WO2011138913A1 - 偏光板、その製造方法、及び液晶表示装置 - Google Patents

偏光板、その製造方法、及び液晶表示装置 Download PDF

Info

Publication number
WO2011138913A1
WO2011138913A1 PCT/JP2011/060123 JP2011060123W WO2011138913A1 WO 2011138913 A1 WO2011138913 A1 WO 2011138913A1 JP 2011060123 W JP2011060123 W JP 2011060123W WO 2011138913 A1 WO2011138913 A1 WO 2011138913A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
group
polarizing plate
protective film
film
Prior art date
Application number
PCT/JP2011/060123
Other languages
English (en)
French (fr)
Inventor
直輝 高橋
隆 建部
里誌 森井
伸夫 久保
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2011138913A1 publication Critical patent/WO2011138913A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state

Definitions

  • the present invention relates to a polarizing plate using a film containing an acrylic resin and a cellulose ester resin as a protective film, a manufacturing method thereof, and a liquid crystal display device.
  • a liquid crystal display device is composed of a liquid crystal cell in which a transparent electrode, a liquid crystal layer, a color filter, etc. are sandwiched between glass plates, and two polarizing plates provided on both sides thereof.
  • the element also referred to as “polarizing film” or “polarizing film”
  • polarizing plate protective film is sandwiched between two protective films (polarizing plate protective film).
  • Such a protective film is subjected to a surface treatment such as saponification or corona discharge in order to adhere to a polarizer and an aqueous adhesive.
  • the saponification treatment is frequently used because it can be produced by a simple method.
  • mass production is required to be performed efficiently, and polarizers are sufficient even under weak drying conditions (time reduction, drying temperature reduction, etc.) when manufacturing polarizing plates. It has become necessary to obtain film adhesion.
  • a cellulose ester resin that is easily subjected to the above-described surface treatment and excellent in heat resistance is often used.
  • films made of acrylic resins are excellent in transparency and are used in various optical materials.
  • adhesion with a polarizer by a water-based adhesive after surface modification treatment such as saponification is poor, and the permeability of moisture contained in the water-based adhesive is poor. Therefore, there were problems that the productivity of the polarizing plate was poor and the heat resistance was poor.
  • the present inventors have made various studies on films containing such an acrylic resin and a cellulose ester resin.
  • a polarizer under the weak drying conditions of the polarizing plate (time reduction, reduction of drying temperature, etc.), a polarizer A new problem has been found that the film adhesion is insufficient.
  • the drying process at the time of polarizing plate production is short-time and low-temperature drying, and it is possible to achieve both the adhesion between the polarizer and the protective film and the reduction of image unevenness. It was difficult.
  • the present invention has been made in view of the above-mentioned problems and situations, and the problem to be solved is a polarizing plate using a film containing an acrylic resin and a cellulose ester resin as a protective film.
  • the protective film is a vinyl polymer (C) having an acrylic resin (A), a cellulose ester resin (B), and an amide bond.
  • the drying step has a temperature in the range of 40 to 70 ° C. and a residence time in the range of 60 to 180 seconds. .
  • the first or second item, wherein the protective film contains the acrylic resin (A) and the cellulose ester resin (B) at a mass ratio in the range of 70:30 to 30:70.
  • the manufacturing method of the polarizing plate as described in a term.
  • the total degree of acyl group substitution (T) of the cellulose ester resin (B) is in the range of 2.0 to 3.0, and the degree of acetyl substitution of the cellulose ester resin (B) is less than 1.3.
  • a liquid crystal display device wherein the polarizing plate according to item 5 is disposed on an image display surface.
  • the polarizer and the protective film are sufficient even if the drying process at the time of manufacture is dried at a low temperature in a short time. It is possible to provide a method for producing a polarizing plate having adhesiveness and little image unevenness. Moreover, the polarizing plate manufactured by the said manufacturing method and a liquid crystal display device using the same can be provided.
  • the moisture permeability of the film is sufficient, and the average water contact angle after the surface modification treatment is Since it is low, it is possible to provide a method for producing a polarizing plate that has good adhesion and contrast with a polarizer even during short-time low-temperature drying during production of the polarizing plate.
  • the method for producing a polarizing plate of the present invention includes a surface modification treatment step for modifying the surface of a protective film, and bonding in which the surface-modified protective film is bonded to at least one surface of a polarizer with a water-based adhesive.
  • This feature is a technical feature common to the inventions according to claims 1 to 6.
  • the protective film has a moisture permeability of 300 g / m 2 ⁇ 24 hr or more and an average water contact angle after the surface modification treatment of 55 degrees or less from the viewpoint of manifesting the effect of the present invention.
  • the protective film preferably contains the acrylic resin (A) and the cellulose ester resin (B) at a mass ratio in the range of 70:30 to 30:70. Further, the total substitution degree (T) of the acyl group of the cellulose ester resin (B) is in the range of 2.0 to 3.0, and the acetyl substitution degree of the cellulose ester resin (B) is less than 1.3. It is preferable that
  • the method for producing a polarizing plate of the present invention is suitable as a method for producing a polarizing plate using an acrylic film as a protective film, and the polarizing plate is an image display device in an embodiment in which it is installed on an image display surface. Can be suitably used.
  • the method for producing a polarizing plate of the present invention is a method for producing a polarizing plate comprising a step of bonding a protective film to both sides of a polarizer with a water-based adhesive, and a drying step.
  • the protective film is an acrylic resin.
  • A a cellulose ester resin
  • B a vinyl polymer having an amide bond
  • the drying step has a temperature in the range of 40 to 70 ° C. and a residence time. It is in the range of 60 to 180 seconds.
  • the protective film preferably has a moisture permeability of 300 g / m 2 ⁇ 24 hr or more and an average water contact angle after the surface modification treatment of 55 degrees or less.
  • the polarizing plate which concerns on this invention can also be manufactured in the aspect manufactured in the state wound by roll shape.
  • a protective film is bonded to one surface of the protective film according to the present invention, an adhesive layer is provided on the other side, and a separate film is bonded to the surface.
  • the protective film used in the present invention may be subjected to a surface modification treatment (also simply referred to as “surface treatment”) before adhering to the polarizer so that the average water contact angle on the surface of the film is 55 degrees or less.
  • the standard deviation of the water contact angle is preferably 0.01 to 5 within the range of 20 to 50 degrees.
  • Examples of the surface modification treatment include alkali / saponification treatment, corona discharge treatment, plasma treatment, and ultraviolet irradiation treatment.
  • the water contact angle is determined by the ⁇ / 2 method using a contact angle meter.
  • the average water contact angle was determined by applying the surface-modified protective film to a temperature of 23 ° C. and a humidity of 55% R.D. H. After adjusting the humidity for 24 hours in this environment, 20 water contact angles selected at random within the range of 100 cm 2 are measured in the same environment, and the results are calculated by averaging the measured values. The standard deviation of the water contact angle is calculated from this measured value.
  • alkali saponification method used in the present invention examples include a dipping method and an alkaline solution coating method. From the viewpoint of productivity, the dipping method is preferred.
  • the immersion method is a technique of immersing the film in an alkaline solution under appropriate conditions and saponifying all surfaces having reactivity with alkali on the entire surface of the film, and does not require special equipment. It is preferable from the viewpoint of cost.
  • the alkaline solution is preferably a sodium hydroxide aqueous solution.
  • the concentration is preferably 0.5 to 3 mol / l, more preferably 1 to 2 mol / l.
  • the temperature of the alkaline solution is preferably 25 to 70 ° C, more preferably 30 to 60 ° C.
  • the treatment time may be adjusted as appropriate as long as the average water contact angle of the film is 20 to 50 degrees and the standard deviation of the water contact angle is within the range of 0.01 to 5.
  • corona discharge treatment also referred to as “corona treatment”
  • the corona discharge treatment is preferably a wire electrode, a planar electrode, or a roll electrode as the electrode structure, but in order to make the discharge uniform, a film and an electrode are used. It is preferable to carry out the treatment with a dielectric sandwiched between them.
  • metals such as iron, copper, aluminum, and stainless steel can be used, and as the electrode shape, a thin plate shape, knife edge shape, brush shape, or the like can be used.
  • the dielectric preferably has a relative dielectric constant of 10 or more and has a structure in which a dielectric is sandwiched between upper and lower electrodes.
  • Dielectric materials include ceramics, silicone rubber, polytetrafluoroethylene, polyethylene terephthalate and other plastics, glass, quartz, silicon dioxide, aluminum oxide, zirconium dioxide, titanium dioxide and other metal oxides, and compounds such as barium titanate. Is mentioned.
  • interposing a solid dielectric having a relative dielectric constant of 10 or more (in an environment of 25 ° C.) is advantageous in that corona treatment can be performed at a high speed with a low voltage.
  • Examples of the solid dielectric having a relative dielectric constant of 10 or more include metal oxides such as zirconium dioxide and titanium dioxide, oxides such as barium titanate, and silicon rubber.
  • the thickness of the dielectric is preferably in the range of 0.3 to 1.5 mm.
  • the distance between the film and the electrode is preferably 0.5 to 10 mm. If the thickness is less than 0.5 mm, only the thin film of the base film can pass, and if there is a seam, the base film may hit the electrode when passing and damage the base film. Moreover, since an applied voltage will become high when it exceeds 10 mm, a power supply becomes large and discharge becomes a streamer shape.
  • the output of the corona treatment used in the present invention is preferably a condition for treating as little damage as possible on the surface of the protective film. Specifically, it is preferably 0.02 to 5 kW, and preferably 0.04 to 2 kW. More preferred. Also, the best corona treatment method is to perform the corona treatment several times within the above range at the lowest possible output.
  • the density of the corona treatment used in the present invention should be such that the average water contact angle of the film is 20 to 50 degrees and the standard deviation of the water contact angle is within the range of 0.01 to 5. Specifically, from the viewpoint of adhesion and the like, it is preferably 1 to 1000 W ⁇ min / m 2 , more preferably 5 to 500 W ⁇ min / m 2 , and 10 to 300 W ⁇ min / m 2 . More preferably it is.
  • the frequency of the corona treatment used in the present invention is preferably 5 to 100 kHz, and more preferably 10 to 50 kHz.
  • discharge can be generated in a finer state by surrounding the electrode with a casing, putting an inert gas inside the casing, and applying gas to the electrode part.
  • an inert gas helium, argon, or nitrogen can be used.
  • Examples of the plasma treatment used in the present invention include glow discharge treatment and flame plasma treatment.
  • glow discharge either a vacuum glow discharge process performed under vacuum or an atmospheric pressure glow discharge process performed under atmospheric pressure can be used, but an atmospheric pressure glow discharge process performed under atmospheric pressure is preferable from the viewpoint of productivity. .
  • the atmospheric pressure in the present invention is in the range of 700 to 780 Torr.
  • a stretched film is placed between opposing electrodes, a plasma-exciting gas is introduced into the apparatus, and a high-frequency voltage is applied between the electrodes, thereby plasma-exciting the gas and glow discharge between the electrodes. Is to do. Thereby, the surface of a film is processed and the hydrophilicity of the surface of a film is improved.
  • the plasma-excitable gas refers to a gas that is plasma-excited under the above conditions.
  • Plasma-excitable gases include chlorofluorocarbons such as argon, helium, neon, krypton, xenon, nitrogen, carbon dioxide, tetrafluoromethane, and mixtures thereof, as well as inert gases such as argon and neon, carboxy groups and hydroxy. Examples include those to which a reactive gas capable of imparting a polar functional group such as a group (hydroxyl group) or a carbonyl group is added.
  • the frequency of the high-frequency voltage is preferably in the range of 1 kHz to 100 kHz, and the magnitude of the voltage is preferably in a range in which the electric field strength when applied to the electrode is 1 to 100 kV / cm.
  • the method for producing a polarizing plate of the present invention is a method for producing a polarizing plate having a bonding step of bonding a protective film to both sides of a polarizer with a water-based adhesive, and a drying step of drying a bonded product, the drying The process is characterized in that the temperature is in the range of 40 to 70 ° C. and the residence time is in the range of 60 to 180 seconds.
  • a transparent protective film is bonded on both surfaces of the said polarizer with a water-system adhesive agent. .
  • a drying process is given after this bonding process.
  • the sample is retained in a drying furnace maintained at a temperature in the range of 40 to 70 ° C. so that the total residence time is in the range of 60 to 180 seconds.
  • the drying step may have a plurality of drying zones.
  • the drying temperature of the drying zone may be set such that the drying temperature becomes higher as it goes from the first drying zone to the final drying zone.
  • the protective film according to the present invention contains an acrylic resin (A), a cellulose ester resin (B), and a vinyl polymer (C) having an amide bond, and preferably has a moisture permeability of 300 g / m 2 ⁇ 24 hr or more. .
  • the protective film will be described in detail.
  • the acrylic resin used in the present invention includes a methacrylic resin.
  • the resin is not particularly limited, but a resin comprising 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith is preferable.
  • Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid.
  • Unsaturated group-containing divalent carboxylic acids such as saturated acid, maleic acid, fumaric acid and itaconic acid, aromatic vinyl compounds such as styrene and ⁇ -methylstyrene, ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile, Examples thereof include maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride, and the like. These can be used alone or in combination of two or more monomers.
  • methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer.
  • n-Butyl acrylate is particularly preferably used.
  • the acrylic resin (A) used in the protective film (optical film) according to the present invention is particularly improved in brittleness as the protective film (optical film) and in transparency when compatible with the cellulose ester resin (B).
  • the weight average molecular weight (Mw) is preferably 80000 or more.
  • the weight average molecular weight (Mw) of the acrylic resin (A) is more preferably in the range of 80,000 to 1,000,000, particularly preferably in the range of 100,000 to 600,000, and most preferably in the range of 150,000 to 400,000. preferable.
  • the upper limit of the weight average molecular weight (Mw) of an acrylic resin (A) is not specifically limited, It is a preferable form that it shall be 1 million or less from a viewpoint on manufacture.
  • the weight average molecular weight of the acrylic resin according to the present invention can be measured by gel permeation chromatography.
  • the measurement conditions are as follows.
  • the production method of the acrylic resin (A) in the present invention is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used.
  • a polymerization initiator a normal peroxide type and an azo type can be used, and a redox type can also be used.
  • the polymerization temperature may be 30 to 100 ° C. for suspension or emulsion polymerization, and 80 to 160 ° C. for bulk or solution polymerization.
  • polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
  • acrylic resins can be used as the acrylic resin according to the present invention.
  • Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dialal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned.
  • Two or more acrylic resins can be used in combination.
  • the cellulose ester resin (B) according to the present invention has a total acyl group substitution degree (T) of 2.0 to 3 from the viewpoint of transparency particularly when it is improved in brittleness and is compatible with the acrylic resin (A).
  • the substitution degree of the acyl group having 3 to 7 carbon atoms is preferably in the range of 1.2 to 3.0. That is, the cellulose ester resin according to the present invention is a cellulose ester resin substituted with an acyl group having 3 to 7 carbon atoms.
  • propionyl, butyryl and the like are preferably used, and a propionyl group is particularly preferably used. It is done.
  • the acyl substitution degree of the cellulose ester resin (B) according to the present invention is preferably such that the total substitution degree (T) is 2.0 to 3.0 and the substitution degree of the acetyl group is 1.3 or less.
  • the total substitution degree (T) of the acyl group of the cellulose ester resin (B) is more preferably in the range of 2.5 to 3.0.
  • the acyl group may be an aliphatic acyl group or an aromatic acyl group. In the case of an aliphatic acyl group, it may be linear or branched and may further have a substituent.
  • the number of carbon atoms of the acyl group in the present invention includes an acyl group substituent.
  • the number of substituents X substituted on the aromatic ring is preferably 0 to 5. Also in this case, it is necessary to pay attention so that the degree of substitution of the acyl group having 3 to 7 carbon atoms including the substituent is 1.2 to 3.0. For example, since the benzoyl group has 7 carbon atoms, when it has a substituent containing carbon, the benzoyl group has 8 or more carbon atoms and is not included in the acyl group having 3 to 7 carbon atoms. Become.
  • substituents substituted on the aromatic ring when the number of substituents substituted on the aromatic ring is 2 or more, they may be the same or different from each other, but they may be linked together to form a condensed polycyclic compound (for example, naphthalene, indene, indane, phenanthrene, quinoline). , Isoquinoline, chromene, chroman, phthalazine, acridine, indole, indoline, etc.).
  • a condensed polycyclic compound for example, naphthalene, indene, indane, phenanthrene, quinoline.
  • Isoquinoline chromene, chroman, phthalazine, acridine, indole, indoline, etc.
  • a structure having at least one kind of an aliphatic acyl group having 3 to 7 carbon atoms is used as a structure used in the cellulose resin according to the present invention.
  • the substitution degree of the cellulose ester resin (B) according to the present invention is such that the total substitution degree (T) of acyl groups is 2.0 to 3.0, and the substitution degree of acyl groups having 3 to 7 carbon atoms is 1.2 to 3.0. 3.0.
  • the total substitution degree of acyl groups other than an acyl group having 3 to 7 carbon atoms, that is, an acetyl group and an acyl group having 8 or more carbon atoms is 1.3 or less.
  • the cellulose ester resin (B) according to the present invention is preferably at least one selected from cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate benzoate, cellulose propionate, and cellulose butyrate, Those having an acyl group having 3 or 4 carbon atoms as a substituent are preferred.
  • particularly preferable cellulose ester resins are cellulose acetate propionate and cellulose propionate.
  • the portion not substituted with an acyl group is usually present as a hydroxy group (hydroxyl group). These can be synthesized by known methods.
  • substitution degree of the acetyl group and the substitution degree of other acyl groups were determined by the method prescribed in ASTM-D817-96.
  • the weight average molecular weight (Mw) of the cellulose ester resin according to the present invention is 75,000 or more, particularly from the viewpoint of improving compatibility with the acrylic resin (A) and brittleness, and is preferably in the range of 75,000 to 300,000. It is more preferable that it is in the range of ⁇ 24,000, particularly preferably in the range of 160000 to 20,000.
  • Mw weight average molecular weight
  • two or more kinds of cellulose resins can be mixed and used.
  • the acrylic resin (A) and the cellulose ester resin (B) are preferably contained in a compatible state at a mass ratio of 95: 5 to 30:70. Preferably, it is 70:30 to 30:70.
  • the acrylic resin (A) and the cellulose ester resin (B) are preferably contained in a compatible state.
  • the physical properties and quality required as a protective film (optical film) are achieved by complementing each other by dissolving different resins.
  • Whether the acrylic resin (A) and the cellulose ester resin (B) are in a compatible state can be determined by, for example, the glass transition temperature Tg.
  • the two resins have different glass transition temperatures
  • there are two or more glass transition temperatures for each resin because there is a glass transition temperature for each resin.
  • the glass transition temperature specific to each resin disappears and becomes one glass transition temperature, which is the glass transition temperature of the compatible resin.
  • the glass transition temperature referred to here is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a heating rate of 20 ° C./min.
  • the point glass transition temperature (Tmg) is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a heating rate of 20 ° C./min.
  • the point glass transition temperature (Tmg) The point glass transition temperature (Tmg).
  • the weight average molecular weight (Mw) of the acrylic resin (A) in the protective film (optical film) according to the present invention, the weight average molecular weight (Mw) of the cellulose ester resin (B) and the degree of substitution are relative to the solvent of both resins. It is obtained by measuring each after fractionation using the difference in solubility. When fractionating the resin, it is possible to extract and separate the soluble resin by adding a compatible resin in a solvent that is soluble only in either one. At this time, heating operation or reflux is performed. May be.
  • the resin may be separated by combining two or more of these solvent combinations.
  • the dissolved resin and the resin remaining as an insoluble matter are filtered off, and the solution containing the extract can be separated by an operation of evaporating the solvent and drying.
  • These fractionated resins can be identified by general structural analysis of polymers. Even when the protective film (optical film) according to the present invention contains a resin other than the acrylic resin (A) or the cellulose ester resin (B), it can be separated by the same method.
  • the weight average molecular weights (Mw) of the compatible resins are different, the high molecular weight substances are eluted earlier by gel permeation chromatography (GPC), and the lower molecular weight substances are eluted after a longer time. Therefore, it can be easily fractionated and the molecular weight can be measured.
  • GPC gel permeation chromatography
  • the molecular weight of the compatible resin is measured by GPC, and at the same time, the resin solution eluted every time is separated, the solvent is distilled off, and the dried resin is different by quantitatively analyzing the structure.
  • the resin composition for each molecular weight fraction it is possible to identify each compatible resin.
  • the molecular weight distribution of each of the resins separated in advance based on the difference in solubility in a solvent by GPC, it is possible to detect each of the compatible resins.
  • containing acrylic resin (A) and cellulose ester resin (B) in a compatible state means mixing each resin (polymer), resulting in a compatible state. It does not include the state in which the precursor of acrylic resin such as monomer, dimer, or oligomer is mixed with cellulose ester resin (B) and then polymerized to form a mixed resin. .
  • the process of obtaining a mixed resin by mixing a precursor of an acrylic resin such as a monomer, dimer or oligomer with the cellulose ester resin (B) and then polymerizing it is complicated by the polymerization reaction.
  • the resin is difficult to control the reaction, and it is difficult to adjust the molecular weight.
  • graft polymerization, cross-linking reaction or cyclization reaction often occurs.
  • the resin is soluble in a solvent or cannot be melted by heating. Since it is also difficult to measure the weight average molecular weight (Mw) by eluting the resin, it is difficult to control the physical properties and it cannot be used as a resin for stably producing a protective film (optical film).
  • Mw weight average molecular weight
  • the total mass of the acrylic resin (A) and the cellulose ester resin (B) in the protective film (optical film) according to the present invention is preferably 55% by mass or more of the protective film (optical film), more preferably 60 mass. % Or more, and particularly preferably 70% by mass or more.
  • the “vinyl polymer having an amide bond (C)” in the present invention is a polymer of a vinyl monomer having an amide bond in the side chain (hereinafter also simply referred to as “polymer”) or a vinyl monomer having an amide bond in the side chain. And a copolymer of any vinyl monomer copolymerizable with (hereinafter also referred to as a copolymer).
  • Examples of the vinyl monomer having an amide bond include N-vinylpyrrolidone, N-vinyl-2-methylpyrrolidone, acryloylmorpholine, acryloyl-2-methylmorpholine, and vinylacetamide. A mixture of two or more kinds of these vinyl monomers having an amide bond can be used.
  • vinyl monomers having an arbitrary functional group such as (meth) acrylate and acrylonitrile.
  • the copolymerization ratio of the vinyl monomer having an amide bond is preferably 20 to 100% of the total vinyl monomers constituting the polymer.
  • a vinyl polymer having an amide bond in the side chain, or a vinyl copolymer is made of azobisisobutyronitrile (AIBN) alone or together with other vinyl monomers capable of copolymerization having an amide bond.
  • AIBN azobisisobutyronitrile
  • polymerization is carried out by a conventional method in the presence of a solvent if necessary.
  • the weight average molecular weight of the vinyl polymer having an amide bond in the side chain is preferably about 1,000 to 300,000, particularly preferably 2,000 to 50,000 from the viewpoints of prevention of bleeding out and transparency.
  • the vinyl polymer (C) having an amide bond in the side chain according to the present invention is 0.05 to 15% by mass and 0.1 to 10% by mass with respect to the total mass of the protective film (optical film). Is preferred.
  • the protective film (optical film) according to the present invention may contain acrylic particles (D).
  • acrylic particle (D) means a particle state (incompatible state) in a protective film (optical film) containing the acrylic resin (A) and the cellulose ester resin (B) in a compatible state. Represents the acrylic component present.
  • the acrylic particles (D) are obtained, for example, by collecting a predetermined amount of the produced protective film (optical film), dissolving in a solvent, stirring, and sufficiently dissolving and dispersing the acrylic particles (D). It is filtered using a PTFE membrane filter having a pore diameter of less than that, and the weight of the insoluble matter collected by filtration may be 90% by mass or more of the acrylic particles (D) added to the protective film (optical film). preferable.
  • the acrylic particles (D) used in the present invention are not particularly limited, but are preferably acrylic particles (D) having a layer structure of two or more layers, particularly the following multilayer structure acrylic granular composite. It is preferable.
  • the multilayer structure acrylic granular composite is formed by laminating the innermost hard layer polymer, the cross-linked soft layer polymer exhibiting rubber elasticity, and the outermost hard layer polymer from the central portion toward the outer peripheral portion.
  • the multi-layer structure acrylic granular composite is a multi-layer structure acrylic granular composite composed of an innermost hard layer, a crosslinked soft layer, and an outermost hard layer from the center to the outer periphery.
  • This three-layer core-shell multilayer acrylic granular composite is preferably used.
  • Preferred embodiments of the multilayer structure acrylic granular composite used in the acrylic resin composition according to the present invention include the following.
  • a crosslinked soft layer polymer obtained by polymerizing a mixture of monomers comprising 0.01 to 5% by mass of a polyfunctional crosslinking agent and 0.5 to 5% by mass of a multifunctional grafting agent, (c) In the presence of a polymer comprising an inner hard layer and a crosslinked soft layer, a monomer mixture comprising 80 to 99% by weight of methyl methacrylate and 1 to 20% by weight of alkyl acrylate having 1 to 8 carbon atoms in the alkyl group.
  • Outermost hard layer weight obtained by polymerizing And the obtained three-layer structure polymer is an innermost hard layer polymer (a) 5 to 40% by mass, a soft layer polymer (b) 30 to 60% by mass, and An outermost hard layer polymer (c) comprising 20 to 50% by mass, having an insoluble part when fractionated with acetone, and an acrylic granular composite having a methyl ethyl ketone swelling degree of 1.5 to 4.0 at the insoluble part .
  • the innermost hard layer polymer (a) constituting the multilayer structure acrylic granular composite is 80 to 98.9% by mass of methyl methacrylate and 1 to 20 mass of alkyl acrylate having 1 to 8 carbon atoms in the alkyl group. % And a mixture of monomers consisting of 0.01 to 0.3% by weight of a polyfunctional grafting agent is preferred.
  • examples of the alkyl acrylate having 1 to 8 carbon atoms in the alkyl group include methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like. And n-butyl acrylate are preferably used.
  • the proportion of the alkyl acrylate unit in the innermost hard layer polymer (a) is 1 to 20% by mass.
  • the thermal decomposability of the polymer is increased, while the unit is 20% by mass. If it exceeds 50%, the glass transition temperature of the innermost hard layer polymer (c) becomes low, and the impact resistance-imparting effect of the three-layer structure acrylic granular composite is lowered.
  • polyfunctional grafting agent examples include polyfunctional monomers having different polymerizable functional groups, such as allyl esters of acrylic acid, methacrylic acid, maleic acid, and fumaric acid, and allyl methacrylate is preferably used.
  • the polyfunctional grafting agent is used to chemically bond the innermost hard layer polymer and the soft layer polymer, and the ratio used during the innermost hard layer polymerization is 0.01 to 0.3% by mass. .
  • the crosslinked soft layer polymer (b) constituting the acrylic granular composite is an alkyl acrylate having from 9 to 8 carbon atoms having an alkyl group of 1 to 8 in the presence of the innermost hard layer polymer (a). What is obtained by polymerizing a mixture of monomers consisting of 10% by mass, 0.01 to 5% by mass of a polyfunctional crosslinking agent and 0.5 to 5% by mass of a polyfunctional grafting agent is preferred.
  • n-butyl acrylate or 2-ethylhexyl acrylate is preferably used as the alkyl acrylate having 4 to 8 carbon atoms in the alkyl group.
  • Examples of other monofunctional monomers that can be copolymerized include styrene and substituted styrene derivatives.
  • styrene and substituted styrene derivatives Regarding the ratio of alkyl acrylate having 4 to 8 carbon atoms in the alkyl group and styrene, the more the former, the lower the glass transition temperature of the polymer (b), that is, the softer it is.
  • the refractive index of the soft layer polymer (b) at room temperature is set to the innermost hard layer polymer (a), the outermost hard layer polymer (c), and the hard heat. It is more advantageous to make it closer to the plastic acrylic resin, and the ratio between them is selected in consideration of these.
  • polyfunctional grafting agent those mentioned in the section of the innermost layer hard polymer (a) can be used.
  • the polyfunctional grafting agent used here is used to chemically bond the soft layer polymer (b) and the outermost hard layer polymer (c), and the proportion used during the innermost hard layer polymerization is impact resistance. From the viewpoint of the effect of imparting properties, 0.5 to 5% by mass is preferable.
  • polyfunctional crosslinking agent generally known crosslinking agents such as divinyl compounds, diallyl compounds, diacrylic compounds, dimethacrylic compounds and the like can be used, but polyethylene glycol diacrylate (molecular weight 200 to 600) is preferably used.
  • the polyfunctional cross-linking agent used here is used to generate a cross-linked structure during the polymerization of the soft layer (b) and to exhibit the effect of imparting impact resistance.
  • the polyfunctional crosslinking agent is not an essential component because the crosslinked structure of the soft layer (b) is generated to some extent. Is preferably 0.01 to 5% by weight from the viewpoint of imparting impact resistance.
  • the outermost hard layer polymer (c) constituting the multilayer structure acrylic granular composite is 80 to 99 mass% of methyl methacrylate in the presence of the innermost hard layer polymer (a) and the soft layer polymer (b). % And a mixture of monomers consisting of 1 to 20% by mass of an alkyl acrylate having 1 to 8 carbon atoms in the alkyl group is preferred.
  • the acrylic alkylate those described above are used, but methyl acrylate and ethyl acrylate are preferably used.
  • the proportion of the alkyl acrylate unit in the outermost hard layer (c) is preferably 1 to 20% by mass.
  • an alkyl mercaptan or the like can be used as a chain transfer agent to adjust the molecular weight for the purpose of improving the compatibility with the acrylic resin (A).
  • the outermost hard layer with a gradient such that the molecular weight gradually decreases from the inside toward the outside in order to improve the balance between elongation and impact resistance.
  • the outermost hard layer is divided into two or more monomer mixtures for forming the outermost hard layer, and the amount of chain transfer agent to be added each time is increased sequentially. It is possible to decrease the molecular weight of the polymer forming the layer from the inside to the outside of the multilayer structure acrylic granular composite.
  • the molecular weight formed at this time can also be examined by polymerizing a mixture of monomers used each time under the same conditions, and measuring the molecular weight of the resulting polymer.
  • the particle diameter of the acrylic particles (D) preferably used in the present invention is not particularly limited, but is preferably 10 nm or more and 1000 nm or less, and more preferably 20 nm or more and 500 nm or less. In particular, the thickness is most preferably from 50 nm to 400 nm.
  • the mass ratio of the core and the shell is not particularly limited, but when the entire multilayer structure polymer is 100 parts by mass,
  • the core layer is preferably 50 parts by mass or more and 90 parts by mass or less, and more preferably 60 parts by mass or more and 80 parts by mass or less.
  • the core layer here is an innermost hard layer.
  • Examples of such commercially available multilayered acrylic granular composites include, for example, “Metablene” manufactured by Mitsubishi Rayon Co., “Kane Ace” manufactured by Kaneka Chemical Co., Ltd., “Paralloid” manufactured by Kureha Chemical Co., Ltd., Rohm and Haas "Acryloid” manufactured by KK, "Staffyroid” manufactured by Gantz Kasei Kogyo Co., Ltd., "Parapet SA” manufactured by Kuraray Co., Ltd., and the like can be used.
  • acrylic particles (D) which are graft copolymers preferably used as the acrylic particles (D) preferably used in the present invention include unsaturated carboxylic acid esters in the presence of a rubbery polymer. Copolymerization of a mixture of monomers, unsaturated carboxylic acid monomers, aromatic vinyl monomers, and other vinyl monomers copolymerizable with these if necessary Examples thereof include a graft copolymer.
  • the rubbery polymer used for the acrylic particles (D) that are the graft copolymer is not particularly limited, but diene rubber, acrylic rubber, ethylene rubber, and the like can be used. Specific examples include polybutadiene, styrene-butadiene copolymer, block copolymer of styrene-butadiene, acrylonitrile-butadiene copolymer, butyl acrylate-butadiene copolymer, polyisoprene, butadiene-methyl methacrylate copolymer, Butyl acrylate-methyl methacrylate copolymer, butadiene-ethyl acrylate copolymer, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-isoprene copolymer, and ethylene-methyl acrylate copolymer A polymer etc. are mentioned. These rubbery polymers can be used alone or in a mixture of two or more
  • the refractive index difference between the acrylic particles (D) and the acrylic resin (A) is preferably 0.05 or less, more preferably 0.02 or less, and particularly preferably 0.01 or less.
  • a method of adjusting the monomer unit composition ratio of the acrylic resin (A) and / or a rubbery polymer or monomer used for the acrylic particles (D) The refractive index difference can be reduced by a method of adjusting the composition ratio, and a protective film (optical film) excellent in transparency can be obtained.
  • the difference in refractive index referred to here means that the protective film (optical film) according to the present invention is sufficiently dissolved in a solvent in which the acrylic resin (A) is soluble under appropriate conditions to obtain a cloudy solution, which is centrifuged.
  • the solvent is separated into a soluble part and an insoluble part, and the soluble part (acrylic resin (A)) and the insoluble part (acrylic particle (D)) are purified respectively, and then the measured refractive index (23 ° C. , Measurement wavelength: 550 nm).
  • the method of blending the acrylic particles (D) with the acrylic resin (A) is not particularly limited. After the acrylic resin (A) and other optional components are previously blended, usually at 200 to 350 ° C., A method of uniformly melt-kneading with a single-screw or twin-screw extruder while adding acrylic particles (D) is preferably used.
  • a method in which a solution in which acrylic particles (D) are dispersed in advance is added to and mixed with a solution (dope solution) in which acrylic resin (A) and cellulose ester resin (B) are dissolved, acrylic particles (D) and A method such as in-line addition of a solution obtained by dissolving or mixing other optional additives can be used.
  • acrylic particles can also be used as the acrylic particles according to the present invention.
  • Examples thereof include Metablen W-341 (D2) (manufactured by Mitsubishi Rayon Co., Ltd.), Chemisnow MR-2G (D3), MS-300X (D4) (manufactured by Soken Chemical Co., Ltd.), and the like.
  • the protective film (optical film) according to the present invention preferably contains 0.5 to 30% by mass of acrylic particles (D) with respect to the total mass of the resin constituting the film, and is 1.0 to 15 It is more preferable to contain in the range of mass%.
  • the protective film (optical film) according to the present invention includes a retardation control agent for controlling retardation, a plasticizer for imparting processability to the film, an antioxidant for preventing deterioration of the film, and ultraviolet absorption.
  • Additives such as an ultraviolet absorber for imparting a function and fine particles (matting agent) for imparting slipperiness to the film can be contained.
  • phase difference controlling agent refers to an additive added for the purpose of controlling retardation.
  • the retardation control agent compounds described in JP-A No. 2002-296421 and various ester plasticizers can be used. Hereinafter, preferred ester compounds will be described in detail.
  • a compound having a structure in which aromatic rings are arranged in a plane when added as an additive and stretched is preferable.
  • a compound in which an aromatic ring is contained as a block in the main chain or at the terminal is preferred.
  • polyester polyol of glycol and dibasic acid examples include a dehydration condensation reaction between a glycol having an average carbon number of 2 to 3.5 and a dibasic acid having an average carbon number of 4 to 5.5, or the glycol. It is preferably one produced by a conventional method by addition of a dibasic anhydride having an average carbon number of 4 to 5.5 and a dehydration condensation reaction.
  • glycol used in the polyester polyol examples include ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 2-methyl-1,3-propanediol, 1,4-butylene glycol, and neopentyl.
  • ethylene glycol or a mixture of ethylene glycol and diethylene glycol Is particularly preferably used.
  • the average carbon number of the glycol is preferably in the range of 2 to 3.5 from the viewpoint of production of polyester polyol, compatibility with cellulose, transparency, and the like.
  • the ethylene glycol / diethylene glycol molar ratio is preferably 25 to 100/75 to 0, and for cellulose esters having excellent compatibility with cellulose esters.
  • a modifier can be obtained. Further, it is more preferably 25 to 40/75 to 60, and 60 to 95/40 to 5. By adjusting to such a range, the crystallinity and melting point of the polyester polyol are close to those of conventional ones. Productivity is also improved.
  • examples of the dibasic acid constituting the polyester polyol used in the present invention include succinic acid, glutaric acid, adipic acid, and sebacic acid. These can be used alone or in combination of two or more.
  • succinic acid or a mixture of succinic acid and terephthalic acid is particularly preferably used.
  • the average number of carbon atoms of the dibasic acid is preferably in the range of 4 to 5.5 from the viewpoint of production of polyester polyol, compatibility with cellulose, transparency, and the like. .
  • the succinic acid / terephthalic acid molar ratio is preferably 25 to 100/75 to 0, and has excellent compatibility with the cellulose ester.
  • a cellulose ester modifier can be obtained. Further, it is more preferably 25 to 40/75 to 60, and 60 to 95/40 to 5. By adjusting to such a range, the crystallinity and melting point of the polyester polyol are close to those of conventional ones. Productivity is also improved.
  • the glycol and dibasic acid constituting the polyester polyol used in the present invention include combinations other than the above, but the total of the average number of carbon atoms of the glycol and the average number of carbon atoms of the dibasic acid is 6-7. A combination of .5 is preferred.
  • the polyester polyol obtained from the glycol and the dibasic acid may have a number average molecular weight in the range of 1,000 to 200,000, more preferably a polyester having basically a hydroxy group (hydroxyl group) terminal of 1000 to 5000, Those having a number average molecular weight of 1200 to 4000 are particularly preferably used.
  • a polyester polyol having a number average molecular weight in such a range a retardation control agent (cellulose ester modifier) excellent in compatibility with the cellulose ester can be obtained by solid phase reaction.
  • the polyester polyol having a number average molecular weight of 1000 or more is contained in the film in an amount of 2 to 30% by mass. More preferably, it is 10 to 20% by mass.
  • the content of the polymer in the film depends on the type of polymer and the weight average molecular weight, and the performance such as dimensional stability, retentivity, and transmittance is within the range in which dope, web, and phase separation do not occur after film formation. It is decided accordingly.
  • the content of the carboxyl group terminal in the polyester polyol used in the present invention is preferably 1/20 or less of the hydroxyl group (hydroxyl group) terminal from the viewpoint of the effect of the present invention. Further, it is more preferable to stop at 1/40 or less.
  • esterification catalysts such as metal organic acid salts or metal chelate compounds such as titanium, zinc, lead, and zirconium, or antimony oxide can be used.
  • esterification catalyst for example, tetraisopropyl titanate, tetrabutyl titanate and the like are preferably used, and 0.0005 to 0.02 mass per 100 mass parts of the total of glycol (a) and dibasic acid (b) used. Are preferably used.
  • Polyester polyol polycondensation is carried out by conventional methods.
  • a direct reaction of the above dibasic acid and glycol, the above dibasic acid or an alkyl ester thereof for example, a polyesterification reaction or transesterification reaction between a dibasic acid methyl ester and a glycol, or a hot melt condensation method
  • it can be easily synthesized by any method of dehydrohalogenation reaction between acid chlorides of these acids and glycols, but polyester polyols whose number average molecular weight is not so large are preferably by direct reaction.
  • the polyester polyol having a high distribution on the low molecular weight side has a very good compatibility with the cellulose ester, and after forming the film, a moisture permeability is small and a cellulose ester film having a high transparency can be obtained.
  • a conventional method can be used as a method for adjusting the molecular weight without particular limitation.
  • the amount of these monovalent compounds can be controlled by a method of blocking the molecular ends with a monovalent acid or monovalent alcohol.
  • a monovalent acid is preferable from the viewpoint of polymer stability.
  • acetic acid, propionic acid, butyric acid, pivalic acid, benzoic acid and the like can be mentioned, but during the polycondensation reaction, such monovalent acid is not removed from the system but stopped and removed from the reaction system. Those which are easy to be distilled off when being removed from the system are selected, but these may be mixed and used.
  • the number average molecular weight can also be adjusted by measuring the timing of stopping the reaction according to the amount of water distilled off during the reaction. In addition, it can be adjusted by biasing the number of moles of glycol or dibasic acid to be charged or by controlling the reaction temperature.
  • an aromatic terminal ester plasticizer represented by the following general formula (I) can be used.
  • B is a benzene monocarboxylic acid residue
  • G is an alkylene glycol residue having 2 to 12 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms, or an oxyalkylene glycol residue having 4 to 12 carbon atoms
  • A represents an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 12 carbon atoms
  • n represents an integer of 1 or more.
  • Examples of the benzene monocarboxylic acid component of the aromatic terminal ester plasticizer according to the present invention include benzoic acid, paratertiarybutylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal There are propylbenzoic acid, aminobenzoic acid, acetoxybenzoic acid and the like, and these can be used as one kind or a mixture of two or more kinds, respectively.
  • alkylene glycol component having 2 to 12 carbon atoms of the aromatic terminal ester plasticizer examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, and 1,3-butanediol.
  • Examples of the oxyalkylene glycol component having 4 to 12 carbon atoms of the aromatic terminal ester include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, and the like. It can be used as a mixture of two or more.
  • aryl glycol component having 6 to 12 carbon atoms of the aromatic terminal ester examples include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol, etc., and these glycols are used as one kind or a mixture of two or more kinds. it can.
  • alkylene dicarboxylic acid component having 4 to 12 carbon atoms of the aromatic terminal ester examples include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, and dodecanedicarboxylic acid. These are used as one kind or a mixture of two or more kinds.
  • aryl dicarboxylic acid component having 6 to 12 carbon atoms examples include phthalic acid, terephthalic acid, 1,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, and the like.
  • the number average molecular weight of the aromatic terminal ester plasticizer is preferably 300 to 2000, and more preferably 500 to 1500.
  • the acid value is 0.5 mgKOH / g or less, the hydroxy (hydroxyl group) value is 25 mgKOH / g or less, more preferably the acid value is 0.3 mgKOH / g or less, and the hydroxy (hydroxyl group) value is 15 mgKOH / g or less. Is preferred.
  • Acid value refers to the number of milligrams of potassium hydroxide required to neutralize the acid (carboxy group present at the end of the molecule) contained in 1 g of a sample.
  • the acid value and hydroxy (hydroxyl group) value are measured according to JIS K0070.
  • Example No. 1 (Aromatic terminal ester sample)> A reaction vessel was charged with 820 parts (5 moles) of phthalic acid, 608 parts (8 moles) of 1,2-propylene glycol, 610 parts (5 moles) of benzoic acid, and 0.30 parts of tetraisopropyl titanate as a catalyst. While stirring in an air stream, a reflux condenser was attached to reflux excess monohydric alcohol, and heating was continued at 130 to 250 ° C. until the acid value became 2 or less, and water produced was continuously removed. Next, the distillate is removed under reduced pressure of 6.65 ⁇ 10 3 Pa to 4 ⁇ 10 2 Pa or less at 200 to 230 ° C., and then filtered to obtain an aromatic terminal ester having the following properties. It was.
  • Viscosity 25 ° C., mPa ⁇ s); 19815 Acid value: 0.4 ⁇ Sample No. 2 (Aromatic terminal ester sample)> A sample was used except that 500 parts (3.5 moles) of adipic acid, 305 parts (2.5 moles) of benzoic acid, 583 parts (5.5 moles) of diethylene glycol, and 0.45 parts of tetraisopropyl titanate as a catalyst were used in the reaction vessel. No. In the same manner as in No. 1, an aromatic terminal ester having the following properties was obtained.
  • Viscosity 25 ° C., mPa ⁇ s
  • 90 Acid value 0.05 ⁇ Sample No. 3 (Aromatic terminal ester sample)> Except for using 570 parts (3.5 mol) of isophthalic acid, 305 parts (2.5 mol) of benzoic acid, 737 parts (5.5 mol) of dipropylene glycol and 0.40 part of tetraisopropyl titanate as a catalyst in the reaction vessel. Sample No. In the same manner as in No. 1, an aromatic terminal ester having the following properties was obtained.
  • Viscosity 25 ° C., mPa ⁇ s); 33400 Acid value: 0.2
  • this invention is not limited to this.
  • the content of the aromatic terminal ester plasticizer according to the present invention is preferably 1 to 20% by mass, more preferably 3 to 11% by mass in the cellulose ester film.
  • the organic acid according to the present invention is represented by the following general formula (1).
  • R 1 to R 5 represent a hydrogen atom or a cycloalkyl group, an aralkyl group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an aralkyloxy group, an acyl group, a carbonyloxy group, an oxycarbonyl group, or an oxycarbonyloxy group. These may be further substituted.
  • L represents a linking group and represents a substituted or unsubstituted alkylene group, an oxygen atom, or a direct bond.
  • the cycloalkyl group represented by R 1 to R 5 is preferably a cycloalkyl group having 3 to 8 carbon atoms, specifically, a group such as cyclopropyl, cyclopentyl, cyclohexyl and the like. These groups may be substituted, and preferred substituents include halogen atoms such as chlorine atom, bromine atom, fluorine atom, hydroxy group, alkyl group, alkoxy group, cycloalkoxy group, aralkyl group (this phenyl group).
  • the group may be further substituted with an alkyl group or a halogen atom.
  • An alkenyl group such as a vinyl group or an allyl group, or a phenyl group (this phenyl group is further substituted with an alkyl group or a halogen atom).
  • a phenoxy group (this phenyl group may be further substituted with an alkyl group or a halogen atom), an acyl group having 2 to 8 carbon atoms such as an acetyl group or a propionyl group, an acetyloxy group, Examples thereof include an unsubstituted carbonyloxy group having 2 to 8 carbon atoms such as a propionyloxy group.
  • the aralkyl group represented by R 1 to R 5 represents a group such as a benzyl group, a phenethyl group, or a ⁇ -phenylpropyl group, and these groups may be substituted.
  • Preferred substituents include The group which may be substituted with the said cycloalkyl group can be mentioned similarly.
  • Examples of the alkoxy group represented by R 1 to R 5 include an alkoxy group having 1 to 8 carbon atoms. Specifically, methoxy, ethoxy, n-propoxy, n-butoxy, n-octyloxy, isopropoxy , Alkoxy groups such as isobutoxy, 2-ethylhexyloxy, or t-butoxy.
  • substituents include halogen atoms such as chlorine atom, bromine atom, fluorine atom, hydroxy group, alkoxy group, cycloalkoxy group, aralkyl group (this phenyl group).
  • acyl group such as an acetyl group or a propionyl group, or an aryl group such as an acetyloxy group or a propionyloxy group (the phenyl group may be further substituted with an alkyl group or a halogen atom).
  • An unsubstituted acyloxy group or an arylcarbonyloxy group such as a benzoyloxy group And the like.
  • Examples of the cycloalkoxy group represented by R 1 to R 5 include an unsubstituted cycloalkoxy group having 1 to 8 carbon atoms, specifically, cyclopropyloxy, cyclopentyloxy, cyclohexyl. And groups such as oxy.
  • these groups may be substituted, and preferred examples of the substituent include the same groups that may be substituted with the cycloalkyl group.
  • Examples of the aryloxy group represented by R 1 to R 5 include a phenoxy group, and the phenyl group includes a substituent that is exemplified as a group that may be substituted with the cycloalkyl group such as an alkyl group or a halogen atom. May be substituted.
  • Examples of the aralkyloxy group represented by R 1 to R 5 include a benzyloxy group and a phenethyloxy group. These substituents may be further substituted, and preferred substituents include the above-mentioned cycloalkyl.
  • the group which may be substituted with a group can be mentioned similarly.
  • Examples of the acyl group represented by R 1 to R 5 include an unsubstituted acyl group having 2 to 8 carbon atoms such as an acetyl group and a propionyl group (the hydrocarbon group of the acyl group includes alkyl, alkenyl, alkynyl). These substituents may be further substituted, and preferred substituents include the same groups that may be substituted with the cycloalkyl group.
  • the carbonyloxy group represented by R 1 to R 5 is an unsubstituted acyloxy group having 2 to 8 carbon atoms such as acetyloxy group and propionyloxy group (the hydrocarbon group of the acyl group is alkyl, alkenyl, alkynyl). And arylcarbonyloxy groups such as a benzoyloxy group, and these groups may be further substituted with the same groups as those which may be substituted with the cycloalkyl group.
  • the oxycarbonyl group represented by R 1 to R 5 represents an alkoxycarbonyl group such as a methoxycarbonyl group, an ethoxycarbonyl group or a propyloxycarbonyl group, or an aryloxycarbonyl group such as a phenoxycarbonyl group.
  • substituents may be further substituted, and preferable substituents include the same groups that may be substituted with the cycloalkyl group.
  • the oxycarbonyloxy group represented by R 1 to R 5 represents an alkoxycarbonyloxy group having 1 to 8 carbon atoms such as a methoxycarbonyloxy group, and these substituents may be further substituted and are preferably substituted. Examples of the group include the same groups that may be substituted on the cycloalkyl group.
  • R 1 to R 5 may be connected to each other to form a ring structure.
  • the linking group represented by L represents a substituted or unsubstituted alkylene group, an oxygen atom, or a direct bond.
  • the alkylene group is a group such as a methylene group, an ethylene group, or a propylene group. This group may be further substituted with the above-mentioned groups which may be substituted with the groups represented by R 1 to R 5 .
  • a direct bond and an aromatic carboxylic acid are particularly preferable as the linking group represented by L.
  • the organic acid represented by the general formula (1) constituting the ester compound serving as a plasticizer in the present invention includes at least R 1 or R 2 having the alkoxy group, acyl group, oxycarbonyl group, carbonyl group. Those having an oxy group or an oxycarbonyloxy group are preferred. A compound having a plurality of substituents is also preferred.
  • the organic acid which substitutes the hydroxyl group (hydroxyl group) of trivalent or more alcohol may be single type, or multiple types may be sufficient as it.
  • the trihydric or higher alcohol compound that reacts with the organic acid represented by the general formula (1) to form a polyhydric alcohol ester compound is preferably a trihydric to polyhydric aliphatic polyhydric alcohol.
  • the trihydric or higher alcohol is preferably represented by the following general formula (2).
  • R ′-(OH) m represents an m-valent organic group
  • m represents a positive integer of 3 or more
  • the OH group represents an alcoholic hydroxy group (hydroxyl group).
  • Particularly preferred is a polyhydric alcohol having 3 or 4 as m.
  • Examples of preferred polyhydric alcohols include the following, but the present invention is not limited to these.
  • glycerin trimethylolethane, trimethylolpropane and pentaerythritol are preferable.
  • An organic acid represented by the general formula (1) and an ester of a trihydric or higher polyhydric alcohol represented by the general formula (2) can be synthesized by a known method. In the examples, typical synthesis examples are shown.
  • the organic acid represented by the general formula (1) and the polyhydric alcohol represented by the general formula (2) are condensed and esterified in the presence of an acid, for example.
  • a plasticizer comprising an organic acid represented by the general formula (1) and an ester of a trihydric or higher polyhydric alcohol represented by the general formula (2)
  • a compound represented by the following general formula (3) is preferable. .
  • R 6 to R 20 represent a hydrogen atom or a cycloalkyl group, an aralkyl group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an aralkyloxy group, an acyl group, a carbonyloxy group, an oxycarbonyl group, or an oxycarbonyloxy group. These may be further substituted.
  • R 21 represents a hydrogen atom or an alkyl group.
  • the cycloalkyl group, aralkyl group, alkoxy group, cycloalkoxy group, aryloxy group, aralkyloxy group, acyl group, carbonyloxy group, oxycarbonyl group, and oxycarbonyloxy group of R 6 to R 20 are represented by the above general formula ( Examples thereof include the same groups as R 1 to R 5 in 1).
  • an esterified compound obtained by esterifying all or part of the OH group in the (meth) acrylic polymer and the compound (A) having one furanose structure or one pyranose structure Alternatively, it is also preferable to use an esterified compound obtained by esterifying all or part of the OH groups in the compound (B) in which at least one of the furanose structure or the pyranose structure is bonded to 2 or more and 12 or less.
  • the esterified compound of the compound (A) and the esterified compound of the compound (B) according to the present invention are collectively referred to as a sugar ester compound.
  • ester compound is a monosaccharide ( ⁇ -glucose, ⁇ -fructose) benzoate, or a monosaccharide —OR 12 , —OR 15 , —OR 22 , —OR represented by the following general formula (A):
  • the benzoic acid in the above general formula may further have a substituent, for example, an alkyl group, an alkenyl group, an alkoxyl group, and a phenyl group, and these alkyl group, alkenyl group, and phenyl group have a substituent. You may have.
  • Examples of the preferred compound (A) and compound (B) include the following, but the present invention is not limited to these.
  • Examples of the compound (A) include glucose, galactose, mannose, fructose, xylose, or arabinose.
  • Examples of the compound (B) include lactose, sucrose, nystose, 1F-fructosyl nystose, stachyose, maltitol, lactitol, lactulose, cellobiose, maltose, cellotriose, maltotriose, raffinose or kestose.
  • gentiobiose, gentiotriose, gentiotetraose, xylotriose, galactosyl sucrose, and the like are also included.
  • compounds having both a furanose structure and a pyranose structure are particularly preferable.
  • Preferred examples include sucrose, kestose, nystose, 1F-fructosyl nystose, stachyose, and more preferably sucrose.
  • a compound in which at least one furanose structure or pyranose structure is bonded in an amount of 2 or more and 3 or less is also a preferred embodiment.
  • the monocarboxylic acid used for esterifying all or part of the OH groups in the compound (A) and the compound (B) according to the present invention is not particularly limited, and known aliphatic monocarboxylic acids and fats A cyclic monocarboxylic acid, an aromatic monocarboxylic acid, or the like can be used.
  • the carboxylic acid used may be one kind or a mixture of two or more kinds.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid , Saturated fatty acids such as tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, Examples include unsaturated fatty acids such as undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid and oc
  • Examples of preferred alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include aromatic monocarboxylic acids having an alkyl group or alkoxy group introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, cinnamic acid, benzylic acid, biphenylcarboxylic acid, and naphthalene.
  • aromatic monocarboxylic acids having two or more benzene rings such as carboxylic acid and tetralin carboxylic acid, or derivatives thereof.
  • esterified compounds obtained by esterifying the compound (A) and the compound (B) an acetylated compound having an acetyl group introduced by esterification is preferable.
  • the oligosaccharide esterified compound can be applied as a compound in which 3 to 12 of the furanose structure or the pyranose structure according to the present invention are bonded.
  • Oligosaccharides are produced by allowing an enzyme such as amylase to act on starch, sucrose, etc.
  • examples of oligosaccharides that can be applied to the present invention include maltooligosaccharides, isomaltoligosaccharides, fructooligosaccharides, galactooligosaccharides, xylooligos. Sugar.
  • Oligosaccharide can also be acetylated in the same manner as the above compound (A) and compound (B).
  • Acetic anhydride 200 ml was added dropwise to a solution obtained by adding pyridine (100 ml) to glucose (29.8 g, 166 mmol) and allowed to react for 24 hours. Thereafter, the solution was concentrated by evaporation and poured into ice water. After standing for 1 hour, the mixture was filtered through a glass filter to separate the solid and water. The solid on the glass filter was dissolved in chloroform and separated with cold water until it became neutral. The organic layer was separated and dried over anhydrous sodium sulfate.
  • glycolose pentaacetate (58.8 g, 150 mmol, 90.9%).
  • monocarboxylic acid can be used instead of the acetic anhydride.
  • esterified compound according to the present invention will be given below, but the present invention is not limited thereto.
  • the optical compensation film according to the present invention contains a furanose structure or a compound having one furanose structure or a pyranose structure in order to suppress the fluctuation of the retardation value and stabilize the display quality. It is preferable to contain 1 to 30% by mass of an esterified compound obtained by esterifying all or part of the OH group in the compound (B) in which 2 to 12 of at least one pyranose structure is bonded, particularly 5 to 30% by mass. % Is preferable. Within this range, it is preferable that the excellent effects of the present invention are exhibited and there is no bleeding out.
  • phase difference controlling agent those containing bisphenol A in the molecule are also preferred.
  • a compound in which ethylene oxide or propylene oxide is added to both ends of bisphenol A can be used.
  • BP series such as New Paul BP-2P, BP-3P, BP-23P, BP-5P, BPE-20 (F), BPE-20NK, BPE-20T, BPE-40, BPE-60, BPE-100
  • BPE series manufactured by Sanyo Chemical Co., Ltd.
  • BPX series manufactured by Adeka Co., Ltd.
  • Adeka Polyether BPX-11, BPX-33, BPX-55 Adeka Polyether BPX-11, BPX-33, BPX-55.
  • Diallyl bisphenol A dimethallyl bisphenol A, tetrabromobisphenol A in which bisphenol A is substituted with bromine, oligomers and polymers obtained by polymerizing this, bisphenol A bis (diphenyl phosphate) substituted with diphenyl phosphate, etc. Can be used.
  • Polycarbonate obtained by polymerizing bisphenol A polyarylate obtained by polymerizing bisphenol A with a dibasic acid such as terephthalic acid, and an epoxy oligomer or polymer polymerized with an epoxy-containing monomer can also be used.
  • Modiper CL130D or L440-G obtained by graft polymerization of bisphenol A and styrene or styrene acrylic can also be used.
  • the acrylic resin-containing film according to the present invention may contain two or more retardation control agents.
  • elution of the phase difference controlling agent can be reduced. The reason is not clear, but it seems that elution is suppressed by the ability to reduce the amount added per type and the interaction between the two phase difference control agents and the acrylic resin-containing composition.
  • a plasticizer can be used in combination in order to improve the fluidity and flexibility of the composition.
  • the plasticizer include phthalate ester, fatty acid ester, trimellitic ester, phosphate ester, polyester, and epoxy.
  • phosphate plasticizers triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenylbiphenyl phosphate, trioctyl phosphate, tributyl phosphate, etc.
  • phthalate ester plasticizers diethyl phthalate, dimethoxy Ethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate and the like can be used.
  • polyester-based and phthalate-based plasticizers are preferably used.
  • Polyester plasticizers are superior in non-migration and extraction resistance compared to phthalate ester plasticizers such as dioctyl phthalate, but are slightly inferior in plasticizing effect and compatibility.
  • the polyester plasticizer is a reaction product of a monovalent or tetravalent carboxylic acid and a monovalent or hexavalent alcohol, and is mainly obtained by reacting a divalent carboxylic acid with a glycol.
  • Representative divalent carboxylic acids include glutaric acid, itaconic acid, adipic acid, phthalic acid, azelaic acid, sebacic acid and the like.
  • glycol examples include glycols such as ethylene, propylene, 1,3-butylene, 1,4-butylene, 1,6-hexamethylene, neopentylene, diethylene, triethylene, and dipropylene. These divalent carboxylic acids and glycols may be used alone or in combination.
  • the ester plasticizer may be any of ester, oligoester, and polyester types, and the molecular weight is preferably in the range of 100 to 10,000, and preferably in the range of 600 to 3000, which has a large plasticizing effect.
  • the viscosity of the plasticizer has a correlation with the molecular structure and molecular weight, but in the case of an adipic acid plasticizer, the range of 200 to 5000 mPa ⁇ s (25 ° C.) is preferable because of compatibility and plasticization efficiency. Furthermore, some polyester plasticizers may be used in combination.
  • the plasticizer is preferably added in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the composition containing an acrylic resin. If the added amount of the plasticizer exceeds 30 parts by mass, the surface becomes sticky, which is not preferable for practical use.
  • These plasticizers may be used alone or in combination of two or more.
  • Antioxidant> in this invention, what is generally known can be used as an antioxidant.
  • lactone, sulfur, phenol, double bond, hindered amine, and phosphorus compounds can be preferably used.
  • the phenolic compound preferably has a 2,6-dialkylphenol structure.
  • BASF Japan Ltd. “Irganox 1076”, “Irganox 1010”, and ADEKA “ADEKA STAB AO-50” are trade names. What is marketed is preferable.
  • the above phosphorus compounds are, for example, from Sumitomo Chemical Co., Ltd., “Sumizer GP”, from ADEKA Co., Ltd., “ADK STAB PEP-24G”, “ADK STAB PEP-36” and “ADK STAB 3010”, from BASF Japan IRGAFOS P-EPQ ", commercially available from Sakai Chemical Industry Co., Ltd. under the trade name" GSY-P101 "is preferred.
  • the hindered amine compound is preferably commercially available, for example, from BASF Japan Co., Ltd. under the trade names “Tinuvin 144” and “Tinvin 770” and from ADEKA Co., Ltd. as “ADK STAB LA-52”.
  • the above-mentioned sulfur compounds are preferably commercially available from Sumitomo Chemical Co., Ltd. under the trade names “Sumilizer TPL-R” and “Sumilizer TP-D”.
  • the above-mentioned double bond compound is preferably commercially available from Sumitomo Chemical Co., Ltd. under the trade names of “Sumilizer GM” and “Sumilizer GS”.
  • the amount of these antioxidants and the like to be added is appropriately determined in accordance with the process for recycling and use, but generally 0.05 to 20% by mass, preferably with respect to the resin as the main raw material of the film Is added in the range of 0.1 to 1% by mass.
  • antioxidants can obtain a synergistic effect by using several different types of compounds in combination rather than using only one kind.
  • the combined use of lactone, phosphorus, phenol and double bond compounds is preferred.
  • colorant means a dye or a pigment.
  • the colorant means an effect that makes the color tone of a liquid crystal screen a blue tone, a yellow index adjustment, or a haze reduction.
  • dyes and pigments can be used as the colorant, but anthraquinone dyes, azo dyes, phthalocyanine pigments and the like are effective.
  • UV absorber used in the present invention is not particularly limited, for example, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, inorganic powders Examples include the body. It is good also as a polymer type ultraviolet absorber.
  • ⁇ Matting agent> it is preferable to add a matting agent in order to impart film slipperiness.
  • any inorganic compound or organic compound may be used as long as it has heat resistance at the time of melting without impairing transparency of the obtained film, for example, talc, mica, zeolite, diatomaceous earth, Calcined siliceous clay, kaolin, sericite, bentonite, smectite, clay, silica, quartz powder, glass beads, glass powder, glass flakes, milled fiber, wollastonite, boron nitride, boron carbide, titanium boride, magnesium carbonate, Heavy calcium carbonate, light calcium carbonate, calcium silicate, aluminum silicate, magnesium silicate, magnesium aluminosilicate, alumina, silica, zinc oxide, titanium dioxide, iron oxide, magnesium oxide, zirconium oxide, aluminum hydroxide, calcium hydroxide, water Magnesium oxide Beam, calcium sulfate, barium sulfate, silicon carbide, aluminum carbide, titanium carbide, aluminum n
  • High transparency and slipperiness can be achieved at the same time by using particles having different particle sizes and shapes (for example, needle shape and spherical shape).
  • silicon dioxide is particularly preferably used since it has a refractive index close to that of cellulose ester and is excellent in transparency (haze).
  • silicon dioxide examples include Aerosil 200V, Aerosil R972V, Aerosil R972, R974, R812, 200, 300, R202, OX50, TT600, NAX50 (manufactured by Nippon Aerosil Co., Ltd.), Sea Hoster KEP-10, Sea Hoster KEP- 30, Seahoster KEP-50 (above, manufactured by Nippon Shokubai Co., Ltd.), Silo Hovic 100 (manufactured by Fuji Silysia), Nip Seal E220A (manufactured by Nippon Silica Kogyo), Admafine SO (manufactured by Admatechs), etc. Goods etc. can be preferably used.
  • the shape of the particles can be used without particular limitation, such as indefinite shape, needle shape, flat shape, spherical shape, etc. However, the use of spherical particles is preferable because the transparency of the resulting film can be improved.
  • the particle size is preferably smaller than the wavelength of visible light, and more preferably 1 ⁇ 2 or less of the wavelength of visible light. . If the size of the particles is too small, the slipperiness may not be improved, so the range of 80 nm to 180 nm is particularly preferable.
  • the particle size means the size of the aggregate when the particle is an aggregate of primary particles. Moreover, when a particle is not spherical, it means the diameter of a circle corresponding to the projected area.
  • a hydrogen bonding solvent can be added for the purpose of reducing the melt viscosity.
  • the hydrogen bonding solvent is J.I. N.
  • Cellulosic resin compositions can be obtained by adding a hydrogen bonding solvent rather than the glass transition temperature of cellulose resin alone.
  • the melt viscosity of the cellulose resin composition containing a hydrogen bonding solvent rather than the cellulose resin at the same melt temperature can be lowered.
  • a haze value is used as an index for judging the transparency of the protective film (optical film) in the present invention.
  • the haze value is required to be 1.0% or less, and 0.5% or less. More preferably.
  • the total light transmittance is 90% or more, More preferably, it is 93% or more.
  • a realistic upper limit it is about 99%.
  • the protective film (optical film) according to the present invention containing the acrylic resin (A) and the cellulose ester resin (B), high transparency can be obtained, but acrylic particles are used for the purpose of improving another physical property. Can be used, the haze value can be prevented from increasing by reducing the difference in refractive index between the resin (acrylic resin (A) and cellulose ester resin (B)) and acrylic particles (D).
  • the protective film (optical film) according to the present invention preferably has a defect with a diameter of 5 ⁇ m or more in the film plane of 1 piece / 10 cm square or less. More preferably, it is 0.5 piece / 10 cm square or less, more preferably 0.1 piece / 10 cm square or less.
  • the diameter of the defect indicates the diameter when the defect is circular, and when it is not circular, the range of the defect is determined by observing with a microscope according to the following method, and the maximum diameter (diameter of circumscribed circle) is determined.
  • the range of the defect is the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope when the defect is a bubble or a foreign object. If the defect is a change in surface shape, such as transfer of a roll flaw or an abrasion, the size is confirmed by observing the defect with the reflected light of a differential interference microscope.
  • the film When the number of defects is more than 1/10 cm square, for example, when a tension is applied to the film during processing in a later process, the film may be broken with the defect as a starting point and productivity may be reduced. Moreover, when the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise.
  • ⁇ Photoelastic coefficient> The photoelastic coefficient is measured for retardation Ro in the film plane while applying a load to the produced protective film (optical film). Then, Ro was obtained while changing the load, a load-Ro curve was created, and the slope was taken as the photoelastic coefficient.
  • Retardation Ro in the film plane measured the value in wavelength 589nm using the retardation measuring apparatus (KOBRA31PR, Oji Scientific Instruments company make).
  • the protective film (optical film) according to the present invention is preferably adjusted so that the photoelastic coefficient is ⁇ 5 ⁇ 10 ⁇ 13 to 5 ⁇ 10 ⁇ 13 cm 2 / dyn.
  • the ratio of each resin is adjusted within the range of the mass ratio of acrylic resin to cellulose ester resin 95: 5 to 30:70. Then, the composition is optimized by adjusting the combination of the retardation control agent and the amount to be added.
  • the thickness of the protective film (optical film) according to the present invention is preferably 20 ⁇ m or more. More preferably, it is 30 ⁇ m or more.
  • the protective film (optical film) according to the present invention can be particularly preferably used as a polarizing plate protective film for a large-sized liquid crystal display device or a liquid crystal display device for outdoor use as long as the physical properties as described above are satisfied.
  • the “moisture permeability” refers to the moisture permeability when kept for 24 hours under environmental conditions of a temperature of 40 ° C. and a humidity of 90% RH based on the calcium chloride-cup method defined in JIS Z0208. .
  • the protective film (optical film) according to the present invention is preferably adjusted so that the moisture permeability is 300 g / m 2 ⁇ 24 hr or more.
  • the ratio of each resin of the acrylic resin and the cellulose ester resin is adjusted within a mass ratio of 95: 5 to 30:70. This is done by adjusting the thickness. Increasing the cellulose ratio and reducing the film thickness increases the moisture permeability of the protective film, and provides excellent drying properties when used as a polarizing plate, leading to enhanced adhesion.
  • production methods such as an inflation method, a T-die method, a calendar method, a cutting method, a casting method, an emulsion method, and a hot press method can be used. From the viewpoints of suppression of coloring, suppression of defects of foreign matter, suppression of optical defects such as die lines, solution casting by casting is preferred.
  • Organic solvent useful for forming the dope when the protective film (optical film) according to the present invention is produced by the solution casting method includes acrylic resin (A), cellulose ester resin (B), and other additives. If it melt
  • methylene chloride as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc.
  • Methylene chloride, methyl acetate, ethyl acetate and acetone can be preferably used.
  • the dope preferably contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • the ratio of alcohol in the dope increases, the web gels and peeling from the metal support becomes easy.
  • acrylic resin (A) and cellulose ester in non-chlorine organic solvent system There is also a role of promoting dissolution of the resin (B).
  • an acrylic resin (A) and a cellulose ester resin (B) in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms are at least 15 to 45% by mass in total.
  • a dissolved dope composition is preferred.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
  • a method carried out at normal pressure a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544
  • Various dissolution methods such as a method of performing a cooling dissolution method as described in JP-A-9-95557 or JP-A-9-95538, a method of performing at a high pressure as described in JP-A-11-21379, and the like.
  • a method in which pressure is applied at a temperature equal to or higher than the boiling point of the main solvent is particularly preferable.
  • the acrylic resin (A) and cellulose ester resin (B) in the dope are preferably in the range of 15 to 45% by mass in total.
  • a filter medium having a collected particle diameter of 0.5 to 5 ⁇ m and a drainage time of 10 to 25 sec / 100 ml.
  • the aggregate remaining at the time of particle dispersion and the aggregate generated when the main dope is added are aggregated by using a filter medium having a collected particle diameter of 0.5 to 5 ⁇ m and a drainage time of 10 to 25 sec / 100 ml. Can only be removed.
  • the concentration of particles is sufficiently thinner than that of the additive solution, so that the aggregates do not stick together during filtration and the filtration pressure does not increase suddenly.
  • FIG. 1 is a diagram schematically showing an example of a dope preparation step, a casting step, and a drying step of a solution casting film forming method preferable for the present invention.
  • the main dope solution is filtered by the main filter 3, and an ultraviolet absorbent additive solution is added in-line from 16 to this.
  • the main dope may contain about 10 to 50% by weight of recycled material.
  • the return material may contain acrylic particles. In that case, it is preferable to control the addition amount of the acrylic particle addition liquid in accordance with the addition amount of the return material.
  • the additive solution containing acrylic particles preferably contains 0.5 to 10% by mass of acrylic particles, more preferably 1 to 10% by mass, and more preferably 1 to 5% by mass. Most preferably.
  • the additive solution is preferable because it has a low viscosity and is easy to handle and can be easily added to the main dope.
  • Recycled material is a finely pulverized protective film (optical film), which is generated when the protective film (optical film) is formed.
  • a protective film (optical film) raw material is used.
  • an acrylic resin, a cellulose ester resin, and in some cases, acrylic particles kneaded into pellets can be preferably used.
  • An endless metal belt 31 such as a stainless steel belt or a rotating metal drum that feeds the dope to a pressure die 30 through a liquid feed pump (for example, a pressurized metering gear pump) and transfers it indefinitely.
  • a liquid feed pump for example, a pressurized metering gear pump
  • the pressure die includes a coat hanger die and a T die, and any of them is preferably used.
  • the surface of the metal support is a mirror surface.
  • two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
  • Solvent evaporation step In this step, the web (the dope is cast on the casting support and the formed dope film is called a web) is heated on the casting support to evaporate the solvent.
  • the web on the support after casting is preferably dried on the support in an atmosphere of 40 to 100 ° C. In order to maintain the atmosphere at 40 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat by means such as infrared rays.
  • Peeling process It is the process of peeling the web which the solvent evaporated on the metal support body in a peeling position. The peeled web is sent to the next process.
  • the temperature at the peeling position on the metal support is preferably 10 to 40 ° C., more preferably 11 to 30 ° C.
  • the residual solvent amount at the time of peeling of the web on the metal support at the time of peeling is preferably peeled in the range of 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like. If the web is peeled off at a time when the amount of residual solvent is larger, if the web is too soft, the flatness at the time of peeling will be lost, and slippage and vertical stripes are likely to occur due to the peeling tension. The amount of solvent is determined.
  • the amount of residual solvent in the web is defined by the following formula.
  • Residual solvent amount (%) (mass before web heat treatment ⁇ mass after web heat treatment) / (mass after web heat treatment) ⁇ 100 Note that the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
  • the peeling tension at the time of peeling the metal support from the film is usually 196 to 245 N / m. However, if wrinkles easily occur at the time of peeling, it is preferable to peel with a tension of 190 N / m or less. It is preferable to peel at a minimum tension of ⁇ 166.6 N / m, and then peel at a minimum tension of ⁇ 137.2 N / m, and particularly preferable to peel at a minimum tension of ⁇ 100 N / m.
  • the temperature at the peeling position on the metal support is preferably ⁇ 50 to 40 ° C., more preferably 10 to 40 ° C., and most preferably 15 to 30 ° C.
  • a drying device 35 that transports the web alternately through rolls arranged in the drying device and / or a tenter stretching device 34 that clips and transports both ends of the web with clips. And dry the web.
  • the drying means is generally to blow hot air on both sides of the web, but there is also a means to heat by applying microwaves instead of wind. Too rapid drying tends to impair the flatness of the finished film. Drying at a high temperature is preferably performed from about 8% by mass or less of the residual solvent. Throughout the drying is generally carried out at 40-250 ° C. It is particularly preferable to dry at 40 to 160 ° C.
  • tenter stretching apparatus When using a tenter stretching apparatus, it is preferable to use an apparatus that can independently control the film gripping length (distance from the start of gripping to the end of gripping) left and right by the left and right gripping means of the tenter. In the tenter process, it is also preferable to intentionally create compartments having different temperatures in order to improve planarity.
  • the stretching operation may be performed in multiple stages, and it is also preferable to perform biaxial stretching in the casting direction and the width direction.
  • biaxial stretching When biaxial stretching is performed, simultaneous biaxial stretching may be performed or may be performed stepwise.
  • stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible. That is, for example, the following stretching steps are possible.
  • Simultaneous biaxial stretching includes stretching in one direction and contracting the other while relaxing the tension.
  • the preferred draw ratio for simultaneous biaxial stretching can be in the range of x1.01 to x1.5 in both the width direction and the longitudinal direction.
  • the amount of residual solvent in the web is preferably 20 to 100% by mass at the start of the tenter, and drying is preferably performed while the tenter is applied until the amount of residual solvent in the web is 10% by mass or less. More preferably, it is 5% by mass or less.
  • the drying temperature is preferably 30 to 160 ° C, more preferably 50 to 150 ° C, and most preferably 70 to 140 ° C.
  • the temperature distribution in the width direction of the atmosphere is small from the viewpoint of improving the uniformity of the film.
  • the temperature distribution in the width direction in the tenter process is preferably within ⁇ 5 ° C, and within ⁇ 2 ° C. Is more preferable, and within ⁇ 1 ° C. is most preferable.
  • Winding step This is a step of winding the protective film (optical film) by the winder 37 after the residual solvent amount in the web is 2% by mass or less, and the residual solvent amount is 0.4% by mass or less. Thus, a film having good dimensional stability can be obtained. It is particularly preferable to wind up at 0.00 to 0.10% by mass.
  • a generally used one may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc., and these may be used properly.
  • the protective film (optical film) according to the present invention is preferably a long film.
  • the protective film has a thickness of about 100 m to 5000 m and is usually provided in a roll shape.
  • the film width is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
  • the film thickness of the protective film (optical film) according to the present invention is not particularly limited, but when used for a polarizing plate protective film described later, it is preferably 20 to 200 ⁇ m, more preferably 25 to 100 ⁇ m, A thickness of 30 to 80 ⁇ m is particularly preferable.
  • the polarizing plate can be produced by a general method. It is preferable that an adhesive layer is provided on the back side of the protective film (optical film) according to the present invention, and is bonded to at least one surface of a polarizer produced by immersion and stretching in an iodine solution.
  • the protective film (optical film) according to the present invention may be used, or another polarizing plate protective film may be used.
  • a commercially available cellulose ester film for example, Konica Minoltack KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC8UE, KC4FR-4, KC4FR-3, KC4FR-3, KC4FR-4 -1, KC8UY-HA, KC8UX-RHA, manufactured by Konica Minolta Opto Co., Ltd.) and the like are preferably used.
  • a polarizer which is a main component of a polarizing plate, is an element that allows only light of a plane of polarization in a certain direction to pass.
  • a typical polarizer currently known is a polyvinyl alcohol-based polarizing film, which is polyvinyl alcohol.
  • iodine is dyed on a system film and one in which dichroic dye is dyed.
  • the polarizer is formed by forming a polyvinyl alcohol aqueous solution into a film and dyeing the film by uniaxial stretching or dyeing or uniaxially stretching, and then performing a durability treatment with a boron compound.
  • an aqueous adhesive in which 50% by mass or more of the solvent is water can be used, and the aqueous adhesive refers to an adhesive in which 50% by mass or more of the solvent is water
  • examples include polyvinyl alcohol-based aqueous adhesives (including modified polyvinyl alcohols such as acetoacetyl groups, sulfonic acid groups, carboxy groups, and oxyalkylene groups), gelatin adhesives, vinyl latex adhesives, water-based polyesters, and the like.
  • An alcohol-based aqueous adhesive is preferred.
  • Liquid crystal display device By incorporating the polarizing plate bonded with the protective film (optical film) according to the present invention into a liquid crystal display device, various liquid crystal display devices with excellent visibility can be produced. It is preferably used for a liquid crystal display device for outdoor use such as digital signage.
  • the polarizing plate according to the present invention is bonded to a liquid crystal cell via an adhesive layer or the like.
  • the polarizing plate according to the present invention is a reflective type, transmissive type, transflective LCD or TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), IPS type (including FFS type), etc. It is preferably used in LCDs of various driving methods. In particular, in a large-screen display device with a VA screen of 30 or more, particularly 30 to 54, there is no white spot at the periphery of the screen and the effect is maintained for a long time.
  • ⁇ Cellulose ester resin (B)> The acrylic resin used in the examples is as follows.
  • a small amount of the polymer latex thus obtained was collected, and the flat particle size was determined by the absorbance method, which was 0.10 ⁇ m.
  • the remaining latex was poured into a 3% by mass sodium sulfate warm aqueous solution, salted out and coagulated, and then dried after repeated dehydration and washing to obtain acrylic fine particles (D1) having a three-layer structure.
  • the produced dope solution was uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus. With the stainless steel band support, the solvent was evaporated until the residual solvent amount reached 100%, and the film was peeled off from the stainless steel band support with a peeling tension of 162 N / m.
  • the web of the peeled resin composition was evaporated at 35 ° C., slit to 1.5 m width, and then stretched 1.30 times (30%) in the width direction with a tenter at a drying temperature of 140 ° C. Dried. At this time, the residual solvent amount when starting stretching with a tenter was 10%.
  • the roll sample 1 of the polarizing plate protective film 1 having a thickness of 5200 m and a thickness of 40 ⁇ m was obtained by winding the core around a core of 15.24 cm in inner diameter with an initial tension of 220 N / m and a final tension of 110 N / m.
  • polarizing plate protective films 2 to 35 were prepared in the same manner as polarizing plate protective film 1.
  • a 120- ⁇ m-thick long roll polyvinyl alcohol film was immersed in 100 parts by mass of an aqueous solution containing 1 part by mass of iodine and 4 parts by mass of boric acid, and stretched in the transport direction 5 times at 50 ° C. to produce a polarizer.
  • a polyvinyl alcohol-based adhesive was applied to both sides of the polarizer, and alkali saponification treatment was performed on one side of the polarizer with a 1.5N KOH solution under saponification conditions of 40 ° C. for 60 seconds.
  • the polarizing plate protective film 1 was laminated with KC6UY (Konica Minolta Opto Co., Ltd.) that had been subjected to the same saponification treatment on the other surface, and bonded together with a roll machine, and then dried at 60 ° C. for 120 seconds. The polarizing plate 1 was produced.
  • polarizing plates 2 to 49 were prepared in the same manner as described above except that the polarizing plate protective film and the saponification treatment conditions were changed to the methods shown in Tables 1 to 3.
  • polarizing plate protective film 1 was subjected to corona treatment under the condition of 50 W ⁇ min / m 2 using a corona treatment device in which the electrode surface was covered with ceramic.
  • KC6UY manufactured by Konica Minolta Opto Co., Ltd. obtained by applying a polyvinyl alcohol-based adhesive on both surfaces of the polarizer and applying the corona treatment to the polarizing plate protective film 1 and performing the same saponification treatment on the other surface. Were laminated together with a roll machine, and then dried at 60 ° C. for 120 seconds to produce a polarizing plate 50.
  • polarizing plates 51 and 52 were produced in the same manner as described above except that the output of the corona treatment was 150 W ⁇ min / m 2 and 300 W ⁇ min / m 2 .
  • polarizing plates 53 and 54 In order to perform plasma treatment, first, a brass upper and lower electrode having a diameter of 50 mm is provided in a reaction vessel, and a polyimide having a thickness of 100 ⁇ m larger than the electrode is bonded to the electrode as a dielectric, and 150 mm ⁇ 150 mm and 80 ⁇ m in thickness are formed on the lower electrode. A polarizing plate protective film was placed, the electrode plate gap was 20 mm, and the air in the container was replaced with argon gas.
  • the polarizing plate protective film 1 is treated with a treatment time of 5 seconds, a polyvinyl alcohol-based adhesive is applied to both sides of the polarizer, and the plasma treatment is applied to one side of the polarizer.
  • KC6UY manufactured by Konica Minolta Opto Co., Ltd.
  • KC6UY manufactured by Konica Minolta Opto Co., Ltd.
  • a polarizing plate 54 was prepared in the same manner as described above except that the plasma atmosphere treatment time was 20 seconds.
  • the above-prepared polarizing plate was bonded so that the absorption axis was in the same direction as the polarizing plate previously bonded, and each liquid crystal display device was manufactured.
  • the produced polarizing plate is cut into a square of 5 cm ⁇ 5 cm, left in an atmosphere of 23 ° C. and 55% RH for 24 hours, and then peeled off from the corner portion at the interface between the polarizer and the film. This operation is performed with 100 polarizing plates for one type of sample, and the number of polarizing plates in which peeling is observed between the polarizer and the film is counted.
  • the polarizer adhesion is preferably at least the ⁇ level.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

 アクリル系樹脂とセルロースエステル系樹脂を含有するフィルムを保護フィルムとして用いた偏光板において、偏光子と保護フィルムの十分な密着性を有し、かつ画像ムラの少ない偏光板の製造方法を提供する。また、当該製造方法により製造された偏光板、及びそれを用いた液晶表示装置を提供する。 本発明の偏光板の製造方法は、表面改質処理工程と、保護フィルムを偏光子の面に貼り合せる貼合工程と、乾燥工程とを有する偏光板の製造方法であって、(1)当該保護フィルムは、アクリル樹脂(A)とセルロースエステル樹脂(B)とアミド結合を有するビニルポリマー(C)とを含有し、かつ(2)当該乾燥工程は、温度及び滞留時間が所定の範囲内であることを特徴とする。

Description

偏光板、その製造方法、及び液晶表示装置
 本発明は、アクリル樹脂とセルロースエステル樹脂を含有するフィルムを保護フィルムとして用いた偏光板とその製造方法、及び液晶表示装置に関する。
 近年、液晶表示装置の大型化や高性能化が進むにつれ、偏光板保護フィルムに対する要求が厳しくなっている。
 通常、液晶表示装置は、透明電極、液晶層、カラーフィルター等をガラス板で挟み込んだ液晶セルと、その両側に設けられた二枚の偏光板で構成されており、それぞれの偏光板は、偏光子(「偏光膜」又は「偏光フィルム」ともいう。)を二枚の保護フィルム(偏光板保護フィルム)で挟まれた構成となっている。
 このような保護フィルムは、偏光子と水系接着剤により接着するために、ケン化やコロナ放電などの表面処理が施される。ケン化処理は、簡便な方法で製造できるため、多用されている。また、最近の液晶表示装置の市場の拡大により、大量生産を効率的に行うことが要求されており、偏光板製造時に、弱い乾燥条件(時間短縮、乾燥温度の低減など)でも十分な偏光子とフィルムの接着性が得られることが必要となってきている。
 また、保護フィルムとしては、前記の表面処理が行われ易く、また、耐熱性にも優れるセルロースエステル樹脂が使用されることが多い。
 一方でアクリル系樹脂からなるフィルムは透明性に優れていて、種々の光学材料に利用されている。しかし、偏光板保護フィルムとして使用する場合は、ケン化などの表面改質処理後の水系接着剤による偏光子との接着性が乏しく、また、水系接着剤などに含まれる水分の透過性が悪いため偏光板の生産性が悪い、また、耐熱性に劣るという問題があった。
 そこで、セルロースエステルとアクリル樹脂の良い点を併せ持つようにするため、両樹脂の併用系が検討されている。(例えば特許文献1及び2参照)。
 本発明者らは、このようなアクリル樹脂とセルロースエステル樹脂を含有するフィルムについて種々検討を行ったところ、特に前記の偏光板の弱い乾燥条件(時間短縮、乾燥温度の低減など)において、偏光子とフィルムの接着性が不十分になるという新たな問題が見出された。
 また、偏光子との密着性が乏しいフィルムを密着させるために、偏光板製造における乾燥工程において、乾燥温度を上げるということが知られているが、それでは偏光板を用いてディスプレイにした際、コントラストが低下し、ムラが発生するという問題がある。
 従って、アクリル樹脂とセルロースエステル樹脂を含有するフィルムにおいて、偏光板製造時の乾燥工程が短時間、低温乾燥の場合で、偏光子と保護フィルムの密着性と、画像ムラの低減を両立させることは困難であった。
国際公開第2009/047924号 特開2009-1744号公報
 本発明は、上記問題・状況にかんがみてなされたものであり、その解決課題は、アクリル系樹脂とセルロースエステル系樹脂を含有するフィルムを保護フィルムとして用いた偏光板において、製造時の乾燥工程を短時間で低温乾燥しても偏光子と保護フィルムの十分な密着性を有し、かつ画像ムラの少ない偏光板の製造方法を提供すること、及び当該製造方法により製造された偏光板、及びそれを用いた液晶表示装置を提供することである。
 本発明に係る上記課題は、以下の手段により解決される。
 1.保護フィルムの表面を改質処理する表面改質処理工程と、表面改質された保護フィルムを偏光子の少なくとも一方の面に水系接着剤により貼り合せる貼合工程と、当該貼合工程で得られた貼合物を乾燥させる乾燥工程とを有する偏光板の製造方法であって、(1)当該保護フィルムは、アクリル樹脂(A)とセルロースエステル樹脂(B)とアミド結合を有するビニルポリマー(C)とを含有し、かつ(2)当該乾燥工程は、温度が40~70℃の範囲内であり、かつ滞留時間が60~180秒の範囲内であることを特徴とする偏光板の製造方法。
 2.前記保護フィルムは、透湿度が300g/m・24hr以上であり、かつ表面改質処理後の平均水接触角が55度以下であることを特徴とする前記第1項に記載の偏光板の製造方法。
 3.前記保護フィルムが、前記アクリル樹脂(A)と前記セルロースエステル樹脂(B)を70:30~30:70の範囲内の質量比で含有していることを特徴とする前記第1項又は第2項に記載の偏光板の製造方法。
 4.前記セルロースエステル樹脂(B)のアシル基の総置換度(T)が2.0~3.0の範囲内であり、かつ当該セルロースエステル樹脂(B)のアセチル置換度が1.3未満であることを特徴とする前記第1項から第3項までのいずれか一項に記載の偏光板の製造方法。
 5.前記第1項から第4項までのいずれか一項に記載の偏光板の製造方法によって製造されることを特徴とする偏光板。
 6.前記第5項に記載の偏光板が、画像表示面に配置されていることを特徴とする液晶表示装置。
 本発明の上記手段により、アクリル系樹脂及びセルロースエステル樹脂を含有するフィルムを保護フィルムとして用いた偏光板において、製造時の乾燥工程を短時間で低温乾燥しても偏光子と保護フィルムの十分な密着性を有し、かつ画像ムラの少ない偏光板の製造方法を提供することができる。また、当該該製造方法により製造された偏光板、及びそれを用いた液晶表示装置を提供することができる。
 本発明においては、アクリル樹脂に特定の比率でセルロースエステル樹脂を配合し、アミド結合を有するビニルポリマーを含有することにより、フィルムの透湿度が十分で、表面改質処理後の平均水接触角が低いため、偏光板製造時の短時間低温乾燥においても偏光子との密着性とコントラストのどちらも良好な偏光板の製造方法を提供することができる。
溶液流延製膜方法の工程を模式的に示した図
 本発明の偏光板の製造方法は、保護フィルムの表面を改質処理する表面改質処理工程と、表面改質された保護フィルムを偏光子の少なくとも一方の面に水系接着剤により貼り合せる貼合工程と、当該貼合工程で得られた貼合物を乾燥させる乾燥工程とを有する偏光板の製造方法であって、(1)当該保護フィルムは、アクリル樹脂(A)とセルロースエステル樹脂(B)とアミド結合を有するビニルポリマー(C)とを含有し、かつ(2)当該乾燥工程は、温度が40~70℃の範囲内であり、かつ滞留時間が60~180秒の範囲内であることを特徴とする。この特徴は、請求項1から請求項6までの請求項に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、本発明の効果発現の観点から前記保護フィルムは、透湿度が300g/m・24hr以上であり、かつ表面改質処理後の平均水接触角が55度以下であることが好ましい。また、当該保護フィルムが、前記アクリル樹脂(A)と前記セルロースエステル樹脂(B)を70:30~30:70の範囲内の質量比で含有していることが好ましい。さらに、当該セルロースエステル樹脂(B)のアシル基の総置換度(T)が2.0~3.0の範囲内であり、かつ当該セルロースエステル樹脂(B)のアセチル置換度が1.3未満であることが好ましい。
 本発明の偏光板の製造方法は、アクリル系フィルムを保護フィルムとして用いた偏光板の製造方法として好適であり、また、当該偏光板は、それが画像表示面に設置される態様の画像表示装置に好適に用いることができる。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。
 (偏光板の製造方法の概要)
 本発明の偏光板の製造方法は、保護フィルムを偏光子の両側に水系接着剤により貼り合せる工程、及び乾燥工程を有する偏光板の製造方法であって、(1)当該保護フィルムは、アクリル樹脂(A)とセルロースエステル樹脂(B)とアミド結合を有するビニルポリマー(C)とを含有し、かつ(2)当該乾燥工程は、温度が40~70℃の範囲内であり、かつ滞留時間が60~180秒の範囲内であることを特徴とする。
 本発明において、前記保護フィルムは、透湿度が300g/m・24hr以上であり、かつ表面改質処理後の平均水接触角が55度以下であることが好ましい。
 なお、本発明に係る偏光板は、ロール状に巻かれた状態で製造される態様において製造することもできる。この場合、本発明に係る保護フィルムの一方の表面にプロテクトフィルムを貼合し、他方の側に粘着剤層を設けその表面にセパレートフィルムを貼合することが好ましい。
 〈表面改質処理〉
 本発明に用いる保護フィルムには、偏光子と接着する前に表面改質処理(単に「表面処理」ともいう。)を施して、フィルムの表面の平均水接触角を55度以下にすることが好ましいが、更に好ましくは、20~50度の範囲内に、水接触角の標準偏差を0.01~5にすることである。
 表面改質処理としてはアルカリ・ケン化処理、コロナ放電処理、プラズマ処理、紫外線照射処理などが挙げられる。
 表面改質処理を行うことにより、フィルムの表面に、ヒドロキシ基、カルボキシ基、カルボニル基、アミノ基、スルホン基等の官能基を導入することができ、水接触角等の表面の性状を改質することができる。
 なお、水接触角は、接触角計を用いてθ/2法により求める。平均水接触角は、表面改質処理を施した保護フィルムを温度23℃湿度55%R.H.の環境下で24時間調湿した後、同環境下で、100cm範囲内で無作為に選んだ20点の水接触角を測定し、この測定値の加算平均により算出される。当該水接触角の標準偏差は、この測定値から算出される。
 以下、本発明において好適に用いられるアルカリ・ケン化処理、コロナ放電処理、及びプラズマ処理について説明をする。
 《アルカリ・ケン化処理》
 本発明に用いるアルカリ・ケン化処理方法としては、浸漬法、アルカリ液塗布法が挙げられるが、生産性の観点から、浸漬法が好ましい。
 前記浸漬法は、アルカリ液の中にフィルムを適切な条件で浸漬し、フィルム全表面のアルカリと反応性を有する全ての面をケン化処理する手法であり、特別な設備を必要としないため、コストの観点で好ましい。
 アルカリ液は、水酸化ナトリウム水溶液であることが好ましい。濃度は0.5~3mol/lが好ましく、1~2mol/lがより好ましい。アルカリ液の液温は25~70℃が好ましく、30~60℃がより好ましい。処理時間は、フィルムの平均水接触角が20~50度、また水接触角の標準偏差を0.01~5の範囲内にできれば良く、適宜調整することができる。
 アルカリ液に浸漬した後は、フィルムの中にアルカリ成分が残留しないように、水で十分に水洗したり、希薄な酸に浸漬してアルカリ成分を中和することが好ましい。
 《コロナ放電処理》
 本発明で用いるコロナ放電処理(「コロナ処理」ともいう。)は、電極の構造として、ワイヤー電極、平面電極、ロール電極のものが好適であるが、放電を均一にするために、フィルムと電極との間に誘電体を挟んで処理を実施することが好ましい。
 前記電極の材質としては、鉄、銅、アルミ、ステンレス等の金属を用いることができ、電極形状としては薄板状、ナイフエッジ状、ブラシ状等の電極を用いることができる。
 前記誘電体は、比誘電率が10以上のものを使用し、両極の電極の上下にそれぞれ誘電体を挟んだ構造が好ましい。誘電体の材質としては、セラミック、シリコンゴム、ポリテトラフルオロエチレン、ポリエチレンテレフタレート等のプラスチック、ガラス、石英、二酸化珪素、酸化アルミニウム、二酸化ジルコニウム、二酸化チタン等の金属酸化物、チタン酸バリウム等の化合物が挙げられる。特に、比誘電率10以上(25℃環境下)の固体誘電体を介在させておくことが低電圧で高速にコロナ処理を行えるという点で有利である。
 上記比誘電率10以上の固体誘電体としては、例えば、二酸化ジルコニウム、二酸化チタン等の金属酸化物、チタン酸バリウム等の酸化物、シリコンゴム等が挙げられる。なお、誘電体の厚さは0.3~1.5mmの範囲が好ましい。
 フィルムと電極との間隔は、0.5~10mmであることが好ましい。0.5mm未満では基材フィルムの厚さが薄い物しか通せなくなり、継ぎ目がある場合通過する際に電極に当たり、基材フィルムが傷つく場合がある。また、10mmを超えると印加電圧が高くなるので、電源が大きくなり放電がストリーマ状になる。
 本発明で用いるコロナ処理の出力は、保護フィルムの表面のダメージをできるだけ少なく処理する条件が好ましく、具体的には、0.02~5kWであることが好ましく、0.04~2kWであることがより好ましい。また、前記範囲内で、可能な限り低出力で、数回コロナ処理を施すことが最良のコロナ処理方法である。
 本発明で用いるコロナ処理の密度は、フィルムの平均水接触角が20~50度、また水接触角の標準偏差を0.01~5の範囲内にすることができればよい。具体的には、密着性等の観点から、1~1000W・min/mであることが好ましく、5~500W・min/mであることがより好ましく、10~300W・min/mであることがさらに好ましい。
 本発明で用いるコロナ処理の周波数は、5~100kHzであることが好ましく、10~50kHzであることがより好ましい。
 本発明で用いるコロナ処理は、電極周辺をケーシングで囲い、ケーシングの内部に不活性ガスを入れ、電極部にガスをかけるようにすると、放電をより細かい状態で発生させることができる。不活性ガスとしては、ヘリウム、アルゴン、窒素を用いることができる。
 《プラズマ処理》
 本発明で用いるプラズマ処理としては、グロー放電処理、フレームプラズマ処理等が挙げられる。グロー放電としては、真空下で行う真空グロー放電処理、大気圧下で行う大気圧グロー放電処理のいずれも用いることができるが、生産性の観点から大気圧下で行う大気圧グロー放電処理が好ましい。
 なお、本発明における大気圧とは、700~780Torrの範囲である。グロー放電処理は、相対する電極の間に延伸フィルムを置き、装置中にプラズマ励起性気体を導入し、電極間に高周波電圧を印加することにより、当該気体をプラズマ励起させ、電極間においてグロー放電を行うものである。これにより、フィルムの表面が処理されて、フィルムの表面の親水性が高められる。
 前記プラズマ励起性気体とは、上記のような条件においてプラズマ励起される気体をいう。プラズマ励起性気体としては、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類及びそれらの混合物や、アルゴン、ネオン等の不活性ガスに、カルボキシ基やヒドロキシ基(水酸基)、カルボニル基等の極性官能基を付与し得る反応性ガスを加えたものなどが挙げられる。
 前記高周波電圧の周波数は、1kHz~100kHzの範囲が好ましく、電圧の大きさは、電極に印加した時の電界強度が1~100kV/cmとなる範囲になるようにすることが好ましい。
 〈乾燥工程〉
 本発明の偏光板の製造方法は、保護フィルムを偏光子の両側に水系接着剤により貼り合せる貼合工程、及び貼合物を乾燥させる乾燥工程を有する偏光板の製造方法であって、当該乾燥工程は、温度が40~70℃の範囲内であり、かつ滞留時間が60~180秒の範囲内であることを特徴とする。
 本発明においては、偏光子(例えばポリビニルアルコール系樹脂からなる偏光フィルム)に、染色工程、架橋工程及び延伸工程を施した後に、当該偏光子の両面に、水系接着剤により透明保護フィルムを貼り合せる。そして、この貼合工程の後に、乾燥工程を施す。当該乾燥工程では、温度が40~70℃の範囲内の温度に保たれた乾燥炉に合計滞留時間が60~180秒の範囲内となるように滞留させる。
 当該乾燥工程は、複数の乾燥ゾーンを有しても良い。例えば、当該乾燥ゾーンの乾燥温度は、第1乾燥ゾーンから最終乾燥ゾーンになるに従って、乾燥温度が高くなるように設定されている態様であっても良い。
 (保護フィルム)
 本発明に係る保護フィルムは、アクリル樹脂(A)とセルロースエステル樹脂(B)とアミド結合を有するビニルポリマー(C)とを含有し、透湿度が300g/m・24hr以上であることが好ましい。以下、当該保護フィルムについて詳細な説明をする。
 〈アクリル樹脂(A)〉
 本発明に用いられるアクリル樹脂には、メタクリル樹脂も含まれる。樹脂としては特に制限されるものではないが、メチルメタクリレート単位50~99質量%、及びこれと共重合可能な他の単量体単位1~50質量%からなるものが好ましい。
 共重合可能な他の単量体としては、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α-メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、グルタル酸無水物等が挙げられ、これらは単独で、あるいは二種以上の単量体を併用して用いることができる。
 これらの中でも、共重合体の耐熱分解性や流動性の観点から、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、s-ブチルアクリレート、2-エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn-ブチルアクリレートが特に好ましく用いられる。
 本発明に係る保護フィルム(光学フィルム)に用いられるアクリル樹脂(A)は、特に保護フィルム(光学フィルム)としての脆性の改善及びセルロースエステル樹脂(B)と相溶した際の透明性の改善の観点で、重量平均分子量(Mw)が80000以上であることが好ましい。
 アクリル樹脂(A)の重量平均分子量(Mw)は、80000~1000000の範囲内であることが更に好ましく、100000~600000の範囲内であることが特に好ましく、150000~400000の範囲であることが最も好ましい。アクリル樹脂(A)の重量平均分子量(Mw)の上限値は特に限定されるものではないが、製造上の観点から1000000以下とされることが好ましい形態である。
 本発明に係るアクリル樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定することができる。測定条件は以下の通りである。
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=2,800,000~500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
 本発明におけるアクリル樹脂(A)の製造方法としては、特に制限は無く、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いても良い。ここで、重合開始剤としては、通常のパーオキサイド系及びアゾ系のものを用いることができ、また、レドックス系とすることもできる。重合温度については、懸濁又は乳化重合では30~100℃、塊状又は溶液重合では80~160℃で実施しうる。得られた共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。
 本発明に係るアクリル樹脂としては、市販のものも使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80,BR83,BR85,BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。アクリル樹脂は二種以上を併用することもできる。
 <セルロースエステル樹脂(B)>
 本発明に係るセルロースエステル樹脂(B)は、特に脆性の改善やアクリル樹脂(A)と相溶させたときに透明性の観点から、アシル基の総置換度(T)が2.0~3.0の範囲内であり、炭素数が3~7のアシル基の置換度が1.2~3.0の範囲内であることが好ましい。即ち、本発明に係るセルロースエステル樹脂は炭素数が3~7のアシル基により置換されたセルロースエステル樹脂であり、具体的には、プロピオニル、ブチリル等が好ましく用いられるが、特にプロピオニル基が好ましく用いられる。
 本発明に係るセルロースエステル樹脂(B)のアシル置換度は、総置換度(T)が2.0~3.0であり、アセチル基の置換度が1.3以下とされることが好ましい。
 また、セルロースエステル樹脂(B)のアシル基の総置換度(T)は、2.5~3.0の範囲であることが更に好ましい。
 本発明において前記アシル基は、脂肪族アシル基であっても、芳香族アシル基であってもよい。脂肪族アシル基の場合は、直鎖であっても分岐していても良く、さらに置換基を有してもよい。本発明におけるアシル基の炭素数は、アシル基の置換基を包含するものである。
 上記セルロースエステル樹脂(B)が、芳香族アシル基を置換基として有する場合、芳香族環に置換する置換基Xの数は0~5個であることが好ましい。この場合も、置換基を含めた炭素数が3~7であるアシル基の置換度が1.2~3.0となるように留意が必要である。例えば、ベンゾイル基は炭素数が7になる為、炭素を含む置換基を有する場合は、ベンゾイル基としての炭素数は8以上となり、炭素数が3~7のアシル基には含まれないこととなる。
 更に、芳香族環に置換する置換基の数が2個以上の時、互いに同じでも異なっていてもよいが、また、互いに連結して縮合多環化合物(例えばナフタレン、インデン、インダン、フェナントレン、キノリン、イソキノリン、クロメン、クロマン、フタラジン、アクリジン、インドール、インドリンなど)を形成してもよい。
 上記のようなセルロースエステル樹脂(B)においては、炭素数3~7の脂肪族アシル基の少なくとも一種を有する構造を有することが、本発明に係るセルロース樹脂に用いる構造として用いられる。
 本発明に係るセルロースエステル樹脂(B)の置換度は、アシル基の総置換度(T)が2.0~3.0、炭素数が3~7のアシル基の置換度が1.2~3.0である。
 また、炭素数が3~7のアシル基以外、即ちアセチル基と炭素数が8以上のアシル基の置換度の総和が1.3以下であることが好ましい構造である。
 本発明に係るセルロースエステル樹脂(B)としては、特にセルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートベンゾエート、セルロースプロピオネート、セルロースブチレートから選ばれる少なくとも一種であることが好ましく、即ち、炭素原子数3又は4のアシル基を置換基として有するものが好ましい。
 これらの中で特に好ましいセルロースエステル樹脂は、セルロースアセテートプロピオネートやセルロースプロピオネートである。
 アシル基で置換されていない部分は通常ヒドロキシ基(水酸基)として存在しているものである。これらは公知の方法で合成することができる。
 なお、アセチル基の置換度や他のアシル基の置換度は、ASTM-D817-96に規定の方法により求めたものである。
 本発明に係るセルロースエステル樹脂の重量平均分子量(Mw)は、特にアクリル樹脂(A)との相溶性、脆性の改善の観点から75000以上であり、75000~300000の範囲であることが好ましく、100000~240000の範囲内であることが更に好ましく、160000~240000のものが特に好ましい。本発明では、二種以上のセルロース樹脂を混合して用いることもできる。
 本発明に係る保護フィルム(光学フィルム)において、アクリル樹脂(A)とセルロースエステル樹脂(B)は、95:5~30:70の質量比で、相溶状態で含有されることが好ましいが、好ましくは70:30~30:70である。
 本発明に係る保護フィルム(光学フィルム)においては、アクリル樹脂(A)とセルロースエステル樹脂(B)が相溶状態で含有されることが好ましい。保護フィルム(光学フィルム)として必要とされる物性や品質を、異なる樹脂を相溶させることで相互に補うことにより達成している。
 アクリル樹脂(A)とセルロースエステル樹脂(B)が相溶状態となっているかどうかは、例えばガラス転移温度Tgにより判断することが可能である。
 例えば、両者の樹脂のガラス転移温度が異なる場合、両者の樹脂を混合したときは、各々の樹脂のガラス転移温度が存在するため混合物のガラス転移温度は2つ以上存在するが、両者の樹脂が相溶したときは、各々の樹脂固有のガラス転移温度が消失し、1つのガラス転移温度となって相溶した樹脂のガラス転移温度となる。
 なお、ここでいうガラス転移温度とは、示差走査熱量測定器(Perkin Elmer社製DSC-7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)とする。
 本発明に係る保護フィルム(光学フィルム)におけるアクリル樹脂(A)の重量平均分子量(Mw)やセルロースエステル樹脂(B)の重量平均分子量(Mw)や置換度は、両者の樹脂の溶媒に対して溶解性の差を用いて、分別した後に、それぞれ測定することにより得られる。樹脂を分別する際には、いずれか一方にのみ溶解する溶媒中に相溶された樹脂を添加することで、溶解する樹脂を抽出して分別することができ、このとき加熱操作や環流を行ってもよい。
 これらの溶媒の組み合わせを2工程以上組み合わせて、樹脂を分別してもよい。溶解した樹脂と、不溶物として残った樹脂を濾別し、抽出物を含む溶液については、溶媒を蒸発させて乾燥させる操作によって樹脂を分別することができる。これらの分別した樹脂は、高分子の一般の構造解析によって特定することができる。本発明に係る保護フィルム(光学フィルム)が、アクリル樹脂(A)やセルロースエステル樹脂(B)以外の樹脂を含有する場合も同様の方法で分別することができる。
 また、相溶された樹脂の重量平均分子量(Mw)がそれぞれ異なる場合は、ゲルパーミエーションクロマトグラフィー(GPC)によって、高分子量物は早期に溶離され、低分子量物であるほど長い時間を経て溶離されるために、容易に分別可能であるとともに分子量を測定することも可能である。
 また、相溶した樹脂をGPCによって分子量測定を行うと同時に、時間毎に溶離された樹脂溶液を分取して溶媒を留去し乾燥した樹脂を、構造解析を定量的に行うことで、異なる分子量の分画毎の樹脂組成を検出することで、相溶されている樹脂をそれぞれ特定することができる。事前に溶媒への溶解性の差で分取した樹脂を、各々GPCによって分子量分布を測定することで、相溶されていた樹脂をそれぞれ検出することもできる。
 また、本発明において、「アクリル樹脂(A)やセルロースエステル樹脂(B)を相溶状態で含有する」とは、各々の樹脂(ポリマー)を混合することで、結果として相溶された状態となることを意味しており、モノマー、ダイマー、あるいはオリゴマー等のアクリル樹脂の前駆体をセルロースエステル樹脂(B)に混合させた後に重合させることにより混合樹脂とされた状態は含まれないものである。
 例えば、モノマー、ダイマー、あるいはオリゴマー等のアクリル樹脂の前駆体をセルロースエステル樹脂(B)に混合させた後に重合されることにより混合樹脂を得る工程は、重合反応が複雑であり、この方法で作成した樹脂は、反応の制御が困難であり、分子量の調整も困難となる。また、このような方法で樹脂を合成した場合は、グラフト重合、架橋反応や環化反応が生じることが多く、溶媒に溶解しいケースや、加熱により溶融できなくなることが多く、混合樹脂中におけるアクリル樹脂を溶離して重量平均分子量(Mw)を測定することも困難であるため、物性をコントロールすることが難しく保護フィルム(光学フィルム)を安定に製造する樹脂として用いることはできない。
 本発明に係る保護フィルム(光学フィルム)におけるアクリル樹脂(A)とセルロースエステル樹脂(B)の総質量は、保護フィルム(光学フィルム)の55質量%以上であることが好ましく、さらに好ましくは60質量%以上であり、特に好ましくは、70質量%以上である。
 アクリル樹脂(A)とセルロースエステル樹脂(B)以外の樹脂や添加剤を用いる際には、本発明に係る保護フィルム(光学フィルム)の機能を損なわない範囲で添加量を調整することが好ましい。
 <アミド結合を有するビニルポリマー(C)>
 本発明における「アミド結合を有するビニルポリマー(C)」とは、側鎖にアミド結合を有するビニルモノマーのポリマー(以下、単に「重合体」ともいう。)又は側鎖にアミド結合を有するビニルモノマーと共重合可能な任意のビニルモノマーとのコポリマー(以下、共重合体ともいう)である。
 アミド結合を有するビニルモノマーとしては、例えば、N-ビニルピロリドン、N-ビニル-2-メチルピロリドン、アクリロイルモルホリン、アクリロイル-2-メチルモルホリン、ビニルアセトアミド等が挙げられる。これらのアミド結合を有するビニルモノマーは、二種以上の混合物も用いることができる。
 また、これらのアミド結合を有する官能基を持つビニルモノマーと共重合可能なビニルモノマーとしては、例えば、エチレン、プロピレン、スチレン、酢酸ビニル、ビニルアルコール(但し、共重合後加水分解してビニルアルコールになる。)、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、アクリロニトリルなど任意の官能基を有するビニルモノマーが挙げられる。
 これらは、二種以上の混合物を用いることができる。これらの内、酢酸ビニル、2-エチルヘキシルアクリレート、2-ヒドロキシエチルメタクリレート、アクリル酸ブチルが好ましい。そして、その共重合比率は、アミド結合を有するビニルモノマーが、ポリマーを構成するビニルモノマー全体の20~100%が好ましい。
 側鎖にアミド結合を有するビニルポリマー、又はビニル共重合ポリマーの製造は、アミド結合を有するビニルモノマーを単独で、又は共重合可能な他のビニルモノマーと共に、アゾビスイソブチロニトリル(AIBN)のようなラジカル重合開始剤を使用して、必要であれば溶媒の存在下に、常法により重合される。
 側鎖にアミド結合を有するビニルポリマーの重量平均分子量は、ブリードアウト防止、透明性等の観点から、1000~300000程度が好ましく、特に好ましくは、2000~50000である。
 本発明に係る側鎖にアミド結合を有するビニルポリマー(C)は、保護フィルム(光学フィルム)の全質量に対して0.05~15質量%であり、0.1~10質量%であることが好ましい。
 <アクリル粒子(D)>
 本発明に係る保護フィルム(光学フィルム)は、アクリル粒子(D)を含有してもよい。本願において、「アクリル粒子(D)」とは、前記アクリル樹脂(A)及びセルロースエステル樹脂(B)を相溶状態で含有する保護フィルム(光学フィルム)中に粒子の状態(非相溶状態ともいう。)で存在するアクリル成分を表す。
 上記アクリル粒子(D)は、例えば、作製した保護フィルム(光学フィルム)を所定量採取し、溶媒に溶解させて攪拌し、充分に溶解・分散させたところで、アクリル粒子(D)の平均粒子径未満の孔径を有するPTFE製のメンブレンフィルターを用いて濾過し、濾過捕集された不溶物の重さが、保護フィルム(光学フィルム)に添加したアクリル粒子(D)の90質量%以上あることが好ましい。
 本発明に用いられるアクリル粒子(D)は特に限定されるものではないが、二層以上の層構造を有するアクリル粒子(D)であることが好ましく、特に下記多層構造アクリル系粒状複合体であることが好ましい。
 多層構造アクリル系粒状複合体とは、中心部から外周部に向かって最内硬質層重合体、ゴム弾性を示す架橋軟質層重合体、及び最外硬質層重合体が、層状に重ね合わされてなる構造を有する粒子状のアクリル系重合体を言う。
 すなわち、多層構造アクリル系粒状複合体とは、中心部から外周部に向かって最内硬質層、架橋軟質層、及び最外硬質層からなる多層構造アクリル系粒状複合体である。この三層コアシェル構造の多層構造アクリル系粒状複合体が好ましく用いられる。
 本発明に係るアクリル系樹脂組成物に用いられる多層構造アクリル系粒状複合体の好ましい態様としては、以下の様なものが挙げられる。(a)メチルメタクリレート80~98.9質量%、アルキル基の炭素数が1~8のアルキルアクリレート1~20質量%、及び多官能性グラフト剤0.01~0.3質量%からなる単量体の混合物を重合して得られる最内硬質層重合体、(b)上記最内硬質層重合体の存在下に、アルキル基の炭素数が4~8のアルキルアクリレート75~98.5質量%、多官能性架橋剤0.01~5質量%及び多官能性グラフト剤0.5~5質量%からなる単量体の混合物を重合して得られる架橋軟質層重合体、(c)上記最内硬質層及び架橋軟質層からなる重合体の存在下に、メチルメタクリレート80~99質量%とアルキル基の炭素数が1~8であるアルキルアクリレート1~20質量%とからなる単量体の混合物を重合して得られる最外硬層重合体、よりなる三層構造を有し、かつ得られた三層構造重合体が最内硬質層重合体(a)5~40質量%、軟質層重合体(b)30~60質量%、及び最外硬質層重合体(c)20~50質量%からなり、アセトンで分別したときに不溶部があり、その不溶部のメチルエチルケトン膨潤度が1.5~4.0であるアクリル系粒状複合体、が挙げられる。
 なお、特公昭60-17406号あるいは特公平3-39095号において開示されている様に、多層構造アクリル系粒状複合体の各層の組成や粒子径を規定しただけでなく、多層構造アクリル系粒状複合体の引張り弾性率やアセトン不溶部のメチルエチルケトン膨潤度を特定範囲内に設定することにより、さらに充分な耐衝撃性と耐応力白化性のバランスを実現することが可能となる。
 ここで、多層構造アクリル系粒状複合体を構成する最内硬質層重合体(a)は、メチルメタクリレート80~98.9質量%、アルキル基の炭素数が1~8のアルキルアクリレート1~20質量%及び多官能性グラフト剤0.01~0.3質量%からなる単量体の混合物を重合して得られるものが好ましい。
 ここで、アルキル基の炭素数が1~8のアルキルアクリレートとしては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、s-ブチルアクリレート、2-エチルヘキシルアクリレート等が挙げられ、メチルアクリレートやn-ブチルアクリレートが好ましく用いられる。
 最内硬質層重合体(a)におけるアルキルアクリレート単位の割合は1~20質量%であり、該単位が1質量%未満では、重合体の熱分解性が大きくなり、一方、該単位が20質量%を越えると、最内硬質層重合体(c)のガラス転移温度が低くなり、三層構造アクリル系粒状複合体の耐衝撃性付与効果が低下するので、いずれも好ましくない。
 多官能性グラフト剤としては、異なる重合可能な官能基を有する多官能性単量体、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸のアリルエステル等が挙げられ、アリルメタクリレートが好ましく用いられる。多官能性グラフト剤は、最内硬質層重合体と軟質層重合体を化学的に結合するために用いられ、その最内硬質層重合時に用いる割合は0.01~0.3質量%である。
 アクリル系粒状複合体を構成する架橋軟質層重合体(b)は、上記最内硬質層重合体(a)の存在下に、アルキル基の炭素数が1~8のアルキルアクリレート75~98.5質量%、多官能性架橋剤0.01~5質量%及び多官能性グラフト剤0.5~5質量%からなる単量体の混合物を重合して得られるものが好ましい。
 ここで、アルキル基の炭素数が4~8のアルキルアクリレートとしては、n-ブチルアクリレートや2-エチルヘキシルアクリレートが好ましく用いられる。
 また、これらの重合性単量体と共に、25質量%以下の共重合可能な他の単官能性単量体を共重合させることも可能である。
 共重合可能な他の単官能性単量体としては、スチレン及び置換スチレン誘導体が挙げられる。アルキル基の炭素数が4~8のアルキルアクリレートとスチレンとの比率は、前者が多いほど重合体(b)のガラス転移温度が低下し、即ち軟質化できるのである。
 一方、樹脂組生物の透明性の観点からは、軟質層重合体(b)の常温での屈折率を最内硬質層重合体(a)、最外硬質層重合体(c)、及び硬質熱可塑性アクリル樹脂に近づけるほうが有利であり、これらを勘案して両者の比率を選定する。
 多官能性グラフト剤としては、前記の最内層硬質重合体(a)の項で挙げたものを用いることができる。ここで用いる多官能性グラフト剤は、軟質層重合体(b)と最外硬質層重合体(c)を化学的に結合するために用いられ、その最内硬質層重合時に用いる割合は耐衝撃性付与効果の観点から0.5~5質量%が好ましい。
 多官能性架橋剤としては、ジビニル化合物、ジアリル化合物、ジアクリル化合物、ジメタクリル化合物などの一般に知られている架橋剤が使用できるが、ポリエチレングリコールジアクリレート(分子量200~600)が好ましく用いられる。
 ここで用いる多官能性架橋剤は、軟質層(b)の重合時に架橋構造を生成し、耐衝撃性付与の効果を発現させるために用いられる。ただし、先の多官能性グラフト剤を軟質層の重合時に用いれば、ある程度は軟質層(b)の架橋構造を生成するので、多官能性架橋剤は必須成分ではないが、多官能性架橋剤を軟質層重合時に用いる割合は耐衝撃性付与効果の観点から0.01~5質量%が好ましい。
 多層構造アクリル系粒状複合体を構成する最外硬質層重合体(c)は、上記最内硬質層重合体(a)及び軟質層重合体(b)の存在下に、メチルメタクリレート80~99質量%及びアルキル基の炭素数が1~8であるアルキルアクリレート1~20質量%からなる単量体の混合物を重合して得られるものが好ましい。
 ここで、アクリルアルキレートとしては、前述したものが用いられるが、メチルアクリレートやエチルアクリレートが好ましく用いられる。最外硬質層(c)におけるアルキルアクリレート単位の割合は、1~20質量%が好ましい。
 また、最外硬質層(c)の重合時に、アクリル樹脂(A)との相溶性向上を目的として、分子量を調節するためアルキルメルカプタン等を連鎖移動剤として用い、実施することも可能である。
 とりわけ、最外硬質層に、分子量が内側から外側へ向かって次第に小さくなるような勾配を設けることは、伸びと耐衝撃性のバランスを改良するうえで好ましい。具体的な方法としては、最外硬質層を形成するための単量体の混合物を2つ以上に分割し、各回ごとに添加する連鎖移動剤量を順次増加するような手法によって、最外硬質層を形成する重合体の分子量を多層構造アクリル系粒状複合体の内側から外側へ向かって小さくすることが可能である。
 この際に形成される分子量は、各回に用いられる単量体の混合物をそれ単独で同条件にて重合し、得られた重合体の分子量を測定することによって調べることもできる。
 本発明に好ましく用いられるアクリル粒子(D)の粒子径については、特に限定されるものではないが、10nm以上、1000nm以下であることが好ましく、さらに、20nm以上、500nm以下であることがより好ましく、特に50nm以上、400nm以下であることが最も好ましい。
 本発明に好ましく用いられる多層構造重合体であるアクリル系粒状複合体において、コアとシェルの質量比は、特に限定されるものではないが、多層構造重合体全体を100質量部としたときに、コア層が50質量部以上、90質量部以下であることが好ましく、さらに、60質量部以上、80質量部以下であることがより好ましい。なお、ここでいうコア層とは、最内硬質層のことである。
 このような多層構造アクリル系粒状複合体の市販品の例としては、例えば、三菱レイヨン社製“メタブレン”、鐘淵化学工業社製“カネエース”、呉羽化学工業社製“パラロイド”、ロームアンドハース社製“アクリロイド”、ガンツ化成工業社製“スタフィロイド”及びクラレ社製“パラペットSA”などが挙げられ、これらは、単独ないし二種以上を用いることができる。
 また、本発明に好ましく用いられるアクリル粒子(D)として好適に使用されるグラフト共重合体であるアクリル粒子(D)の具体例としては、ゴム質重合体の存在下に、不飽和カルボン酸エステル系単量体、不飽和カルボン酸系単量体、芳香族ビニル系単量体、及び必要に応じてこれらと共重合可能な他のビニル系単量体からなる単量体の混合物を共重合せしめたグラフト共重合体が挙げられる。
 グラフト共重合体であるアクリル粒子(D)に用いられるゴム質重合体には特に制限はないが、ジエン系ゴム、アクリル系ゴム及びエチレン系ゴムなどが使用できる。具体例としては、ポリブタジエン、スチレン-ブタジエン共重合体、スチレン-ブタジエンのブロック共重合体、アクリロニトリル-ブタジエン共重合体、アクリル酸ブチル-ブタジエン共重合体、ポリイソプレン、ブタジエン-メチルメタクリレート共重合体、アクリル酸ブチル-メチルメタクリレート共重合体、ブタジエン-アクリル酸エチル共重合体、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン系共重合体、エチレン-イソプレン共重合体、及びエチレン-アクリル酸メチル共重合体などが挙げられる。これらのゴム質重合体は、一種又は二種以上の混合物で使用することが可能である。
 また、本発明に係る保護フィルム(光学フィルム)にアクリル粒子(D)を添加する場合は、アクリル樹脂(A)とセルロースエステル樹脂(B)との混合物の屈折率とアクリル粒子(D)の屈折率が近いことが、透明性が高いフィルムを得る点では好ましい。具体的には、アクリル粒子(D)とアクリル樹脂(A)の屈折率差が0.05以下であることが好ましく、より好ましくは0.02以下、とりわけ0.01以下であることが好ましい。
 このような屈折率条件を満たすためには、アクリル樹脂(A)の各単量体単位組成比を調整する方法、及び/又はアクリル粒子(D)に使用されるゴム質重合体あるいは単量体の組成比を調製する方法などにより、屈折率差を小さくすることができ、透明性に優れた保護フィルム(光学フィルム)を得ることができる。
 尚、ここで言う屈折率差とは、アクリル樹脂(A)が可溶な溶媒に、本発明に係る保護フィルム(光学フィルム)を適当な条件で十分に溶解させ白濁溶液とし、これを遠心分離等の操作により、溶媒可溶部分と不溶部分に分離し、この可溶部分(アクリル樹脂(A))と不溶部分(アクリル粒子(D))をそれぞれ精製した後、測定した屈折率(23℃、測定波長:550nm)の差を示す。
 本発明においてアクリル樹脂(A)に、アクリル粒子(D)を配合する方法には、特に制限はなく、アクリル樹脂(A)とその他の任意成分を予めブレンドした後、通常200~350℃において、アクリル粒子(D)を添加しながら一軸又は二軸押出機により均一に溶融混練する方法が好ましく用いられる。
 また、アクリル粒子(D)を予め分散した溶液を、アクリル樹脂(A)、及びセルロースエステル樹脂(B)を溶解した溶液(ドープ液)に添加して混合する方法や、アクリル粒子(D)及びその他の任意の添加剤を溶解、混合した溶液をインライン添加する等の方法を用いることができる。
 本発明に係るアクリル粒子としては、市販のものも使用することができる。
 例えば、メタブレンW-341(D2)(三菱レイヨン(株)製)を、ケミスノーMR-2G(D3)、MS-300X(D4)(綜研化学(株)製)等を挙げることができる。
 本発明に係る保護フィルム(光学フィルム)において、該フィルムを構成する樹脂の総質量に対して、0.5~30質量%のアクリル粒子(D)を含有することが好ましく、1.0~15質量%の範囲で含有することがさらに好ましい。
 <その他の添加剤>
 本発明に係る保護フィルム(光学フィルム)には、リターデーションを制御することを目的とした位相差制御剤、フィルムに加工性を付与する可塑剤、フィルムの劣化を防止する酸化防止剤、紫外線吸収機能を付与する紫外線吸収剤、フィルムに滑り性を付与する微粒子(マット剤)等の添加剤を含有させることができる。
 (位相差制御剤)
 本願において、「位相差制御剤」とは、リターデーションを制御することを目的として加える添加剤をいう。当該位相差制御剤としては、特開2002-296421号公報記載の化合物や種々のエステル系可塑剤を用いることができる。以下において、好ましいエステル系化合物について詳細な説明をする。
 本発明においては、後述する各種化合物のうち、特に、添加剤として添加し延伸した場合に芳香族環が平面内に並ぶような構造を有する化合物が好ましい。このため、芳香族環が、主鎖の中又は末端にブロックとして入っている化合物が好ましい。
 〈グリコールと二塩基酸のポリエステルポリオール〉
 本発明において使用され得るポリエステルポリオールとしては、炭素数の平均が2~3.5であるグリコールと炭素数の平均が4~5.5である二塩基酸との脱水縮合反応、又は該グリコールと炭素数の平均が4~5.5である無水二塩基酸の付加及び脱水縮合反応による常法により製造されるものであることが好ましい。
 《グリコール》
 かかるポリエステルポリオールに用いられるグリコールとしては、例えばエチレングリコール、ジエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、2-メチル-1,3-プロパンジオール、1,4-ブチレングリコール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオールなどが挙げられ、これらを単独又は二種以上を併用して用いられ、例えばエチレングリコール、又はエチレングリコールとジエチレングリコールの混合物などが特に好ましく用いられる。
 また、上記したグリコールに関しては、ポリエステルポリオールの製造、セルロースとの相溶性、透明性等の観点から、グリコールの炭素数の平均が、2~3.5の範囲内にあることが好ましい。
 上記グリコールとしてエチレングリコールとジエチレングリコールの混合物が用いられる場合、そのエチレングリコール/ジエチレングリコールのモル比率としては、好ましくは25~100/75~0で用いられ、セルロースエステルとの相溶性の優れたセルロースエステル用改質剤を得ることができる。更に、より好ましくは25~40/75~60、及び60~95/40~5であり、かかる範囲に調製することで、該ポリエステルポリオールの結晶性及び融点が従来汎用のものに近く、それ自体の生産性も良好となる。
 《二塩基酸》
 次に本発明に用いられるポリエステルポリオールを構成する二塩基酸としては、例えばコハク酸、グルタル酸、アジピン酸、セバチン酸等を挙げることができる。これらを単独又は二種以上を併用して用いることができ、例えばコハク酸、又はコハク酸とテレフタル酸の混合物等が特に好ましく用いられる。
 また、上記した二塩基酸に関しては、ポリエステルポリオールの製造、セルロースとの相溶性、透明性等の観点から、二塩基酸の炭素数の平均が4~5.5の範囲内であることが好ましい。
 上記二塩基酸としてコハク酸とテレフタル酸の混合物が用いられる場合、そのコハク酸/テレフタル酸のモル比率としては、好ましくは25~100/75~0で用いられ、セルロースエステルとの相溶性の優れたセルロースエステル用改質剤を得ることができる。更に、より好ましくは25~40/75~60、及び60~95/40~5であり、かかる範囲に調製することで、該ポリエステルポリオールの結晶性及び融点が従来汎用のものに近く、それ自体の生産性も良好となる。
 本発明に用いられるポリエステルポリオールを構成するグリコールと二塩基酸としては、上記以外の組み合わせも含むものであるが、グリコールの炭素数の平均と二塩基酸の炭素数の平均との合計が、6~7.5である組み合わせが好ましい。
 上記グリコール及び二塩基酸から得られるポリエステルポリオールは、数平均分子量が1000以上200000以下の範囲であればよく、より好ましくは1000~5000の基本的にヒドロキシ基(水酸基)末端のポリエステルが用いられ、数平均分子量1200~4000のものが特に好ましく用いられる。かかる範囲の数平均分子量を有するポリエステルポリオールを用いることで、セルロースエステルとの相溶性に優れた位相差制御剤(セルロースエステル用改質剤)を固相反応で得ることができる。
 本発明の効果を得る上で、上記数平均分子量1000以上のポリエステルポリオールをフィルム中に2~30質量%含有することが、位相差発現性、相溶性、透湿性等の観点から好ましい。より好ましくは10~20質量%である。実際には、ポリマーのフィルム中の含有量はポリマーの種類や重量平均分子量によって、ドープ中、ウェブ中、フィルム形成後相分離しない範囲内で、寸法安定性、保留性及び透過率等の性能に応じて決められる。
 一方、本発明で用いられるポリエステルポリオール中に於けるカルボキシ基末端は、その含有量は、本発明の効果の観点から、ヒドロキシ基(水酸基)末端の1/20以下のモル数であることが好ましく、更に1/40以下に止めることがより好ましい。
 上記したポリエステルポリオールを製造するにあたり、チタン、亜鉛、鉛、ジルコニウムなどの金属有機酸塩若しくは金属キレート化合物、或いは、酸化アンチモンなど、従来公知のエステル化触媒が使用できる。かかるエステル化触媒としては、例えばテトライソプロピルチタネート、テトラブチルチタネートなどが好ましく用いられ、用いられるグリコール(a)と二塩基酸(b)の合計100質量部に対して0.0005~0.02質量部用いられることが好ましい。
 ポリエステルポリオールの重縮合は常法によって行われる。例えば、上記二塩基酸とグリコールの直接反応、上記の二塩基酸又はこれらのアルキルエステル類、例えば二塩基酸のメチルエステルとグリコール類とのポリエステル化反応又はエステル交換反応により熱溶融縮合法か、或いはこれら酸の酸クロライドとグリコールとの脱ハロゲン化水素反応の何れかの方法により容易に合成し得るが、数平均分子量がさほど大きくないポリエステルポリオールは直接反応によるのが好ましい。
 低分子量側に分布が高くあるポリエステルポリオールはセルロースエステルとの相溶性が非常によく、フィルム形成後、透湿度も小さく、しかも透明性に富んだセルロースエステルフィルムを得ることができる。分子量の調節方法は、特に制限なく従来の方法を使用できる。
 例えば、重合条件にもよるが、1価の酸又は1価のアルコールで分子末端を封鎖する方法により、これらの1価のものの添加する量によりコントロールできる。この場合、1価の酸がポリマーの安定性から好ましい。
 例えば、酢酸、プロピオン酸、酪酸、ピバリン酸、安息香酸等を挙げることができるが、重縮合反応中には系外に溜去せず、停止して反応系外にこのような1価の酸を系外に除去するときに溜去し易いものが選ばれるが、これらを混合使用してもよい。
 また、直接反応の場合には、反応中に溜去してくる水の量により反応を停止するタイミングを計ることによっても数平均分子量を調節できる。その他、仕込むグリコール又は二塩基酸のモル数を偏らせることによってもできるし、反応温度をコントロールしても調節できる。
 〈芳香族ジカルボン酸とアルキレングリコールのエステル〉
 本発明に係る位相差制御剤として、下記一般式(I)で表される芳香族末端エステル系可塑剤を用いることができる。
 一般式(I) B-(G-A)n-G-B
(式中、Bはベンゼンモノカルボン酸残基、Gは炭素数2~12のアルキレングリコール残基又は炭素数6~12のアリールグリコール残基又は炭素数が4~12のオキシアルキレングリコール残基、Aは炭素数4~12のアルキレンジカルボン酸残基又は炭素数6~12のアリールジカルボン酸残基を表し、またnは1以上の整数を表す。)
 一般式(I)中、Bで示されるベンゼンモノカルボン酸残基とGで示されるアルキレングリコール残基又はオキシアルキレングリコール残基又はアリールグリコール残基、Aで示されるアルキレンジカルボン酸残基又はアリールジカルボン酸残基とから構成されるものであり、通常のポリエステル系可塑剤と同様の反応により得られる。
 本発明に係る芳香族末端エステル系可塑剤のベンゼンモノカルボン酸成分としては、例えば、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸等があり、これらはそれぞれ一種又は二種以上の混合物として使用することができる。
 芳香族末端エステル系可塑剤の炭素数2~12のアルキレングリコール成分としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロ-ルペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール1,6-ヘキサンジオール、2,2,4-トリメチル1,3-ペンタンジオール、2-エチル1,3-ヘキサンジオール、2-メチル1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等があり、これらのグリコールは、一種又は二種以上の混合物として使用される。
 また、芳香族末端エステルの炭素数4~12のオキシアルキレングリコール成分としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等があり、これらのグリコールは、一種又は二種以上の混合物として使用できる。
 また、芳香族末端エステルの炭素数6~12のアリールグリコール成分としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノール等があり、これらのグリコールは、一種又は二種以上の混合物として使用できる。
 芳香族末端エステルの炭素数4~12のアルキレンジカルボン酸成分としては、例えば、コハク酸、マレイン酸、フマール酸、グルタール酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等があり、これらは、それぞれ一種又は二種以上の混合物として使用される。炭素数6~12のアリールジカルボン酸成分としては、フタル酸、テレフタル酸、1,5ナフタレンジカルボン酸、1,4ナフタレンジカルボン酸等がある。
 芳香族末端エステル系可塑剤は、数平均分子量が、好ましくは300~2000、より好ましくは500~1500の範囲が好適である。また、その酸価は、0.5mgKOH/g以下、ヒドロキシ(水酸基)価は25mgKOH/g以下、より好ましくは酸価0.3mgKOH/g以下、ヒドロキシ(水酸基)価は15mgKOH/g以下のものが好適である。
 《芳香族末端エステルの酸価、ヒドロキシ(水酸基)価》
 「酸価」とは、試料1g中に含まれる酸(分子末端に存在するカルボキシ基)を中和するために必要な水酸化カリウムのミリグラム数をいう。酸価及びヒドロキシ(水酸基)価はJIS K0070に準拠して測定したものである。
 以下、本発明に係る芳香族末端エステル系可塑剤の合成例を示す。
 〈サンプルNo.1(芳香族末端エステルサンプル)〉
 反応容器に、フタル酸820部(5モル)、1,2-プロピレングリコール608部(8モル)、安息香酸610部(5モル)及び触媒としてテトライソプロピルチタネート0.30部を一括して仕込み窒素気流中で攪拌下、還流凝縮器を付して過剰の1価アルコールを還流させながら、酸価が2以下になるまで130~250℃で加熱を続け生成する水を連続的に除去した。次いで200~230℃で6.65×10Pa~最終的に4×10Pa以下の減圧下、留出分を除去し、この後濾過して次の性状を有する芳香族末端エステルを得た。
 粘度(25℃、mPa・s);19815
 酸価           ;0.4
 〈サンプルNo.2(芳香族末端エステルサンプル)〉
 反応容器に、アジピン酸500部(3.5モル)、安息香酸305部(2.5モル)、ジエチレングリコール583部(5.5モル)及び触媒としてテトライソプロピルチタネート0.45部を用いる以外はサンプルNo.1と全く同様にして次の性状を有する芳香族末端エステルを得た。
 粘度(25℃、mPa・s);90
 酸価           ;0.05
 〈サンプルNo.3(芳香族末端エステルサンプル)〉
 反応容器にイソフタル酸570部(3.5モル)、安息香酸305部(2.5モル)、ジプロピレングリコール737部(5.5モル)及び触媒としてテトライソプロピルチタネート0.40部を用いる以外はサンプルNo.1と全く同様にして次の性状を有する芳香族末端エステルを得た。
 粘度(25℃、mPa・s);33400
 酸価           ;0.2
 以下に、本発明に係る芳香族末端エステル系可塑剤の具体的化合物を示すが、本発明はこれに限定されない。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 本発明に係る芳香族末端エステル系可塑剤の含有量は、セルロースエステルフィルム中に1~20質量%含有することが好ましく、特に3~11質量%含有することが好ましい。
 〈多価アルコールエステル系化合物〉
 本発明に係る有機酸は、下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000003
 式中、R~Rは水素原子又はシクロアルキル基、アラルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アラルキルオキシ基、アシル基、カルボニルオキシ基、オキシカルボニル基、オキシカルボニルオキシ基を表し、これらはさらに置換基を有していてよい。Lは連結基を表し、置換又は無置換のアルキレン基、酸素原子、又は直接結合を表す。
 R~Rで表されるシクロアルキル基としては、炭素数3~8のシクロアルキル基が好ましく、具体的にはシクロプロピル、シクロペンチル、シクロヘキシル等の基である。これらの基は置換されていてもよく、好ましい置換基としては、ハロゲン原子、例えば、塩素原子、臭素原子、フッ素原子等、ヒドロキシ基、アルキル基、アルコキシ基、シクロアルコキシ基、アラルキル基(このフェニル基にはアルキル基又はハロゲン原子等によってさらに置換されていてもよい。)、ビニル基、アリル基等のアルケニル基、フェニル基(このフェニル基にはアルキル基又はハロゲン原子等によってさらに置換されていてもよい)、フェノキシ基(このフェニル基にはアルキル基又はハロゲン原子等によってさらに置換されていてもよい。)、アセチル基、プロピオニル基等の炭素数2~8のアシル基、またアセチルオキシ基、プロピオニルオキシ基等の炭素数2~8の無置換のカルボニルオキシ基等が挙げられる。
 R~Rで表されるアラルキル基としては、ベンジル基、フェネチル基、γ-フェニルプロピル基等の基を表し、また、これらの基は置換されていてもよく、好ましい置換基としては、前記のシクロアルキル基に置換してもよい基を同様に挙げることができる。
 R~Rで表されるアルコキシ基としては、炭素数1~8のアルコキシ基が挙げられ、具体的には、メトキシ、エトキシ、n-プロポキシ、n-ブトキシ、n-オクチルオキシ、イソプロポキシ、イソブトキシ、2-エチルヘキシルオキシ、もしくはt-ブトキシ等の各アルコキシ基である。
 また、これらの基は置換されていてもよく、好ましい置換基としては、ハロゲン原子、例えば、塩素原子、臭素原子、フッ素原子等、ヒドロキシ基、アルコキシ基、シクロアルコキシ基、アラルキル基(このフェニル基にはアルキル基又はハロゲン原子等を置換していてもよい)、アルケニル基、フェニル基(このフェニル基にはアルキル基又はハロゲン原子等によってさらに置換されていてもよい)、アリールオキシ基(例えばフェノキシ基(このフェニル基にはアルキル基又はハロゲン原子等によってさらに置換されていてもよい))、アセチル基、プロピオニル基等のアシル基が、またアセチルオキシ基、プロピオニルオキシ基等の炭素数2~8の無置換のアシルオキシ基、またベンゾイルオキシ基等のアリールカルボニルオキシ基が挙げられる。
 R~Rで表されるシクロアルコキシ基としては、無置換のシクロアルコキシ基としては、炭素数1~8のシクロアルコキシ基が挙げられ、具体的には、シクロプロピルオキシ、シクロペンチルオキシ、シクロヘキシルオキシ等の基が挙げられる。
 また、これらの基は置換されていてもよく、好ましい置換基としては、前記のシクロアルキル基に置換してもよい基を同様に挙げることができる。
 R~Rで表されるアリールオキシ基としては、フェノキシ基が挙げられるが、このフェニル基にはアルキル基又はハロゲン原子等前記シクロアルキル基に置換してもよい基として挙げられた置換基で置換されていてもよい。
 R~Rで表されるアラルキルオキシ基としては、ベンジルオキシ基、フェネチルオキシ基等が挙げられ、これらの置換基はさらに置換されていてもよく、好ましい置換基としては、前記のシクロアルキル基に置換してもよい基を同様に挙げることができる。
 R~Rで表されるアシル基としては、アセチル基、プロピオニル基等の炭素数2~8の無置換のアシル基が挙げられ(アシル基の炭化水素基としては、アルキル、アルケニル、アルキニル基を含む。)、これらの置換基はさらに置換されていてもよく、好ましい置換基としては、前記のシクロアルキル基に置換してもよい基を同様に挙げることができる。
 R~Rで表されるカルボニルオキシ基としては、アセチルオキシ基、プロピオニルオキシ基等の炭素数2~8の無置換のアシルオキシ基(アシル基の炭化水素基としては、アルキル、アルケニル、アルキニル基を含む。)、またベンゾイルオキシ基等のアリールカルボニルオキシ基が挙げられるが、これらの基はさらに前記シクロアルキル基に置換してもよい基と同様の基により置換されていてもよい。
 R~Rで表されるオキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、プロピルオキシカルボニル基等のアルコキシカルボニル基、またフェノキシカルボニル基等のアリールオキシカルボニル基を表す。
 これらの置換基はさらに置換されていてもよく、好ましい置換基としては、前記のシクロアルキル基に置換してもよい基を同様に挙げることができる。
 R~Rで表されるオキシカルボニルオキシ基としては、メトキシカルボニルオキシ基等の炭素数1~8のアルコキシカルボニルオキシ基を表し、これらの置換基はさらに置換されていてもよく、好ましい置換基としては、前記のシクロアルキル基に置換してもよい基を同様に挙げることができる。
 R~Rのうちのいずれか同士で互いに連結し、環構造を形成していてもよい。
 また、Lで表される連結基としては、置換又は無置換のアルキレン基、酸素原子、又は直接結合を表すが、アルキレン基としては、メチレン基、エチレン基、プロピレン基等の基であり、これらの基は、さらに前記のR~Rで表される基に置換してもよい基としてあげられた基で置換されていてもよい。
 中でも、Lで表される連結基として特に好ましいのは直接結合であり芳香族カルボン酸である。
 また、これら本発明において可塑剤となるエステル化合物を構成する、前記一般式(1)で表される有機酸としては、少なくともR又はRに前記アルコキシ基、アシル基、オキシカルボニル基、カルボニルオキシ基、オキシカルボニルオキシ基を有するものが好ましい。また複数の置換基を有する化合物も好ましい。
 なお、本発明においては3価以上のアルコールのヒドロキシ基(水酸基)を置換する有機酸は単一種であっても複数種であってもよい。
 本発明における、前記一般式(1)で表される有機酸と反応して多価アルコールエステル化合物を形成する3価以上のアルコール化合物としては、好ましくは3~20価の脂肪族多価アルコールであり、本発明おいて3価以上のアルコールは下記一般式(2)で表されるものが好ましい。
 一般式(2) R′-(OH)m
 式中、R′はm価の有機基、mは3以上の正の整数、OH基はアルコール性ヒドロキシ基(水酸基)を表す。特に好ましいのは、mとしては3又は4の多価アルコールである。
 好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。
 アドニトール、アラビトール、1,2,4-ブタントリオール、1,2,3-ヘキサントリオール、1,2,6-ヘキサントリオール、グリセリン、ジグリセリン、エリスリトール、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ガラクチトール、イノシトール、マンニトール、3-メチルペンタン-1,3,5-トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。
 特に、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトールが好ましい。
 一般式(1)で表される有機酸と一般式(2)で表される3価以上の多価アルコールのエステルは、公知の方法により合成できる。実施例に代表的合成例を示したが、前記一般式(1)で表される有機酸と、一般式(2)で表される多価アルコールを例えば、酸の存在下縮合させエステル化する方法、また、有機酸を予め酸クロライドあるいは酸無水物としておき、多価アルコールと反応させる方法、有機酸のフェニルエステルと多価アルコールを反応させる方法等があり、目的とするエステル化合物により、適宜、収率のよい方法を選択することが好ましい。
 一般式(1)で表される有機酸と一般式(2)で表される3価以上の多価アルコールのエステルからなる可塑剤としては、下記一般式(3)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000004
 式中、R~R20は水素原子又はシクロアルキル基、アラルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アラルキルオキシ基、アシル基、カルボニルオキシ基、オキシカルボニル基、オキシカルボニルオキシ基を表し、これらはさらに置換基を有していてよい。R21は水素原子又はアルキル基を表す。
 R~R20のシクロアルキル基、アラルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アラルキルオキシ基、アシル基、カルボニルオキシ基、オキシカルボニル基、オキシカルボニルオキシ基については、前記一般式(1)のR~Rと同様の基が挙げられる。
 以下に、本発明に係わる多価アルコールエステルの具体的化合物を例示する。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 〈糖類の安息香酸エステル〉
 本発明に係る位相差制御剤としては、(メタ)アクリル系重合体と、フラノース構造もしくはピラノース構造を1個有する化合物(A)中のOH基のすべてもしくは一部をエステル化したエステル化化合物、或いは、フラノース構造もしくはピラノース構造の少なくとも一種を2個以上、12個以下結合した化合物(B)中のOH基のすべてもしくは一部をエステル化したエステル化化合物とを用いることも好ましい。なお、本願においては、本発明に係る化合物(A)のエステル化化合物及び化合物(B)のエステル化化合物を総称して、糖エステル化合物とも称す。
 また、前記エステル化合物が単糖類(α-グルコース、βフルクトース)の安息香酸エステル、もしくは下記一般式(A)で表される、単糖類の-OR12、-OR15、-OR22、-OR25の任意の2箇所以上が脱水縮合して生成したm+n=2~12の多糖類の安息香酸エステルであることが好ましい。
Figure JPOXMLDOC01-appb-C000017
 上記一般式中の安息香酸は更に置換基を有していてもよく、例えばアルキル基、アルケニル基、アルコキシル基、フェニル基が挙げられ、更にこれらのアルキル基、アルケニル基、フェニル基は置換基を有していてもよい。
 好ましい化合物(A)及び化合物(B)の例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。
 化合物(A)の例としては、グルコース、ガラクトース、マンノース、フルクトース、キシロース、或いはアラビノースが挙げられる。
 化合物(B)の例としては、ラクトース、スクロース、ニストース、1F-フラクトシルニストース、スタキオース、マルチトール、ラクチトール、ラクチュロース、セロビオース、マルトース、セロトリオース、マルトトリオース、ラフィノース或いはケストース挙げられる。このほか、ゲンチオビオース、ゲンチオトリオース、ゲンチオテトラオース、キシロトリオース、ガラクトシルスクロースなども挙げられる。これらの化合物(A)及び化合物(B)の中で、特にフラノース構造とピラノース構造を両方有する化合物が好ましい。例としてはスクロース、ケストース、ニストース、1F-フラクトシルニストース、スタキオースなどが好ましく、更に好ましくは、スクロースである。また、化合物(B)において、フラノース構造もしくはピラノース構造の少なくとも一種を2個以上、3個以下結合した化合物であることも、好ましい態様の一つである。
 本発明に係る化合物(A)及び化合物(B)中のOH基のすべてもしくは一部をエステル化するのに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。用いられるカルボン酸は一種類でもよいし、二種以上の混合であってもよい。
 好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸、オクテン酸等の不飽和脂肪酸等を挙げることができる。
 好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、又はそれらの誘導体を挙げることができる。
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、アルコキシ基を導入した芳香族モノカルボン酸、ケイ皮酸、ベンジル酸、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、又はそれらの誘導体を挙げることができ、より、具体的には、キシリル酸、ヘメリト酸、メシチレン酸、プレーニチル酸、γ-イソジュリル酸、ジュリル酸、メシト酸、α-イソジュリル酸、クミン酸、α-トルイル酸、ヒドロアトロパ酸、アトロパ酸、ヒドロケイ皮酸、サリチル酸、o-アニス酸、m-アニス酸、p-アニス酸、クレオソート酸、o-ホモサリチル酸、m-ホモサリチル酸、p-ホモサリチル酸、o-ピロカテク酸、β-レソルシル酸、バニリン酸、イソバニリン酸、ベラトルム酸、o-ベラトルム酸、没食子酸、アサロン酸、マンデル酸、ホモアニス酸、ホモバニリン酸、ホモベラトルム酸、o-ホモベラトルム酸、フタロン酸、p-クマル酸を挙げることができるが、特に安息香酸が好ましい。
 上記化合物(A)及び化合物(B)をエステル化したエステル化化合物の中では、エステル化によりアセチル基が導入されたアセチル化化合物が好ましい。
 これらアセチル化化合物の製造方法は、例えば、特開平8-245678号公報に記載されている。
 上記化合物(A)及び化合物(B)のエステル化化合物に加えて、オリゴ糖のエステル化化合物を、本発明に係るフラノース構造もしくはピラノース構造の少なくとも一種を3~12個結合した化合物として適用できる。
 オリゴ糖は、澱粉、ショ糖等にアミラーゼ等の酵素を作用させて製造されるもので、本発明に適用できるオリゴ糖としては、例えば、マルトオリゴ糖、イソマルトオリゴ糖、フラクトオリゴ糖、ガラクトオリゴ糖、キシロオリゴ糖が挙げられる。
 オリゴ糖も上記化合物(A)及び化合物(B)と同様な方法でアセチル化できる。
 次に、エステル化化合物の製造例の一例を記載する。
 グルコース(29.8g、166mmol)にピリジン(100ml)を加えた溶液に無水酢酸(200ml)を滴下し、24時間反応させた。その後、エバポレートで溶液を濃縮し氷水へ投入した。1時間放置した後、ガラスフィルターにてろ過し、固体と水を分離し、ガラスフィルター上の固体をクロロホルムに溶かし、これが中性になるまで冷水で分液した。有機層を分離後、無水硫酸ナトリュウムにより乾燥した。無水硫酸ナトリュウムをろ過により除去した後、クロロホルムをエバポレートにより除き、更に減圧乾燥することによりグリコースペンタアセテート(58.8g、150mmol、90.9%)を得た。尚、上記無水酢酸の替わりに、上述のモノカルボン酸を使用することができる。
 以下に、本発明に係るエステル化化合物の具体例を挙げるが、本発明はこれに限定されるものではない。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 本発明に係る光学補償フィルムは、位相差値の変動を抑制して、表示品位を安定化する為に、フラノース構造もしくはピラノース構造を1個有す化合物(A)中の、或いは、フラノース構造もしくはピラノース構造の少なくとも一種を2~12個結合した化合物(B)中のOH基のすべてもしくは一部をエステル化したエステル化化合物を1~30質量%含むことが好ましく、特には、5~30質量%含むことが好ましい。この範囲内であれば、本発明の優れた効果を呈すると共に、ブリードアウトなどもなく好ましい。
 また、(メタ)アクリル系重合体とフラノース構造もしくはピラノース構造を1個有す化合物(A)中の、或いは、フラノース構造もしくはピラノース構造の少なくとも一種を2~12個結合した化合物(B)中のOH基のすべてもしくは一部をエステル化したエステル化化合物と他の可塑剤を併用することができる。
 〈その他の位相差制御剤〉
 本発明に係る位相差制御剤としては、分子内にビスフェノールAを含有しているものも好ましい。ビスフェノールAの両端にエチレンオキサイド、プロピレンオキサイドを付加した化合物などを用いることができる。
 例えばニューポールBP-2P、BP-3P、BP-23P、BP-5PなどのBPシリーズ、BPE-20(F)、BPE-20NK、BPE-20T、BPE-40、BPE-60、BPE-100、BPE-180などのBPEシリーズ(三洋化成(株)製)などやアデカポリエーテルBPX-11、BPX-33、BPX-55などのBPXシリーズ((株)アデカ製)がある。
 ジアリルビスフェノールA、ジメタリルビスフェノールAや、ビスフェノールAを臭素などで置換したテトラブロモビスフェーノールAやこれを重合したオリゴマーやポリマー、ジフェニルフォスフェイトなどで置換したビスフェノールAビス(ジフェニルフォスフェイト)なども用いることができる。
 ビスフェノールAを重合したポリカーボネートやビスフェノールAをテレフタル酸などの二塩基酸と重合したポリアリレート、エポキシを含有するモノマーと重合したエポキシオリゴマーやポリマーなども用いることができる。
 ビスフェノールAとスチレンやスチレンアクリルなどをグラフト重合させたモディパーCL130DやL440-Gなども用いることができる。
 本発明に係るアクリル樹脂含有フィルムは、二種以上の位相差制御剤を含有させることもできる。この場合その組み合わせを最適化することで位相差制御剤の溶出を少なくすることもできる。その理由は明らかではないが、一種類当たりの添加量を減らすことができることと、二種の位相差制御剤同士及びアクリル樹脂含有組成物との相互作用によって溶出が抑制されるものと思われる。
 またトリアジン構造をもつものも好ましい。特開2001-166144号公報等に記載の化合物を使用することができる。
 〈可塑剤〉
 本発明に係る保護フィルム(光学フィルム)においては、組成物の流動性や柔軟性を向上するために、可塑剤を併用することも可能である。可塑剤としては、フタル酸エステル系、脂肪酸エステル系、トリメリット酸エステル系、リン酸エステル系、ポリエステル系、あるいはエポキシ系等が挙げられる。
 リン酸エステル系可塑剤では、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等、フタル酸エステル系可塑剤では、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ-2-エチルヘキシルフタレート等を用いることができる。
 この中で、ポリエステル系とフタル酸エステル系の可塑剤が好ましく用いられる。ポリエステル系可塑剤は、フタル酸ジオクチルなどのフタル酸エステル系の可塑剤に比べて非移行性や耐抽出性に優れるが、可塑化効果や相溶性にはやや劣る。
 従って、用途に応じてこれらの可塑剤を選択、あるいは併用することによって、広範囲の用途に適用できる。
 ポリエステル系可塑剤は、一価ないし四価のカルボン酸と一価ないし六価のアルコールとの反応物であるが、主に二価カルボン酸とグリコールとを反応させて得られたものが用いられる。代表的な二価カルボン酸としては、グルタル酸、イタコン酸、アジピン酸、フタル酸、アゼライン酸、セバシン酸などが挙げられる。
 特に、アジピン酸、フタル酸などを用いると可塑化特性に優れたものが得られる。グリコールとしてはエチレン、プロピレン、1,3-ブチレン、1,4-ブチレン、1,6-ヘキサメチレン、ネオペンチレン、ジエチレン、トリエチレン、ジプロピレンなどのグリコールが挙げられる。これらの二価カルボン酸及びグリコールはそれぞれ単独で、あるいは混合して使用してもよい。
 このエステル系の可塑剤はエステル、オリゴエステル、ポリエステルの型のいずれでもよく、分子量は100~10000の範囲が良いが、好ましくは600~3000の範囲が、可塑化効果が大きい。
 また、可塑剤の粘度は分子構造や分子量と相関があるが、アジピン酸系可塑剤の場合相溶性、可塑化効率の関係から200~5000mPa・s(25℃)の範囲が良い。さらに、いくつかのポリエステル系可塑剤を併用してもかまわない。
 可塑剤はアクリル樹脂を含有する組成物100質量部に対して、0.5~30質量部を添加するのが好ましい。可塑剤の添加量が30質量部を越えると、表面がべとつくので、実用上好ましくない。またこれらの可塑剤は単独或いは二種以上混合して用いることもできる。
 〈酸化防止剤〉
 本発明では、酸化防止剤としては、通常知られているものを使用することができる。特に、ラクトン系、イオウ系、フェノール系、二重結合系、ヒンダードアミン系、リン系化合物のものを好ましく用いることができる。
 例えば、BASFジャパン株式会社から、“IrgafosXP40”、“IrgafosXP60”という商品名で市販されているものを含むものが好ましい。
 上記フェノール系化合物としては、2,6-ジアルキルフェノールの構造を有するものが好ましく、例えば、BASFジャパン株式会社、“Irganox1076”、“Irganox1010”、(株)ADEKA“アデカスタブAO-50”という商品名で市販されているものが好ましい。
 上記リン系化合物は、例えば、住友化学株式会社から、“SumilizerGP”、株式会社ADEKAから“ADK STAB PEP-24G”、“ADK STAB PEP-36”及び“ADK STAB 3010”、BASFジャパン株式会社から“IRGAFOS P-EPQ”、堺化学工業株式会社から“GSY-P101”という商品名で市販されているものが好ましい。
 上記ヒンダードアミン系化合物は、例えば、BASFジャパン株式会社から、“Tinuvin144”及び“Tinuvin770”、株式会社ADEKAから“ADK STAB LA-52”という商品名で市販されているものが好ましい。
 上記イオウ系化合物は、例えば、住友化学株式会社から、“Sumilizer TPL-R”及び“Sumilizer TP-D”という商品名で市販されているものが好ましい。
 上記二重結合系化合物は、住友化学株式会社から、“Sumilizer GM”及び“Sumilizer GS”という商品名で市販されているものが好ましい。
 さらに、酸捕捉剤として米国特許第4,137,201号明細書に記載されているような、エポキシ基を有する化合物を含有させることも可能である。
 これらの酸化防止剤等は、再生使用される際の工程に合わせて適宜添加する量が決められるが、一般には、フィルムの主原料である樹脂に対して、0.05~20質量%、好ましくは0.1~1質量%の範囲で添加される。
 これらの酸化防止剤は、一種のみを用いるよりも数種の異なった系の化合物を併用することで相乗効果を得ることができる。例えば、ラクトン系、リン系、フェノール系及び二重結合系化合物の併用は好ましい。
 〈着色剤〉
 本発明においては、着色剤を使用することが好ましい。着色剤と言うのは染料や顔料を意味するが、本発明では、液晶画面の色調を青色調にする効果又はイエローインデックスの調整、ヘイズの低減を有するものを指す。
 着色剤としては各種の染料、顔料が使用可能だが、アントラキノン染料、アゾ染料、フタロシアニン顔料などが有効である。
 〈紫外線吸収剤〉
 本発明に用いられる紫外線吸収剤は特に限定されないが、例えばオキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。高分子型の紫外線吸収剤としてもよい。
 〈マット剤〉
 本発明では、フィルムの滑り性を付与するためにマット剤を添加することが好ましい。
 本発明で用いられるマット剤としては、得られるフィルムの透明性を損なうことがなく、溶融時の耐熱性があれば無機化合物又は有機化合物どちらでもよく、例えば、タルク、マイカ、ゼオライト、ケイソウ土、焼成珪成土、カオリン、セリサイト、ベントナイト、スメクタイト、クレー、シリカ、石英粉末、ガラスビーズ、ガラス粉、ガラスフレーク、ミルドファイバー、ワラストナイト、窒化ホウ素、炭化ホウ素、ホウ化チタン、炭酸マグネシウム、重質炭酸カルシウム、軽質炭酸カルシウム、珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、アルミノ珪酸マグネシウム、アルミナ、シリカ、酸化亜鉛、二酸化チタン、酸化鉄、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、硫酸カルシウム、硫酸バリウム、炭化ケイ素、炭化アルミニウム、炭化チタン、窒化アルミニウム、窒化ケイ素、窒化チタン、ホワイトカーボンなどが挙げられる。これらのマット剤は、単独でも二種以上併用しても使用できる。
 粒径や形状(例えば針状と球状など)の異なる粒子を併用することで高度に透明性と滑り性を両立させることもできる。
 これらの中でも、セルロースエステルと屈折率が近いので透明性(ヘイズ)に優れる二酸化珪素が特に好ましく用いられる。
 二酸化珪素の具体例としては、アエロジル200V、アエロジルR972V、アエロジルR972、R974、R812、200、300、R202、OX50、TT600、NAX50(以上日本アエロジル(株)製)、シーホスターKEP-10、シーホスターKEP-30、シーホスターKEP-50(以上、株式会社日本触媒製)、サイロホービック100(富士シリシア製)、ニップシールE220A(日本シリカ工業製)、アドマファインSO(アドマテックス製)等の商品名を有する市販品などが好ましく使用できる。
 粒子の形状としては、不定形、針状、扁平、球状等特に制限なく使用できるが、特に球状の粒子を用いると得られるフィルムの透明性が良好にできるので好ましい。
 粒子の大きさは、可視光の波長に近いと光が散乱し、透明性が悪くなるので、可視光の波長より小さいことが好ましく、さらに可視光の波長の1/2以下であることが好ましい。粒子の大きさが小さすぎると滑り性が改善されない場合があるので、80nmから180nmの範囲であることが特に好ましい。
 なお、粒子の大きさとは、粒子が1次粒子の凝集体の場合は凝集体の大きさを意味する。また、粒子が球状でない場合は、その投影面積に相当する円の直径を意味する。
 〈粘度低下剤〉
 本発明において、溶融粘度を低減する目的として、水素結合性溶媒を添加することができる。水素結合性溶媒とは、J.N.イスラエルアチビリ著、「分子間力と表面力」(近藤保、大島広行訳、マグロウヒル出版、1991年)に記載されるように、電気的に陰性な原子(酸素、窒素、フッ素、塩素)と電気的に陰性な原子と共有結合した水素原子間に生ずる、水素原子媒介「結合」を生ずることができるような有機溶媒、すなわち、結合モーメントが大きく、かつ水素を含む結合、例えば、O-H(酸素水素結合)、N-H(窒素水素結合)、F-H(フッ素水素結合)を含むことで近接した分子同士が配列できるような有機溶媒をいう。
 これらは、セルロース樹脂の分子間水素結合よりもセルロースとの間で強い水素結合を形成する能力を有するもので、セルロース樹脂単独のガラス転移温度よりも、水素結合性溶媒の添加によりセルロース樹脂組成物の溶融温度を低下することができる、又は同じ溶融温度においてセルロース樹脂よりも水素結合性溶媒を含むセルロース樹脂組成物の溶融粘度を低下することができる。
 (保護フィルム(光学フィルム)の物性)
 以下、本発明に係る保護フィルム(光学フィルム)の物性等についての特徴について説明する。
 〈透明性〉
 本発明における保護フィルム(光学フィルム)の透明性を判断する指標としては、ヘイズ値(濁度)を用いる。特に屋外で用いられる液晶表示装置においては、明るい場所でも十分な輝度や高いコントラストが得られることが求められる為、ヘイズ値は1.0%以下であることが必要とされ、0.5%以下であることがさらに好ましい。また、その全光線透過率が90%以上であることが好ましく、より好ましくは93%以上である。また、現実的な上限としては、99%程度である。かかる全光線透過率にて表される優れた透明性を達成するには、可視光を吸収する添加剤や共重合成分を導入しないようにすることや、ポリマー中の異物を高精度濾過により除去し、フィルム内部の光の拡散や吸収を低減させることが有効である。
 アクリル系樹脂(A)とセルロースエステル樹脂(B)を含有する本発明に係る保護フィルム(光学フィルム)によれば、高い透明性を得ることができるが、別の物性を改善する目的でアクリル粒子を使用する場合は、樹脂(アクリル系樹脂(A)とセルロースエステル樹脂(B))とアクリル粒子(D)との屈折率差を小さくすることで、ヘイズ値の上昇を防ぐことができる。
 また、本発明に係る保護フィルム(光学フィルム)は、フィルム面内の直径5μm以上の欠点が1個/10cm四方以下であることが好ましい。さらに好ましくは0.5個/10cm四方以下、一層好ましくは0.1個/10cm四方以下である。
 ここで欠点の直径とは、欠点が円形の場合はその直径を示し、円形でない場合は欠点の範囲を下記方法により顕微鏡で観察して決定し、その最大径(外接円の直径)とする。
 欠点の範囲は、欠点が気泡や異物の場合は、欠点を微分干渉顕微鏡の透過光で観察したときの影の大きさである。欠点が、ロール傷の転写や擦り傷など、表面形状の変化の場合は、欠点を微分干渉顕微鏡の反射光で観察して大きさを確認する。
 なお、反射光で観察する場合に、欠点の大きさが不明瞭であれば、表面にアルミや白金を蒸着して観察する。
 かかる欠点頻度にて表される品位に優れたフィルムを生産性よく得るには、ポリマー溶液を流延直前に高精度濾過することや、流延機周辺のクリーン度を高くすること、また、流延後の乾燥条件を段階的に設定し、効率よくかつ発泡を抑えて乾燥させることが有効である。
 欠点の個数が1個/10cm四方より多いと、例えば後工程での加工時などでフィルムに張力がかかると、欠点を基点としてフィルムが破断して生産性が低下する場合がある。また、欠点の直径が5μm以上になると、偏光板観察などにより目視で確認でき、光学部材として用いたとき輝点が生じる場合がある。
 〈光弾性係数〉
 光弾性係数は作製した保護フィルム(光学フィルム)に荷重を加えながらフィルム面内のリターデーションRoを測定する。それを、荷重を変えながらRoを求め、荷重-Ro曲線を作成して、その傾きを光弾性係数とした。
 フィルム面内のリターデーションRoは、リターデーション測定装置(KOBRA31PR、王子計測機器社製)を用い、波長589nmにおける値を測定した。
 本発明に係る保護フィルム(光学フィルム)は、光弾性係数が-5×10-13~5×10-13cm/dynであるように調整することが好ましい。
 本発明において、光弾性係数を上記の範囲内に調整するには、アクリル樹脂とセルロースエステル樹脂95:5~30:70の質量比の範囲内でそれぞれの樹脂の比率を調整し、場合に応じて位相差制御剤の組み合わせとその添加する量を調整して組成を最適化することで行う。
 光弾性係数をこのような範囲に調整することにより液晶表示装置を長時間点灯しパネルが高温になった場合や回りの雰囲気が高温高湿になった場合に位相差フィルムに応力がかかっても位相差が発現しにくくなり画像ムラが低減できる。さらに長期間使用した場合に発生する画像ムラも低減できる。
 また、本発明に係る保護フィルム(光学フィルム)の厚さは、20μm以上であることが好ましい。より好ましくは30μm以上である。
 本発明に係る保護フィルム(光学フィルム)は、上記のような物性を満たしていれば、大型の液晶表示装置や屋外用途の液晶表示装置用の偏光板保護フィルムとして特に好ましく用いることができる。
 〈透湿度〉
 本発明に係る「透湿度」は、JIS Z0208に規定される塩化カルシウム-カップ法に基づき、温度40℃及び湿度90%RHの環境条件下で24時間保持された際の透湿度のことをいう。
 本発明に係る保護フィルム(光学フィルム)は、透湿度が300g/m・24hr以上であるように調整することが好ましい。
 本発明において、透湿度を上記の値にするには、アクリル樹脂とセルロースエステル樹脂を95:5~30:70の質量比の範囲内でそれぞれの樹脂の比率を調整し、また、場合により膜厚を調整することにより調節することで行う。セルロース比率を多くし、また、膜厚を薄くすることにより保護フィルムの透湿度が大きくなり、偏光板にした際の乾燥性に優れ、密着性の強化につながる。
 <保護フィルム(光学フィルム)の製膜>
 本発明に係る保護フィルム(光学フィルム)の製膜方法としては、インフレーション法、T-ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用できるが、着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制などの観点から流延法による溶液製膜が好ましい。
 (有機溶媒)
 本発明に係る保護フィルム(光学フィルム)を溶液流延法で製造する場合のドープを形成するのに有用な有機溶媒は、アクリル樹脂(A)、セルロースエステル樹脂(B)、その他の添加剤を同時に溶解するものであれば制限なく用いることができる。
 例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることが出来、塩化メチレン、酢酸メチル、酢酸エチル、アセトンを好ましく使用し得る。
 ドープには、上記有機溶媒の他に、1~40質量%の炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有させることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ない時は非塩素系有機溶媒系でのアクリル樹脂(A)、セルロースエステル樹脂(B)の溶解を促進する役割もある。
 特に、メチレンクロライド、及び炭素数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有する溶媒に、アクリル樹脂(A)と、セルロースエステル樹脂(B)を、少なくとも計15~45質量%溶解させたドープ組成物であることが好ましい。
 炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。
 以下、本発明に係る保護フィルム(光学フィルム)の好ましい製膜方法について説明する。
 1)溶解工程
 アクリル樹脂(A)、セルロースエステル樹脂(B)に対する良溶媒を主とする有機溶に、溶解釜中で該アクリル樹脂(A)、セルロースエステル樹脂(B)、場合によってアクリル粒子(D)、その他の添加剤を攪拌しながら溶解しドープを形成する工程、或いは該アクリル樹脂(A)、セルロースエステル樹脂(B)溶液に、場合によってアクリル粒子(D)溶液、その他の添加剤溶液を混合して主溶解液であるドープを形成する工程である。
 アクリル樹脂(A)、セルロースエステル樹脂(B)の溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、又は特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載の如き高圧で行う方法等種々の溶解方法を用いることができるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。
 ドープ中のアクリル樹脂(A)と、セルロースエステル樹脂(B)は、計15~45質量%の範囲であることが好ましい。溶解中又は後のドープに添加剤を加えて溶解及び分散した後、濾材で濾過し、脱泡して送液ポンプで次工程に送る。
 濾過は捕集粒子径0.5~5μmで、かつ濾水時間10~25sec/100mlの濾材を用いることが好ましい。
 この方法では、粒子分散時に残存する凝集物や主ドープ添加時発生する凝集物を、捕集粒子径0.5~5μmで、かつ濾水時間10~25sec/100mlの濾材を用いることで凝集物だけ除去できる。主ドープでは粒子の濃度も添加液に比べ十分に薄いため、濾過時に凝集物同士がくっついて急激な濾圧上昇することもない。
 図1は、本発明に好ましい溶液流延製膜方法のドープ調製工程、流延工程及び乾燥工程の一例を模式的に示した図である。
 必要な場合は、アクリル粒子仕込釜41より濾過器44で大きな凝集物を除去し、ストック釜42へ送液する。その後、ストック釜42より主ドープ溶解釜1へアクリル粒子添加液を添加する。
 その後主ドープ液は主濾過器3にて濾過され、これに紫外線吸収剤添加液が16よりインライン添加される。
 多くの場合、主ドープには返材が10~50質量%程度含まれることがある。返材にはアクリル粒子が含まれることがある、その場合には返材の添加量に合わせてアクリル粒子添加液の添加量をコントロールすることが好ましい。
 アクリル粒子を含有する添加液には、アクリル粒子を0.5~10質量%含有していることが好ましく、1~10質量%含有していることが更に好ましく、1~5質量%含有していることが最も好ましい。
 上記範囲内であれば、添加液は低粘度で取り扱い易く、主ドープへの添加が容易であるため好ましい。
 返材とは、保護フィルム(光学フィルム)を細かく粉砕した物で、保護フィルム(光学フィルム)を製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷などでスペックアウトした保護フィルム(光学フィルム)原反が使用される。
 また、予めアクリル樹脂、セルロースエステル樹脂、場合によってアクリル粒子を混練してペレット化したものも、好ましく用いることができる。
 2)流延工程
 ドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイ30に送液し、無限に移送する無端の金属ベルト31、例えばステンレスベルト、或いは回転する金属ドラム等の金属支持体上の流延位置に、加圧ダイスリットからドープを流延する工程である。
 ダイの口金部分のスリット形状を調整出来、膜厚を均一にし易い加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、何れも好ましく用いられる。金属支持体の表面は鏡面となっている。製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して重層してもよい。或いは複数のドープを同時に流延する共流延法によって積層構造のフィルムを得ることも好ましい。
 3)溶媒蒸発工程
 ウェブ(流延用支持体上にドープを流延し、形成されたドープ膜をウェブと呼ぶ)を流延用支持体上で加熱し、溶媒を蒸発させる工程である。
 溶媒を蒸発させるには、ウェブ側から風を吹かせる方法及び/又は支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法が乾燥効率が良く好ましい。又、それらを組み合わせる方法も好ましく用いられる。流延後の支持体上のウェブを40~100℃の雰囲気下、支持体上で乾燥させることが好ましい。40~100℃の雰囲気下に維持するには、この温度の温風をウェブ上面に当てるか赤外線等の手段により加熱することが好ましい。
 面品質、透湿性、剥離性の観点から、30~120秒以内で該ウェブを支持体から剥離することが好ましい。
 4)剥離工程
 金属支持体上で溶媒が蒸発したウェブを、剥離位置で剥離する工程である。剥離されたウェブは次工程に送られる。
 金属支持体上の剥離位置における温度は好ましくは10~40℃であり、更に好ましくは11~30℃である。
 尚、剥離する時点での金属支持体上でのウェブの剥離時残留溶媒量は、乾燥の条件の強弱、金属支持体の長さ等により50~120質量%の範囲で剥離することが好ましいが、残留溶媒量がより多い時点で剥離する場合、ウェブが柔らか過ぎると剥離時平面性を損ね、剥離張力によるツレや縦スジが発生し易いため、経済速度と品質との兼ね合いで剥離時の残留溶媒量が決められる。
 ウェブの残留溶媒量は下記式で定義される。
 残留溶媒量(%)=(ウェブの加熱処理前質量-ウェブの加熱処理後質量)/(ウェブの加熱処理後質量)×100
 尚、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
 金属支持体とフィルムを剥離する際の剥離張力は、通常、196~245N/mであるが、剥離の際に皺が入り易い場合、190N/m以下の張力で剥離することが好ましく、更には、剥離できる最低張力~166.6N/m、次いで、最低張力~137.2N/mで剥離することが好ましいが、特に好ましくは最低張力~100N/mで剥離することである。
 本発明においては、該金属支持体上の剥離位置における温度を-50~40℃とするのが好ましく、10~40℃がより好ましく、15~30℃とするのが最も好ましい。
 5)乾燥及び延伸工程
 剥離後、ウェブを乾燥装置内に複数配置したロールに交互に通して搬送する乾燥装置35、及び/又はクリップでウェブの両端をクリップして搬送するテンター延伸装置34を用いて、ウェブを乾燥する。
 乾燥手段はウェブの両面に熱風を吹かせるのが一般的であるが、風の代わりにマイクロウェーブを当てて加熱する手段もある。余り急激な乾燥は出来上がりのフィルムの平面性を損ね易い。高温による乾燥は残留溶媒が8質量%以下くらいから行うのがよい。全体を通し、乾燥は概ね40~250℃で行われる。特に40~160℃で乾燥させることが好ましい。
 テンター延伸装置を用いる場合は、テンターの左右把持手段によってフィルムの把持長(把持開始から把持終了までの距離)を左右で独立に制御できる装置を用いることが好ましい。また、テンター工程において、平面性を改善するため意図的に異なる温度を持つ区画を作ることも好ましい。
 また、異なる温度区画の間にそれぞれの区画が干渉を起こさないように、ニュートラルゾーンを設けることも好ましい。
 尚、延伸操作は多段階に分割して実施してもよく、流延方向、幅手方向に二軸延伸を実施することも好ましい。また、二軸延伸を行う場合には同時二軸延伸を行ってもよいし、段階的に実施してもよい。
 この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。即ち、例えば、次のような延伸ステップも可能である。
 ・流延方向に延伸-幅手方向に延伸-流延方向に延伸-流延方向に延伸
 ・幅手方向に延伸-幅手方向に延伸-流延方向に延伸-流延方向に延伸
 また、同時2軸延伸には、一方向に延伸し、もう一方を、張力を緩和して収縮させる場合も含まれる。同時2軸延伸の好ましい延伸倍率は幅手方向、長手方向ともに×1.01倍~×1.5倍の範囲でとることができる。
 テンターを行う場合のウェブの残留溶媒量は、テンター開始時に20~100質量%であるのが好ましく、かつウェブの残留溶媒量が10質量%以下になる迄テンターを掛けながら乾燥を行うことが好ましく、更に好ましくは5質量%以下である。
 テンターを行う場合の乾燥温度は、30~160℃が好ましく、50~150℃が更に好ましく、70~140℃が最も好ましい。
 テンター工程において、雰囲気の幅手方向の温度分布が少ないことが、フィルムの均一性を高める観点から好ましく、テンター工程での幅手方向の温度分布は、±5℃以内が好ましく、±2℃以内がより好ましく、±1℃以内が最も好ましい。
 6)巻き取り工程
 ウェブ中の残留溶媒量が2質量%以下となってから保護フィルム(光学フィルム)として巻き取り機37により巻き取る工程であり、残留溶媒量を0.4質量%以下にすることにより寸法安定性の良好なフィルムを得ることができる。特に0.00~0.10質量%で巻き取ることが好ましい。
 巻き取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使いわければよい。
 本発明に係る保護フィルム(光学フィルム)は、長尺フィルムであることが好ましく、具体的には、100m~5000m程度のものを示し、通常、ロール状で提供される形態のものである。また、フィルムの幅は1.3~4mであることが好ましく、1.4~2mであることがより好ましい。
 本発明に係る保護フィルム(光学フィルム)の膜厚に特に制限はないが、後述する偏光板保護フィルムに使用する場合は20~200μmであることが好ましく、25~100μmであることがより好ましく、30~80μmであることが特に好ましい。
 <偏光板>
 本発明に係る保護フィルム(光学フィルム)を偏光板用保護フィルムとして用いる場合、偏光板は一般的な方法で作製することができる。本発明に係る保護フィルム(光学フィルム)の裏面側に接着層を設け、沃素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、貼り合わせることが好ましい。
 もう一方の面には本発明に係る保護フィルム(光学フィルム)を用いても、別の偏光板保護フィルムを用いてもよい。例えば、市販のセルロースエステルフィルム(例えば、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UY、KC4UY、KC12UR、KC8UCR-3、KC8UCR-4、KC8UCR-5、KC8UE、KC4UE、KC4FR-3、KC4FR-4、KC4HR-1、KC8UY-HA、KC8UX-RHA、以上コニカミノルタオプト(株)製)等が好ましく用いられる。
 偏光板の主たる構成要素である偏光子とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。
 偏光子は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。
 上記接着層に用いられる接着剤としては溶媒の50質量%以上が水である水性接着剤を用いることができ、水性接着剤とは、溶媒の50質量%以上が水である接着剤をいい、ポリビニルアルコール系水性接着剤(アセトアセチル基、スルホン酸基、カルボキシ基、オキシアルキレン基等の変性ポリビニルアルコールを含む)、ゼラチン接着剤、ビニル系ラテックス接着剤、水系ポリエステル等を例示できるが、中でもポリビニルアルコール系水性接着剤であることが好ましい。
 <液晶表示装置>
 本発明に係る保護フィルム(光学フィルム)を貼合した偏光板を液晶表示装置に組み込むことによって、種々の視認性に優れた液晶表示装置を作製することができるが、特に大型の液晶表示装置やデジタルサイネージ等の屋外用途の液晶表示装置に好ましく用いられる。本発明に係る偏光板は、粘着層等を介して液晶セルに貼合する。
 本発明に係る偏光板は反射型、透過型、半透過型LCD又はTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型(FFS方式も含む)等の各種駆動方式のLCDで好ましく用いられる。特にVA型の画面が30型以上、特に30型~54型の大画面の表示装置では、画面周辺部での白抜け等もなく、その効果が長期間維持される。
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 <アクリル樹脂(A)>
 実施例で使用したアクリル樹脂は以下の通りである。
 A1:モノマー質量比(MMA:MA=98:2)、Mw75000
 A2:モノマー質量比(MMA:MA=97:3)、Mw140000
 A3:モノマー質量比(MMA:MA=97:3)、Mw550000
 A4:モノマー質量比(MMA:MA=97:3)、Mw1100000
 MMA:メチルメタクリレート
 MA:メチルアクリレート
 ダイヤナールBR85(三菱レイヨン(株)製、以下BR85)、Mw280000
 上記市販のアクリル樹脂における分子中のMMA単位の割合は、90質量%以上99質量%以下であった。
 <セルロースエステル樹脂(B)>
 実施例で使用したアクリル樹脂は以下の通りである。
 B1:Ac基置換度0.19 Pr基置換度2.56 総置換度2.75
    Mw=200000
 B2:Ac基置換度0.00 Pr基置換度2.00 総置換度2.00
    Mw=190000
 B3:Ac基置換度0.00 Pr基置換度2.30 総置換度2.30
    Mw=210000
 B4:Ac基置換度0.00 Pr基置換度2.50 総置換度2.50
    Mw=220000
 B5:Ac基置換度0.00 Pr基置換度2.90 総置換度2.90
    Mw=180000
 B6:Ac基置換度0.50 Pr基置換度2.00 総置換度2.50
    Mw=200000
 B7:Ac基置換度0.50 Pr基置換度2.40 総置換度2.90
    Mw=200000
 B8:Ac基置換度0.90 Pr基置換度2.00 総置換度2.90
    Mw=200000
 B9:Ac基置換度1.50 Pr基置換度1.34 総置換度2.84
    Mw=200000
 B10:Ac基置換度1.92 Pr基置換度0.74 総置換度2.66
    Mw=180000
 B11:Ac基置換度1.56 Pr基置換度0.90 総置換度2.46
    Mw=150000
 <アミド結合を有するビニルポリマー(C)>
 実施例で使用したアミド結合を有するビニルポリマーは以下の通りである。
 C1:ポリ(NVP-VAc) 65:35質量比 Mw=20000
 C2:ポリ(NVP-VAc) 80:20質量比 Mw=20000
 C3:ポリ(NVP-VAc) 50:50質量比 Mw=20000
 C4:ポリ(NVP-VAc) 65:35質量比 Mw=5000
 C5:ポリ(NVP-VAc) 65:35質量比 Mw=50000
 C6:ポリ(NVP-MMA) 80:20質量比 Mw=5000
 C7:ポリ(NVP-MMA) 80:20質量比 Mw=20000
 C8:ポリ(NVP-MMA) 80:20質量比 Mw=50000
 C9:ポリ(NVP-MMA) 60:40質量比 Mw=20000
 C10:ポリ(NVP-HEMA) 60:40質量比 Mw=5000
 C11:ポリ(ACMO-MMA) 10:90質量比 Mw=20000
 C12:ポリ(ACMO-MMA) 30:70質量比 Mw=20000
 C13:ポリNVP Mw=10000
 C14:ポリNVP Mw=40000
 C15:ポリACMO Mw=20000
 NVP:N-ビニルピロリドン
 VAc:酢酸ビニル
 MMA:メチルメタクリレート
 HEMA:2-ヒドロキシエチルメタクリレート
 ACMO:アクリロイルモルホリン
 <偏光板保護フィルムの作製>
 各偏光板保護フィルムを、以下のようにして作製した。
 〈アクリル微粒子(D1)の調製〉
 内容積60リットルの還流冷却器付反応器に、イオン交換水38.2リットル、ジオクチルスルホコハク酸ナトリウム111.6gを投入し、250rpmの回転数で攪拌しながら、窒素雰囲気下75℃に昇温し、酸素の影響が事実上無い状態にした。APSを0.36g投入し、5分間攪拌後にMMAを1657g、BAを21.6g、及びALMAの1.68gからなる単量体混合物を一括添加し、発熱ピークの検出後さらに20分間保持して最内硬質層の重合を完結させた。
 次に、APSを3.48g投入し、5分間攪拌後にBAを8105g、PEGDA(200)を31.9g、及びALMAの264.0gからなる単量体混合物を120分間かけて連続的に添加し、添加終了後さらに120分間保持して、軟質層の重合を完結させた。
 次に、APSを1.32g投入し、5分間攪拌後にMMAを2106g、BAを201.6gからなる単量体混合物を20分間かけて連続的に添加し、添加終了後さらに20分間保持して最外硬質層1の重合を完結した。
 次いで、APSを1.32g投入し、5分後にMMAを3148g、BAを201.6g、及びn-OMの10.1gからなる単量体混合物を20分間かけて連続的に添加し、添加終了後にさらに20分間保持した。ついで95℃に昇温し60分間保持して、最外硬質層2の重合を完結させた。
 このようにして得られた重合体ラテックスを少量採取し、吸光度法により平粒子径を求めたところ0.10μmであった。残りのラテックスを3質量%硫酸ナトリウム温水溶液中へ投入して、塩析・凝固させ、次いで、脱水・洗浄を繰り返したのち乾燥し、三層構造のアクリル微粒子(D1)を得た。
 上記の略号は各々下記材料である。
 MMA;メチルメタクリレート
 MA;メチルアクリレート
 BA;n-ブチルアクリレート
 ALMA;アリルメタクリレート
 PEGDA;ポリエチレングリコールジアクリレート(分子量200)
 n-OM;n-オクチルメルカプタン
 APS;過硫酸アンモニウム
 (ドープ液1組成)
 ダイヤナールBR85(三菱レイヨン(株)製)      70質量部
 セルロースエステル樹脂(アシル基総置換度2.75、アセチル基置換度
0.19、プロピオニル基置換度2.56、Mw=200000)
                             30質量部
 アミド結合を有するビニルポリマーC1          15質量部
 アクリル粒子(D1)                   5質量部
 無機微粒子(アエロジルR972V)         0.27質量部
 メチレンクロライド                  256質量部
 エタノール                       48質量部
 上記組成物を、加熱しながら十分に溶解し、ドープ液1を作製した。
 この作製したドープ液を、ベルト流延装置を用い、温度22℃、2m幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が100%になるまで溶媒を蒸発させ、剥離張力162N/mでステンレスバンド支持体上から剥離した。
 剥離した樹脂組成物のウェブを35℃で溶媒を蒸発させ、1.5m幅にスリットし、その後、テンターで幅方向に1.30倍(30%)に延伸しながら、140℃の乾燥温度で乾燥させた。このときテンターで延伸を始めたときの残留溶剤量は10%であった。
 テンターで延伸後、130℃で5分間緩和を行った後、120℃の乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させ、1.5m幅にスリットし、フィルム両端に幅10mm高さ5μmのナーリング加工を施し、初期張力220N/m、終張力110N/mで内径15.24cmコアに巻取り、厚さ40μm巻きの長さ5200mの偏光板保護フィルム1のロール試料1を得た。
 以下、表1に記載のように材料を変更し偏光板保護フィルム1と同様にして偏光板保護フィルム2~35を作製した。
 〈偏光板1~49の作製〉
 各偏光板を、以下のようにして作製した。
 厚さ120μmの長尺ロールポリビニルアルコールフィルムを、沃素1質量部、ホウ酸4質量部を含む水溶液100質量部に浸漬し、50℃で5倍に搬送方向に延伸して偏光子を作製した。
 次に、この偏光子の両面にポリビニルアルコール系接着剤を塗布し、偏光子の片面に1.5NのKOH溶液で40℃60秒のケン化条件でアルカリ・ケン化処理した実施例1で作製した偏光板保護フィルム1を、もう一方の面に同様のケン化処理を行ったKC6UY(コニカミノルタオプト(株)製)を積層しロール機で貼り合わせ、その後60℃の乾燥工程で120秒乾燥を行い、偏光板1を作製した。
 また、偏光板保護フィルムとケン化処理条件を表1~表3記載の方法に変更した以外は上記と同様の方法で偏光板2~49をそれぞれ作製した。
 (偏光板50~52の作製)
 電極表面がセラミックで覆われたコロナ処理装置を用い、50W・min/mの条件で偏光板保護フィルム1にコロナ処理を施した。偏光子の両面にポリビニルアルコール系接着剤を塗布し、前記コロナ処理を行った偏光板保護フィルム1を、もう一方の面に同様のケン化処理を行ったKC6UY(コニカミノルタオプト(株)製)を積層しロール機で貼り合わせ、その後60℃の乾燥工程で120秒乾燥を行い、偏光板50を作製した。
 また、コロナ処理の出力を150W・min/m、300W・min/mとした以外は上記と同様にして偏光板51及び52をそれぞれ作製した。
 (偏光板53及び54の作製)
 プラズマ処理を行うために、まず反応容器に径50mmの真鍮製上下電極を設け誘電体として電極よりも大きな100μm厚のポリイミドを電極に貼り合わせて下部電極の上に150mm×150mm、厚さ80μmの偏光板保護フィルムを置き、極板間隙を20mmにしてその容器内の空気をアルゴンガスで置換した。
 完全に空気が混合ガスで置換された後、周波数3000Hz、4200Vの高周波数電圧を上下電極間に引加すると赤紫色のグロー放電が発生し、プラズマ励起された。処理時間を5秒として偏光板保護フィルム1の処理を行い、偏光子の両面にポリビニルアルコール系接着剤を塗布し、偏光子の片面に前記プラズマ処理をされた偏光板保護フィルム1を、もう一方の面に同様のケン化処理を行ったKC6UY(コニカミノルタオプト(株)製)を積層しロール機で貼り合わせ、その後60℃の乾燥工程で120秒乾燥を行い、偏光板53を作製した。
 また、プラズマ大気処理時間を20秒とした以外は上記と同様の方法でそれぞれ偏光板54を作製した。
 <液晶表示装置の作製>
 上記作製した各偏光板を使用して、本発明に係るフィルムの表示特性評価を行った。横電解モード型液晶表示装置である日立製液晶テレビWooo W32-L7000を用いて、予め貼合されていた両面の偏光板を剥がして、上記作製した偏光板をそれぞれ液晶セルのガラス面に貼合した。
 上記作製した偏光板を予め貼合されていた偏光板と同一の方向に吸収軸が向くように貼合し、液晶表示装置を各々作製した。
 〈評価〉
 (透湿度)
 JIS Z0208に規定される塩化カルシウム-カップ法に基づき、温度40℃及び湿度90%RHの環境条件下で24時間保持された際の透湿度を測定した。
 (水接触角)
 表面改質処理を行った偏光板保護フィルム上に純水を5μl垂らし、測定装置(協和界面科学(株)製DropMaster DM300を用いた)により温度23℃において、100cm範囲内で無作為に選んだ20点の水接触角を測定し、この測定値の加算平均により算出した。
 (偏光子密着性)
 作製した偏光板を5cm×5cmの大きさの正方形に断裁し、23℃、55%RHの雰囲気下に24時間放置し、その後、角の部分から偏光子とフィルムの界面で剥がす。この作業を一種類のサンプルについて100枚の偏光板で行い、偏光子とフィルムの間で剥がれが見られた偏光板の枚数を数える。
 ◎ :0~2枚
 ○ :3~5枚
 △ :6~20枚
 × :21枚以上
 偏光子密着性は○レベル以上であることが好ましい。
 (画像ムラ)
 以上のようにして作製した液晶表示装置を用いてグレーの均一画像を目視評価し以下の基準で表した。
 ○:画像ムラが全くない
 △:非常に細かく注意すると僅かに画像のムラが認められる
 ×:三角形、楕円形の画像ムラが見える
 上記で得た各種偏光板の内容と評価結果をまとめて表1~表3に示す。
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
 表1~表3に示した結果から明らかなように、本発明に係る偏光板に用いた保護フィルムの透湿度及び水接触角は、適切な範囲内にあり、弱い乾燥工程条件においても偏光子密着性に優れ、かつ画像ムラが殆ど無く優れていることが分かる。
 1 溶解釜
 3、6、12、15 濾過器
 4、13 ストックタンク
 5、14 送液ポンプ
 8、16 導管
 10 紫外線吸収剤仕込釜
 20 合流管
 21 混合機
 30 ダイ
 31 金属支持体
 32 ウェブ
 33 剥離位置
 34 テンター装置
 35 ロール乾燥装置
 41 粒子仕込釜
 42 ストックタンク
 43 ポンプ
 44 濾過器

Claims (6)

  1.  保護フィルムの表面を改質処理する表面改質処理工程と、表面改質された保護フィルムを偏光子の少なくとも一方の面に水系接着剤により貼り合せる貼合工程と、当該貼合工程で得られた貼合物を乾燥させる乾燥工程とを有する偏光板の製造方法であって、(1)当該保護フィルムは、アクリル樹脂(A)とセルロースエステル樹脂(B)とアミド結合を有するビニルポリマー(C)とを含有し、かつ(2)当該乾燥工程は、温度が40~70℃の範囲内であり、かつ滞留時間が60~180秒の範囲内であることを特徴とする偏光板の製造方法。
  2.  前記保護フィルムは、透湿度が300g/m・24hr以上であり、かつ表面改質処理後の平均水接触角が55度以下であることを特徴とする請求項1に記載の偏光板の製造方法。
  3.  前記保護フィルムが、前記アクリル樹脂(A)と前記セルロースエステル樹脂(B)を70:30~30:70の範囲内の質量比で含有していることを特徴とする請求項1又は請求項2に記載の偏光板の製造方法。
  4.  前記セルロースエステル樹脂(B)のアシル基の総置換度(T)が2.0~3.0の範囲内であり、かつ当該セルロースエステル樹脂(B)のアセチル置換度が1.3未満であることを特徴とする請求項1から請求項3までのいずれか一項に記載の偏光板の製造方法。
  5.  請求項1から請求項4までのいずれか一項に記載の偏光板の製造方法によって製造されることを特徴とする偏光板。
  6.  請求項5に記載の偏光板が、画像表示面に配置されていることを特徴とする液晶表示装置。
PCT/JP2011/060123 2010-05-07 2011-04-26 偏光板、その製造方法、及び液晶表示装置 WO2011138913A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010107062 2010-05-07
JP2010-107062 2010-05-07

Publications (1)

Publication Number Publication Date
WO2011138913A1 true WO2011138913A1 (ja) 2011-11-10

Family

ID=44903765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060123 WO2011138913A1 (ja) 2010-05-07 2011-04-26 偏光板、その製造方法、及び液晶表示装置

Country Status (1)

Country Link
WO (1) WO2011138913A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027085A1 (ja) * 2018-07-31 2020-02-06 コニカミノルタ株式会社 光学フィルム、偏光板、および光学フィルムの製造方法
WO2020026960A1 (ja) * 2018-07-31 2020-02-06 コニカミノルタ株式会社 光学フィルム、偏光板保護フィルムおよび偏光板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07306315A (ja) * 1994-05-10 1995-11-21 Nippon Synthetic Chem Ind Co Ltd:The 偏光板の製造法
JP2002221619A (ja) * 2001-01-25 2002-08-09 Gunze Ltd 偏光板
JP2006022306A (ja) * 2004-06-07 2006-01-26 Konica Minolta Opto Inc セルロースエステルフィルム及びその製造方法、光学フィルム、偏光板、液晶表示装置
JP2007231157A (ja) * 2005-03-10 2007-09-13 Konica Minolta Opto Inc 光学フィルム、光学フィルムの製造方法、光学補償フィルム、光学補償フィルムの製造方法、偏光板及び液晶表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07306315A (ja) * 1994-05-10 1995-11-21 Nippon Synthetic Chem Ind Co Ltd:The 偏光板の製造法
JP2002221619A (ja) * 2001-01-25 2002-08-09 Gunze Ltd 偏光板
JP2006022306A (ja) * 2004-06-07 2006-01-26 Konica Minolta Opto Inc セルロースエステルフィルム及びその製造方法、光学フィルム、偏光板、液晶表示装置
JP2007231157A (ja) * 2005-03-10 2007-09-13 Konica Minolta Opto Inc 光学フィルム、光学フィルムの製造方法、光学補償フィルム、光学補償フィルムの製造方法、偏光板及び液晶表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027085A1 (ja) * 2018-07-31 2020-02-06 コニカミノルタ株式会社 光学フィルム、偏光板、および光学フィルムの製造方法
WO2020026960A1 (ja) * 2018-07-31 2020-02-06 コニカミノルタ株式会社 光学フィルム、偏光板保護フィルムおよび偏光板
JPWO2020026960A1 (ja) * 2018-07-31 2021-08-05 コニカミノルタ株式会社 光学フィルム、偏光板保護フィルムおよび偏光板
TWI745726B (zh) * 2018-07-31 2021-11-11 日商柯尼卡美能達股份有限公司 光學薄膜、偏光板保護薄膜及偏光板
JP7314942B2 (ja) 2018-07-31 2023-07-26 コニカミノルタ株式会社 光学フィルム、偏光板保護フィルムおよび偏光板

Similar Documents

Publication Publication Date Title
JP5447374B2 (ja) アクリルフィルムの製造方法およびその製造方法で作製したアクリルフィルム
JP5463912B2 (ja) アクリル樹脂含有フィルム、それを用いた偏光板及び液晶表示装置
JP4379547B2 (ja) 光学フィルムの製造方法
JP5652401B2 (ja) 光学フィルム
JP5333447B2 (ja) アクリルフィルムの製造方法およびその製造方法によって製造したアクリルフィルム
WO2009139284A1 (ja) 偏光板及び液晶表示装置
JP5447389B2 (ja) 光学フィルム
JP5533858B2 (ja) 光学フィルム、それを用いた偏光板及び液晶表示装置
JP5397382B2 (ja) 光学フィルム、光学フィルムの製造方法、偏光板および液晶表示装置
JP5493285B2 (ja) 光学フィルム
JP5533857B2 (ja) 光学フィルム、それを用いた偏光板及び液晶表示装置
WO2010116830A1 (ja) 光学フィルム
JP2010060879A (ja) 液晶表示装置
WO2011055603A1 (ja) 光学フィルム、偏光板および液晶表示装置
WO2011138913A1 (ja) 偏光板、その製造方法、及び液晶表示装置
JP2011022188A (ja) 分極遮蔽型スメクチック液晶表示装置
WO2010116823A1 (ja) 光学フィルム、光学フィルムを製造する方法、液晶パネル、及び画像表示装置
JP5402941B2 (ja) 偏光板及びそれを用いた液晶表示装置
JP5263299B2 (ja) 光学フィルム、偏光板、液晶表示装置、および光学フィルムの製造方法
JP2011123402A (ja) 偏光板及びそれを用いた液晶表示装置
JPWO2010055740A1 (ja) 光学フィルム、偏光板および液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11777432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11777432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP