JPWO2011111484A1 - セルロースエステルの製造方法、セルロースエステル、及びセルロースエステルフィルム - Google Patents

セルロースエステルの製造方法、セルロースエステル、及びセルロースエステルフィルム Download PDF

Info

Publication number
JPWO2011111484A1
JPWO2011111484A1 JP2012504380A JP2012504380A JPWO2011111484A1 JP WO2011111484 A1 JPWO2011111484 A1 JP WO2011111484A1 JP 2012504380 A JP2012504380 A JP 2012504380A JP 2012504380 A JP2012504380 A JP 2012504380A JP WO2011111484 A1 JPWO2011111484 A1 JP WO2011111484A1
Authority
JP
Japan
Prior art keywords
cellulose ester
film
cellulose
acid
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012504380A
Other languages
English (en)
Inventor
学 松岡
学 松岡
笠原 健三
健三 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2011111484A1 publication Critical patent/JPWO2011111484A1/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/06Cellulose acetate, e.g. mono-acetate, di-acetate or tri-acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/16Preparation of mixed organic cellulose esters, e.g. cellulose aceto-formate or cellulose aceto-propionate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/22Post-esterification treatments, including purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/14Mixed esters, e.g. cellulose acetate-butyrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • C08J2301/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/14Mixed esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Polarising Elements (AREA)

Abstract

本発明の目的は、セルロースエステルの製造ロット間における性能のバラつきを抑え、膜面故障(斜めスジ、横ダン、エッグムラ等)の低減したセルロースエステルフィルムを生産可能なセルロースエステルの製造方法、それによって製造されたセルロースエステル、及び該セルロースエステルを用いたセルロースエステルフィルムを提供することにある。本発明のセルロースエステルの製造方法は、原料セルロースの粉砕工程、活性化工程、エステル化工程、熟成工程、及び後処理化工程を含むセルロースエステルの製造方法において、該粉砕工程が原料セルロースと溶剤とを混合して粉砕するメカノケミカル粉砕工程であることを特徴とする。

Description

本発明は、セルロースエステルの製造方法、セルロースエステル、及びセルロースエステルフィルムに関し、セルロースエステルの製造ロット間における性能のバラつきを抑え、膜面故障(斜めスジ、横ダン、エッグムラ等)の低減したセルロースエステルフィルムを生産可能なセルロースエステルの製造方法、それによって製造されたセルロースエステル、及び該セルロースエステルを用いたセルロースエステルフィルムに関する。
従来セルロースエステルはその高い透明性・低複屈折性・偏光子との易接着性等に優れるため、液晶表示装置に使用される偏光板の保護フィルムの原料として好適に用いられてきた。ほかにも、位相差フィルムや視野拡大フィルム、反射防止フィルムなどの光学フィルムの原料として好適に使用されている。
上記製品に使用されるセルロースエステルは一般に、粉砕工程において粗粉砕された原料セルロースをアシル基と反応させやすくするため活性化させる活性化(前処理)工程と、カルボン酸と酸触媒下でセルロースの水酸基をエステル化するエステル化工程と、必要に応じエステル化工程で置換されたアシル基を脱アシル化等で所望のアシル基置換度にする熟成工程と、カルボン酸無水物を加水分解し、塩基で酸触媒を中和させる中和工程を経て、生成物を沈殿、精製、乾燥させることで得られる。
光学用途に使用するセルロースエステルフィルムは従来溶液製膜することが一般的で、塩化メチレン等の塩素系溶剤を使用して製膜する。セルロースエステルはアシル基置換度分布や重合度の変化で溶解性、粘度等の性質に大きく関与する。アシル基置換度や重合度の分布を均一に調整していないセルロースエステルを用いて光学フィルムを作成すると、不溶解物が残り輝点異物の原因となったり、位相差などの光学的に致命的な欠陥になることもあるため、エステル化工程、熟成工程の調整は精密に行うことが肝要である。しかしながらセルロースは天然高分子であり、原料自体の分子量や分子鎖、結晶化度等のバラツキが大きく、活性化処理、エステル化工程、及び熟成工程での反応にムラが生じ、逆にムラを無くそうと各々の工程の時間を長くとったり、温度を上げたりすると重合度が低下するなど制御が困難である。上記エステル化工程、熟成工程を精密に制御することで、分布を均一にする技術が開示されている(例えば、特許文献1参照。)が、十分な効果を得るには至っていない。
特許文献2には、セルロースを活性化剤で活性化処理する工程、アシル化触媒の存在下、少なくとも炭素数2以上(特に少なくとも炭素数3以上)のアシル化剤でセルロースをエステル化する工程、および生成したセルロースエステルをケン化熟成する工程を含むセルロースエステルの製造方法であって、エステル化工程の後、反応系に残存するアシル化剤1モルに対して、エステル化反応停止剤を0.3〜10当量/分の速度で添加し、セルロースエステルを製造することによって、輝点異物の発生を顕著に改善する技術が開示されている。
しかしながら、最近の広幅、薄膜のセルロースエステルフィルムの製造では、アシル基置換度分布が均一でないセルロースエステルや重合度の分布が均一でないセルロースエステルを用いると、セルロースエステルのロットによって、フィルム製膜した際に膜面品質(斜めスジ、横ダン、エッグムラ等)が安定しないといった、上記特許文献記載にはない新たな問題が生じており、光学フィルムとしては致命的な欠陥となる為早急な改善が望まれていた。
特開2006−117896号公報 特開2007−197563号公報
本発明の目的は、セルロースエステルの製造ロット間における性能のバラつきを抑え、膜面故障(斜めスジ、横ダン、エッグムラ等)の低減したセルロースエステルフィルムを生産可能なセルロースエステルの製造方法、それによって製造されたセルロースエステル、及び該セルロースエステルを用いたセルロースエステルフィルムを提供することにある。
本発明の上記課題は以下の構成により達成される。
1.原料セルロースの粉砕工程、活性化工程、エステル化工程、熟成工程、及び後処理化工程を含むセルロースエステルの製造方法において、該粉砕工程が原料セルロースと溶剤とを混合して粉砕するメカノケミカル粉砕工程であることを特徴とするセルロースエステルの製造方法。
2.前記溶剤が、カルボン酸類、アルコール類、ケトン類、エーテル類、セロソルブ類から選ばれる溶剤の少なくとも一種であるか、または前記溶剤の少なくとも一種と水との混合溶剤であることを特徴とする前記1に記載のセルロースエステルの製造方法。
3.前記エステル化工程と熟成工程の間に濾過工程を設けることを特徴とする前記1または2に記載のセルロースエステルの製造方法。
4.前記セルロースエステルが、アシル基の平均置換度が1.2〜2.95、アシル基総炭素数が2.0〜9.5であり、かつ平均重量分子量が100000〜500000であることを特徴とする前記1または2に記載のセルロースエステルの製造方法。
5.前記1〜4のいずれか1項に記載のセルロースエステルの製造方法によって製造されたことを特徴とするセルロースエステル。
6.前記5に記載のセルロースエステルを含有することを特徴とするセルロースエステルフィルム。
本発明によれば、セルロースエステルの製造ロット間における性能のバラつきを抑え、膜面故障(斜めスジ、横ダン、エッグムラ等)の低減したセルロースエステルフィルムを生産可能なセルロースエステルの製造方法、それによって製造されたセルロースエステル、及び該セルロースエステルを用いたセルロースエステルフィルムを提供することができる。
本発明のセルロースエステルの製造フローを示す模式図である。
以下本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。
従来のセルロースエステルの製造方法は原料セルロースを乾式粉砕し、綿状にした後、酢酸水溶液、もしくは熱水で活性化処理することが一般的である。しかし原料セルロースを乾式粉砕すると、セルロースの鎖が切断されたり、粉砕粒径にムラのある綿状の微粉砕物が出来やすく、次工程の活性化処理やエステル化処理で均一なセルロースエステルが形成されにくいという問題があった。
さらに熟成工程において、所望のアシル基置換度を均一に付与するためにはそれなりに時間をかける必要があったが、置換度分布を均一にするために時間をかけると重合度を低下させてしまうといった問題があった。
更に本発明者の検討によれば、このようにして得られたアシル基置換度や重合度がロットによって不均一である場合、該セルロースエステルを用いてセルロースエステルフィルムを作製すると、フィルムの膜面故障(斜めスジ、横ダン、エッグムラ等)が発生し易いことが分かった。これは、アシル基置換度や重合度がロットによって不均一であると、フィルム形成組成物の粘度に偏りが発生し、ダイス等から流延した場合に均一な膜形成ができ難いことに起因するものである。特に溶融流延法によるフィルム製膜の場合にその欠陥が表れやすい。
本発明者は上記課題に鑑み鋭意検討した結果、原料セルロースの粉砕工程、活性化工程、エステル化工程、熟成工程、及び後処理化工程を含むセルロースエステルの製造方法において、該粉砕工程が原料セルロースと溶剤とを混合して粉砕するメカノケミカル粉砕工程であることを特徴とするセルロースエステルの製造方法によって、上記セルロースエステルの製造ロット間における性能のバラつき、フィルム製膜した際の膜面故障(斜めスジ、横ダン、エッグムラ等)の問題を解決できることを見出し、本願請求項1に係る発明を成すに至った次第である。
即ち、セルロースエステルの製造工程において、活性化処理を行う前に溶剤とパルプを混合して微粉砕するメカノケミカル粉砕工程を設けることで、セルロースの鎖を極力傷めず、均一に微粉砕することができるようになり、エステル化工程・熟成工程での反応をスムーズに行うことができる。特に、熟成工程での反応時間を短縮できることから、上記トレードオフになっていた反応の均一性向上と重合度の低下防止の両立を達成できたものである。
また、原料パルプには少なからず不純物が混入している。それらはエステル化工程で未酢化物や不純物として混在する。本発明では、原料セルロースと溶剤を混合しメカノケミカル粉砕をし、スラリー状態を形成させ、原料セルロースの分子間力や水素結合の切断を効果的に行うことにより、セルロースが細かな粒状になり溶剤ないし溶剤と水の混合溶液がセルロース分子間に入り込むかもしくは結合することで、セルロースの水酸基同士の水素結合を防止でき、粉砕セルロース自体が活性化した状態になる。次工程である活性化工程において粉砕時の混合溶剤に応じて活性化剤と置換する手段をとることができる為、これらの手段で粉砕し活性化させたセルロースは、後のエステル化反応が素早く均一に行われ、未酢化成分や不純物が低減するという効果がある。
更に、本願請求項3に係る発明は、エステル化後のドープを濾過機に通すことで、原料セルロース中に含まれていた不純物及び、エステル化しきれなかった未酢化成分を効果的に取り除くことができ、本発明の効果をより高める上で好ましい態様である。
本発明でいうメカノケミカル粉砕とは、メカノ=機械、ケミカル=化学反応を同時に行う粉砕と定義する。即ち強固な水素結合などで反応しづらい組成の物質を物理的に粉砕することで水素結合を切断し、再結合する前に、酢酸等別の物質と反応して化学変化させる、またはアルコール等の溶剤と水素結合させることである。これによって、セルロース間の水素結合を再発させないようにすることができる。
本発明は、溶剤と原料セルロースを混合して微粉砕(メカノケミカル粉砕)させることで、精製後のセルロースエステルのロット間バラツキだけでなく、ロット内バラツキも顕著に抑制できることを見出したものである。
以下、本発明を詳細に説明する。
<セルロースエステル>
本発明のセルロースエステルは、光学フィルム用途のセルロースエステルフィルムに含有されることが好ましく、炭素数2以上の脂肪族アシル基を有するセルロースエステルであることが好ましく、更に好ましくは、セルロースエステルのアシル総置換度が1.0〜2.95、かつアシル基総炭素数が2.0〜9.5であるセルロースエステルである。
セルロースエステルのアシル基総炭素数は、好ましくは、4.0〜9.0であり、さらに好ましくは5.0〜8.5である。但し、アシル基総炭素数は、セルロースエステルのグルコース単位に置換されている各アシル基の置換度と炭素数の積の総和である。
さらに、脂肪族アシル基の炭素数は、セルロース合成の生産性、コストの観点から、2以上6以下が好ましく、2以上4以下がさらに好ましい。なお、アシル基で置換されていない部分は通常水酸基として存在している。
β−1,4−グリコシド結合でセルロースを構成しているグルコース単位は、2位、3位および6位に遊離の水酸基を有している。本発明におけるセルロースエステルは、これらの水酸基の一部または全部をアシル基によりエステル化した重合体(ポリマー)である。アシル基置換度とは、繰り返し単位の2位、3位および6位について、セルロースがエステル化している割合の合計を表す。具体的には、セルロースの2位、3位および6位のそれぞれの水酸基が100%エステル化した場合をそれぞれ置換度1とする。したがって、セルロースの2位、3位および6位のすべてが100%エステル化した場合、置換度は最大の3となる。
アシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、ペンタネート基、ヘキサネート基等が挙げられ、セルロースエステルとしては、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースペンタネート等が挙げられる。また、上述の側鎖炭素数を満たせば、セルロースアセテート、セルロースアセテートプロピオネート、セルロースプロピオネート、セルロースアセテートブチレート、セルロースアセテートペンタネート等のように混合脂肪酸エステルでもよい。この中でも、特にセルロースアセテート、セルロースアセテートプロピオネート、セルロースプロピオネートが光学フィルム用途として好ましいセルロースエステルである。
セルローストリアセテート以外で好ましいセルロースエステルは炭素原子数2〜4のアシル基を置換基として有し、アセチル基の置換度をXとし、プロピオニル基又はブチリル基の置換度をYとした時、下記式(I)および(II)を同時に満たすセルロースエステルを含むセルロースエステルである。
式(I) 1.2≦X+Y≦2.95
式(II) 0≦X≦2.5
この内特にセルロースアセテートプロピオネートが好ましく用いられ、中でも0.1≦X≦2.5、0.1≦Y≦2.8であることが好ましい。アシル基で置換されていない部分は通常水酸基として存在しているものである。アシル基置換度の測定方法はASTM−D817−96に準じて測定することができる。
本発明のセルロースエステルは、重量平均分子量Mwが50000〜500000のものが好ましく、より好ましくは100000〜300000であり、更に好ましくは150000〜250000である。
セルロースエステルの平均分子量および分子量分布は、高速液体クロマトグラフィーを用い測定できるので、これを用いて重量平均分子量(Mw)、分子量分布を算出する。
測定条件は以下の通りである。
溶媒:メチレンクロライド
カラム:Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
カラム温度:25℃
試料濃度:0.1質量%
検出器:RI Model 504(GLサイエンス社製)
ポンプ:L6000(日立製作所(株)製)
流量:1.0ml/min
校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)
Mw=1000000〜500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
本発明で用いられるセルロースエステルの原料セルロースは、木材パルプでも綿花リンターでもよく、木材パルプは針葉樹でも広葉樹でもよいが。針葉樹パルプが好ましく用いられる。これらから作られたセルロースエステルは適宜混合して、或いは単独で使用することが出来る。
例えば、綿花リンター由来セルロースエステル:木材パルプ(針葉樹)由来セルロースエステル:木材パルプ(広葉樹)由来セルロースエステルの比率が100:0:0、90:10:0、85:15:0、50:50:0、20:80:0、10:90:0、0:100:0、0:0:100、80:10:10、85:0:15、40:30:30で用いることが出来る。
本発明では重合度の高いセルロースが好ましく、例えば、リンターパルプが好ましく、セルロースは、少なくともリンターパルプで構成されたセルロースを使用することが好ましい。セルロースの結晶化度の指標となるα−セルロース含有量は、90%以上(例えば、92〜100%、好ましくは95〜100%、さらに好ましくは99.5〜100%程度)である。
<セルロースエステルの製造方法>
セルロースエステルの製造過程は、大きく原料セルロースの粉砕工程、活性化工程、アシル基に置換させるエステル化工程、アシル基の脱離を促し、置換度を調整する熟成工程、精製物を沈殿・洗浄・乾燥させる後処理(仕上げ)工程に分けられる。
図1に本発明のセルロースエステルの製造フローを示す。エステル化工程と熟成工程の間には濾過工程を組み入れることが可能である。また、中和工程は熟成停止と中和の両工程を兼ねることができ、いずれも点線で示した。
以下図示した各工程について説明する。
[粉砕工程]
本発明に係る原料セルロースの粉砕工程は、原料セルロースと溶剤とを混合して粉砕するメカノケミカル粉砕工程であることを特徴とするものである。
溶剤は、カルボン酸類、アルコール類、ケトン類、エーテル類、セロソルブ類から選ばれる溶剤の少なくとも一種か、または前記溶剤と水との混合溶剤であることが好ましい。
中でも酢酸、プロピオン酸などのカルボン酸が好ましく、特に後の活性化処理のことを考えると、カルボン酸であることが好ましい。
原料セルロース100質量部に対して、上記溶剤を50質量部から1000質量部の範囲の溶液と混合し粉砕する。より好ましい溶剤量の範囲としては75質量部〜700質量部であり、さらに95質量部〜500質量部の範囲であることが好ましい。
原料セルロースの粉砕は前段階として微粉砕する装置に投入できる程度の大きさまで乾式の粗粉砕工程を加えてもよい。また、原料セルロースと溶剤の均一な混合を促す為に溶剤を添加した後に、低速でプレ撹拌を行うことも好ましい。
原料セルロースを粉砕する装置としては、湿式で微粉砕できる装置であれば特に制限はないが、ボールミル系(遊星ボールミル等)、湿式粉砕機(液体中ボール衝突型・スラリー型等)、摩砕型粉砕機(石臼式・スクリーン式等)、衝突型粉砕機(湿式ジェットミル等)、スクリュー型粉砕機等が好ましく使用され、またこれらを組み合わせて使用してもよい。
本発明は粉砕時の原料セルロースは液体中もしくはスラリー状態のように原料が湿潤している状態で微粉砕するためアモルファス化しやすく、後のセルロースエステルの製造工程において好都合である。
粉砕時は温度上昇することがあるので、粉砕機に冷却機能を備えておくことが好ましく、温度設定を60℃以下で制御しておくことが好ましい。好ましくは、10〜50℃であることが好ましく、さらに20℃〜45℃であることが好ましい。
粉砕時間は適宜決定することができるが、15分から45分であることが好ましく、さらに20分から30分であることが好ましい。
本発明に係るメカノケミカル粉砕によって原料セルロースは微細化され、粉砕後の原料セルロースの平均粒径は100μm以下になるが、熟成工程以前に濾過を加えることを考慮すると、各工程の反応を短時間で行い、且つ濾材の目詰まりを防止する観点から10μm以上80μm以下であることが好ましい。原料セルロースの粒径は顕微鏡等を使用することで測定が可能である。
[活性化工程]
活性化工程では、セルロースを活性化剤で処理し、セルロースを活性化させる。本発明では、原料セルロースはスラリー状の湿潤状態で供給される。
セルロースを活性化処理する活性化剤は、通常、アシル化反応の溶媒(アシル化溶媒)が使用され、アシル化溶媒としては、有機カルボン酸、例えば、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸等の脂肪族カルボン酸(直鎖状又は分岐鎖状C1−6アルカン酸)で構成できる。これらの活性化剤は単独で又は二種以上組み合わせて使用できる。
活性化処理において、活性化剤としては水を含む水系媒質が使用される。この水系媒質は有機カルボン酸を含む水系媒質であってもよく、活性化処理に続く反応に先立ち反応で使用するカルボン酸を用いてセルロース原料から水系媒質を置換することを考慮すると、経済的には多くの有機カルボン酸を用いることが好ましい。
活性化工程は単一の活性化工程に限らず複数の活性化工程で構成してもよく、アシル化触媒の濃度の異なる活性化剤を用いて行うことができる。例えば、活性化剤でセルロースを活性化させる第1の活性化工程と、アシル化触媒を含む活性化剤でセルロースを活性化させる第2の活性化工程とで構成してもよく、アシル化触媒の濃度が低濃度の活性化剤でセルロースを処理する第1の工程と、アシル化触媒の濃度が高い活性化剤でセルロースを処理する第2の工程とで構成してもよい。
活性化剤の使用量は、セルロース100質量部に対して、例えば、25〜150質量部、好ましくは30〜125質量部、さらに好ましくは50〜100質量部(例えば、70〜100質量部)程度であってもよい。
活性化処理は、セルロースを活性化剤で処理すればよく、セルロースに活性化剤を噴霧してもよく、活性化剤中にセルロースを浸漬してもよい。通常、活性化剤中に原料セルロースを添加しスラリー状にする場合が多い。活性化処理温度は、0℃〜100℃の範囲から選択でき、工業的な負荷をかけずに活性化処理を行うためには、通常、10℃〜40℃、好ましくは15℃〜35℃程度である。また、活性化処理時間は、0.1時間〜72時間の範囲で選択でき、通常、0.1時間〜3時間、好ましくは0.2時間〜2時間程度である。
本発明の場合、原料セルロースの粉砕に用いられた溶剤がカルボン酸の場合、微粉砕段階で活性化処理が進んでいるため、静置時間はわずかでよく、すぐにエステル化反応容器に投入することができる。
原料セルロースの粉砕に水等カルボン酸以外の溶液を使用した場合、カルボン酸で数回洗浄することで、カルボン酸に置換し、静置することで活性化処理が完了する。
[エステル化工程]
前記活性化処理により活性化されたセルロースを、酸触媒の存在下で少なくとも炭素数2以上のアシル基を有するカルボン酸(少なくとも1種以上含む)と無水カルボン酸(少なくとも1種以上含む)でエステル化する。酸触媒としてはルイス酸、強酸を使用することができるが、特に硫酸が一般的に使用される。
通常、酸無水物[例えば、炭素数2以上のカルボン酸の酸無水物(カルボン酸無水物)]、例えば、無水酢酸、無水プロピオン酸、無水酪酸、無水吉草酸などのC2−6アルカン酸無水物が使用できる。少なくとも炭素数2以上のアシル基を有するカルボン酸(例えば、少なくともC2−6カルボン酸無水物)が使用される。これらは単独又は二種以上組み合わせて使用してもよい。アシル基を有し、アシル化しやすいものであれば、カルボン酸に限定されるものではなく、有機酸ハライド等も使用することができる。
エステル化工程で酸触媒(特に、硫酸)の使用量は、例えばセルロース100質量部に対して3〜20質量部、好ましくは5〜18質量部、さらに好ましくは7〜15質量部程度の範囲から選択でき、通常、7〜15質量部程度である。
エステル化溶剤としては、少なくとも炭素数2以上のアシル基に対応するエステル化溶剤、例えば、カルボン酸(酸無水物)を用いればよく、例えば、C2−6カルボン酸に対応する酸無水物から選択され、かつ炭素数の異なる複数の酸無水物を用いてもよい。例えば、無水プロピオン酸及び/又は無水酪酸と無水酢酸とを組み合わせて用いてもよい。
好ましいエステル化溶剤は、C2−4アルカンカルボン酸無水物、例えば、C2−4カルボン酸無水物から選択された少なくとも一種(無水酢酸又は無水プロピオン酸等)、無水酢酸と無水プロピオン酸との組み合わせ、無水酢酸と無水酪酸との組み合わせ、無水酢酸と無水プロピオン酸と無水酪酸との組み合わせである。特に、無水酢酸と無水プロピオン酸との組み合わせ、無水酢酸と無水酪酸との組み合わせが好ましい。なお、無水酢酸は無水プロピオン酸などと比べて反応性が高く、アセチル基の置換度が小さいセルロース混合脂肪酸エステルを得る場合には、無水酢酸を用いないか、又は本発明の目的を損なわない範囲で少なくとも炭素数3以上にアシル基に対応するエステル化溶剤と少量の無水酢酸とを組み合わせてもよい。
なお、炭素数3以上のアシル基を有するセルロースエステルを得る場合、酢酸の存在化でアシル化、又は熟成できれば、エステル化溶剤は炭素数3以上のアシル基に対応する、例えば、無水プロピオン酸、無水酪酸などで構成すればよく、必ずしもアセチル基に対応するエステル化溶剤(無水酢酸)を含んでいなくてもよい。アセチル基を導入するためには、必ずしも無水酢酸を使用する必要はなく、反応系に酢酸を存在させて反応させてもよい。
このような酢酸は、エステル化工程及び熟成工程(特に、少なくとも熟成工程)において反応系に存在させればよく、前記活性化処理由来の酢酸のみで構成してもよく、エステル化工程及び熟成工程において新たに添加してもよく、通常エステル化工程でエステル化溶媒として使用してもよい。
なお、複数のエステル化溶剤を用いてセルロースエステルを製造する場合、エステル化工程において、反応系には複数のエステル化溶剤を共存させてもよく、特定のエステル化溶剤でセルロースをエステル化した後、他のエステル化溶剤でセルロースをエステル化してもよい。エステル化工程でのエステル化溶剤の使用量は、例えば、セルロースの水酸基に対して1.1〜4当量、好ましくは1.1〜2当量、さらに好ましくは1.3〜1.8当量程度である。
アセチル化の場合に限り、小さいアセチル置換度のセルロースエステルを得る場合には、エステル化工程で無水酢酸の使用量は、セルロースの水酸基に対して0.5当量以下(0〜0.3当量程度)、さらに0.2等量以下(0.01〜0.1当量)でもよく、実質的に使用しなくてもよい。
エステル化工程において、通常、溶媒又は希釈剤としてエステル化溶媒(酢酸、プロピオン酸、酪酸などの有機カルボン酸)が使用される。エステル化溶媒(カルボン酸)の使用量は、セルロース100質量部に対して50〜700質量部、好ましくは150〜600質量部、さらに好ましくは200〜550質量部程度である。
なお、エステル化反応は、0〜50℃、好ましくは5〜45℃、さらに好ましく10〜40℃程度の温度で行うことができる。なお、エステル化反応は、初期において、比較的低温、10℃以下(0〜10℃)]で行ってもよい。このような低温での反応時間は、例えば、エステル化反応開始から30分以上、40分〜2時間、好ましくは45〜100分程度)であってもよい。10〜50℃でのエステル化時間は、10分以上20〜90分、好ましくは30〜80分、40分〜75分である。
均一な反応系が形成されると、エステル化反応が終了したと判断することができる。
エステル化反応を終了後、加水分解反応を開始してもよいし、エステル化溶剤、エステル化溶媒、酸触媒をそのままに、熟成工程に移行してもよい。
[エステル化反応停止工程]
エステル化反応後にエステル化溶剤を失活させるために加水分解反応を行う場合は、エステル化溶剤を失活可能であればよく、通常、少なくとも水を含んでいる場合が多い。加水分解を進める失活剤は、水と、エステル化溶媒、アルコール及び中和剤から選択された少なくとも一種で構成してもよい。より具体的には、失活剤としては、例えば、水単独、水とカルボン酸との混合物、水とアルコールとの混合物、水と中和剤との混合物、水と有機カルボン酸とアルコールと中和剤との混合物などが例示できる。
中和剤としては、酸触媒又はエステル化溶剤の一部を中和可能な塩基、例えば、アルカリ金属化合物(水酸化ナトリウムや水酸化カリウムなどの水酸化物、炭酸ナトリウムや炭酸カリウムなどの炭酸塩、酢酸ナトリウムや酢酸カリウムなどの有機酸塩など)、アルカリ土類金属化合物(例えば、水酸化カルシウムなどの水酸化物、炭酸カルシウムなどの炭酸塩、酢酸カルシウム、酢酸マグネシウムなどの有機酸塩など)などが挙げられ、単独で又は2種類以上組み合わせて使用してもよい。アルコールとしては、直鎖アルコール(エタノール、メタノール、プロパノール等)が例示できる。これらのアルコールも単独で又は二種以上組み合わせて使用できる。
水とエステル化溶媒または、水とアルコールとの割合は、水100質量部に対してエステル化溶媒またはアルコール20〜140質量部程度の範囲から選択でき、通常、25〜120質量部、好ましくは50〜100質量部である。
エステル化工程後、熟成工程前における加水分解の実施には、酸触媒を一部中和する割合で中和剤を含んでいてもよいし、中和剤を含まなくてもよい。好ましい失活剤は、水単独であってもよいが、セルロースエステルに対して水は貧溶媒なので、所望の置換度以外のセルロースエステルが析出してしまう可能性が高いため、水とエステル化溶媒との混合液が好ましい。
原料セルロースに含まれる反応成分は100%ではないため、この段階で未反応成分が含まれるので、一度反応溶液濾過する過程を導入してもよい。
この反応停止工程は必要に応じて省略することができる。
[濾過工程]
本発明では、前記エステル化工程と後述する熟成工程の間に濾過工程を設けることが好ましい。
従来のセルロースエステル化反応後の溶液は高粘度のため濾過をしても、すぐ目詰まりしてしまっていたが、本発明の溶剤下で粉砕を実施しておくことで、目詰まりが起きにくくなり、熟成工程前に濾過工程を設けることが可能になった。
エステル化反応終了後の溶液中には、原料セルロースの反応しなかった未酢化、低酢化成分や不純物が混在しているので、熟成工程直前に濾過し、取り除くことで、熟成反応にかかる時間がより短縮され、反応溶液中で起こる分子鎖や、置換基等の特異的な切断がおこりにくくなり、得られたセルロースエステルを用いて製膜したフィルムの膜面品質は濾過を省いたセルロースエステルよりもさらに良好になる。
濾過に使用する濾材は、絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さすぎると、濾材の目詰まりが発生しやすく、濾材の交換を頻繁に行わなければならず、生産性を低下させるという問題点ある。
このため、本発明のエステル化工程後のセルロースエステルのスラリーに用いる濾材は、絶対濾過精度10μm以下のものが好ましく、1〜8μmの範囲がより好ましく、3〜5μmの範囲の濾材がさらに好ましい。
濾材の材質には、特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、ポリエステル、PTFE等のプラスチック繊維製、ガラス繊維製の濾材やステンレス繊維等の金属製の濾材が繊維の脱落等がないため好ましい。
上記セルロースエステルのスラリーは酸を含むため、金属製のフィルターは腐食しやすいので、ガラス繊維やプラスチック繊維製のフィルターであることがより好ましい。
エステル化工程から熟成工程の間に金属フィルターを用いて濾過を行う際は硫酸や無水カルボン酸などを一度中和、失活させてから濾過する工程に移ることで、腐食を気にすることなく使用することができる。
本発明では、上記濾材を装着した加圧式濾過機を用いることが好ましい。
[熟成工程]
熟成工程では、前記エステル化反応終了後ほぼトリエステル化している状態から、所望の置換度にするために脱アシル化を行い、脱アシル化終了後に中和剤を投入し一連の反応を終了する。
エステル化に利用した酸触媒を中和した場合、再度酸触媒を必要量投入してもよいし、エステル化工程で使用していた酸触媒(特に硫酸)を中和することなく熟成工程で利用してもよい。エステル化で使用していた酸触媒以外の酸触媒を投入してもよい。
硫酸は多いと分子量を小さくしてしまうことがあるため、熟成工程で酸触媒を追加せず、エステル化工程で使用していた酸触媒を、そのまま熟成工程でも使用することが好ましい。
また、後に酸触媒を中和する段階で、酸触媒を追加した分、中和剤に含まれる、アルカリ金属又はアルカリ土類金属が、精製後のセルロースエステル中に残存し、輝点異物等の障害になりえるため、硫酸は熟成工程で追加しないことが好ましい。
また、熟成に際し、必要に応じて新たに脱アシル化溶媒(水とカルボン酸混合溶液等)を添加してもよい。
熟成工程中の反応温度は20℃〜90℃の温度がよく、好ましくは25℃〜80℃、さらに好ましくは30℃〜70℃である熟成反応は、窒素雰囲気下行ってもよく、空気雰囲気中で行ってもよい。
熟成反応時間は20分以上、25分〜6時間の範囲から選択でき、好ましくは30分〜5時間、さらに好ましくは1〜3時間である。
[中和工程]
所望のセルロースエステルが熟成工程にて得られた後、脱アシル化として使用していた酸触媒を中和させることが必要である。中和剤としては、前記エステル化反応停止工程に記載の塩基で構成された中和剤を添加するのが好ましい。
反応生成物(セルロース混合脂肪酸エステルを含むドープ)を析出溶媒(水、酢酸水溶液など)に投入して生成したセルロース混合脂肪酸エステルを分離し、水洗などにより遊離の金属成分や硫酸成分などを除去してもよい。なお、水洗の際に中和剤を使用することもできる。
[後処理工程(沈殿・濾過・洗浄・乾燥)]
中和工程で酸触媒を中和した後、生成物を沈殿させて析出させる。
析出させるためには、水とカルボン酸の混合溶液が好ましく用いられる。これら沈殿溶剤に限られるわけではなく、ケトン類、アルコール類、エーテル類、エステル類等単独または水混合溶媒であってもよい。
沈殿した生成物を濾過して水洗する過程を繰り返し遊離酸濃度が500ppm以下、好ましくは300ppm以下、さらに好ましくは150ppm以下になるまで水洗する。
その後、ドライエアーで乾燥させ、所望のセルロースエステルを得る。
[その他]
工業的にはセルロースエステルは硫酸を触媒として合成されているが、この硫酸は完全には除去されておらず、残留する硫酸が溶融製膜時に各種の分解反応を引き起こし、得られるセルロースエステルフィルムの品質に影響を与えるため、本発明に用いられるセルロースエステル中の残留硫酸含有量は、硫黄元素換算で0.1〜40ppmの範囲であることが好ましい。これらは塩の形で含有していると考えられる。残留硫酸含有量が40ppmを超えると熱溶融時のダイリップ部の付着物が増加するため好ましくない。また、熱延伸時や熱延伸後でのスリッティングの際に破断しやすくなるため好ましくない。少ない方が好ましいが、0.1未満とするにはセルロース樹脂の洗浄工程の負担が大きくなりすぎるため好ましくないだけでなく、逆に破断しやすくなることがあり好ましくない。これは洗浄回数が増えることが樹脂に影響を与えているのかもしれないがよく分かっていない。さらに0.1〜30ppmの範囲が好ましい。残留硫酸含有量は、同様にASTM−D817−96により測定することができる。
合成したセルロースエステルの洗浄を、溶液流延法に用いられる場合に比べてさらに十分に行うことによって、残留硫酸含有量を上記の範囲とすることができ、溶融流延法によってフィルムを製造する際に、リップ部への付着が軽減され、平面性に優れるフィルムが得られる。
<セルロースエステルフィルムの製造方法>
上記操作により得られたセルロースエステルを用いて光学フィルム用途のセルロースエステルフィルムを製造する。
セルロースエステルフィルムの製造方法としては、大別して溶液流延製膜法、溶融流延製膜法が挙げられるが、どちらの製造方法をとっても本発明の効果を奏することができる。
[溶融流延製膜法]
本発明のセルロースエステルからなるセルロースエステルフィルムの製造方法は、少なくとも、フィルムを形成するポリマー、粒子状物質および添加剤を混合溶融し、該溶融物を濾過装置により濾過し、その後通常のダイから押出し、冷却ロール上に流延する。
以下、製造方法の全体について述べる。
〈溶融ペレット製造工程〉
溶融押出しに用いるフィルムを形成するポリマー、粒子状物質、可塑剤およびその他の添加剤の混合物は、通常あらかじめ混錬してペレット化しておくことが好ましい。
ペレット化は、公知の方法でよく、例えば、フィルムを形成するポリマーや可塑剤、その他添加剤をフィーダーで押出機に供給し1軸や2軸の押出機を用いて混錬し、ダイからストランド状に押出し、水冷または空冷し、カッティングすることでできる。
原材料は、押出する前に予備乾燥しておくことが原材料の分解を防止する上で重要である。特に光学フィルムを形成するポリマーは吸湿しやすいので、除湿熱風乾燥機や真空乾燥機で70〜140℃で3時間以上乾燥し、水分率を300ppm以下、さらに100ppm以下にしておくことが好ましい。
添加剤は、押出機に供給する前に混合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。酸化防止剤等少量の添加剤は、均一に混合するため、事前に混合しておくことが好ましい。
酸化防止剤の混合は、固体同士で混合してもよいし、必要により、酸化防止剤を溶剤に溶解しておき、光学フィルムを形成するポリマーに含浸させて混合してもよく、あるいは噴霧して混合してもよい。
真空ナウターミキサなどが乾燥と混合を同時にできるので好ましい。また、フィーダー部やダイからの出口など空気と触れる場合は、除湿空気や除湿したNガスなどの雰囲気下にすることが好ましい。
押出機は、せん断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。例えば、2軸押出機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。
以上のようにして得られたペレットを用いてフィルム製膜を行う。ペレット化せず、原材料の粉末をそのままフィーダーで押出機に供給し、そのままフィルム製膜することも可能である。
〈溶融混合物をダイから冷却ロールへ押し出す工程〉
作製したペレットを1軸や2軸タイプの押出機を用いて、押し出す際の溶融温度Tmを200〜350℃程度とし、本発明の濾過装置により濾過し異物を除去した後、Tダイからフィルム状に流延し、冷却ロール上で固化し、弾性タッチロールと押圧しながら流延する。
供給ホッパーから押出機へ導入する際は真空下または減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。なお、Tmは、押出機のダイ出口部分の温度である。
ダイに傷や可塑剤の凝結物等の異物が付着するとスジ状の欠陥が発生する場合がある。このような欠陥のことをダイラインとも呼ぶが、ダイライン等の表面の欠陥を小さくするためには、押出機からダイまでの配管には樹脂の滞留部が極力少なくなるような構造にすることが好ましい。ダイの内部やリップにキズ等が極力無いものを用いることが好ましい。
押出機やダイなどの溶融樹脂と接触する内面は、表面粗さを小さくしたり、表面エネルギーの低い材質を用いるなどして、溶融樹脂が付着し難い表面加工が施されていることが好ましい。具体的には、ハードクロムメッキやセラミック溶射したものを表面粗さ0.2S以下となるように研磨したものが挙げられる。
冷却ロールには特に制限はないが、高剛性の金属ロールで内部に温度制御可能な熱媒体または冷媒体が流れるような構造を備えるロールであり、大きさは限定されないが、溶融押し出されたフィルムを冷却するのに十分な大きさであればよく、通常冷却ロールの直径は100mmから1m程度である。
冷却ロールの表面材質は、炭素鋼、ステンレス、アルミニウム、チタンなどが挙げられる。さらに表面の硬度を上げたり、樹脂との剥離性を改良するため、ハードクロムメッキや、ニッケルメッキ、非晶質クロムメッキなどや、セラミック溶射等の表面処理を施すことが好ましい。
冷却ロール表面の表面粗さは、Raで0.1μm以下とすることが好ましく、さらに0.05μm以下とすることが好ましい。ロール表面が平滑であるほど、得られるフィルムの表面も平滑にできるのである。もちろん表面加工した表面はさらに研磨し上述した表面粗さとすることが好ましい。
本発明の弾性タッチロールとしては、特開平03−124425号、特開平08−224772号、特開平07−100960号、特開平10−272676号、WO97−028950、特開平11−235747号、特開2002−36332号、特開2005−172940号や特開2005−280217号に記載されているような表面が薄膜金属スリーブ被覆シリコンゴムロールを使用することができる。
冷却ロールからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。
上記のようにして得られたフィルムは、冷却ロールに接する工程を通過後、延伸操作により延伸することが好ましい。
延伸する方法は、公知のロール延伸機やテンターなどを好ましく用いることができる。延伸温度は、通常フィルムを構成する樹脂のTg〜Tg+60℃の温度範囲で行われることが好ましい。
巻き取る前に、製品となる幅に端部をスリットして裁ち落とし、巻き中の貼り付きやすり傷防止のために、ナール加工(エンボッシング加工)を両端に施してもよい。ナール加工の方法は凸凹のパターンを側面に有する金属リングを加熱や加圧により加工することができる。なお、フィルム両端部のクリップの把持部分は通常、フィルムが変形しており製品として使用できないので切除されて、再利用される。
[溶液流延製膜法]
〈有機溶媒〉
セルロースエステルフィルムを溶液流延法で製造する場合のドープを形成するのに有用な有機溶媒は、セルロースエステル、その他の添加剤を同時に溶解するものであれば制限なく用いることが出来る。
例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2−トリフルオロエタノール、2,2,3,3−ヘキサフルオロ−1−プロパノール、1,3−ジフルオロ−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−メチル−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、ニトロエタン等を挙げることが出来、塩化メチレン、酢酸メチル、酢酸エチル、アセトンを好ましく使用し得る。
ドープには、上記有機溶媒の他に、1〜40質量%の炭素原子数1〜4の直鎖または分岐鎖状の脂肪族アルコールを含有させることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ない時は非塩素系有機溶媒系での熱可塑性アクリル樹脂、セルロースエステル樹脂の溶解を促進する役割もある。
特に、メチレンクロライド、及び炭素数1〜4の直鎖または分岐鎖状の脂肪族アルコールを含有する溶媒に、熱可塑性アクリル樹脂と、セルロースエステル樹脂と、アクリル粒子の3種を、少なくとも計15〜45質量%溶解させたドープ組成物であることが好ましい。
炭素原子数1〜4の直鎖または分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノールを挙げることが出来る。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。
〈溶液流延法〉
セルロースエステルフィルムの溶液流延法による製造では、セルロースエステルおよび添加剤を溶剤に溶解させてドープを調製する工程、ドープをベルト状もしくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸または幅保持する工程、更に乾燥する工程、仕上がったフィルムを巻き取る工程により行われる。
ドープ中のセルロースエステル、および添加剤の濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、セルロースエステルの濃度が高過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10〜35質量%が好ましく、更に好ましくは、15〜25質量%である。
流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。
キャストの幅は1〜4mとすることができる。流延工程の金属支持体の表面温度は−50℃〜溶剤が沸騰して発泡しない温度以下に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高すぎるとウェブが発泡したり、平面性が劣化する場合がある。
好ましい支持体温度としては0〜100℃で適宜決定され、5〜30℃が更に好ましい。または、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。
金属支持体の温度を制御する方法は特に制限されないが、温風または冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。
温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。
特に、流延から剥離するまでの間で支持体の温度および乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。
セルロースエステルフィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10〜150質量%が好ましく、更に好ましくは20〜40質量%または60〜130質量%であり、特に好ましくは、20〜30質量%または70〜120質量%である。
残留溶媒量は下記式で定義される。
残留溶媒量(質量%)={(M−N)/N}×100
なお、Mはウェブまたはフィルムを製造中または製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
また、セルロースエステルフィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0〜0.01質量%以下である。
フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールをウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。
<セルロースエステルフィルムに使用する添加剤>
セルロースエステルフィルムには、組成物の流動性や柔軟性を向上するために、可塑剤を併用することも好ましい。可塑剤としては特に限定されないが、好ましくは、多価カルボン酸エステル系可塑剤、グリコレート系可塑剤、フタル酸エステル系可塑剤、脂肪酸エステル系可塑剤及び多価アルコールエステル系可塑剤、ポリエステル系可塑剤、アクリル系可塑剤、炭水化物エステル系可塑剤等から選択される。そのうち、可塑剤を2種以上用いる場合は、少なくとも1種は多価アルコールエステル系可塑剤であることが好ましい。
多価アルコールエステル系可塑剤は2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなる可塑剤であり、分子内に芳香環またはシクロアルキル環を有することが好ましい。好ましくは2〜20価の脂肪族多価アルコールエステルである。
本発明に好ましく用いられる多価アルコールは次の一般式(a)で表される。
一般式(a) Ra−(OH)n
(但し、Raはn価の有機基、nは2以上の正の整数、OH基はアルコール性、及び/またはフェノール性水酸基を表す。)
好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ジブチレングリコール、1,2,4−ブタントリオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3−メチルペンタン−1,3,5−トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。
多価アルコールエステルに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。
好ましいモノカルボン酸の例としては以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。
脂肪族モノカルボン酸としては、炭素数1〜32の直鎖または側鎖を有する脂肪酸を好ましく用いることができる。炭素数は1〜20であることが更に好ましく、1〜10であることが特に好ましい。酢酸を含有させるとセルロースエステルとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。
好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2−エチル−ヘキサン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることができる。
好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。
好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、メトキシ基或いはエトキシ基などのアルコキシ基を1〜3個を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、またはそれらの誘導体を挙げることができる。特に安息香酸が好ましい。
多価アルコールエステルの分子量は特に制限はないが、300〜1500であることが好ましく、350〜750であることが更に好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロースエステルとの相溶性の点では小さい方が好ましい。
多価アルコールエステルに用いられるカルボン酸は1種類でもよいし、2種以上の混合であってもよい。また、多価アルコール中のOH基は、全てエステル化してもよいし、一部をOH基のままで残してもよい。
グリコレート系可塑剤は特に限定されないが、アルキルフタリルアルキルグリコレート類が好ましく用いることができる。アルキルフタリルアルキルグリコレート類としては、例えばメチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等が挙げられる。
フタル酸エステル系可塑剤としては、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジシクロヘキシルテレフタレート等が挙げられる。
クエン酸エステル系可塑剤としては、クエン酸アセチルトリメチル、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル等が挙げられる。
脂肪酸エステル系可塑剤として、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル等が挙げられる。
リン酸エステル系可塑剤としては、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等が挙げられる。
炭水化物エステル系可塑剤として、具体的には、グルコースペンタアセテート、グルコースペンタプロピオネート、グルコースペンタブチレート、サッカロースオクタアセテート、サッカロースオクタベンゾエート等を好ましく挙げることができ、この内、サッカロースオクタアセテート、サッカロースオクタベンゾエートがより好ましく、サッカロースオクタベンゾエートが特に好ましい。例えば市販品として、モノペットSB:第一工業製薬社製、モノペットSOA:第一工業製薬社製が挙げられる。
可塑剤はセルロースエステルフィルム100質量部に対して、0.5〜30質量部を添加するのが好ましい。可塑剤の添加量が30質量部を越えると、表面がべとつくので、実用上好ましくない。
セルロースエステルフィルムは、紫外線吸収剤を含有することも好ましく、用いられる紫外線吸収剤としては、ベンゾトリアゾール系、2−ヒドロキシベンゾフェノン系またはサリチル酸フェニルエステル系のもの等が挙げられる。例えば、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、2−(3,5−ジ−t−ブチル−2−ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2,2′−ジヒドロキシ−4−メトキシベンゾフェノン等のベンゾフェノン類を例示することができる。ここで、紫外線吸収剤のうちでも、分子量が400以上の紫外線吸収剤は、高沸点で揮発しにくく、高温成形時にも飛散しにくいため、比較的少量の添加で効果的に耐候性を改良することができる。
分子量が400以上の紫外線吸収剤としては、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2−ベンゾトリアゾール、2,2−メチレンビス[4−(1,1,3,3−テトラブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]等のベンゾトリアゾール系、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート等のヒンダードアミン系、さらには2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロン酸ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)、1−[2−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチル]−4−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]−2,2,6,6−テトラメチルピペリジン等の分子内にヒンダードフェノールとヒンダードアミンの構造を共に有するハイブリッド系のものが挙げられ、これらは単独で、あるいは2種以上を併用して使用することができる。これらのうちでも、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2−ベンゾトリアゾールや2,2−メチレンビス[4−(1,1,3,3−テトラブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]が特に好ましい。
さらに、セルロースエステルフィルムには、成形加工時の熱分解性や熱着色性を改良するために各種の酸化防止剤を添加することもできる。また帯電防止剤を加えて、光学フィルムに帯電防止性能を与えることも可能である。
セルロースエステルフィルムには、リン系難燃剤を配合した難燃アクリル系樹脂組成物を用いても良い。
ここで用いられるリン系難燃剤としては、赤リン、トリアリールリン酸エステル、ジアリールリン酸エステル、モノアリールリン酸エステル、アリールホスホン酸化合物、アリールホスフィンオキシド化合物、縮合アリールリン酸エステル、ハロゲン化アルキルリン酸エステル、含ハロゲン縮合リン酸エステル、含ハロゲン縮合ホスホン酸エステル、含ハロゲン亜リン酸エステル等から選ばれる1種、あるいは2種以上の混合物を挙げることができる。
具体的な例としては、トリフェニルホスフェート、9,10−ジヒドロ−9−オキサ−10−ホスファフェナンスレン−10−オキシド、フェニルホスホン酸、トリス(β−クロロエチル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(トリブロモネオペンチル)ホスフェート等が挙げられる。
セルロースエステルフィルムは、滑り性や光学的、機械的機能を付与するためにマット剤を添加することができる。マット剤としては、無機化合物の微粒子又は有機化合物の微粒子が挙げられる。
マット剤の形状は、球状、棒状、針状、層状、平板状等の形状のものが好ましく用いられる。マット剤としては、例えば二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の金属の酸化物、リン酸塩、ケイ酸塩、炭酸塩等の無機微粒子や架橋高分子微粒子を挙げることができる。中でも、二酸化ケイ素がフィルムのヘーズを低くできるので好ましい。これらの微粒子は有機物により表面処理されていることが、フィルムのヘーズを低下できるため好ましい。
〈熱可塑性アクリル樹脂〉
本発明のセルロースエステルフィルムにおいて、樹脂としてセルロースエステルに熱可塑性アクリル樹脂を混合してもよい。
本発明に用いられるアクリル系樹脂は、フィルムの延伸方向に対して負の複屈折性を示すことが好ましく、特に構造が限定されるものではないが、エチレン性不飽和モノマーを重合して得られた重量平均分子量が500以上1000000以下である重合体を、適宜選択したものであることが好ましい。アクリル系重合体の適正な分子量範囲が上記の通りであるが、30質量%以上含有させる場合は、セルロースエステルとの相溶性の点から重量平均分子量が80000〜1000000であることが好ましい。
熱可塑性アクリル樹脂とセルロースエステルの含有質量比は、熱可塑性アクリル樹脂:セルロースエステル樹脂=95:5〜50:50であることが好ましい。より好ましくは90:10〜60:40である。
熱可塑性アクリル樹脂は、メタクリル樹脂も含まれる。熱可塑性アクリル樹脂としては、特に制限されるものではないが、メチルメタクリレート単位50〜99質量%、およびこれと共重合可能な他の単量体単位1〜50質量%からなるものが好ましい。共重合可能な他の単量体としては、アルキル数の炭素数が2〜18のアルキルメタクリレート、アルキル数の炭素数が1〜18のアルキルアクリレート、アクリル酸、メタクリル酸等のα,β−不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α−メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β−不飽和ニトリル、無水マレイン酸、マレイミド、N−置換マレイミド、グルタル酸無水物等が挙げられ、これらは単独で、あるいは2種以上の単量体を併用して用いることができる。
これらの中でも、共重合体の耐熱分解性や流動性の観点から、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、n−ブチルアクリレート、s−ブチルアクリレート、2−エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn−ブチルアクリレートが特に好ましく用いられる。また、重量平均分子量(Mw)は80000〜500000であることが好ましく、更に好ましくは、110000〜500000の範囲内である。熱可塑性アクリル樹脂の重量平均分子量は、測定条件含めて、上記記載のゲルパーミエーションクロマトグラフィーにより測定することができる。熱可塑性アクリル樹脂の製造方法としては、特に制限は無く、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いても良い。ここで、重合開始剤としては、通常のパーオキサイド系およびアゾ系のものを用いることができ、また、レドックス系とすることもできる。重合温度については、懸濁または乳化重合では30〜100℃、塊状または溶液重合では80〜160℃で実施しうる。得られた共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。また、市販品も使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80,BR83,BR85,BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。熱可塑性アクリル樹脂は2種以上を併用することもできる。また、熱可塑性アクリル樹脂には、特開2009−84574号に記載の(メタ)アクリル系ゴムと芳香族ビニル化合物の共重合体に(メタ)アクリル系樹脂がグラフトされたグラフト共重合体を用いてもよい。前記グラフト共重合体は、(メタ)アクリル系ゴムと芳香族ビニル化合物の共重合体がコア(core)を構成し、その周辺に前記(メタ)アクリル系樹脂がシェル(shell)を構成するコア−シェルタイプのグラフト共重合体であることが好ましい。
〈セルロースエステルフィルムの物性〉
本発明に係るセルロースエステルフィルムは、「延性破壊が起こらないフィルム」であることが好ましい。ここで、延性破壊とは、ある材料が有する強度よりも、大きな応力が作用することで生じる破断のことであり、最終破断までに材料の著しい伸びや絞りを伴う破壊と定義される。その破面には、ディンプルと呼ばれる窪みが無数に形成される特徴がある。
「延性破壊が起こらないフィルム」であるか否かは、フィルムを2つに折り曲げるような大きな応力を作用させても破断等の破壊がみられないことにより評価するものとする。
液晶表示装置が大型化され、バックライト光源の輝度が益々高くなっていることに加え、デジタルサイネージ等の屋外用途への利用により、より高い輝度が求められていることから、セルロースエステルフィルムはより高温の環境下での使用に耐えられることが求められており、本発明のセルロースエステルフィルムは張力軟化点が、105℃〜145℃であれば、十分な耐熱性を示すものと判断でき好ましく、特に110℃〜130℃に制御することが好ましい。
張力軟化点の具体的な測定方法としては、例えば、テンシロン試験機(ORIENTEC社製、RTC−1225A)を用いて、セルロースエステルフィルムを120mm(縦)×10mm(幅)で切り出し、10Nの張力で引っ張りながら30℃/minの昇温速度で昇温を続け、9Nになった時点での温度を3回測定し、その平均値により求めることができる。
また、耐熱性の観点で、セルロースエステルフィルムは、ガラス転移温度(Tg)が110℃以上であることが好ましい。より好ましくは120℃以上である。特に好ましくは150℃以上である。
尚、ここでいうガラス転移温度とは、示差走査熱量測定器(Perkin Elmer社製DSC−7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)である。
また、液晶表示装置の偏光板用保護フィルムとしてセルロースエステルフィルムが用いられる場合は、吸湿による寸法変化によりムラや位相差値の変化が発生してしまい、コントラストの低下や色むらといった問題を発生させる。特に屋外で使用される液晶表示装置に用いられる偏光板保護フィルムであれば、上記の問題は顕著となる。このため、寸法変化率(%)は0.5%未満が好ましく、更に、0.3%未満であることが好ましい。
また、セルロースエステルフィルムは、フィルム面内の直径5μm以上の欠点が1個/10cm四方以下であることが好ましい。更に好ましくは0.5個/10cm四方以下、一層好ましくは0.1個/10cm四方以下である。
ここで欠点の直径とは、欠点が円形の場合はその直径を示し、円形でない場合は欠点の範囲を下記方法により顕微鏡で観察して決定し、その最大径(外接円の直径)とする。
欠点の範囲は、欠点が気泡や異物の場合は、欠点を微分干渉顕微鏡の透過光で観察したときの影の大きさである。欠点が、ロール傷の転写や擦り傷など、表面形状の変化の場合は、欠点を微分干渉顕微鏡の反射光で観察して大きさを確認する。
なお、反射光で観察する場合に、欠点の大きさが不明瞭であれば、表面にアルミや白金を蒸着して観察する。
かかる欠点頻度にて表される品位に優れたフィルムを生産性よく得るには、ポリマー溶液を流延直前に高精度濾過することや、流延機周辺のクリーン度を高くすること、また、流延後の乾燥条件を段階的に設定し、効率よくかつ発泡を抑えて乾燥させることが有効である。
欠点の個数が1個/10cm四方より多いと、例えば後工程での加工時などでフィルムに張力がかかると、欠点を基点としてフィルムが破断して生産性が低下する場合がある。また、欠点の直径が5μm以上になると、偏光板観察などにより目視で確認でき、光学部材として用いたとき輝点が生じる場合がある。
また、目視で確認できない場合でも、該フィルム上にハードコート層などを形成したときに、塗剤が均一に形成できず欠点(塗布抜け)となる場合がある。ここで、欠点とは、溶液製膜の乾燥工程において溶媒の急激な蒸発に起因して発生するフィルム中の空洞(発泡欠点)や、製膜原液中の異物や製膜中に混入する異物に起因するフィルム中の異物(異物欠点)を言う。
また、セルロースエステルフィルムは、JIS−K7127−1999に準拠した測定において、少なくとも一方向の破断伸度が、10%以上であることが好ましく、より好ましくは20%以上である。
破断伸度の上限は特に限定されるものではないが、現実的には250%程度である。破断伸度を大きくするには異物や発泡に起因するフィルム中の欠点を抑制することが有効である。
セルロースエステルフィルムの厚みは、20μm以上であることが好ましい。より好ましくは30μm以上である。
厚みの上限は特に限定される物ではないが、溶液製膜法でフィルム化する場合は、塗布性、発泡、溶媒乾燥などの観点から、上限は250μm程度である。なお、フィルムの厚みは用途により適宜選定することができる。
セルロースエステルフィルムは、その全光線透過率が90%以上であることが好ましく、より好ましくは93%以上である。また、現実的な上限としては、99%程度である。かかる全光線透過率にて表される優れた透明性を達成するには、可視光を吸収する添加剤や共重合成分を導入しないようにすることや、ポリマー中の異物を高精度濾過により除去し、フィルム内部の光の拡散や吸収を低減させることが有効である。
また、製膜時のフィルム接触部(冷却ロール、カレンダーロール、ドラム、ベルト、溶液製膜における塗布基材、搬送ロールなど)の表面粗さを小さくしてフィルム表面の表面粗さを小さくすることや、熱可塑性アクリル樹脂の屈折率を小さくすることによりフィルム表面の光の拡散や反射を低減させることが有効である。
〈返材適性〉
従来のセルロースエステルからセルロースエステルフィルムを作る工程において、フィルムの両端部を適宜スリットする工程が設けられ、その際に出る不要な端部フィルムを再利用する。これを一般に返材という。
溶液流延製膜においてはスリットされたフィルムは比較的低温で再度溶剤に溶解されるため、新規原料同等の性質を維持でき、光学フィルムになっても特に特性上問題はない。本発明のセルロースエステルを用いたセルロースエステルフィルムを溶液流延製膜において返材として使用しても従来と同様に問題はなかった。
一方、溶融流延製膜フィルムでは溶液流延製膜フィルムの様に返材を使いこなすことは困難である。即ち、溶融流延製膜工程では、セルロースエステルに溶融時に高温の熱が加わっているため、セルロースエステル分子は劣化や分解が進行しており、再利用した場合は更に分解や劣化が進むため、劣化物やゲル異物、輝点異物といった光学用途フィルムに悪影響を与える成分が発生し易く、実際に返材を利用するに至っていなかった。
しかしながら本発明のセルローエステルは、極めて均一性が高く不純物が少ない為、溶融流延製膜することで得られるフィルムを再度返材として使用しても、劣化物の発生や着色が少なく、光学用途フィルムの品質に十分達していることが分かった。
返材の使用比率は、主未使用原料の処方値の固形分に対して0〜70質量%が好ましく、10〜50質量%が更に好ましく、特に20〜40質量%が好ましい。
返材を使用した場合は、その使用量に対応して、可塑剤、紫外線吸収剤、微粒子などセルロースエステルフィルムに含まれる添加剤は減量して、最終的なセルロースエステルフィルム組成が設計値になるように調整を行うことが好ましい。
<機能性層>
本発明のセルロースエステルフィルムには、帯電防止層、バックコート層、反射防止層、易滑性層、接着層、防眩層、バリアー層等の機能性層を設けることができる。
〈ハードコート層〉
本発明に用いられるハードコート層は活性線硬化樹脂を含有し、紫外線や電子線のような活性線(活性エネルギー線ともいう)照射により、架橋反応を経て硬化する樹脂を主たる成分とする層であることが好ましい。
活性線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性線を照射することによって硬化させて活性線硬化樹脂層が形成される。
活性線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する樹脂が機械的膜強度(耐擦傷性、鉛筆硬度)に優れる点から好ましい。
紫外線硬化性樹脂としては、例えば、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等が好ましく用いられる。中でも紫外線硬化型アクリレート系樹脂が好ましい。
また、ハードコート層には活性線硬化樹脂の硬化促進のため、光重合開始剤を含有することが好ましい。光重合開始剤量としては、質量比で、光重合開始剤:活性線硬化樹脂=20:100〜0.01:100で含有することが好ましい。
光重合開始剤としては、具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α−アミロキシムエステル、チオキサントン等およびこれらの誘導体を挙げることができるが、特にこれらに限定されるものではない。
またハードコート層には、無機化合物または有機化合物の微粒子を含むことが好ましい。
無機微粒子としては、酸化珪素、酸化チタン、酸化アルミニウム、酸化スズ、酸化インジウム、ITO、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウムおよびリン酸カルシウムを挙げることができる。特に、酸化珪素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等が好ましく用いられる。
有機粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、またはポリ弗化エチレン系樹脂粉末等を添加することができる。
これらの微粒子粉末の平均粒子径は特に制限されないが、0.01〜5μmが好ましく、更には、0.01〜1.0μmであることが好ましい。また、粒径の異なる2種以上の微粒子を含有しても良い。微粒子の平均粒子径は、例えばレーザー回折式粒度分布測定装置により測定することができる。
紫外線硬化樹脂組成物と微粒子の割合は、樹脂組成物100質量部に対して、10〜400質量部となるように配合することが望ましく、更に望ましくは、50〜200質量部である。
これらのハードコート層はグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法を用いて、ハードコート層を形成する塗布組成物を塗布し、塗布後、加熱乾燥し、UV硬化処理することで形成できる。
ハードコート層のドライ膜厚としては平均膜厚0.1〜30μm、好ましくは1〜20μm、特に好ましくは6〜15μmである。
UV硬化処理の光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。
照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常5〜500mJ/cm、好ましくは5〜200mJ/cmである。
〈バックコート層〉
本発明のセルロースエステルフィルムは、フィルムのハードコート層を設けた側と反対側の面に、カールやくっつき防止の為にバックコート層を設けてもよい。
バックコート層に添加される粒子としては無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、酸化錫、酸化インジウム、酸化亜鉛、ITO、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウムおよびリン酸カルシウムを挙げることができる。
バックコート層に含まれる粒子は、バインダーに対して0.1〜50質量%が好ましい。バックコート層を設けた場合のヘーズの増加は1.5%以下であることが好ましく、0.5%以下であることが更に好ましく、特に0.1%以下であることが好ましい。
バインダーとしては、ジアセチルセルロース等のセルロースエステル樹脂が好ましい。
〈反射防止層〉
本発明のセルロースエステルフィルムは、ハードコート層の上層に反射防止層を塗設して、外光反射防止機能を有する反射防止フィルムとして用いることができる。
反射防止層は、光学干渉によって反射率が減少するように屈折率、膜厚、層の数、層順等を考慮して積層されていることが好ましい。反射防止層は、支持体よりも屈折率の低い低屈折率層、もしくは支持体よりも屈折率の高い高屈折率層と低屈折率層を組み合わせて構成されていることが好ましい。特に好ましくは、3層以上の屈折率層から構成される反射防止層であり、支持体側から屈折率の異なる3層を、中屈折率層(支持体よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているものが好ましく用いられる。または、2層以上の高屈折率層と2層以上の低屈折率層とを交互に積層した4層以上の層構成の反射防止層も好ましく用いられる。
反射防止フィルムの層構成としては下記のような構成が考えられるが、これに限定されるものではない。
セルロースエステルフィルム/ハードコート層/低屈折率層
セルロースエステルフィルム/ハードコート層/中屈折率層/低屈折率層
セルロースエステルフィルム/ハードコート層/中屈折率層/高屈折率層/低屈折率層
セルロースエステルフィルム/ハードコート層/高屈折率層(導電性層)/低屈折率層
セルロースエステルフィルム/ハードコート層/防眩性層/低屈折率層
反射防止フィルムには必須である低屈折率層は、シリカ系微粒子を含有することが好ましく、その屈折率は、支持体であるセルロースフィルムの屈折率より低く、23℃、波長550nm測定で、1.30〜1.45の範囲であることが好ましい。
低屈折率層の膜厚は、5nm〜0.5μmであることが好ましく、10nm〜0.3μmであることが更に好ましく、30nm〜0.2μmであることが最も好ましい。
低屈折率層形成用組成物については、シリカ系微粒子として、特に外殻層を有し内部が多孔質または空洞の粒子を少なくとも1種類以上含むことが好ましい。特に該外殻層を有し内部が多孔質または空洞である粒子が、中空シリカ系微粒子であることが好ましい。
なお、低屈折率層形成用組成物には、下記一般式(OSi−1)で表される有機珪素化合物もしくはその加水分解物、或いは、その重縮合物を併せて含有させても良い。
一般式(OSi−1):Si(OR)
前記一般式で表される有機珪素化合物は、式中、Rは炭素数1〜4のアルキル基を表す。具体的には、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等が好ましく用いられる。
他に溶剤、必要に応じて、シランカップリング剤、硬化剤、界面活性剤等を添加してもよい。
<偏光板>
本発明のセルロースエステルフィルムを用いた偏光板について述べる。偏光板は一般的な方法で作製することができる。本発明のセルロースエステルフィルムの裏面側をアルカリ鹸化処理し、処理したセルロースエステルフィルムを、ヨウ素溶液中に浸漬延伸して作製した偏光膜の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。
もう一方の面に該セルロースエステルフィルムを用いても、別の偏光板保護フィルムを用いてもよい。例えば、特開2003−12859号記載のリターデーションRoが590nmで0〜5nm、Rtが−20〜+20nmの無配向フィルムが一例として挙げられる。
また、他に面内リターデーションRoが590nmで、20〜70nm、Rtが70〜400nmの位相差を有する光学補償フィルム(位相差フィルム)を用いて、視野角拡大可能な偏光板とすることもできる。これらは例えば、特開2002−71957号の方法で作製することができる。または、更にディスコチック液晶等の液晶化合物を配向させて形成した光学異方層を有している光学補償フィルムを用いることが好ましい。例えば、特開2003−98348号記載の方法で光学異方性層を形成することができる。
また、好ましく用いられる市販の偏光板保護フィルムとしては、KC8UX2MW、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC4UEW、KC8UCR−3、KC8UCR−4、KC8UCR−5、KC4FR−1、KC4FR−2、KC8UE、KC4UE(コニカミノルタオプト(株)製)等が挙げられる。
偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがあるがこれのみに限定されるものではない。
偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。偏光膜の膜厚は5〜30μm、好ましくは8〜15μmの偏光膜が好ましく用いられる。
該偏光膜の面上に、本発明のセルロースエステルフィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。
<液晶表示装置>
本発明のセルロースエステルフィルムを用いて作製した偏光板を表示装置に組み込むことによって、種々の視認性に優れた画像表示装置を作製することができる。
本発明のセルロースエステルフィルムは偏光板に組み込まれ、反射型、透過型、半透過型液晶表示装置またはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型、OCB型等の各種駆動方式の液晶表示装置で好ましく用いられる。
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
実施例1
<セルロースエステルの製造>
<製造例1>
原料パルプ(αセルロース93%以上)100質量部と氷酢酸を100質量部を混合機に入れ撹拌しスラリー状態にした後、石臼式粉砕機に投入し40℃、30分間粉砕した。粉砕後の原料パルプの平均粉砕粒径は顕微鏡観察により63μmであった。
次いで、粉砕後の原料パルプに酢酸50質量部を加え、1時間活性化処理を行った。
上記含酢酸パルプを反応器に入れ、さらに無水プロピオン酸250質量部、無水プロピオン酸400質量部、硫酸9質量部を順次投入し室温から徐々に40℃まで温度を上昇させ、40℃に保温しながら1時間保温し、エステル化反応を進行させた。
次いで1次中和工程で30%酢酸水溶液250部を加え中和した後、熟成工程にて残った無水カルボン酸類を加水分解するために、80質量%の酢酸水溶液を150質量部入れ、60℃に保持し、1時間撹拌させた。
その後反応停止のために、硫酸を中和するため、30質量%の酢酸マグネシウム水溶液を15質量部加えた。
沈殿工程で析出したセルロースエステルを濾別し、50℃の温水で5回洗浄し、残っている酢酸水溶液を溶出させた後、70℃で3時間乾燥させ、アセチル置換度0.61、プロピオニル置換度2.07、総置換度2.68のセルロースアセテートプロピオネートである製造例1のセルロースエステルを得た。重量平均分子量(Mw)は下記測定法を用いて測定した結果20万であった。
<製造例2〜製造例20>
製造例1と同様にして、表1〜表9の記載のように粉砕工程、活性化工程、エステル化工程、濾過工程、熟成工程の条件を変化させて、製造例2〜製造例20によるセルロースエステルを作製した。表6、製造例15の溶液A:EGはエチレングリコールを表す。
尚、粉砕機は以下のものを用いた。
a:石臼式摩砕型粉砕機(増幸産業(株)製 マイクロコーダー MKZA10−15J (グラインダー種:MKM))
b:遊星ボールミル粉砕機((有)ナガオシステム製 Planet750F)
c:湿式粉砕機(アシザワ・ファインテック(株) スターミル ナノ・ゲッター)
d:乾式ジェットミル(サンレックス工業(株) ナノグランディングミル NJ300)
e:カッティングミル((株)レッチェ カッティングミル SM 2000)
f:粉砕機なし
また、製造例10〜12では、エステル化工程、熟成工程の間に濾過工程を設け、目開き5μmのポリプロピレン製濾材を装着した加圧式濾過機を用いて濾過を行った。
<セルロースエステルフィルム1の作製>
次いで、製造例1で得られたセルロースエスエルを用いて、下記溶融流延法に従ってセルロースエステルフィルム1を作製した。
<溶融流延法>
下記組成で、溶融流延法によりセルロースエステルフィルムを作製した。
〈セルロースエステルフィルム組成物〉
製造例1セルロースエステル 94質量部
可塑剤:グリセリントリベンゾエート 5質量部
Irganox 1010(BASFジャパン株式会社製)
0.5質量部
Irgafos P−EPG(BASFジャパン株式会社製)
0.3質量部
HP−136(BASFジャパン株式会社製) 0.2質量部
上記セルロースエステルを70℃、3時間減圧下で乾燥を行い室温まで冷却した後、各添加剤を混合した。
以上の混合物を弾性タッチロールを用いた製造装置で製膜した。窒素雰囲気下、240℃にて溶融して流延ダイから第1冷却ロール上に押し出し、第1冷却ロールとタッチロールとの間にフィルムを挟圧して成形した。また押出し機中間部のホッパー開口部から、滑り剤としてシリカ粒子(日本アエロジル社製)を、0.1質量部となるよう添加した。
流延ダイのギャップの幅がフィルムの幅方向端部から30mm以内では0.5mm、その他の場所では1mmとなるようにヒートボルトを調整した。タッチロールとしては、その内部に冷却水として80℃の水を流した。
流延ダイから押し出された樹脂が第1冷却ロールに接触する位置P1から第1冷却ロールとタッチロールとのニップの第1冷却ロール回転方向上流端の位置P2までの、第1冷却ローラの周面に沿った長さLを20mmに設定した。その後、タッチロールを第1冷却ロールから離間させ、第1冷却ロールとタッチロールとのニップに挟圧される直前の溶融部の温度Tを測定した。第1冷却ロールとタッチロールとのニップに挟圧される直前の溶融部の温度Tは、ニップ上流端P2よりも更に1mm上流側の位置で、温度計(安立計器株式会社製HA−200E)により測定した。測定の結果、温度Tは141℃であった。タッチロールの第1冷却ロールに対する線圧は14.7N/cmとした。更に、テンターに導入し、巾方向に160℃で1.3倍延伸した後、巾方向に3%緩和しながら30℃まで冷却し、その後クリップから開放し、クリップ把持部を裁ち落とし、フィルム両端に幅20mm、高さ25μmのナーリング加工を施し、巻き取り張力220N/m、テーパー40%で巻芯に巻き取った。なお、膜厚は40μm、巻長は4000mとし、屈折率1.49のセルロースエステルフィルム1を作製した。
<セルロースエステルフィルム2〜20の作製>
セルロースエステルフィルム1の作製と同様にして、製造例2〜製造例20で作製したセルロースエステルを用いて、セルロースエステルフィルム2〜20を作製した。
尚、製造例3〜製造例5のセルロースエステルを用いた場合の溶融流延温度は260℃に調整した。
《評価》
(セルロースエステルの収率)
投入原料セルロースの質量に対する製造されたセルロースエステルの質量の比を百分率(%)で示した。
(セルロースエステルのアシル基置換度)
アシル基置換度の測定方法はASTM−D817−96に準じて行った。
表中の略称は以下の通り。
Pr:プロピオニル基、AC:アセチル基、Bu:ブチレート基、総:総アシル基
(平均分子量)
セルロースエステルの平均分子量および分子量分布は、高速液体クロマトグラフィーを用い測定し重量平均分子量(Mw)、分子量分布を算出した。
測定条件は以下の通りである。
溶媒:メチレンクロライド
カラム:Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
カラム温度:25℃
試料濃度:0.1質量%
検出器:RI Model 504(GLサイエンス社製)
ポンプ:L6000(日立製作所(株)製)
流量:1.0ml/min
校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)
Mw=1000000〜500迄の13サンプルによる校正曲線を使用した。
〈セルロースエステル(酢綿)のばらつき〉
1.分子量分布のばらつき:製造ロット違い10サンプルの酢綿の分子量分布10分の1幅の標準偏差
2.アシル基置換度のばらつき:製造ロット違い10サンプルの酢綿のアシル基置換度分布10分の1幅の標準偏差
〈セルロースエステルフィルムの膜面故障〉
膜面故障は目視にて下記評価尺度で評価した。
5:膜面故障(斜めスジ、横ダン、エッグムラ等)なし
4:気にならないほど微少な斜め筋がある
3:斜め筋がやや目立ち、横ダンがややある
2:斜め筋がはっきりと目立ち、横段も認められる
1:斜めスジ、横ダン、エッグムラがある
0:斜めスジ、横ダン、エッグムラが大いに目立つ
また、膜面故障のロット間でのばらつきを以下の尺度で評価した。
◎ :ロット間で膜面故障のばらつきがない
○ :製造ロット違いのセルロースエステルが10%の確率で膜面故障のレベルが1ずれる
○△:製造ロット違いのセルロースエステルが20%の確率で膜面故障のレベルが1ずれる
△ :製造ロット違いのセルロースエステルが40%の確率で膜面故障のレベルが1〜2ずれる
△×:製造ロット違いのセルロースエステルが60%の確率で膜面故障のレベルが安定しない
× :製造ロット違いのセルロースエステルが80%の確率で膜面故障のレベルが安定しない
セルロースエステルの製造条件一覧及び上記評価結果を、下記表1〜9に記載する。
本発明のセルロースエステルの製造方法によって製造された製造例1〜16のセルロースエステルは、上表から、酢綿バラツキが小さく、フィルム製膜した際の膜面故障(斜めスジ、横ダン、エッグムラ等)に優れていることが明かである。
またエステル化工程と熟成工程の間に濾過工程を加えた製造例10〜12のセルロースエステルは、フィルム製膜した際の膜面故障がより優れていることが分かる。
実施例2
実施例1の製造例1で作製したセルロースエステルを用いたセルロースエステルフィルム1を返材としてチップ化し、以下の処方にて、セルロースエステルフィルム21を作製した。
<溶融流延法>
下記組成で、溶融流延法によりセルロースエステルフィルムを作製した。
〈セルロースエステルフィルム組成物〉
製造例1セルロースエステル 54質量部
返材セルロースエステルフィルム1チップ 40質量部
可塑剤:グリセリントリベンゾエート 5質量部
Irganox 1010(BASFジャパン株式会社製)
0.5質量部
Irgafos P−EPG(BASFジャパン株式会社製)
0.3質量部
HP−136(BASFジャパン株式会社製) 0.2質量部
上記セルロースエステルを70℃、3時間減圧下で乾燥を行い室温まで冷却した後、各添加剤を混合した。
上記セルロースエステルフィルム組成物を用い、実施例1と同様にして溶融流延法にてセルロースエステルフィルム21を作製した。
同様に、実施例1の製造例2〜製造例20で作製したセルロースエステルを用いたセルロースエステルフィルム2〜20を返材として使用し、溶融流延法にてセルロースエステルフィルム22〜41を作製した。
《評価》
〈劣化異物個数(個/m)〉
返材成分は熱履歴がかかっているため、再度熱をかけるとうっすら、または褐色に着色した粒状の異物ができることがある。それら劣化異物を以下の様に評価した。
溶融流延製膜で得られた溶融フィルムの巻きから1m分を切り出し、グリーンランプの光をフィルムに当て、表面の凹凸を目視でチェックした。チェックした部分を光学顕微鏡で内容を精査し、着色成分とゴミ等の外部異物との分離をして着色成分を劣化異物個数とした。
光学フィルムとしては、15個/m以下であることが好ましく、より好ましくは10個/m未満である。
〈フィルムの着色:イエローインデックス〉
イエローインデックス(黄色度)は、JIS規格K7105−6.3に記載の方法で求められる。イエローインデックスは、日立製作所製分光光度計U−3200と付属の彩度計算プログラム等を用いて、色の三刺激値X、Y、Zを求め、以下の式に従ってイエローインデックスを求めた。
イエローインデックス=100(1.28X−1.06Z)/Y
求めたイエローインデックスから以下の尺度で評価を行った。
返材を利用しない溶融フィルムのイエローインデックスを0としたとき、返材を40質量%利用した溶融フィルムのイエローインデックスとの差を以下のように示す。
光学フィルムとしては○△〜○であれば実用上問題がない。
○ :0〜0.05未満
○△:0.05以上〜0.1未満
△ :0.1以上〜0.2未満
△×:0.2以上〜0.5未満
× :0.5以上
以上の評価結果を下記表10に記載する。
上表から本発明の製造例1〜製造例16のセルロースエステルを用いて作製したセルロースエステルフィルム1〜16は、溶融流延法で返材として使用しても、劣化異物個数が少なく、かつフィルム着色が優れており、光学用途フィルムとして使用可能であることが分かる。
実施例3
実施例1の製造例1〜製造例20で作製したセルロースエステルを用いて、以下の溶液流延法1、溶液流延法2の条件でセルロースエステルフィルムを作製し、実施例1と同様な膜面故障の判定を行ったところ、実施例1を再現して、本発明に係る製造例1〜16で作製したセルロースエステルを用いたセルロースエステルフィルムは膜面故障に優れていた。
<溶液流延法1>
(ドープ液の調製)
下記の材料を、順次密閉容器中に投入し、容器内温度を20℃から80℃まで昇温した後、温度を80℃に保ったままで3時間攪拌を行って、セルロースエステルを完全に溶解した。酸化ケイ素微粒子は予め添加する溶媒と少量のセルロースエステルの溶液中に分散して添加した。このドープを濾紙(安積濾紙株式会社製、安積濾紙No.244)を使用して濾過し、ドープ液Aを得た。
(ドープ液Aの調製)
製造例1(〜製造例20)のセルロースエステル 100質量部
トリメチロールプロパントリベンゾエート 5質量部
エチルフタリルエチルグリコレート 5質量部
酸化ケイ素微粒子 0.1質量部
(アエロジルR972V、日本アエロジル株式会社製)
チヌビン109(BASFジャパン社製) 1質量部
チヌビン171(BASFジャパン社製) 1質量部
メチレンクロライド 400質量部
エタノール 40質量部
ブタノール 5質量部
上記の材料を混合してドープ液Aを調製し、得られたドープ液Aを、温度35℃に保温した流延ダイを通より、ステンレス鋼製エンドレスベルトよりなる温度35℃の支持体上に流延して、ウェブを形成した。
ついで、ウェブを支持体上で乾燥させ、ウェブの残留溶媒量が80質量%になった段階で、剥離ロールによりウェブを支持体から剥離した。
ついで、ウェブを上下に複数配置したロールによる搬送乾燥工程で90℃の乾燥風にて乾燥させながら搬送し、続いてテンターでウェブ両端部を把持した後、130℃で幅方向に延伸前の1.1倍となるように延伸した。テンターでの延伸の後、ウェブを上下に複数配置したロールによる搬送乾燥工程で130℃の乾燥風にて乾燥させた。乾燥工程の雰囲気置換率15(回/時間)とした雰囲気内で15分間熱処理した後、フィルム両端に幅10mm、高さ10μmのナーリング加工を施し、室温まで冷却してコアに巻き取り、幅1.5m、膜厚40μm、長さ4000mのセルロースエステルフィルムを作製した。
<溶液流延法2>
(ドープ液Bの調製)
市販の熱可塑性アクリル樹脂(ダイヤナールBR85(三菱レイヨン(株)製)Mw280000) 70質量部
製造例1(〜製造例20)のセルロースエステル 30質量部
メチレンクロライド 300質量部
エタノール 40質量部
上記組成物を、加熱しながら十分に溶解し、ドープ液Bを作製した。
上記作製したドープ液Bを、ベルト流延装置を用い、温度22℃、2m幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が100%になるまで溶媒を蒸発させ、ステンレスバンド支持体上から剥離した。剥離した熱可塑性アクリル樹脂・セルロースエステル樹脂のウェブを35℃で溶媒を蒸発させ、1.6m幅にスリットし、その後、テンターで幅方向に1.1倍に延伸しながら、130℃の乾燥温度で乾燥させた。このときテンターで延伸を始めたときの残留溶剤量は10%であった。テンターで延伸後、130℃で5分間緩和を行った後、120℃、140℃の乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させ、1.5m幅にスリットし、フィルム両端に幅10mm、高さ10μmのナーリング加工を施し、コアに巻き取り、セルロースエステルフィルムを得た。膜厚は40μm、巻長は4000mであった。
実施例4
<偏光板101の作製>
下記工程1〜4に従って、偏光膜に上記実施例1で作製したセルロースエステルフィルム1を両面に貼り合わせて偏光板101を作製した。
(a)偏光膜の作製
鹸化度99.95モル%、重合度2400のポリビニルアルコール(以下、PVAと略記する)100質量部に、グリセリン10質量部、及び水170質量部を含浸させたものを溶融混練し、脱泡後、Tダイから金属ロール上に溶融押出し、製膜した。その後、乾燥・熱処理して、PVAフィルムを得た。
得られたPVAフィルムは、平均厚みが25μm、水分率が4.4%、フィルム幅が3mであった。
次に、得られたPVAフィルムを、予備膨潤、染色、湿式法による一軸延伸、固定処理、乾燥、熱処理の順番で、連続的に処理して、偏光膜を作製した。すなわち、PVAフィルムを温度30℃の水中に30秒間浸して予備膨潤し、ヨウ素濃度0.4g/リットル、ヨウ化カリウム濃度40g/リットルの温度35℃の水溶液中に3分間浸した。続いて、ホウ酸濃度4%の50℃の水溶液中でフィルムにかかる張力が700N/mの条件下で、6倍に一軸延伸を行い、ヨウ化カリウム濃度40g/リットル、ホウ酸濃度40g/リットル、塩化亜鉛濃度10g/リットルの温度30℃の水溶液中に5分間浸漬して固定処理を行った。その後、PVAフィルムを取り出し、温度40℃で熱風乾燥し、更に温度100℃で5分間熱処理を行った。得られた偏光膜は、平均厚みが13μm、偏光性能については透過率が43.0%、偏光度が99.5%、2色性比が40.1であった。
(b)偏光板の作製
工程1:前述の偏光膜を、固形分2質量%のポリビニルアルコール接着剤溶液の貯留槽中に1〜2秒間浸漬した。
工程2:セルロースエステルフィルム1を下記条件でアルカリ鹸化処理を実施した。次いで、工程1でポリビニルアルコール接着剤溶液に浸漬した偏光膜に付着した過剰の接着剤を軽く取り除き、この偏光膜にセルロースエステルフィルム1を両面から挟み込むように貼合した。
(アルカリ鹸化処理)
ケン化工程 2.5M−KOH 50℃ 120秒
水洗工程 水 30℃ 60秒
中和工程 10質量部HCl 30℃ 45秒
水洗工程 水 30℃ 60秒
ケン化処理後、水洗、中和、水洗の順に行い、次いで100℃で乾燥。
工程3:積層物を、2つの回転するローラにて20〜30N/cmの圧力で約2m/minの速度で貼り合わせた。このとき、気泡が入らないように注意して実施した。
工程4:工程3で作製した試料を、温度100℃の乾燥機中にて5分間乾燥処理し、偏光板を作製した。
工程5:工程4で作製した偏光板のセルロースエステルフィルム1の片面に市販のアクリル系粘着剤を乾燥後の厚みが25μmとなるように塗布し、110℃のオーブンで5分間乾燥して粘着層を形成し、粘着層に剥離性のプロテクトフィルムを張り付けた。この偏光を576×324mmサイズに裁断(打ち抜き)し、偏光板101を作製した。
<液晶表示装置101の作製>
NEC製ノートPC LaVie Gタイプの液晶パネルの偏光板を剥がし、視認側の偏光板として上記作製した偏光板101の粘着剤層と液晶セルガラスとを貼合した。また、バックライト側にも、上記手順と同様に偏光板101を液晶セルに貼合し、液晶表示装置101を作製した。
<偏光板102〜120の作製、液晶表示装置102〜120の作製>
偏光板101、液晶表示装置101と同様にして、実施例1で作製したセルロースエステルフィルム2〜20を用いて、偏光板102〜120、液晶表示装置102〜120を作製した。
作製した液晶表示装置101〜120の視認性を目視評価した結果、本発明のセルロースエステルフィルム1〜16を偏光板に用いることで、膜面故障も観察されず、視認性(クリア性)が良好な液晶表示装置が得られることが分かった。

Claims (6)

  1. 原料セルロースの粉砕工程、活性化工程、エステル化工程、熟成工程、及び後処理化工程を含むセルロースエステルの製造方法において、該粉砕工程が原料セルロースと溶剤とを混合して粉砕するメカノケミカル粉砕工程であることを特徴とするセルロースエステルの製造方法。
  2. 前記溶剤が、カルボン酸類、アルコール類、ケトン類、エーテル類、セロソルブ類から選ばれる溶剤の少なくとも一種であるか、または前記溶剤の少なくとも一種と水との混合溶剤であることを特徴とする請求項1に記載のセルロースエステルの製造方法。
  3. 前記エステル化工程と熟成工程の間に濾過工程を設けることを特徴とする請求項1または2に記載のセルロースエステルの製造方法。
  4. 前記セルロースエステルが、アシル基の平均置換度が1.2〜2.95、アシル基総炭素数が2.0〜9.5であり、かつ平均重量分子量が100000〜500000であることを特徴とする請求項1または2に記載のセルロースエステルの製造方法。
  5. 請求項1〜4のいずれか1項に記載のセルロースエステルの製造方法によって製造されたことを特徴とするセルロースエステル。
  6. 請求項5に記載のセルロースエステルを含有することを特徴とするセルロースエステルフィルム。
JP2012504380A 2010-03-09 2011-02-16 セルロースエステルの製造方法、セルロースエステル、及びセルロースエステルフィルム Pending JPWO2011111484A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010051519 2010-03-09
JP2010051519 2010-03-09
PCT/JP2011/053229 WO2011111484A1 (ja) 2010-03-09 2011-02-16 セルロースエステルの製造方法、セルロースエステル、及びセルロースエステルフィルム

Publications (1)

Publication Number Publication Date
JPWO2011111484A1 true JPWO2011111484A1 (ja) 2013-06-27

Family

ID=44563309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012504380A Pending JPWO2011111484A1 (ja) 2010-03-09 2011-02-16 セルロースエステルの製造方法、セルロースエステル、及びセルロースエステルフィルム

Country Status (2)

Country Link
JP (1) JPWO2011111484A1 (ja)
WO (1) WO2011111484A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111171161B (zh) * 2020-02-19 2020-09-11 江苏瑞佳新材料有限公司 一种醋酸丁酸纤维素及其制备方法
CN116333173A (zh) * 2023-05-31 2023-06-27 成都普什医药塑料包装有限公司 一种醋酸纤维素及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA914674A (en) * 1972-11-14 Abson Derek Acetylation of wood pulp
JPS5820961B1 (ja) * 1971-06-30 1983-04-26 Celanese Corp
JPH02311501A (ja) * 1989-05-26 1990-12-27 Daicel Chem Ind Ltd セルロースシートの解砕方法及び酢酸セルロースの製造方法
JPH03197501A (ja) * 1989-12-26 1991-08-28 Daicel Chem Ind Ltd パルプシートの解砕方法
JPH059201A (ja) * 1991-07-02 1993-01-19 Daicel Chem Ind Ltd 酢酸セルロースの製造方法
JPH05239101A (ja) * 1992-02-28 1993-09-17 Daicel Chem Ind Ltd 酢酸セルロースの製造方法
JPH09302001A (ja) * 1996-05-20 1997-11-25 Kao Corp 微小架橋セルロース粒子及びその製造方法
JP2001261701A (ja) * 2000-03-23 2001-09-26 Natl Inst Of Advanced Industrial Science & Technology Meti セルロースのアシル化方法
JP2004292760A (ja) * 2003-03-28 2004-10-21 National Institute Of Advanced Industrial & Technology アシル化セルロースの製造方法
WO2010001677A1 (ja) * 2008-07-02 2010-01-07 コニカミノルタオプト株式会社 光学フィルム、光学フィルムの製造方法、偏光板及びそれを用いた液晶表示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA914674A (en) * 1972-11-14 Abson Derek Acetylation of wood pulp
JPS5820961B1 (ja) * 1971-06-30 1983-04-26 Celanese Corp
JPH02311501A (ja) * 1989-05-26 1990-12-27 Daicel Chem Ind Ltd セルロースシートの解砕方法及び酢酸セルロースの製造方法
JPH03197501A (ja) * 1989-12-26 1991-08-28 Daicel Chem Ind Ltd パルプシートの解砕方法
JPH059201A (ja) * 1991-07-02 1993-01-19 Daicel Chem Ind Ltd 酢酸セルロースの製造方法
JPH05239101A (ja) * 1992-02-28 1993-09-17 Daicel Chem Ind Ltd 酢酸セルロースの製造方法
JPH09302001A (ja) * 1996-05-20 1997-11-25 Kao Corp 微小架橋セルロース粒子及びその製造方法
JP2001261701A (ja) * 2000-03-23 2001-09-26 Natl Inst Of Advanced Industrial Science & Technology Meti セルロースのアシル化方法
JP2004292760A (ja) * 2003-03-28 2004-10-21 National Institute Of Advanced Industrial & Technology アシル化セルロースの製造方法
WO2010001677A1 (ja) * 2008-07-02 2010-01-07 コニカミノルタオプト株式会社 光学フィルム、光学フィルムの製造方法、偏光板及びそれを用いた液晶表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011013511; セルロースの事典 , 20001110, p.474-479, 株式会社朝倉書店 *

Also Published As

Publication number Publication date
WO2011111484A1 (ja) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5447374B2 (ja) アクリルフィルムの製造方法およびその製造方法で作製したアクリルフィルム
TWI475058B (zh) A cellulose ester optical film, a polarizing plate using a cellulose ester optical film, a liquid crystal display device, a method for producing a cellulose ester optical film, and a polymer
JP5799954B2 (ja) 防眩性フィルム、防眩性フィルムの製造方法、偏光板及び液晶表示装置
JP2014178709A (ja) 偏光板の製造方法
JP5423382B2 (ja) ハードコートフィルムの製造方法
JP5479258B2 (ja) セルロースアシレートフィルム及びその製造方法、並びにそれを用いた偏光板及び液晶表示装置
WO2014136529A1 (ja) 光学フィルム、並びにこれを含む偏光板およびva型液晶表示装置
JP5500042B2 (ja) セルロースエステルの製造方法
KR101606228B1 (ko) 광학 필름
JP5262256B2 (ja) セルロースエステルフィルム、偏光板および液晶表示装置
WO2011055624A1 (ja) 偏光板、及び液晶表示装置
KR20140015540A (ko) 긴 형상 편광판 및 액정 표시 장치
JP2012018341A (ja) 偏光板、及びそれを用いた液晶表示装置
JP2012025896A (ja) セルロースエステルとその製造方法、及び光学フィルム
JP5382118B2 (ja) 偏光板、及び液晶表示装置
JP5980465B2 (ja) 偏光板及びそれを用いた液晶表示装置
WO2011111484A1 (ja) セルロースエステルの製造方法、セルロースエステル、及びセルロースエステルフィルム
JP5725035B2 (ja) セルロースエステル含有樹脂成形物の製造方法
JPWO2011114764A1 (ja) 位相差フィルム及びそれが備えられた偏光板
JP2012111887A (ja) 樹脂フィルムの製造方法、樹脂フィルム、それを用いた偏光板、及び液晶表示装置
JP2011022188A (ja) 分極遮蔽型スメクチック液晶表示装置
JP2013152390A (ja) セルロースエステル、その製造方法、光学フィルム、偏光板及び液晶表示装置
TWI465501B (zh) A cellulose ester film, a method for producing a cellulose ester film, a polarizing plate, and a liquid crystal display device
JP5494331B2 (ja) 溶融流延フィルム、偏光板及び液晶表示装置
WO2011138913A1 (ja) 偏光板、その製造方法、及び液晶表示装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130813

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630