha Ltd ポリオキサレート及びそれを含む生分解性樹脂組成物
US7833950B2 (en) 2005-06-20 2010-11-16 Schlumberger Technology Corporation Degradable fiber systems for stimulation
JP2011104551A (ja) 2009-11-19 2011-06-02 Toyohashi Univ Of Technology 電子供与体供給剤、電子供与体供給剤の製造方法、およびそれを用いた環境浄化方法
JP2014134090A (ja) * 2012-12-12 2014-07-24 Toyo Seikan Kaisha Ltd 掘削用分散液、及び、それを用いた掘削方法
WO2016129501A1 (ja) * 2015-02-12 2016-08-18 東洋製罐グループホールディングス株式会社 加水分解性粒子を用いた地下資源の採掘方法
WO2017145539A1 (ja) * 2016-02-26 2017-08-31 東洋製罐グループホールディングス株式会社 ポリオキサレート共重合体及びその製造方法
JP2019065159A (ja) * 2017-09-29 2019-04-25 東洋製罐グループホールディングス株式会社 脂肪族ポリエステルからなるポリマー成分の低分子量化方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158884A1 (ja) * 2010-06-14 2011-12-22 帝人株式会社 ポリ乳酸組成物およびそれからなる成形品
IT1403889B1 (it) * 2010-12-27 2013-11-08 Eni Spa Metodo per la riduzione del coning in pozzi a olio mediante fluidi micro(nano)strutturati a rilascio controllato di sostanze barriera
JP5286505B2 (ja) * 2011-01-19 2013-09-11 東洋製罐株式会社 生分解性樹脂組成物
JP6356477B2 (ja) * 2014-05-01 2018-07-11 株式会社ジェイエスピー 発泡粒子成形体

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633291B2 (ja) 1975-11-07 1981-08-03
WO2006083044A1 (ja) * 2005-02-07 2006-08-10 Ube Industries, Ltd. 乳酸−オキサレートブロック共重合体
JP2008101032A (ja) 2005-02-07 2008-05-01 Ube Ind Ltd 乳酸−オキサレートブロック共重合体
US7833950B2 (en) 2005-06-20 2010-11-16 Schlumberger Technology Corporation Degradable fiber systems for stimulation
JP2008247956A (ja) * 2007-03-29 2008-10-16 Dic Corp ポリエステル組成物
JP2010116482A (ja) * 2008-11-13 2010-05-27 Toyo Seikan Kaisha Ltd ポリオキサレート及びそれを含む生分解性樹脂組成物
JP2011104551A (ja) 2009-11-19 2011-06-02 Toyohashi Univ Of Technology 電子供与体供給剤、電子供与体供給剤の製造方法、およびそれを用いた環境浄化方法
JP2014134090A (ja) * 2012-12-12 2014-07-24 Toyo Seikan Kaisha Ltd 掘削用分散液、及び、それを用いた掘削方法
WO2016129501A1 (ja) * 2015-02-12 2016-08-18 東洋製罐グループホールディングス株式会社 加水分解性粒子を用いた地下資源の採掘方法
WO2017145539A1 (ja) * 2016-02-26 2017-08-31 東洋製罐グループホールディングス株式会社 ポリオキサレート共重合体及びその製造方法
JP2019065159A (ja) * 2017-09-29 2019-04-25 東洋製罐グループホールディングス株式会社 脂肪族ポリエステルからなるポリマー成分の低分子量化方法

Also Published As

Publication number Publication date
EP3822300A1 (en) 2021-05-19
TW202006062A (zh) 2020-02-01
CN112399979A (zh) 2021-02-23
JP2020007468A (ja) 2020-01-16
EP3822300C0 (en) 2023-08-30
EP3822300B1 (en) 2023-08-30
JP6844591B2 (ja) 2021-03-17
EP3822300A4 (en) 2022-04-06
TWI823967B (zh) 2023-12-01
CN112399979B (zh) 2023-11-10
US20210269587A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
JP5645176B2 (ja) 生分解性樹脂組成物
JPWO2007060981A1 (ja) ポリグリコール酸樹脂の耐水性の制御方法
JP2012149176A (ja) 生分解性樹脂組成物
JP6401615B2 (ja) 樹脂組成物、樹脂成形体、およびこれらの製造方法
Arcana et al. Study on properties of polymer blends from polypropylene with polycaprolactone and their biodegradability
WO2012029448A1 (ja) 顆粒状脂肪族ポリエステル粒子、及び、その製造方法
Yang et al. Effects of Poly (vinyl butyral) as a Macromolecular Nucleating Agent on the Nonisothermal Crystallization and Mechanical Properties of Biodegradable Poly (butylene succinate)
WO2007043547A1 (ja) ポリ乳酸組成物
JP2007231154A (ja) 粉末成形用生分解性樹脂組成物
WO2020013163A1 (ja) ポリ乳酸共重合体及びその製造方法
JP2007100104A (ja) ポリ乳酸ブロック共重合体、その製造方法、成形品およびポリ乳酸組成物
US20130131209A1 (en) Polyglycolic Acid Particle, Production Process of Polyglycolic Acid Particle, and Use Thereof
WO2020203946A1 (ja) ポリ乳酸固体組成物及びその製造方法
JP6059991B2 (ja) マスターバッチ用脂肪族ポリエステル樹脂組成物及び成形用樹脂組成物
JP2021055084A (ja) フィルム
JP2016169374A (ja) ポリエステル樹脂成形体、およびその製造方法
JP5033396B2 (ja) ポリ乳酸組成物
JP2008248016A (ja) 共重合ポリエステル微粒子およびその製造方法
Sun et al. Degradation Analyses of Poly (3-hydoxybutyrate-co-4-hydroxybutyrate) and Its Blends with Poly (butylene succinate)
Sharhan et al. Crystallization and thermal behaviour of poly (3-hydroxybutyric acid)/poly (vinyl acetate) blend films
WO2015114719A1 (ja) ポリエステル樹脂組成物の製造方法およびポリエステル樹脂成形体
JP2008120893A (ja) ステレオコンプレックスポリ乳酸組成物
JP5129945B2 (ja) ステレオコンプレックスポリ乳酸組成物
JP2006348141A (ja) ポリ乳酸樹脂組成物
JP6679072B2 (ja) 樹脂組成物及びその加水分解方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE