WO2010116823A1 - 光学フィルム、光学フィルムを製造する方法、液晶パネル、及び画像表示装置 - Google Patents

光学フィルム、光学フィルムを製造する方法、液晶パネル、及び画像表示装置 Download PDF

Info

Publication number
WO2010116823A1
WO2010116823A1 PCT/JP2010/053417 JP2010053417W WO2010116823A1 WO 2010116823 A1 WO2010116823 A1 WO 2010116823A1 JP 2010053417 W JP2010053417 W JP 2010053417W WO 2010116823 A1 WO2010116823 A1 WO 2010116823A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
mass
solvent
acrylic
film
Prior art date
Application number
PCT/JP2010/053417
Other languages
English (en)
French (fr)
Inventor
裕道 水上
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2011508281A priority Critical patent/JPWO2010116823A1/ja
Publication of WO2010116823A1 publication Critical patent/WO2010116823A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements

Definitions

  • the present invention relates to an optical film, a method for producing the optical film, a liquid crystal panel using the optical film, and an image display device using the liquid crystal panel.
  • PMMA Polymethyl methacrylate
  • the PMMA film has a problem in heat resistance, and it has been found that the slipperiness due to the deposition of plasticizers, additives, etc. on the film surface is inferior depending on the temperature environment during production. Particularly in recent years, slipperiness is an important production characteristic because optical films have become longer and wider. Furthermore, the stability of the dope is indispensable for the production of a long film, but when the dope is left for a long time, the occurrence of precipitates that cause film failure may be observed.
  • PC polycarbonate
  • Patent Document 2 a method of introducing an alicyclic alkyl group as a copolymerization component of an acrylic resin, a method of forming a cyclic structure in a molecular main chain through an intramolecular cyclization reaction, and the like are disclosed (for example, Patent Document 2). 3, 4).
  • an object of the present invention is to provide an optical film with high slipperiness and good dope stability and high production suitability, a method for producing the optical film, a liquid crystal panel using the optical film, and the liquid crystal panel
  • An object of the present invention is to provide an image display apparatus using the.
  • An optical film containing 20 to 80% by mass of a cellulose acylate resin and 20 to 80% by mass of an acrylic resin, An optical film comprising 0.1% by mass or more and less than 1.0% by mass of at least one solvent selected from an ester solvent, a ketone solvent, and an aliphatic solvent.
  • a method for producing the optical film according to 1 above Cellulose acylate resin and acrylic resin, methylene chloride, alcohol, A method for producing an optical film, wherein a dope is produced by dissolving in a mixed solvent of at least one solvent selected from an ester solvent, a ketone solvent, and an aliphatic solvent.
  • an optical film with improved slipperiness and good dope stability and high production suitability a method for producing the optical film, a liquid crystal panel using the optical film, and the liquid crystal panel
  • the used image display device can be provided.
  • the present invention contains conventional acrylic resins such as slipperiness deterioration due to deposition of plasticizers, additives, etc. on the film surface that occurs during production due to heat resistance problems, and stability deterioration due to precipitate generation in the dope.
  • the present invention provides a novel optical film in which the defects of the optical film are improved, and a method for producing the optical film.
  • the inventor blends the acrylic resin (A) and the cellulose acylate resin (B) at a specific ratio and uses a specific solvent to improve the heat resistance and plasticize the film surface. As a result, it has been found that an optical film having a long production suitability with no slippage deterioration due to precipitation of additives, additives, etc. and good dope stability can be obtained.
  • the optical film of the present invention is an optical film containing at least one solvent selected from ester solvents, ketone solvents, and aliphatic solvents.
  • a plasticizer and an additive are added to the film surface generated during the production due to heat resistance. It is possible to remarkably reduce the deterioration of the slipperiness due to the precipitation, and the generation of precipitates when the dope is left for a long time.
  • the ester solvent according to the present invention is a solvent having an ester group in the molecule.
  • methacrylic acid and ester derivatives thereof methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, methacrylic acid
  • the ketone solvent of the present invention is a solvent having a ketone group in the molecule.
  • Examples of the aliphatic solvent in the present invention include pentane, hexane, octane, decane, 2,2,4-trimethylpentane, 2,2,3-trimethylhexane, cyclohexane and the like, and hexane is preferably used.
  • At least one solvent selected from an ester solvent, a ketone solvent, and an aliphatic solvent according to the present invention is contained in the optical film in an amount of 0.1% by mass or more and less than 1.0% by mass.
  • the content is less than 0.1% by mass, the effect of improving the slip property and the dope stability is small, and when the content is 1.0% by mass or more, the stability of the dope is deteriorated and precipitates are increased.
  • an optical film using an acrylic resin contains a monomer component of the acrylic resin, but the content is 1% by mass or more and is not included in the scope of the present invention.
  • the content of the solvent in the optical film can be measured by the following method.
  • the solvent content in the optical film can be quantified by headspace gas chromatography.
  • a sample is sealed in a container, heated, and the gas in the container is quickly injected into the gas chromatograph while the container is filled with volatile components, and mass spectrometry is performed to identify the compound.
  • the volatile components are quantified while performing.
  • it is possible to observe all peaks of volatile components by gas chromatography, and to quantify volatile substances and monomers with high accuracy by using an analysis method using electromagnetic interaction. It can be done together.
  • the following apparatus can be used as an example.
  • Headspace device HP7694 Head Space Sampler (manufactured by Hewlett-Packard Company) Temperature conditions: transfer line 200 ° C, loop temperature 200 ° C Sample amount: 0.8 g / 20 ml vial GC: HP5890 (manufactured by Hewlett-Packard Company) MS: HP5971 (manufactured by Hewlett-Packard Company) Column: HP-624 (30m x 0.25mm ID) Oven temperature: initial temperature 40 ° C. (holding time 3 minutes), heating rate 10 ° C./min, ultimate temperature 200 ° C. (holding time 5 minutes) Measurement mode: SIM (select ion monitor) mode ⁇ Optical film containing acrylic resin> First, physical property values of the optical film containing the acrylic resin according to the present invention will be described.
  • the slip property of the film measured according to the method of JIS K7125-1999 is preferably 0.40 or less, and more preferably 0.30 or less.
  • the slippage is measured by sampling from drying to winding.
  • a dynamic friction coefficient friction measuring device TR type manufactured by Toyo Seiki
  • UNIVERSAL TESTING MACHINE RH-30, etc. manufactured by Shimadzu Corporation can be used.
  • the optical film of the present invention is an optical film containing an acrylic resin that contains an acrylic resin (A), a cellulose acylate resin (B), and the specific solvent according to the present invention and does not cause ductile fracture. preferable.
  • the above-mentioned ductile fracture is caused by a stress that is greater than the strength of a certain material, and is defined as a fracture that involves significant elongation or drawing of the material before the final fracture.
  • the fracture surface is characterized by numerous indentations called dimples.
  • an optical film that does not cause ductile fracture is characterized in that fracture such as fracture is not observed even when a large stress is applied such that the film is folded in two.
  • the demand for the brittleness of optical films is increasing from the viewpoint of reworkability and productivity as optical films become larger and thinner with the recent increase in liquid crystal display devices, and the above ductile fracture does not occur. Is required.
  • the optical film according to the present invention has a tension softening point of 105 ° C. when considering use in a high-temperature environment such as a projector having a high haze and a high temperature such as a projector or a vehicle-mounted display device.
  • the temperature is preferably ⁇ 145 ° C., more preferably 110 ° C. to 130 ° C.
  • the tension softening point temperature of the optical film for example, a Tensilon tester (ORIENTEC Co., RTC-1225A) is used, and the optical film is cut out by 120 mm (length) ⁇ 10 mm (width).
  • the temperature can be increased at a rate of temperature increase of 30 ° C./min while pulling with a tension of 30 ° C., and the temperature at 9 N is measured three times, and the average value can be obtained.
  • the optical film according to the present invention preferably has a glass transition temperature (Tg) of 110 ° C. or higher. More preferably, it is 120 ° C. or higher. Especially preferably, it is 150 degreeC or more.
  • Tg glass transition temperature
  • the glass transition temperature referred to here is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a heating rate of 20 ° C./min. Point glass transition temperature (Tmg).
  • the number of defects within a film plane of 5 ⁇ m or more is 1/10 cm square or less. More preferably, it is 0.5 piece / 10 cm square or less, more preferably 0.1 piece / 10 cm square or less.
  • the diameter of the defect indicates the diameter when the defect is circular, and when it is not circular, the range of the defect is determined by observing with a microscope according to the following method, and the maximum diameter (diameter of circumscribed circle) is determined.
  • the range of the defect is the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope when the defect is a bubble or a foreign object.
  • the defect is a change in the surface shape, such as transfer of a roll flaw or an abrasion
  • the size is confirmed by observing the defect with the reflected light of a differential interference microscope.
  • the film breaks with the defect as a starting point, and the productivity may be significantly reduced.
  • the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise.
  • the coating agent may not be formed uniformly, resulting in defects (coating defects).
  • the defect is a void in the film (foaming defect) generated due to the rapid evaporation of the solvent in the drying process of the solution casting, a foreign matter in the film forming stock solution, or a foreign matter mixed in the film forming. This refers to the foreign matter (foreign matter defect) in the film.
  • the optical film according to the present invention preferably has a breaking elongation in at least one direction of 10% or more, more preferably 20% or more in the measurement based on JIS K7127-1999.
  • the upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming.
  • the optical film according to the present invention preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film.
  • the optical film according to the present invention preferably has a haze value (turbidity) of less than 0.5%, which is one of the indices representing transparency, but the brightness and contrast when incorporated in a liquid crystal display device. Is more preferably 0.4% or less.
  • the haze value of the optical film is a value measured according to JIS K7361-1-1997 and JIS K7136-2000.
  • the film containing the acrylic resin according to the present invention can be preferably used as an optical film as long as it satisfies the physical properties as described above. However, by having the following composition, the film has excellent workability and heat resistance. Can be obtained.
  • the optical film contains an acrylic resin (A) and a cellulose acylate resin in a mass ratio of 80:20 to 20:80.
  • A acrylic resin
  • a cellulose acylate resin in a mass ratio of 80:20 to 20:80.
  • the acrylic resin (A) and the cellulose acylate resin (B) are contained in a mass ratio of 80:20 to 20:80, preferably 50% by mass of the acrylic resin (A). That's it.
  • the acrylic resin component When the acrylic resin component is increased, for example, the dimensional change under high temperature and high humidity is suppressed, and curling of the polarizing plate and warping of the panel when used as a polarizing plate can be remarkably reduced. Further, in a composition having an acrylic resin component of 50% by mass or more, the above physical properties can be maintained for a longer time.
  • the optical film according to the present invention may include a resin other than the acrylic resin (A) and the cellulose acylate resin (B).
  • the total mass of the acrylic resin (A) and the cellulose acylate resin (B) is 55 to 100% by mass, preferably 60 to 99% by mass of the optical film.
  • the acrylic resin used in the present invention includes a methacrylic resin.
  • the resin is not particularly limited, but a resin comprising 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith is preferable.
  • Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid.
  • Examples thereof include unsaturated nitrile, maleic anhydride, maleimide, N-substituted maleimide, and glutaric anhydride, and these can be used alone or in combination of two or more.
  • methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer.
  • n-Butyl acrylate is particularly preferably used.
  • the acrylic resin (A) used in the optical film according to the present invention preferably has a weight average molecular weight (Mw) of 80000 to 1000000 from the viewpoint of mechanical strength as a film and fluidity when producing the film.
  • Mw weight average molecular weight
  • the weight average molecular weight of the acrylic resin according to the present invention can be measured by gel permeation chromatography.
  • the measurement conditions are as follows.
  • the production method of the acrylic resin (A) in the present invention is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used.
  • a polymerization initiator a normal peroxide type and an azo type can be used, and a redox type can also be used.
  • the polymerization temperature may be 30 to 100 ° C. for suspension or emulsion polymerization, and 80 to 160 ° C. for bulk or solution polymerization.
  • polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
  • acrylic resins can be used as the acrylic resin according to the present invention.
  • Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dianal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Denki Kagaku Kogyo Co., Ltd.) and the like can be mentioned. .
  • the cellulose acylate resin according to the present invention may be substituted with either an aliphatic acyl group or an aromatic acyl group, but is preferably substituted with an acetyl group.
  • the aliphatic acyl group has 2 to 20 carbon atoms, specifically acetyl, propionyl, butyryl, isobutyryl, valeryl, pivaloyl, Examples include hexanoyl, octanoyl, lauroyl, stearoyl and the like.
  • the aliphatic acyl group is meant to include those further having a substituent.
  • the aromatic ring is a benzene ring in the above-described aromatic acyl group
  • the substituent of the benzene ring are exemplified.
  • the number of substituents X substituted on the aromatic ring is 0 or 1 to 5, preferably 1 to 3, particularly preferably. Is one or two.
  • substituents substituted on the aromatic ring when the number of substituents substituted on the aromatic ring is 2 or more, they may be the same or different from each other, but they may be linked together to form a condensed polycyclic compound (for example, naphthalene, indene, indane, phenanthrene, quinoline). , Isoquinoline, chromene, chroman, phthalazine, acridine, indole, indoline, etc.).
  • a condensed polycyclic compound for example, naphthalene, indene, indane, phenanthrene, quinoline.
  • Isoquinoline chromene, chroman, phthalazine, acridine, indole, indoline, etc.
  • the cellulose acylate resin used in the cellulose resin according to the present invention has a structure having a structure selected from at least one of a substituted or unsubstituted aliphatic acyl group and a substituted or unsubstituted aromatic acyl group. Used as structures, these may be single or mixed acid esters of cellulose.
  • the substitution degree of the cellulose acylate resin according to the present invention is such that the total substitution degree (T) of the acyl group is 2.00 to 3.00, the acetyl group is not necessarily required, and the substitution degree (ac) of the acetyl group is 0. Is 1.89. More preferably, the acyl group substitution degree (r) other than the acetyl group is 2.00 to 2.89.
  • the acyl group other than the acetyl group preferably has 3 to 7 carbon atoms.
  • cellulose acylate resin those having an acyl group having 2 to 7 carbon atoms as a substituent, that is, cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, It is preferably at least one selected from cellulose acetate benzoate and cellulose benzoate.
  • particularly preferable cellulose acylate resins include cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate.
  • the mixed fatty acid is a lower fatty acid ester of cellulose acetate propionate or cellulose acetate butyrate having an acyl group having 2 to 4 carbon atoms as a substituent.
  • the portion not substituted with an acyl group usually exists as a hydroxyl group. These can be synthesized by known methods.
  • substitution degree of the acetyl group and the substitution degree of other acyl groups were determined by the method prescribed in ASTM-D817-96.
  • the object of the present invention can be achieved even if the weight average molecular weight (Mw) is about 1,000,000. Those having 280000 are preferred, and those having 100,000 to 240,000 are more preferred.
  • the optical film may contain acrylic particles.
  • the acrylic particles (C) used in the present invention can be present in the form of particles in the optical film with the acrylic resin (A) and the cellulose acylate resin (B) (also referred to as incompatible state).
  • the acrylic particles (C) are obtained, for example, by collecting a predetermined amount of the produced optical film, dissolving it in a solvent, stirring, and sufficiently dissolving / dispersing it, so that the pore diameter is less than the average particle diameter of the acrylic particles (C). It is preferable that the weight of the insoluble matter filtered and collected using the PTFE membrane filter is 90% by mass or more of the acrylic particles (C) added to the optical film.
  • the acrylic particles (C) used in the present invention are not particularly limited, but are preferably acrylic particles (C) having a layer structure of two or more layers, particularly the following multilayer structure acrylic granular composite. It is preferable.
  • the multilayer structure acrylic granular composite is formed by laminating an innermost hard layer polymer, a cross-linked soft layer polymer exhibiting rubber elasticity, and an outermost hard layer polymer from the center to the outer periphery.
  • Preferred embodiments of the multilayer structure acrylic granular composite used in the present invention include the following.
  • (c) the innermost hard In the presence of a polymer comprising a layer and a crosslinked soft layer, a monomer mixture comprising 80 to 99% by mass of methyl methacrylate and 1 to 20% by mass of alkyl
  • Outermost hard layer weight And the obtained three-layer structure polymer is an innermost hard layer polymer (a) 5 to 40% by mass, a soft layer polymer (b) 30 to 60% by mass, and An outermost hard layer polymer (c) comprising 20 to 50% by mass, having an insoluble part when fractionated with acetone, and an acrylic granular composite having a methyl ethyl ketone swelling degree of 1.5 to 4.0 at the insoluble part .
  • the innermost hard layer polymer (a) constituting the multilayer structure acrylic granular composite is 80 to 98.9% by mass of methyl methacrylate and 1 to 20 mass of alkyl acrylate having 1 to 8 carbon atoms in the alkyl group. % And a monomer mixture consisting of 0.01 to 0.3% by mass of a polyfunctional grafting agent is preferred.
  • examples of the alkyl acrylate having 1 to 8 carbon atoms in the alkyl group include methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like. And n-butyl acrylate are preferably used.
  • the proportion of the alkyl acrylate unit in the innermost hard layer polymer (a) is 1 to 20% by mass.
  • the thermal decomposability of the polymer is increased, while the unit is 20% by mass. If it exceeds 50%, the glass transition temperature of the innermost hard layer polymer (c) is lowered, and the impact resistance imparting effect of the three-layer structure acrylic granular composite is lowered.
  • polyfunctional grafting agent examples include polyfunctional monomers having different polymerizable functional groups, such as allyl esters of acrylic acid, methacrylic acid, maleic acid, and fumaric acid, and allyl methacrylate is preferably used.
  • the polyfunctional grafting agent is used to chemically bond the innermost hard layer polymer and the soft layer polymer, and the ratio used during the innermost hard layer polymerization is 0.01 to 0.3% by mass. .
  • the crosslinked soft layer polymer (b) constituting the acrylic granular composite is an alkyl acrylate having from 9 to 8 carbon atoms having an alkyl group of 1 to 8 in the presence of the innermost hard layer polymer (a). What is obtained by polymerizing a monomer mixture consisting of 10% by mass, 0.01 to 5% by mass of a multifunctional crosslinking agent and 0.5 to 5% by mass of a multifunctional grafting agent is preferred.
  • n-butyl acrylate or 2-ethylhexyl acrylate is preferably used as the alkyl acrylate having 4 to 8 carbon atoms in the alkyl group.
  • Examples of other monofunctional monomers that can be copolymerized include styrene and substituted styrene derivatives. As the ratio of the alkyl acrylate having 4 to 8 carbon atoms in the alkyl group and styrene increases, the glass transition temperature of the produced polymer (b) decreases as the former increases, that is, it can be softened.
  • the refractive index of the soft layer polymer (b) at room temperature is set to the innermost hard layer polymer (a), the outermost hard layer polymer (c), and the hard heat. It is more advantageous to make it closer to the plastic acrylic resin, and the ratio between them is selected in consideration of these.
  • polyfunctional grafting agent those mentioned in the section of the innermost layer hard polymer (a) can be used.
  • the polyfunctional grafting agent used here is used to chemically bond the soft layer polymer (b) and the outermost hard layer polymer (c), and the proportion used during the innermost hard layer polymerization is impact resistance. From the viewpoint of the effect of imparting properties, 0.5 to 5% by mass is preferable.
  • polyfunctional crosslinking agent generally known crosslinking agents such as divinyl compounds, diallyl compounds, diacrylic compounds, dimethacrylic compounds and the like can be used, but polyethylene glycol diacrylate (molecular weight 200 to 600) is preferably used.
  • the polyfunctional cross-linking agent used here is used to generate a cross-linked structure during the polymerization of the soft layer (b) and to exhibit the effect of imparting impact resistance.
  • the polyfunctional crosslinking agent is not an essential component because the crosslinked structure of the soft layer (b) is generated to some extent. Is preferably 0.01 to 5% by weight from the viewpoint of imparting impact resistance.
  • the outermost hard layer polymer (c) constituting the multi-layer structure acrylic granular composite has a methyl methacrylate of 80 to 99 mass in the presence of the innermost hard layer polymer (a) and the soft layer polymer (b). % And a monomer mixture comprising 1 to 20% by mass of an alkyl acrylate having 1 to 8 carbon atoms in the alkyl group is preferred.
  • the acrylic alkylate those described above are used, but methyl acrylate and ethyl acrylate are preferably used.
  • the proportion of the alkyl acrylate unit in the outermost hard layer (c) is preferably 1 to 20% by mass.
  • an alkyl mercaptan or the like can be used as a chain transfer agent to adjust the molecular weight for the purpose of improving the compatibility with the acrylic resin (A).
  • the outermost hard layer with a gradient such that the molecular weight gradually decreases from the inside toward the outside in order to improve the balance between elongation and impact resistance.
  • the monomer mixture for forming the outermost hard layer is divided into two or more, and the molecular weight is increased from the inside by a method of sequentially increasing the amount of chain transfer agent added each time. It is possible to make it smaller toward the outside.
  • the molecular weight formed at this time can also be examined by polymerizing the monomer mixture used each time under the same conditions, and measuring the molecular weight of the obtained polymer.
  • the particle diameter of the acrylic granular composite which is a multilayer structure polymer preferably used in the present invention is not particularly limited, but is preferably 10 nm or more and 1000 nm or less, and more preferably 20 nm or more and 500 nm or less. More preferably, it is most preferably 50 nm or more and 400 nm or less.
  • the mass ratio of the core and the shell is not particularly limited, but when the entire multilayer structure polymer is 100 parts by mass,
  • the core layer is preferably 50 parts by mass or more and 90 parts by mass or less, and more preferably 60 parts by mass or more and 80 parts by mass or less.
  • Examples of such commercially available multilayered acrylic granular composites include, for example, “Metablene” manufactured by Mitsubishi Rayon Co., “Kane Ace” manufactured by Kaneka Chemical Co., Ltd., “Paraloid” manufactured by Kureha Chemical Co., Ltd., Rohm and Haas “Acryloid” manufactured by KK, “Staffyroid” manufactured by Ganz Kasei Kogyo Co., Ltd., “Parapet SA” manufactured by Kuraray Co., Ltd., and the like can be used alone or in combination of two or more.
  • acrylic particles (c-1) which are graft copolymers preferably used as the acrylic particles (C) preferably used in the present invention include unsaturated carboxylic acids in the presence of a rubbery polymer.
  • a monomer mixture comprising an acid ester monomer, an unsaturated carboxylic acid monomer, an aromatic vinyl monomer, and, if necessary, other vinyl monomers copolymerizable therewith A polymerized graft copolymer may be mentioned.
  • the rubbery polymer used for the acrylic particles (c-1) as the graft copolymer is not particularly limited, but diene rubber, acrylic rubber, ethylene rubber, and the like can be used. Specific examples include polybutadiene, styrene-butadiene copolymer, block copolymer of styrene-butadiene, acrylonitrile-butadiene copolymer, butyl acrylate-butadiene copolymer, polyisoprene, butadiene-methyl methacrylate copolymer.
  • the refractive index of each of the acrylic resin (A) and the acrylic particles (C) is approximate because the transparency of the optical film according to the present invention can be obtained.
  • the refractive index difference between the acrylic particles (C) and the acrylic resin (A) is preferably 0.05 or less, more preferably 0.02 or less, and particularly preferably 0.01 or less.
  • a method of adjusting the monomer unit composition ratio of the acrylic resin (A) and / or a rubbery polymer or monomer used for the acrylic particles (C) The refractive index difference can be reduced by a method of adjusting the composition ratio, and an optical film excellent in transparency can be obtained.
  • the difference in refractive index referred to here means that the optical film according to the present invention is sufficiently dissolved in a solvent in which the acrylic resin (A) is soluble to obtain a cloudy solution, which is subjected to an operation such as centrifugation.
  • the solvent was separated into a soluble part and an insoluble part, and the soluble part (acrylic resin (A)) and the insoluble part (acrylic particles (C)) were purified, and then the measured refractive index (23 ° C., measurement wavelength: 550 nm).
  • the method of blending the acrylic particles (C) with the acrylic resin (A) is not particularly limited. After the acrylic resin (A) and other optional components are previously blended, usually at 200 to 350 ° C. A method of uniformly melt-kneading with a single-screw or twin-screw extruder while adding acrylic particles (C) is preferably used.
  • a solution in which acrylic particles (C) are dispersed in advance is added to a solution (dope solution) in which acrylic resin (A) and cellulose acylate resin (B) are dissolved and mixed, or acrylic particles (C)
  • a method in which a solution obtained by dissolving and mixing other optional additives is added in-line can be used.
  • acrylic particles (C) used in the present invention can also be used.
  • C2 metabrene W-341 (manufactured by Mitsubishi Rayon Co., Ltd.)
  • Chemisnow MR-2G (C3), MS-300X (C4) manufactured by Soken Chemical Co., Ltd.
  • C4 manufactured by Soken Chemical Co., Ltd.
  • the optical film according to the present invention preferably contains 0.5 to 45% by mass of acrylic particles (C) with respect to the total mass of the resin constituting the film.
  • a plasticizer can be used in combination in order to improve the fluidity and flexibility of the composition.
  • the plasticizer include phthalate ester, fatty acid ester, trimellitic ester, phosphate ester, polyester, and epoxy.
  • polyester-based and phthalate-based plasticizers are preferably used.
  • Polyester plasticizers are superior in non-migration and extraction resistance compared to phthalate ester plasticizers such as dioctyl phthalate, but are slightly inferior in plasticizing effect and compatibility.
  • the polyester plasticizer is a reaction product of a monovalent or tetravalent carboxylic acid and a monovalent or hexavalent alcohol, and is mainly obtained by reacting a divalent carboxylic acid with a glycol.
  • Representative divalent carboxylic acids include glutaric acid, itaconic acid, adipic acid, phthalic acid, azelaic acid, sebacic acid and the like.
  • glycol examples include glycols such as ethylene, propylene, 1,3-butylene, 1,4-butylene, 1,6-hexamethylene, neopentylene, diethylene, triethylene, and dipropylene. These divalent carboxylic acids and glycols may be used alone or in combination.
  • the ester plasticizer may be any of ester, oligoester and polyester types, and the molecular weight is preferably in the range of 100 to 10000, but preferably in the range of 600 to 3000, the plasticizing effect is large.
  • the viscosity of the plasticizer has a correlation with the molecular structure and molecular weight, but in the case of an adipic acid plasticizer, the range of 200 to 5000 mPa ⁇ s (25 ° C.) is preferable because of compatibility and plasticization efficiency. Furthermore, some polyester plasticizers may be used in combination.
  • the plasticizer is preferably added in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the composition containing the acrylic resin (A). If the added amount of the plasticizer exceeds 30 parts by mass, the surface becomes sticky, which is not preferable for practical use.
  • the optical film according to the present invention preferably contains an ultraviolet absorber, and examples of the ultraviolet absorber used include benzotriazole, 2-hydroxybenzophenone, and salicylic acid phenyl ester.
  • the ultraviolet absorber used include benzotriazole, 2-hydroxybenzophenone, and salicylic acid phenyl ester.
  • 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3 Triazoles such as 5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone And benzophenones.
  • ultraviolet absorbers having a molecular weight of 400 or more are less likely to volatilize at a high boiling point and are difficult to disperse even during high-temperature molding, so that the weather resistance is effectively improved with a relatively small amount of addition. be able to.
  • the transition from the thin coating layer to the substrate layer is particularly small and hardly precipitates on the surface of the laminate, the amount of contained UV absorber is maintained for a long time, and the durability of the weather resistance improvement effect is excellent. From the point of view, it is preferable.
  • Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- (1, 1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis ( Hindered amines such as 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonic acid Bis (1,2,2,6,6-pentamethyl-4-piperidyl), 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] Such as til] -4- [3- (3,5-di-tert-butyl
  • 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3- Tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.
  • antioxidants may be added to the acrylic resin (A) used in the optical film according to the present invention in order to improve the thermal decomposability and thermal colorability during molding. It is also possible to add an antistatic agent to give the optical film antistatic performance.
  • a flame retardant acrylic resin composition containing a phosphorus flame retardant may be used.
  • Phosphorus flame retardants used here include red phosphorus, triaryl phosphate ester, diaryl phosphate ester, monoaryl phosphate ester, aryl phosphonate compound, aryl phosphine oxide compound, condensed aryl phosphate ester, halogenated alkyl phosphorus. Examples thereof include one or a mixture of two or more selected from acid esters, halogen-containing condensed phosphates, halogen-containing condensed phosphonates, halogen-containing phosphites, and the like.
  • triphenyl phosphate 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phenylphosphonic acid, tris ( ⁇ -chloroethyl) phosphate, tris (dichloropropyl) Examples thereof include phosphate and tris (tribromoneopentyl) phosphate.
  • a production method such as an inflation method, a T-die method, a calendar method, a cutting method, a casting method, an emulsion method, a hot press method, etc. can be used. From the viewpoint of suppression of optical defects, solution casting by casting is preferred.
  • Organic solvent useful for forming the dope when the optical film according to the present invention is produced by the solution casting method dissolves the acrylic resin (A), the cellulose acylate resin (B), and other additives at the same time. It is preferable.
  • a mixed solvent of methylene chloride which is a chlorinated organic solvent, alcohol, and at least one solvent selected from an ester solvent, a ketone solvent, and an aliphatic solvent according to the present invention.
  • a linear or branched aliphatic alcohol having 1 to 4 carbon atoms is preferable, and examples thereof include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Can do.
  • a dope composition in which at least 15 to 45 mass% in total of three kinds of acrylic resin (A), cellulose acylate resin (B), and acrylic particles (C) are dissolved in the above solvent is preferable.
  • Dissolution step In an organic solution mainly composed of a good solvent for the acrylic resin (A) and the cellulose acylate resin (B), the acrylic resin (A), the cellulose acylate resin (B), and optionally acrylic in the dissolution vessel.
  • the additive solution is mixed to form a dope that is a main solution.
  • a method carried out at normal pressure a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544
  • Various melting methods such as a method of performing a cooling dissolution method as described in JP-A-9-95557 or JP-A-9-95538, a method of performing at a high pressure as described in JP-A-11-21379
  • a method in which pressure is applied at a temperature equal to or higher than the boiling point of the main solvent is preferable.
  • the total amount of the acrylic resin (A) and the cellulose acylate resin (B) in the dope is preferably 15 to 45% by mass.
  • An additive is added to the dope during or after dissolution to dissolve and disperse, then filtered through a filter medium, defoamed, and sent to the next step with a liquid feed pump.
  • the dope used in the present invention preferably removes foreign substances by filtration, and the filter used for filtration may be paper, metal, etc., and may be performed multiple times in parallel or in series.
  • a filter medium having a collected particle diameter of 0.5 to 5 ⁇ m and a drainage time of 10 to 25 sec / 100 ml.
  • agglomerates remaining at the time of particle dispersion and agglomerates generated upon addition of the main dope are only aggregated by using a filter medium having a collected particle diameter of 0.5 to 5 ⁇ m and a drainage time of 10 to 25 sec / 100 ml. Can be removed.
  • the concentration of particles is sufficiently thinner than that of the additive solution, so that the aggregates do not stick together during filtration and the filtration pressure does not increase suddenly.
  • the acrylic resin (A), cellulose acylate resin (B), and acrylic particles (C) used in the present invention may be dissolved by adding a solvent after adding one or more kinds of powder into a container.
  • the powder may be put in, may be added simultaneously, or may be mixed separately after mixing. Further, it may be added after dissolving only 1 part separately.
  • the order of addition is not particularly limited, and the dissolution temperature and the number of stirring are not particularly limited.
  • the acrylic resin (A), cellulose acylate resin (B), and acrylic particles (C) used in the present invention may be directly input from the upper part of the container. preferable.
  • FIG. 1 is a diagram schematically showing a dope preparation step, a casting step, and a drying step of a solution casting film forming method preferable for the present invention.
  • the main dope solution is filtered by the main filter 3, and an ultraviolet absorbent additive solution is added in-line from 16 to this.
  • the main dope may contain about 10 to 50% by weight of recycled material.
  • the return material may contain acrylic particles. In that case, it is preferable to control the addition amount of the acrylic particle addition liquid in accordance with the addition amount of the return material.
  • the additive solution containing acrylic particles preferably contains 0.5 to 10% by mass of acrylic particles, more preferably 1 to 10% by mass, and more preferably 1 to 5% by mass. Most preferably.
  • the return material is a product obtained by finely pulverizing the optical film, which is generated when the optical film is formed, and is obtained by cutting off both sides of the film, or by using an optical film original that has been speculated out due to scratches, etc. .
  • acrylic resin cellulose acylate resin
  • acrylic particles kneaded into pellets can be preferably used.
  • An endless metal support 31 such as a stainless steel belt or a rotating metal drum, which feeds the dope through a liquid feed pump (for example, a pressurized metering gear pump) to the pressure die 30 and transfers it indefinitely.
  • a liquid feed pump for example, a pressurized metering gear pump
  • plural kinds of dopes may be fed, or a single dope may be fed.
  • a dope replacement time is provided when switching the dopes. The replacement is performed until the influence of the previous dope is eliminated, but a shorter time is preferable.
  • the die used in the present invention is preferably a pressure die that can adjust the slit shape of the die base and can easily make the film thickness uniform.
  • the pressure die includes a coat hanger die and a T die, and any of them is preferably used.
  • the surface of the metal support is a mirror surface.
  • two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
  • Solvent evaporation step In this step, the web (the dope is cast on the casting support and the formed dope film is called a web) is heated on the casting support to evaporate the solvent.
  • the web on the support after casting is preferably dried on the support in an atmosphere of 40 to 100 ° C. In order to maintain the atmosphere at 40 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat by means such as infrared rays.
  • Peeling process It is the process of peeling the web which the solvent evaporated on the metal support body in a peeling position. The peeled web is sent to the next process.
  • the temperature at the peeling position on the metal support is preferably 10 to 40 ° C., more preferably 11 to 30 ° C.
  • the residual solvent amount at the time of peeling of the web on the metal support at the time of peeling is preferably peeled in the range of 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like.
  • the amount of residual solvent is determined.
  • the amount of residual solvent in the web is defined by the following formula.
  • Residual solvent amount (%) (mass before web heat treatment ⁇ mass after web heat treatment) / (mass after web heat treatment) ⁇ 100 Note that the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
  • the peeling tension at the time of peeling the metal support from the film is usually 196 to 245 N / m. However, if wrinkles easily occur at the time of peeling, it is preferable to peel with a tension of 190 N / m or less. It is preferable to peel at a minimum tension of ⁇ 166.6 N / m, and then peel at a minimum tension of ⁇ 137.2 N / m, and particularly preferable to peel at a minimum tension of ⁇ 100 N / m.
  • the temperature at the peeling position on the metal support is preferably ⁇ 50 to 40 ° C., more preferably 10 to 40 ° C., and most preferably 15 to 30 ° C.
  • a drying device 35 that alternately conveys the web through a plurality of rolls arranged in the drying device and / or a tenter stretching device 34 that clips and conveys both ends of the web with a clip are used. And dry the web.
  • the drying means is generally to blow hot air on both sides of the web, but there is also a means to heat by applying microwaves instead of wind. Too rapid drying tends to impair the flatness of the finished film. Drying at a high temperature is preferably performed from about 8% by mass or less of residual solvent. Throughout, drying is generally performed at 40-250 ° C. In particular, drying at 40 to 160 ° C. is preferable.
  • tenter stretching apparatus When using a tenter stretching apparatus, it is preferable to use an apparatus capable of independently controlling the film gripping length (distance from the start of gripping to the end of gripping) by the left and right gripping means of the tenter. In the tenter process, it is also preferable to intentionally create sections having different temperatures in order to improve planarity.
  • the stretching operation may be performed in multiple stages, and it is also preferable to perform biaxial stretching in the casting direction and the width direction.
  • biaxial stretching When biaxial stretching is performed, simultaneous biaxial stretching may be performed or may be performed stepwise.
  • stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible. That is, for example, the following stretching steps are possible.
  • Simultaneous biaxial stretching includes stretching in one direction and contracting the other while relaxing the tension.
  • the preferred draw ratio for simultaneous biaxial stretching can be in the range of x1.01 to x1.5 in both the width direction and the longitudinal direction.
  • the amount of residual solvent in the web is preferably 20 to 100% by mass at the start of the tenter, and drying is preferably performed while the tenter is applied until the amount of residual solvent in the web is 10% by mass or less. More preferably, it is 5% by mass or less.
  • the drying temperature is preferably 30 to 150 ° C, more preferably 50 to 120 ° C, and most preferably 70 to 100 ° C.
  • the temperature distribution in the width direction of the atmosphere is small from the viewpoint of improving the uniformity of the film.
  • the temperature distribution in the width direction in the tenter process is preferably within ⁇ 5 ° C, and within ⁇ 2 ° C. Is more preferable, and within ⁇ 1 ° C. is most preferable.
  • Winding step This is a step of winding the optical film by the winder 37 after the residual solvent amount in the web is 2% by mass or less, and the dimensional stability is achieved by setting the residual solvent amount to 0.4% by mass or less. A film with good properties can be obtained.
  • a generally used one may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc., and these may be used properly.
  • the optical film according to the present invention is preferably a long film.
  • the optical film has a thickness of about 100 m to 5000 m, and is usually in the form of a roll.
  • the film width is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
  • the film thickness of the optical film according to the present invention is not particularly limited, but when used for a polarizing plate protective film described later, it is preferably 20 to 200 ⁇ m, more preferably 25 to 100 ⁇ m, and 30 to 80 ⁇ m. It is particularly preferred.
  • the polarizing plate can be produced by a general method. It is preferable that an adhesive layer is provided on the back side of the optical film according to the present invention, and is bonded to at least one surface of a polarizer produced by immersing and stretching in an iodine solution.
  • the film may be used on the other surface, or another polarizing plate protective film may be used.
  • cellulose ester films for example, Konica Minoltack KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KV8UY-HA, KV8UX-RHA, KV8UX-RHA Etc.
  • cellulose ester films for example, Konica Minoltack KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KV8UY-HA, KV8UX-RHA, KV8UX-RHA Etc.
  • a polarizer which is a main component of a polarizing plate, is an element that transmits only light having a plane of polarization in a certain direction.
  • a typical polarizing film known at present is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol. There are one in which iodine is dyed on a system film and one in which dichroic dye is dyed.
  • the polarizer is formed by forming a polyvinyl alcohol aqueous solution into a film and dyeing the film by uniaxial stretching or dyeing or uniaxially stretching, and then performing a durability treatment with a boron compound.
  • a pressure-sensitive adhesive having a storage elastic modulus at 25 ° C. in the range of 1.0 ⁇ 10 4 Pa to 1.0 ⁇ 10 9 Pa in at least a part of the pressure-sensitive adhesive layer is used. It is preferable to use a curable pressure-sensitive adhesive that forms a high molecular weight body or a crosslinked structure by various chemical reactions after the pressure-sensitive adhesive is applied and bonded.
  • urethane adhesives examples include, for example, urethane adhesives, epoxy adhesives, aqueous polymer-isocyanate adhesives, curable adhesives such as thermosetting acrylic adhesives, moisture-curing urethane adhesives, polyether methacrylate types
  • curable adhesives such as thermosetting acrylic adhesives, moisture-curing urethane adhesives, polyether methacrylate types
  • anaerobic pressure-sensitive adhesives such as ester-based methacrylate type and oxidized polyether methacrylate, cyanoacrylate-based instantaneous pressure-sensitive adhesives, and acrylate-peroxide-based two-component instantaneous pressure-sensitive adhesives.
  • the above-mentioned pressure-sensitive adhesive may be a one-component type or a type in which two or more components are mixed before use.
  • the above-mentioned pressure-sensitive adhesive may be a solvent system using an organic solvent as a medium, or an aqueous system such as an emulsion type, a colloidal dispersion type, or an aqueous solution type that is a medium containing water as a main component. It may be a solvent type.
  • concentration of the pressure-sensitive adhesive liquid may be appropriately determined depending on the film thickness after adhesion, the coating method, the coating conditions, and the like, and is usually 0.1 to 50% by mass.
  • polarizing plate bonded with the optical film according to the present invention into a liquid crystal panel, various liquid crystal display devices having excellent visibility can be produced.
  • the polarizing plate is bonded to the liquid crystal cell via the adhesive layer or the like.
  • the polarizing plate according to the present invention is a reflective type, transmissive type, transflective type LCD or TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), IPS type, etc. Preferably used.
  • a large-screen display device having a screen of 30 or more, especially 30 to 54 there is no white spot at the periphery of the screen and the effect is maintained for a long time.
  • Acrylic resin Dianar BR85 Mitsubishi Rayon Co., Ltd.
  • Mw 200000 manufactured by Eastman Chemical Co., Ltd.
  • the web of the peeled optical film was evaporated at 35 ° C., slit to 1.6 m width, and then dried at a drying temperature of 135 ° C. while stretching 1.1 times in the width direction with a tenter.
  • An optical film comparative example 1 having a thickness of 60 ⁇ m and a winding length of 4000 m was obtained by applying a knurling process of 5 ⁇ m and winding it around a 6-inch inner diameter core with an initial tension of 220 N / m and a final tension of 110 N / m.
  • the draw ratio in the MD direction calculated from the rotational speed of the stainless steel band support and the operating speed of the tenter was 1.1 times.
  • optical film example as in optical film comparative example 1 except that 0.2000 parts by weight of methyl methacrylate was mixed with methylene chloride and ethanol in the same amounts as in comparative example 1 as the solvent of the above dope composition. 1 was produced.
  • Optical film comparative examples 3 to 31 Production of optical film comparative example 2 except that the mixing ratio of acrylic resin (A) and cellulose acylate resin (B) and the addition amount of methyl methacrylate, methyl acetate, methyl ethyl ketone and hexane as solvents are changed as shown in Table 1. Optical film comparative examples 3 to 31 were produced in the same manner as described above.
  • optical film examples 2 to 12 Production of optical film Example 1 except that the mixing ratio of acrylic resin (A) and cellulose acylate resin (B) and the addition amounts of methyl methacrylate, methyl acetate, methyl ethyl ketone, and hexane as solvents were changed as shown in Table 1. In the same manner, optical film examples 2 to 12 were produced.
  • ⁇ Ductile fracture> An optical film conditioned for 24 hours in an air-conditioned room at 23 ° C. and 55% RH is cut out at 100 mm (length) ⁇ 10 mm (width) under the same conditions, with a radius of curvature of 0 mm and a folding angle of 180 at the center in the vertical direction. The film was folded once in a mountain fold and a valley fold so that the films were exactly overlapped at 0 °, and this evaluation was measured three times and evaluated as follows. In addition, breaking of evaluation here represents having broken into two or more pieces.
  • Cannot be folded 3 times
  • Can be folded at least 1 out of 3 times
  • the samples of Examples 1 to 12 are all evaluated as ⁇ in the above evaluation, and should be optical films without ductile fracture confirmed.
  • the optical films of Comparative Examples 13 and 14 composed only of acrylic resin were evaluated as x.
  • Example B In the same manner as in Examples 7 to 12, the same effect was obtained even when an additive such as ethyl acetate, cyclohexanone, cyclohexane or the like was used instead of methyl acetate, methyl ethyl ketone, or hexane.
  • an additive such as ethyl acetate, cyclohexanone, cyclohexane or the like was used instead of methyl acetate, methyl ethyl ketone, or hexane.
  • Example C Preparation of polarizing plate> A polarizing plate using the optical films of Examples 1 to 12 as a polarizing plate protective film was produced as follows.
  • a 120 ⁇ m-thick long roll polyvinyl alcohol film was immersed in 100 parts by mass of an aqueous solution containing 1 part by mass of iodine and 4 parts by mass of boric acid, and stretched in the transport direction 5 times at 50 ° C. to form a polarizing film.
  • KC8UCR-5 manufactured by Konica Minolta Opto Co., Ltd., which is an alkali saponified retardation film, was bonded to the other surface of the polarizing film and dried to prepare a polarizing plate P1.
  • polarizing plates P2 to P12 were produced using the optical films of Examples 2 to 12.
  • the polarizing plate using the optical film according to the present invention was excellent in slipperiness and easy to process.
  • the liquid crystal display device produced as described above was found to be a liquid crystal display device with good visibility with reduced color shift and excellent front contrast.

Abstract

 本発明の目的は、滑り性が改善され、ドープの安定性も良好な長尺生産適性の高い光学フィルム、該光学フィルムを製造する方法、該光学フィルムを用いた液晶パネル、及び該液晶パネルを用いた画像表示装置を提供することにある。 本発明の光学フィルムは、セルロースアシレート樹脂を20~80質量%、アクリル樹脂を20~80質量%含有する光学フィルムにおいて、エステル系溶剤、ケトン系溶剤、及び脂肪族系溶剤から選択される少なくとも1種の溶剤を0.1質量%以上1.0質量%未満含有することを特徴とする。

Description

光学フィルム、光学フィルムを製造する方法、液晶パネル、及び画像表示装置
 本発明は、光学フィルム、該光学フィルムを製造する方法、該光学フィルムを用いた液晶パネル、及び該液晶パネルを用いた画像表示装置に関する。
 従来のアクリル樹脂の代表であるポリメタクリル酸メチル(以下、PMMAと略す)は、その優れた透明性、寸法安定性、低吸湿性などの観点から、光学フィルムに好適に用いられていた。
 しかしPMMAフィルムは、耐熱性に問題があり、製造する際の温度環境によってフィルム表面への可塑剤、添加剤等の析出による滑り性が劣ることが分かった。特に近年、光学フィルムは長尺化、広幅化しているため滑り性は重要な生産特性である。更に長尺フィルム生産にはドープの安定性が不可欠であるが、ドープを長時間放置した時にフィルム故障原因となる析出物の発生が見られることがある。
 耐熱性を改善するためにアクリル樹脂にポリカーボネート(以下、PCと略す)を添加する方法が提案されたが、使用できる溶媒に制限があること、樹脂同士の相溶性が不十分であることから、白濁してヘイズが上昇し光学フィルムとしての使用は困難であった(例えば、特許文献1参照)。
 また、アクリル樹脂の共重合成分として脂環式アルキル基を導入する方法や、分子内環化反応をさせて分子主鎖に環状構造を形成する方法などが開示されている(例えば、特許文献2、3、4参照)。
 しかしながらこれらの方法では、耐熱性はある程度改善できるものの、生産時に発生するフィルム表面への可塑剤、添加剤等の析出による滑り性に依然問題があった。
特開平5-306344号公報 特開2002-12728号公報 特開2005-146084号公報 特開2007-191706号公報
 従って本発明の目的は、滑り性が改善され、ドープの安定性も良好な長尺生産適性の高い光学フィルム、該光学フィルムを製造する方法、該光学フィルムを用いた液晶パネル、及び該液晶パネルを用いた画像表示装置を提供することにある。
 本発明の上記課題は以下の構成により達成される。
 1.セルロースアシレート樹脂を20~80質量%、アクリル樹脂を20~80質量%含有する光学フィルムにおいて、
 エステル系溶剤、ケトン系溶剤、及び脂肪族系溶剤から選択される少なくとも1種の溶剤を0.1質量%以上1.0質量%未満含有することを特徴とする光学フィルム。
 2.前記1に記載の光学フィルムを製造する方法であって、
 セルロースアシレート樹脂とアクリル樹脂を、塩化メチレンと、アルコールと、
 エステル系溶剤、ケトン系溶剤、及び脂肪族系溶剤から選択される少なくとも1種の溶剤との混合溶剤に溶解してドープを作製することを特徴とする光学フィルムを製造する方法。
 3.前記1に記載の光学フィルムを用いて作製されたことを特徴とする液晶パネル。
 4.前記3に記載の液晶パネルを用いて作製されたことを特徴とする画像表示装置。
 本発明によれば、滑り性が改善され、ドープの安定性も良好な長尺生産適性の高い光学フィルム、該光学フィルムを製造する方法、該光学フィルムを用いた液晶パネル、及び該液晶パネルを用いた画像表示装置を提供することができる。
本発明に用いられる溶液流延製膜方法のドープ調製工程、流延工程及び乾燥工程を模式的に示した図である。
 以下本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。
 本発明は、耐熱性の問題で製造時に発生するフィルム表面への可塑剤、添加剤等の析出による滑り性劣化や、ドープ中への析出物発生による安定性劣化といった従来のアクリル樹脂を含有する光学フィルムの欠点を改善した新規な光学フィルム、及び該光学フィルムを製造する方法を提供するものである。
 本発明者は、アクリル樹脂(A)とセルロースアシレート樹脂(B)とを特定の比率でブレンドし、且つ特定の溶剤を用いて製造することで、耐熱性が向上し、フィルム表面への可塑剤、添加剤等の析出による滑り性の劣化がなく、ドープの安定性も良好な長尺生産適性の高い光学フィルムが得られることを見出し、本発明を成すに至った次第である。
 以下、本発明を詳細に説明する。
 〈本発明に係る溶剤〉
 本発明の光学フィルムは、エステル系溶剤、ケトン系溶剤、脂肪族系溶剤から選ばれる少なくとも1種の溶剤を含有する光学フィルムである。
 アクリル樹脂(A)とセルロースアシレート樹脂(B)を特定の比率で含有し、更にこれらの特定の溶剤を含有することにより、耐熱性の問題で製造時に発生するフィルム表面へ可塑剤、添加剤等の析出による滑り性の劣化や、ドープを長時間放置した時の析出物の発生を顕著に低減することが可能となる。
 本発明に係るエステル系溶剤とは、分子内にエステル基を有する溶剤のことであり、例えば、メタクリル酸及びそのエステル誘導体(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸オクチル、メタクリル酸シクロヘキシル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸テトラヒドロフルフリル、メタクリル酸ベンジル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチル等)、アクリル酸及びそのエステル誘導体(アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸オクチル、アクリル酸シクロヘキシル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸テトラヒドロフルフリル、アクリル酸2-エトキシエチル、アクリル酸ジエチレングリコールエトキシレート、アクリル酸3-メトキシブチル、アクリル酸ベンジル、アクリル酸ジメチルアミノエチル、アクリル酸ジエチルアミノエチル等)、酢酸メチル、酢酸ブチル、酢酸エチル、酢酸イソプロピル、酢酸アミル、酢酸イソアミル、メトキシ酢酸エチル、エトキシ酢酸エチル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノフェニルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノプロピルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノフェニルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、2-メトキシブチルアセテート、3-メトキシブチルアセテート、4-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-エチル-3-メトキシブチルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、2-エトキシブチルアセテート、4-エトキシブチルアセテート、4-プロポキシブチルアセテート、2-メトキシペンチルアセテート、3-メトキシペンチルアセテート、4-メトキシペンチルアセテート、2-メチル-3-メトキシペンチルアセテート、3-メチル-3-メトキシペンチルアセテート、3-メチル-4-メトキシペンチルアセテート、4-メチル-4-メトキシペンチルアセテート、プロピレングリコールジアセテート、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル、炭酸エチル、炭酸プロピル、炭酸ブチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、ピルビン酸ブチル、アセト酢酸メチル、アセト酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸イソプロピル、2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、メチル-3-メトキシプロピオネート、エチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネート、プロピル-3-メトキシプロピオネート等を挙げることができ、本発明においてはメタクリル酸メチルを用いることが好ましい。
 本発明のケトン系溶剤とは、分子内にケトン基を有する溶剤のことであり、例えば、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、アセトン、4-ヘプタノン、1-ヘキサノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトン、イソホロン、プロピレンカーボネート、γ-ブチロラクトン等を挙げることができ、本発明においてはメチルエチルケトンを用いるのが好ましい。
 本発明における脂肪族系溶剤としてはペンタン、ヘキサン、オクタン、デカン、2,2,4-トリメチルペンタン、2,2,3-トリメチルヘキサン、シクロヘキサン等を挙げることができ、ヘキサンを用いるのが好ましい。
 本発明に係るエステル系溶剤、ケトン系溶剤、及び脂肪族系溶剤から選択される少なくとも1種の溶剤は、光学フィルムに各々0.1質量%以上1.0質量%未満含有する。含有量が0.1質量%未満では滑り性及びドープ安定性向上の効果が小さく、含有量が1.0質量%以上ではドープの安定性が劣化し析出物等が多くなる。一般的にアクリル樹脂を用いた光学フィルム中にはアクリル樹脂のモノマー成分を含有するが、含有量が1質量%以上であり本発明の範囲には含まれない。
 上記溶剤の光学フィルム中の含有量は以下の方法で測定することができる。
 (溶剤含有量の定量方法)
 光学フィルム中の溶剤含有量は、ヘッドスペースガスクロマトグラフィーにより定量することができる。
 ヘッドスペースガスクロマトグラフィー法は、試料を容器に封入し、加熱し、容器中に揮発成分が充満した状態で速やかに容器中のガスをガスクロマトグラフに注入し、質量分析を行って化合物の同定を行いながら揮発成分を定量するものである。ヘッドスペース法ではガスクロマトグラフにより、揮発成分の全ピークを観測することを可能にするとともに、電磁気的相互作用を利用した分析法を用いることによって、高精度で揮発性物質やモノマー等を定量をも併せて行うことができる。以下の装置を一例として用いることができる。
 ヘッドスペース装置:HP7694 Head Space Sampler(ヒューレットパッカード社製)
 温度条件:トランスファーライン200℃、ループ温度200℃
 サンプル量:0.8g/20mlバイアル
 GC:HP5890(ヒューレットパッカード社製)
 MS:HP5971(ヒューレットパッカード社製)
 カラム:HP-624(30m×内径0.25mm)
 オーブン温度:初期温度40℃(保持時間3分)、昇温速度10℃/分、到達温度200℃(保持時間5分)
 測定モード:SIM(セレクトイオンモニター)モード
 〈アクリル樹脂を含有する光学フィルム〉
 まず本発明に係るアクリル樹脂を含有する光学フィルムの物性値を説明する。
 本発明に係る光学フィルムは、JIS K7125-1999の方法に従って測定されるフィルムの滑り性が、0.40以下であることが好ましく、0.30以下であることがより好ましい。滑り性が上記範囲である時に、析出物による皺、つれなどの長尺フィルムのハンドリング故障が格段に低減できる。該滑り性の測定は乾燥後から巻き取られるまでにサンプリングして行う。測定機としては、動摩擦係数摩擦測定機TR型(東洋精機製)、島津製作所製UNIVERSAL TESTING MACHINE RH-30等を用いることができる。
 また、本発明の光学フィルムは、アクリル樹脂(A)、セルロースアシレート樹脂(B)、本発明に係る特定の溶剤を含有し、延性破壊を生じないアクリル樹脂を含有する光学フィルムであることが好ましい。
 上記延性破壊とは、ある材料が有する強度よりも、大きな応力が作用することで生じるものであり、最終破断までに材料の著しい伸びや絞りを伴う破壊と定義される。その破面には、ディンプルと呼ばれる窪みが無数に形成される特徴がある。
 従って「延性破壊が起こらない光学フィルム」とは、フィルムを2つに折り曲げるような大きな応力を作用させても破断等の破壊がみられないことが特徴である。
 昨今の液晶表示装置の大型化に伴う光学フィルムの大判化、薄膜化に伴いリワーク性、生産性の観点から光学フィルムの脆性への要求はますます高いものがあり、上記延性破壊が起こらないことが求められている。
 本発明に係る光学フィルムは、ヘイズを低くし、プロジェクターのような高温になる機器や、車載用表示機器のような、高温の環境下での使用を考慮すると、その張力軟化点を、105℃~145℃とすることが好ましく、110℃~130℃に制御することがより好ましい。
 光学フィルムの張力軟化点温度の具体的な測定方法としては、例えば、テンシロン試験機(ORIENTEC社製、RTC-1225A)を用いて、光学フィルムを120mm(縦)×10mm(幅)で切り出し、10Nの張力で引っ張りながら30℃/minの昇温速度で昇温を続け、9Nになった時点での温度を3回測定し、その平均値により求めることができる。
 本発明に係る光学フィルムは、ガラス転移温度(Tg)が110℃以上であることが好ましい。より好ましくは120℃以上である。特に好ましくは150℃以上である。
 尚、ここでいうガラス転移温度とは、示差走査熱量測定器(Perkin Elmer社製DSC-7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)である。
 本発明に係る光学フィルムは、フィルム面内の直径5μm以上の欠点が1個/10cm四方以下であることが好ましい。更に好ましくは0.5個/10cm四方以下、一層好ましくは0.1個/10cm四方以下である。
 ここで欠点の直径とは、欠点が円形の場合はその直径を示し、円形でない場合は欠点の範囲を下記方法により顕微鏡で観察して決定し、その最大径(外接円の直径)とする。
 欠点の範囲は、欠点が気泡や異物の場合は、欠点を微分干渉顕微鏡の透過光で観察したときの影の大きさである。欠点が、ロール傷の転写や擦り傷など、表面形状の変化の場合は、欠点を微分干渉顕微鏡の反射光で観察して大きさを確認する。
 なお、反射光で観察する場合に、欠点の大きさが不明瞭であれば、表面にアルミや白金を蒸着して観察する。
 かかる欠点頻度にて表される品位に優れたフィルムを生産性よく得るには、ポリマー溶液を流延直前に高精度濾過することや、流延機周辺のクリーン度を高くすること、また、流延後の乾燥条件を段階的に設定し、効率よくかつ発泡を抑えて乾燥させることが有効である。
 欠点の個数が1個/10cm四方より多いと、例えば後工程での加工時などでフィルムに張力がかかると、欠点を基点としてフィルムが破断して生産性が著しく低下する場合がある。また、欠点の直径が5μm以上になると、偏光板観察などにより目視で確認でき、光学部材として用いたとき輝点が生じる場合がある。
 また、目視で確認できない場合でも、該フィルム上にハードコート層などを形成したときに、塗剤が均一に形成できず欠点(塗布抜け)となる場合がある。ここで、欠点とは、溶液製膜の乾燥工程において溶媒の急激な蒸発に起因して発生するフィルム中の空洞(発泡欠点)や、製膜原液中の異物や製膜中に混入する異物に起因するフィルム中の異物(異物欠点)を言う。
 また、本発明に係る光学フィルムは、JIS K7127-1999に準拠した測定において、少なくとも一方向の破断伸度が、10%以上であることが好ましく、より好ましくは20%以上である。
 破断伸度の上限は特に限定されるものではないが、現実的には250%程度である。破断伸度を大きくするには異物や発泡に起因するフィルム中の欠点を抑制することが有効である。
 本発明に係る光学フィルムは、その全光線透過率が90%以上であることが好ましく、より好ましくは93%以上である。また、現実的な上限としては、99%程度である。かかる全光線透過率にて表される優れた透明性を達成するには、可視光を吸収する添加剤や共重合成分を導入しないようにすることや、ポリマー中の異物を高精度濾過により除去し、フィルム内部の光の拡散や吸収を低減させることが有効である。
 また、製膜時のフィルム接触部(冷却ロール、カレンダーロール、ドラム、ベルト、溶液製膜における塗布基材、搬送ロールなど)の表面粗さを小さくしてフィルム表面の表面粗さを小さくすることや、アクリル樹脂の屈折率を小さくすることによりフィルム表面の光の拡散や反射を低減させることが有効である。
 本発明に係る光学フィルムは、透明性を表す指標の1つであるヘイズ値(濁度)が0.5%未満であることが好ましいが、液晶表示装置に組み込んだ際の輝度、コントラストの点から0.4%以下であることがより好ましい。
 尚、上記光学フィルムのヘイズ値は、JIS K7361-1-1997およびJIS K7136-2000に従い、測定した値である。
 本発明に係るアクリル樹脂を含有するフィルムは、上記のような物性を満たしていれば、光学フィルムとして好ましく用いることができるが、以下の組成とすることにより、加工性、耐熱性に優れたフィルムを得ることができる。
 すなわち、加工性および耐熱性を両立させる観点から、前記光学フィルムが、アクリル樹脂(A)とセルロースアシレート樹脂を80:20~20:80の質量比で含有することを特徴とする光学フィルムにより、本発明の優れた効果が得られる。
 本発明に係る光学フィルムにおいて、アクリル樹脂(A)とセルロースアシレート樹脂(B)は、80:20~20:80の質量比で含有されるが、好ましくはアクリル樹脂(A)が50質量%以上である。
 アクリル樹脂成分が多くなると、例えば高温・高湿下での寸法変化が抑制され、偏光板として用いた時の偏光板のカールやパネルの反りを著しく低減することができる。さらにアクリル樹脂成分が50質量%以上の組成においては、上記物性をより長時間維持する事が可能となる。
 本発明に係る光学フィルムは、アクリル樹脂(A)、セルロースアシレート樹脂(B)以外の樹脂を含有して構成されていても良い。
 アクリル樹脂(A)とセルロースアシレート樹脂(B)の総質量は、光学フィルムの55~100質量%であり、好ましくは60~99質量%である。
 〈アクリル樹脂(A)〉
 本発明に用いられるアクリル樹脂には、メタクリル樹脂も含まれる。樹脂としては特に制限されるものではないが、メチルメタクリレート単位50~99質量%、およびこれと共重合可能な他の単量体単位1~50質量%からなるものが好ましい。
 共重合可能な他の単量体としては、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α-メチルスチレン、核置換スチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、グルタル酸無水物等が挙げられ、これらは単独で、あるいは2種以上を併用して用いることができる。
 これらの中でも、共重合体の耐熱分解性や流動性の観点から、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、s-ブチルアクリレート、2-エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn-ブチルアクリレートが特に好ましく用いられる。
 本発明に係る光学フィルムに用いられるアクリル樹脂(A)は、フィルムとしての機械的強度、フィルムを生産する際の流動性の点から重量平均分子量(Mw)が80000~1000000であることが好ましい。
 本発明に係るアクリル樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定することができる。測定条件は以下の通りである。
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=2,800,000~500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
 本発明におけるアクリル樹脂(A)の製造方法としては、特に制限は無く、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いても良い。ここで、重合開始剤としては、通常のパーオキサイド系およびアゾ系のものを用いることができ、また、レドックス系とすることもできる。重合温度については、懸濁または乳化重合では30~100℃、塊状または溶液重合では80~160℃で実施しうる。さらに、生成共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。
 この分子量とすることで、耐熱性と脆性の両立を図ることができる。
 本発明に係るアクリル樹脂としては、市販のものも使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80、BR83、BR85、BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。
 〈セルロースアシレート樹脂(B)〉
 本発明に係るセルロースアシレート樹脂は、脂肪族のアシル基、芳香族のアシル基のいずれで置換されていても良いが、アセチル基で置換されていることが好ましい。
 本発明に係るセルロースアシレート樹脂が、脂肪族アシル基とのエステルであるとき、脂肪族アシル基は炭素原子数が2~20で具体的にはアセチル、プロピオニル、ブチリル、イソブチリル、バレリル、ピバロイル、ヘキサノイル、オクタノイル、ラウロイル、ステアロイル等が挙げられる。
 本発明において前記脂肪族アシル基とはさらに置換基を有するものも包含する意味であり、置換基としては上述の芳香族アシル基において、芳香族環がベンゼン環であるとき、ベンゼン環の置換基として例示したものが挙げられる。
 上記セルロースアシレート樹脂が、芳香族アシル基とのエステルであるとき、芳香族環に置換する置換基Xの数は0または1~5個であり、好ましくは1~3個で、特に好ましいのは1又は2個である。
 更に、芳香族環に置換する置換基の数が2個以上の時、互いに同じでも異なっていてもよいが、また、互いに連結して縮合多環化合物(例えばナフタレン、インデン、インダン、フェナントレン、キノリン、イソキノリン、クロメン、クロマン、フタラジン、アクリジン、インドール、インドリンなど)を形成してもよい。
 上記セルロースアシレート樹脂において置換もしくは無置換の脂肪族アシル基、置換もしくは無置換の芳香族アシル基の少なくともいずれか1種選択された構造を有する構造を有することが本発明に係るセルロース樹脂に用いる構造として用いられ、これらは、セルロースの単独または混合酸エステルでもよい。
 本発明に係るセルロースアシレート樹脂の置換度は、アシル基の総置換度(T)が2.00~3.00であり、アセチル基は必ずしも必要ではなく、アセチル基置換度(ac)が0~1.89である。より好ましくはアセチル基以外のアシル基置換度(r)が2.00~2.89である。
 アセチル基以外のアシル基は炭素数が3~7であることが好ましい。
 本発明に係るセルロースアシレート樹脂において、炭素原子数2~7のアシル基を置換基として有するもの、即ちセルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートベンゾエート、及びセルロースベンゾエートから選ばれる少なくとも一種であることが好ましい。
 これらの中で特に好ましいセルロースアシレート樹脂は、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネートやセルロースアセテートブチレートが挙げられる。
 混合脂肪酸として、さらに好ましくは、セルロースアセテートプロピオネートやセルロースアセテートブチレートの低級脂肪酸エステルであり、炭素原子数2~4のアシル基を置換基として有するものが好ましい。
 アシル基で置換されていない部分は通常水酸基として存在しているものである。これらは公知の方法で合成することが出来る。
 なお、アセチル基の置換度や他のアシル基の置換度は、ASTM-D817-96に規定の方法により求めたものである。
 本発明に係るセルロースアシレート樹脂の重量平均分子量(Mw)は、75000以上であれば、1000000程度のものであっても本発明の目的を達成することができるが、生産性を考慮すると75000~280000のものが好ましく、100000~240000のものが更に好ましい。
 〈アクリル粒子(C)〉
 本発明では、光学フィルムにアクリル粒子を含有させてもよい。
 本発明に用いられるアクリル粒子(C)は、前記アクリル樹脂(A)及びセルロースアシレート樹脂(B)と光学フィルム中で粒子の状態で存在すること(非相溶状態ともいう)ができる。
 上記アクリル粒子(C)は、例えば、作製した光学フィルムを所定量採取し、溶媒に溶解させて攪拌し、充分に溶解・分散させたところで、アクリル粒子(C)の平均粒子径未満の孔径を有するPTFE製のメンブレンフィルターを用いて濾過し、濾過捕集された不溶物の重さが、光学フィルムに添加したアクリル粒子(C)の90質量%以上あることが好ましい。
 本発明に用いられるアクリル粒子(C)は特に限定されるものではないが、2層以上の層構造を有するアクリル粒子(C)であることが好ましく、特に下記多層構造アクリル系粒状複合体であることが好ましい。
 多層構造アクリル系粒状複合体とは、中心部から外周部に向かって最内硬質層重合体、ゴム弾性を示す架橋軟質層重合体、および最外硬質層重合体が、層状に重ね合わされてなる構造を有する粒子状のアクリル系重合体を言う。
 本発明に用いられる多層構造アクリル系粒状複合体の好ましい態様としては、以下の様なものが挙げられる。(a)メチルメタクリレート80~98.9質量%、アルキル基の炭素数が1~8のアルキルアクリレート1~20質量%、および多官能性グラフト剤0.01~0.3質量%からなる単量体混合物を重合して得られる最内硬質層重合体、(b)上記最内硬質層重合体の存在下に、アルキル基の炭素数が4~8のアルキルアクリレート75~98.5質量%、多官能性架橋剤0.01~5質量%および多官能性グラフト剤0.5~5質量%からなる単量体混合物を重合して得られる架橋軟質層重合体、(c)上記最内硬質層および架橋軟質層からなる重合体の存在下に、メチルメタクリレート80~99質量%とアルキル基の炭素数が1~8であるアルキルアクリレート1~20質量%とからなる単量体混合物を重合して得られる最外硬層重合体、よりなる3層構造を有し、かつ得られた3層構造重合体が最内硬質層重合体(a)5~40質量%、軟質層重合体(b)30~60質量%、および最外硬質層重合体(c)20~50質量%からなり、アセトンで分別したときに不溶部があり、その不溶部のメチルエチルケトン膨潤度が1.5~4.0であるアクリル系粒状複合体、が挙げられる。
 なお、特公昭60-17406号あるいは特公平3-39095号において開示されている様に、多層構造アクリル系粒状複合体の各層の組成や粒子径を規定しただけでなく、多層構造アクリル系粒状複合体の引張り弾性率やアセトン不溶部のメチルエチルケトン膨潤度を特定範囲内に設定することにより、さらに充分な耐衝撃性と耐応力白化性のバランスを実現することが可能となる。
 ここで、多層構造アクリル系粒状複合体を構成する最内硬質層重合体(a)は、メチルメタクリレート80~98.9質量%、アルキル基の炭素数が1~8のアルキルアクリレート1~20質量%および多官能性グラフト剤0.01~0.3質量%からなる単量体混合物を重合して得られるものが好ましい。
 ここで、アルキル基の炭素数が1~8のアルキルアクリレートとしては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、s-ブチルアクリレート、2-エチルヘキシルアクリレート等が挙げられ、メチルアクリレートやn-ブチルアクリレートが好ましく用いられる。
 最内硬質層重合体(a)におけるアルキルアクリレート単位の割合は1~20質量%であり、該単位が1質量%未満では、重合体の熱分解性が大きくなり、一方、該単位が20質量%を越えると、最内硬質層重合体(c)のガラス転移温度が低くなり、3層構造アクリル系粒状複合体の耐衝撃性付与効果が低下するので、いずれも好ましくない。
 多官能性グラフト剤としては、異なる重合可能な官能基を有する多官能性単量体、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸のアリルエステル等が挙げられ、アリルメタクリレートが好ましく用いられる。多官能性グラフト剤は、最内硬質層重合体と軟質層重合体を化学的に結合するために用いられ、その最内硬質層重合時に用いる割合は0.01~0.3質量%である。
 アクリル系粒状複合体を構成する架橋軟質層重合体(b)は、上記最内硬質層重合体(a)の存在下に、アルキル基の炭素数が1~8のアルキルアクリレート75~98.5質量%、多官能性架橋剤0.01~5質量%および多官能性グラフト剤0.5~5質量%からなる単量体混合物を重合して得られるものが好ましい。
 ここで、アルキル基の炭素数が4~8のアルキルアクリレートとしては、n-ブチルアクリレートや2-エチルヘキシルアクリレートが好ましく用いられる。
 また、これらの重合性単量体と共に、25質量%以下の共重合可能な他の単官能性単量体を共重合させることも可能である。
 共重合可能な他の単官能性単量体としては、スチレンおよび置換スチレン誘導体が挙げられる。アルキル基の炭素数が4~8のアルキルアクリレートとスチレンとの比率は、前者が多いほど生成重合体(b)のガラス転移温度が低下し、即ち軟質化できるのである。
 一方、樹脂組生物の透明性の観点からは、軟質層重合体(b)の常温での屈折率を最内硬質層重合体(a)、最外硬質層重合体(c)、および硬質熱可塑性アクリル樹脂に近づけるほうが有利であり、これらを勘案して両者の比率を選定する。
 例えば、被覆層厚みの小さな用途においては、必ずしもスチレンを共重合しなくとも良い。
 多官能性グラフト剤としては、前記の最内層硬質重合体(a)の項で挙げたものを用いることができる。ここで用いる多官能性グラフト剤は、軟質層重合体(b)と最外硬質層重合体(c)を化学的に結合するために用いられ、その最内硬質層重合時に用いる割合は耐衝撃性付与効果の観点から0.5~5質量%が好ましい。
 多官能性架橋剤としては、ジビニル化合物、ジアリル化合物、ジアクリル化合物、ジメタクリル化合物などの一般に知られている架橋剤が使用できるが、ポリエチレングリコールジアクリレート(分子量200~600)が好ましく用いられる。
 ここで用いる多官能性架橋剤は、軟質層(b)の重合時に架橋構造を生成し、耐衝撃性付与の効果を発現させるために用いられる。ただし、先の多官能性グラフト剤を軟質層の重合時に用いれば、ある程度は軟質層(b)の架橋構造を生成するので、多官能性架橋剤は必須成分ではないが、多官能性架橋剤を軟質層重合時に用いる割合は耐衝撃性付与効果の観点から0.01~5質量%が好ましい。
 多層構造アクリル系粒状複合体を構成する最外硬質層重合体(c)は、上記最内硬質層重合体(a)および軟質層重合体(b)の存在下に、メチルメタクリレート80~99質量%およびアルキル基の炭素数が1~8であるアルキルアクリレート1~20質量%からなる単量体混合物を重合して得られるものが好ましい。
 ここで、アクリルアルキレートとしては、前述したものが用いられるが、メチルアクリレートやエチルアクリレートが好ましく用いられる。最外硬質層(c)におけるアルキルアクリレート単位の割合は、1~20質量%が好ましい。
 また、最外硬質層(c)の重合時に、アクリル樹脂(A)との相溶性向上を目的として、分子量を調節するためアルキルメルカプタン等を連鎖移動剤として用い、実施することも可能である。
 とりわけ、最外硬質層に、分子量が内側から外側へ向かって次第に小さくなるような勾配を設けることは、伸びと耐衝撃性のバランスを改良するうえで好ましい。具体的な方法としては、最外硬質層を形成するための単量体混合物を2つ以上に分割し、各回ごとに添加する連鎖移動剤量を順次増加するような手法によって、分子量を内側から外側へ向かって小さくすることが可能である。
 この際に形成される分子量は、各回に用いられる単量体混合物をそれ単独で同条件にて重合し、得られた重合体の分子量を測定することによって調べることもできる。
 本発明に好ましく用いられる多層構造重合体であるアクリル系粒状複合体の粒子径については、特に限定されるものではないが、10nm以上、1000nm以下であることが好ましく、さらに、20nm以上、500nm以下であることがより好ましく、特に50nm以上、400nm以下であることが最も好ましい。
 本発明に好ましく用いられる多層構造重合体であるアクリル系粒状複合体において、コアとシェルの質量比は、特に限定されるものではないが、多層構造重合体全体を100質量部としたときに、コア層が50質量部以上、90質量部以下であることが好ましく、さらに、60質量部以上、80質量部以下であることがより好ましい。
 このような多層構造アクリル系粒状複合体の市販品の例としては、例えば、三菱レイヨン社製“メタブレン”、鐘淵化学工業社製“カネエース”、呉羽化学工業社製“パラロイド”、ロームアンドハース社製“アクリロイド”、ガンツ化成工業社製“スタフィロイド”およびクラレ社製“パラペットSA”などが挙げられ、これらは、単独ないし2種以上を用いることができる。
 また、本発明に好ましく用いられるアクリル粒子(C)として好適に使用されるグラフト共重合体であるアクリル粒子(c-1)の具体例としては、ゴム質重合体の存在下に、不飽和カルボン酸エステル系単量体、不飽和カルボン酸系単量体、芳香族ビニル系単量体、および必要に応じてこれらと共重合可能な他のビニル系単量体からなる単量体混合物を共重合せしめたグラフト共重合体が挙げられる。
 グラフト共重合体であるアクリル粒子(c-1)に用いられるゴム質重合体には特に制限はないが、ジエン系ゴム、アクリル系ゴムおよびエチレン系ゴムなどが使用できる。具体例としては、ポリブタジエン、スチレン-ブタジエン共重合体、スチレン-ブタジエンのブロック共重合体、アクリロニトリル-ブタジエン共重合体、アクリル酸ブチル-ブタジエン共重合体、ポリイソプレン、ブタジエン-メタクリル酸メチル共重合体、アクリル酸ブチル-メタクリル酸メチル共重合体、ブタジエン-アクリル酸エチル共重合体、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン系共重合体、エチレン-イソプレン共重合体、およびエチレン-アクリル酸メチル共重合体などが挙げられる。これらのゴム質重合体は、1種または2種以上の混合物で使用することが可能である。
 また、アクリル樹脂(A)およびアクリル粒子(C)のそれぞれの屈折率が近似している場合、本発明に係る光学フィルムの透明性を得ることができるため、好ましい。具体的には、アクリル粒子(C)とアクリル樹脂(A)の屈折率差が0.05以下であることが好ましく、より好ましくは0.02以下、とりわけ0.01以下であることが好ましい。
 このような屈折率条件を満たすためには、アクリル樹脂(A)の各単量体単位組成比を調整する方法、および/またはアクリル粒子(C)に使用されるゴム質重合体あるいは単量体の組成比を調製する方法などにより、屈折率差を小さくすることができ、透明性に優れた光学フィルムを得ることができる。
 尚、ここで言う屈折率差とは、アクリル樹脂(A)が可溶な溶媒に、本発明に係る光学フィルムを適当な条件で十分に溶解させ白濁溶液とし、これを遠心分離等の操作により、溶媒可溶部分と不溶部分に分離し、この可溶部分(アクリル樹脂(A))と不溶部分(アクリル粒子(C))をそれぞれ精製した後、測定した屈折率(23℃、測定波長:550nm)の差を示す。
 本発明においてアクリル樹脂(A)に、アクリル粒子(C)を配合する方法には、特に制限はなく、アクリル樹脂(A)とその他の任意成分を予めブレンドした後、通常200~350℃において、アクリル粒子(C)を添加しながら一軸または二軸押出機により均一に溶融混練する方法が好ましく用いられる。
 また、アクリル粒子(C)を予め分散した溶液を、アクリル樹脂(A)、及びセルロースアシレート樹脂(B)を溶解した溶液(ドープ液)に添加して混合する方法や、アクリル粒子(C)及びその他の任意の添加剤を溶解、混合した溶液をインライン添加する等の方法を用いることができる。
 本発明に用いられるアクリル粒子(C)としては、市販のものも使用することができる。例えば、メタブレンW-341(C2)(三菱レイヨン(株)製)を、ケミスノーMR-2G(C3)、MS-300X(C4)(綜研化学(株)製)等を挙げることができる。
 本発明に係る光学フィルムにおいて、該フィルムを構成する樹脂の総質量に対して、0.5~45質量%のアクリル粒子(C)を含有することが好ましい。
 〈その他の添加剤〉
 本発明に係る光学フィルムにおいては、組成物の流動性や柔軟性を向上するために、可塑剤を併用することも可能である。可塑剤としては、フタル酸エステル系、脂肪酸エステル系、トリメリット酸エステル系、リン酸エステル系、ポリエステル系、あるいはエポキシ系等が挙げられる。
 この中で、ポリエステル系とフタル酸エステル系の可塑剤が好ましく用いられる。ポリエステル系可塑剤は、フタル酸ジオクチルなどのフタル酸エステル系の可塑剤に比べて非移行性や耐抽出性に優れるが、可塑化効果や相溶性にはやや劣る。
 従って、用途に応じてこれらの可塑剤を選択、あるいは併用することによって、広範囲の用途に適用できる。
 ポリエステル系可塑剤は、一価ないし四価のカルボン酸と一価ないし六価のアルコールとの反応物であるが、主に二価カルボン酸とグリコールとを反応させて得られたものが用いられる。代表的な二価カルボン酸としては、グルタル酸、イタコン酸、アジピン酸、フタル酸、アゼライン酸、セバシン酸などが挙げられる。
 特に、アジピン酸、フタル酸などを用いると可塑化特性に優れたものが得られる。グリコールとしてはエチレン、プロピレン、1,3-ブチレン、1,4-ブチレン、1,6-ヘキサメチレン、ネオペンチレン、ジエチレン、トリエチレン、ジプロピレンなどのグリコールが挙げられる。これらの二価カルボン酸およびグリコールはそれぞれ単独で、あるいは混合して使用してもよい。
 このエステル系の可塑剤はエステル、オリゴエステル、ポリエステルの型のいずれでもよく、分子量は100~10000の範囲が良いが、好ましくは600~3000の範囲が可塑化効果が大きい。
 また、可塑剤の粘度は分子構造や分子量と相関があるが、アジピン酸系可塑剤の場合相溶性、可塑化効率の関係から200~5000mPa・s(25℃)の範囲が良い。さらに、いくつかのポリエステル系可塑剤を併用してもかまわない。
 可塑剤はアクリル樹脂(A)を含有する組成物100質量部に対して、0.5~30質量部を添加するのが好ましい。可塑剤の添加量が30質量部を越えると、表面がべとつくので、実用上好ましくない。
 本発明に係る光学フィルムは紫外線吸収剤を含有することも好ましく、用いられる紫外線吸収剤としては、ベンゾトリアゾール系、2-ヒドロキシベンゾフェノン系またはサリチル酸フェニルエステル系のもの等が挙げられる。例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン類を例示することができる。
 ここで、紫外線吸収剤のうちでも、分子量が400以上の紫外線吸収剤は、高沸点で揮発しにくく、高温成形時にも飛散しにくいため、比較的少量の添加で効果的に耐候性を改良することができる。
 また、特に薄い被覆層から基板層への移行性も小さく、積層板の表面にも析出しにくいため、含有された紫外線吸収剤量が長時間維持され、耐候性改良効果の持続性に優れるなどの点から好ましい。
 分子量が400以上の紫外線吸収剤としては、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]等のベンゾトリアゾール系、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート等のヒンダードアミン系、さらには2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、1-[2-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-2,2,6,6-テトラメチルピペリジン等の分子内にヒンダードフェノールとヒンダードアミンの構造を共に有するハイブリッド系のものが挙げられ、これらは単独で、あるいは2種以上を併用して使用することができる。これらのうちでも、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾールや2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]が特に好ましい。
 さらに、本発明に係る光学フィルムに用いられるアクリル樹脂(A)には成形加工時の熱分解性や熱着色性を改良するために各種の酸化防止剤を添加することもできる。また帯電防止剤を加えて、光学フィルムに帯電防止性能を与えることも可能である。
 本発明に係る光学フィルムは、リン系難燃剤を配合した難燃アクリル系樹脂組成物を用いても良い。
 ここで用いられるリン系難燃剤としては、赤リン、トリアリールリン酸エステル、ジアリールリン酸エステル、モノアリールリン酸エステル、アリールホスホン酸化合物、アリールホスフィンオキシド化合物、縮合アリールリン酸エステル、ハロゲン化アルキルリン酸エステル、含ハロゲン縮合リン酸エステル、含ハロゲン縮合ホスホン酸エステル、含ハロゲン亜リン酸エステル等から選ばれる1種、あるいは2種以上の混合物を挙げることができる。
 具体的な例としては、トリフェニルホスフェート、9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキシド、フェニルホスホン酸、トリス(β-クロロエチル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(トリブロモネオペンチル)ホスフェート等が挙げられる。
 〈光学フィルムの製膜〉
 本発明に係る光学フィルムの製膜方法の例を説明するが、本発明はこれに限定されるものではない。
 製膜方法としては、インフレーション法、T-ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用できるが、着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制などの観点から流延法による溶液製膜が好ましい。
 (有機溶媒)
 本発明に係る光学フィルムを溶液流延法で製造する場合のドープを形成するのに有用な有機溶媒は、アクリル樹脂(A)、セルロースアシレート樹脂(B)、その他の添加剤を同時に溶解するものであることが好ましい。
 例えば、塩素系有機溶媒である塩化メチレン、アルコール、及び本発明に係るエステル系溶剤、ケトン系溶剤、及び脂肪族系溶剤から選ばれる少なくとも1種の溶剤との混合溶媒を用いることが好ましい。
 アルコールとしては、炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールが好ましく、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。
 上記溶媒に、アクリル樹脂(A)と、セルロースアシレート樹脂(B)と、アクリル粒子(C)の3種を、少なくとも計15~45質量%溶解させたドープ組成物であることが好ましい。
 以下、本発明に係る光学フィルムの好ましい製膜方法について説明する。
 1)溶解工程
 アクリル樹脂(A)、セルロースアシレート樹脂(B)に対する良溶媒を主とする有機溶に、溶解釜中で該アクリル樹脂(A)、セルロースアシレート樹脂(B)、場合によってアクリル粒子(C)、その他の添加剤を攪拌しながら溶解しドープを形成する工程、或いは該アクリル樹脂(A)、セルロースアシレート樹脂(B)溶液に、場合によってアクリル粒子(C)溶液、その他の添加剤溶液を混合して主溶解液であるドープを形成する工程である。
 アクリル樹脂(A)、セルロースアシレート樹脂(B)の溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、または特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載の如き高圧で行う方法等種々の溶解方法を用いることが出来るが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。
 ドープ中のアクリル樹脂(A)と、セルロースアシレート樹脂(B)は、計15~45質量%の範囲であることが好ましい。溶解中または後のドープに添加剤を加えて溶解及び分散した後、濾材で濾過し、脱泡して送液ポンプで次工程に送る。
 本発明で用いるドープは濾過により異物を除去するのが好ましく、濾過に用いるフィルターは紙、金属等を用いることができ、並列、直列に複数回行っても良い。
 濾過は捕集粒子径0.5~5μmでかつ濾水時間10~25sec/100mlの濾材を用いることが好ましい。
 この方法では、粒子分散時に残存する凝集物や主ドープ添加時発生する凝集物を、捕集粒子径0.5~5μmでかつ濾水時間10~25sec/100mlの濾材を用いることで凝集物だけ除去出来る。主ドープでは粒子の濃度も添加液に比べ十分に薄いため、濾過時に凝集物同士がくっついて急激な濾圧上昇することもない。
 本発明で用いるアクリル樹脂(A)、セルロースアシレート樹脂(B)、アクリル粒子(C)は容器に1種または複数種の紛体を投入してから溶剤を添加して溶解しても良く、溶剤中に紛体を投入しても良く、同時に添加しても良く、別々に溶解してから混合しても良い。また、1部のみ別に溶解してから添加しても良い。添加順番も特に制限は無く、溶解温度も攪拌数も特に制限は無いがムラ無く混ざる条件が好ましい。
 本発明で用いるアクリル樹脂(A)、セルロースアシレート樹脂(B)、アクリル粒子(C)を容器に投入する方法としては、容器上部から直接投入しても良いが、空送により投入するのが好ましい。
 図1は本発明に好ましい溶液流延製膜方法のドープ調製工程、流延工程及び乾燥工程を模式的に示した図である。
 必要な場合は、アクリル粒子仕込釜41より濾過器44で大きな凝集物を除去し、ストックタンク42へ送液する。その後、ストックタンク42より主ドープ溶解釜1へアクリル粒子添加液を添加する。
 その後主ドープ液は主濾過器3にて濾過され、これに紫外線吸収剤添加液が16よりインライン添加される。
 多くの場合、主ドープには返材が10~50質量%程度含まれることがある。返材にはアクリル粒子が含まれることがある、その場合には返材の添加量に合わせてアクリル粒子添加液の添加量をコントロールすることが好ましい。
 アクリル粒子を含有する添加液には、アクリル粒子を0.5~10質量%含有していることが好ましく、1~10質量%含有していることが更に好ましく、1~5質量%含有していることが最も好ましい。
 アクリル粒子の含有量の少ない方が、低粘度で取り扱い易く、アクリル粒子の含有量の多い方が、添加量が少なく、主ドープへの添加が容易になるため、上記の範囲が好ましい。
 返材とは、光学フィルムを細かく粉砕した物で、光学フィルムを製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷などでスペックアウトした光学フィルム原反が使用される。
 また、予めアクリル樹脂、セルロースアシレート樹脂、場合によってアクリル粒子を混練してペレット化したものも、好ましく用いることができる。
 2)流延工程
 ドープを送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイ30に送液し、無限に移送する無端の金属支持体31、例えばステンレスベルト、或いは回転する金属ドラム等の金属支持体上の流延位置に、加圧ダイスリットからドープを流延する工程である。
 本発明の製造工程は複数種のドープを送液しても良く、単独のドープを送液しても良い。複数のドープを送液する場合、ドープを切り替える際、ドープの置換時間を設ける。置換は前のドープの影響が無くなるまで行うが、時間は短い方が好ましい。
 本発明に用いられるダイは、ダイの口金部分のスリット形状を調整出来、膜厚を均一にし易い加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、何れも好ましく用いられる。金属支持体の表面は鏡面となっている。製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して重層してもよい。或いは複数のドープを同時に流延する共流延法によって積層構造のフィルムを得ることも好ましい。
 3)溶媒蒸発工程
 ウェブ(流延用支持体上にドープを流延し、形成されたドープ膜をウェブと呼ぶ)を流延用支持体上で加熱し、溶媒を蒸発させる工程である。
 溶媒を蒸発させるには、ウェブ側から風を吹かせる方法及び/又は支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法が乾燥効率が良く好ましい。又、それらを組み合わせる方法も好ましく用いられる。流延後の支持体上のウェブを40~100℃の雰囲気下、支持体上で乾燥させることが好ましい。40~100℃の雰囲気下に維持するには、この温度の温風をウェブ上面に当てるか赤外線等の手段により加熱することが好ましい。
 面品質、透湿性、剥離性の観点から、30~120秒以内で該ウェブを支持体から剥離することが好ましい。
 4)剥離工程
 金属支持体上で溶媒が蒸発したウェブを、剥離位置で剥離する工程である。剥離されたウェブは次工程に送られる。
 金属支持体上の剥離位置における温度は好ましくは10~40℃であり、更に好ましくは11~30℃である。
 尚、剥離する時点での金属支持体上でのウェブの剥離時残留溶媒量は、乾燥の条件の強弱、金属支持体の長さ等により50~120質量%の範囲で剥離することが好ましいが、残留溶媒量がより多い時点で剥離する場合、ウェブが柔らか過ぎると剥離時平面性を損なったり、剥離張力によるツレや縦スジが発生し易いため、経済速度と品質との兼ね合いで剥離時の残留溶媒量が決められる。
 ウェブの残留溶媒量は下記式で定義される。
 残留溶媒量(%)=(ウェブの加熱処理前質量-ウェブの加熱処理後質量)/(ウェブの加熱処理後質量)×100
 尚、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
 金属支持体とフィルムを剥離する際の剥離張力は、通常、196~245N/mであるが、剥離の際に皺が入り易い場合、190N/m以下の張力で剥離することが好ましく、更には、剥離できる最低張力~166.6N/m、次いで、最低張力~137.2N/mで剥離することが好ましいが、特に好ましくは最低張力~100N/mで剥離することである。
 本発明においては、該金属支持体上の剥離位置における温度を-50~40℃とするのが好ましく、10~40℃がより好ましく、15~30℃とするのが最も好ましい。
 5)乾燥及び延伸工程
 剥離後、ウェブを乾燥装置内に複数配置したロールに交互に通して搬送する乾燥装置35、及び/またはクリップでウェブの両端をクリップして搬送するテンター延伸装置34を用いて、ウェブを乾燥する。
 乾燥手段はウェブの両面に熱風を吹かせるのが一般的であるが、風の代わりにマイクロウェーブを当てて加熱する手段もある。余り急激な乾燥は出来上がりのフィルムの平面性を損ね易い。高温による乾燥は残留溶媒が8質量%以下くらいから行うのがよい。全体を通し、乾燥は概ね40~250℃で行われる。特に40~160℃で乾燥させることが好ましい。
 テンター延伸装置を用いる場合は、テンターの左右把持手段によってフィルムの把持長(把持開始から把持終了までの距離)を左右で独立に制御出来る装置を用いることが好ましい。また、テンター工程において、平面性を改善するため意図的に異なる温度を持つ区画を作ることも好ましい。
 また、異なる温度区画の間にそれぞれの区画が干渉を起こさないように、ニュートラルゾーンを設けることも好ましい。
 尚、延伸操作は多段階に分割して実施してもよく、流延方向、幅手方向に二軸延伸を実施することも好ましい。また、二軸延伸を行う場合には同時二軸延伸を行ってもよいし、段階的に実施してもよい。
 この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。即ち、例えば、次のような延伸ステップも可能である。
 ・流延方向に延伸-幅手方向に延伸-流延方向に延伸-流延方向に延伸
 ・幅手方向に延伸-幅手方向に延伸-流延方向に延伸-流延方向に延伸
 また、同時2軸延伸には、一方向に延伸し、もう一方を張力を緩和して収縮させる場合も含まれる。同時2軸延伸の好ましい延伸倍率は幅手方向、長手方向ともに×1.01倍~×1.5倍の範囲でとることができる。
 テンターを行う場合のウェブの残留溶媒量は、テンター開始時に20~100質量%であるのが好ましく、かつウェブの残留溶媒量が10質量%以下になる迄テンターを掛けながら乾燥を行うことが好ましく、更に好ましくは5質量%以下である。
 テンターを行う場合の乾燥温度は、30~150℃が好ましく、50~120℃が更に好ましく、70~100℃が最も好ましい。
 テンター工程において、雰囲気の幅手方向の温度分布が少ないことが、フィルムの均一性を高める観点から好ましく、テンター工程での幅手方向の温度分布は、±5℃以内が好ましく、±2℃以内がより好ましく、±1℃以内が最も好ましい。
 6)巻き取り工程
 ウェブ中の残留溶媒量が2質量%以下となってから光学フィルムとして巻き取り機37により巻き取る工程であり、残留溶媒量を0.4質量%以下にすることにより寸法安定性の良好なフィルムを得ることが出来る。
 巻き取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使いわければよい。
 本発明に係る光学フィルムは、長尺フィルムであることが好ましく、具体的には、100m~5000m程度のものを示し、通常、ロール状で提供される形態のものである。また、フィルムの幅は1.3~4mであることが好ましく、1.4~2mであることがより好ましい。
 本発明に係る光学フィルムの膜厚に特に制限はないが、後述する偏光板保護フィルムに使用する場合は20~200μmであることが好ましく、25~100μmであることがより好ましく、30~80μmであることが特に好ましい。
 <偏光板>
 偏光板は一般的な方法で作製することが出来る。本発明に係る光学フィルムの裏面側に粘着層を設け、沃素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、貼り合わせることが好ましい。
 もう一方の面には該フィルムを用いても、別の偏光板保護フィルムを用いてもよい。例えば、市販のセルロースエステルフィルム(例えば、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UY、KC4UY、KC12UR、KC8UCR-3、KC8UCR-4、KC8UCR-5、KV8UY-HA、KV8UX-RHA、以上コニカミノルタオプト(株)製)等が好ましく用いられる。
 偏光板の主たる構成要素である偏光子とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。
 偏光子は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。
 上記粘着層に用いられる粘着剤としては、粘着層の少なくとも一部分において25℃での貯蔵弾性率が1.0×10Pa~1.0×10Paの範囲である粘着剤が用いられることが好ましく、粘着剤を塗布し、貼り合わせた後に種々の化学反応により高分子量体または架橋構造を形成する硬化型粘着剤が好適に用いられる。
 具体例としては、例えば、ウレタン系粘着剤、エポキシ系粘着剤、水性高分子-イソシアネート系粘着剤、熱硬化型アクリル粘着剤等の硬化型粘着剤、湿気硬化ウレタン粘着剤、ポリエーテルメタクリレート型、エステル系メタクリレート型、酸化型ポリエーテルメタクリレート等の嫌気性粘着剤、シアノアクリレート系の瞬間粘着剤、アクリレートとペルオキシド系の2液型瞬間粘着剤等が挙げられる。
 上記粘着剤としては1液型であっても良いし、使用前に2液以上を混合して使用する型であっても良い。
 また上記粘着剤は有機溶剤を媒体とする溶剤系であってもよいし、水を主成分とする媒体であるエマルジョン型、コロイド分散液型、水溶液型などの水系であってもよいし、無溶剤型であってもよい。上記粘着剤液の濃度は、粘着後の膜厚、塗布方法、塗布条件等により適宜決定されれば良く、通常は0.1~50質量%である。
 <液晶表示装置>
 本発明に係る光学フィルムを貼合した偏光板を液晶パネルに組み込むことによって、種々の視認性に優れた液晶表示装置を作製することができる。上記偏光板は、前記粘着層等を介して液晶セルに貼合する。
 本発明に係る偏光板は反射型、透過型、半透過型LCDまたはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型等の各種駆動方式のLCDで好ましく用いられる。特に画面が30型以上、特に30型~54型の大画面の表示装置では、画面周辺部での白抜け等もなく、その効果が長期間維持される。
 また、色ムラ、ギラツキや波打ちムラが少なく、長時間の鑑賞でも目が疲れないという効果があった。
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 実施例A
 〈光学フィルム比較例1の作製〉
 (ドープ液組成)
 アクリル樹脂ダイヤナールBR85(三菱レイヨン(株)製)
                            70質量部
 セルロースアシレート樹脂 CAP482-20(アシル基総置換度2.75、アセチル基置換度0.19、プロピオニル基置換度2.56、Mw=200000 イーストマンケミカル(株)製)      30質量部
 メチレンクロライド                 300質量部
 エタノール                      40質量部
 上記組成物を、加熱しながら十分に溶解し、ドープ液を作製した。
 (光学フィルム比較例1の製膜)
 上記作製したドープ液を、ベルト流延装置を用い、温度22℃、2m幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が100%になるまで溶媒を蒸発させ、剥離張力162N/mでステンレスバンド支持体上から剥離した。
 剥離した光学フィルムのウェブを35℃で溶媒を蒸発させ、1.6m幅にスリットし、その後、テンターで幅方向に1.1倍に延伸しながら、135℃の乾燥温度で乾燥させた。
 テンターで延伸後130℃で5分間緩和を行った後、120℃、130℃の乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させ、1.5m幅にスリットし、フィルム両端に幅10mm高さ5μmのナーリング加工を施し、初期張力220N/m、終張力110N/mで内径6インチコアに巻き取り、膜厚は60μm、巻長は4000mの光学フィルム比較例1を得た。
 ステンレスバンド支持体の回転速度とテンターの運転速度から算出されるMD方向の延伸倍率は1.1倍であった。
 〈光学フィルム比較例2の作製〉
 メタクリル酸メチル0.0008質量部を上記ドープ液組成の溶剤として、比較例1と同量のメチレンクロライド、エタノールと混合して用いた以外は、光学フィルム比較例1と同様にして光学フィルム比較例2を作製した。
 〈光学フィルム実施例1の作製〉
 メタクリル酸メチル0.2000質量部を上記ドープ液組成の溶剤として、比較例1と同量のメチレンクロライド、エタノールと混合して用いた以外は、光学フィルム比較例1と同様にして光学フィルム実施例1を作製した。
 〈光学フィルム比較例3~31の作製〉
 アクリル樹脂(A)、セルロースアシレート樹脂(B)の混合比率、溶剤としてメタクリル酸メチル、酢酸メチル、メチルエチルケトン、ヘキサンの添加量を表1のように変化させた以外は光学フィルム比較例2の作製と同様にして、光学フィルム比較例3~31を作製した。
 〈光学フィルム実施例2~12の作製〉
 アクリル樹脂(A)、セルロースアシレート樹脂(B)の混合比率、溶剤としてメタクリル酸メチル、酢酸メチル、メチルエチルケトン、ヘキサンの添加量を表1のように変化させた以外は光学フィルム実施例1の作製と同様にして、光学フィルム実施例2~12を作製した。
 《評価》
 上記作製した光学フィルム実施例1~12、比較例1~31を用いて以下の評価を実施した。
 <溶剤含有量の定量>
 光学フィルム中の本発明に係るエステル系溶剤、ケトン系溶剤、及び脂肪族系溶剤の含有量は、前述したヘッドスペースガスクロマトグラフィーにより定量した。
 <延性破壊>
 23℃、55%RHの空調室で24時間調湿した光学フィルムを、同条件下、100mm(縦)×10mm(幅)で切り出し、縦方向の中央部で、曲率半径0mm、折り曲げ角が180°でフィルムがぴったりと重なるように山折り、谷折りと2つにそれぞれ1回ずつ折りまげ、この評価を3回測定して、以下のように評価した。尚、ここでの評価の折れるとは、割れて2つ以上のピースに分離したことを表す。
 ○・・・3回とも折れない
 ×・・・3回のうち少なくとも1回は折れる
 実施例1~12の試料は上記評価でいずれも○の評価であり延性破壊のない光学フィルムであることが確認された。対してアクリル樹脂のみで構成された比較例13、14の光学フィルムは×の評価であった。
 <滑り性>
 上記作製した各々のフィルム試料について、23℃、55%RHの空調室で24時間調湿した後、同条件下においてフィルム試料1枚をJIS K7125-1999に従って、動摩擦係数摩擦測定機TR型(東洋精機製)を使用して測定した。
 <ドープ状態>
 作製した各ドープをサンプリングし室温で1日放置し、観察した。
 ○:放置前と変化無し
 ×:析出物が発生した
Figure JPOXMLDOC01-appb-T000001
 比較例1~4、実施例1、2から光学フィルム中にメタクリル酸メチルを0.1質量%以上含有することで滑り性が改良できることが分かる。また、1.0質量%以上含有することでドープ中に析出物が発生することが分かる。
 比較例1~16と実施例1~6の結果からセルロースとアクリルの比が20/80~80/20までは上記の効果が得られたが、セルロースやアクリルのみから構成された光学フィルムではメタクリル酸メチルを添加しても同様の結果は得られなかった。
 従って、セルロースとアクリルの比が20/80~80/20のときのみ、上記の効果が得られることが分かった。
 比較例17~31、実施例7~12から分かる様に酢酸メチル、メチルエチルケトン、ヘキサンにおいても同様の効果が得られた。
 これらのことから、セルロースアシレート樹脂を20~80質量%、アクリル樹脂を20~80質量%含有する光学フィルムにおいてエステル系溶剤、ケトン系溶剤、脂肪族系溶剤から選択される少なくとも1種の溶剤を0.1質量%以上1.0質量%未満含有することで、滑り性が改良され、ドープの保存安定性の良い光学フィルムを製造できることが分かる。
 実施例B
 実施例7~12と同様にして、酢酸メチル、メチルエチルケトン、ヘキサンの替わりに酢酸エチル、シクロヘキサノン、シクロヘキサン等の添加剤を使っても同様の効果が得られた。
 実施例C
 〈偏光板の作製〉
 実施例1~12の光学フィルムを偏光板保護フィルムとした偏光板を以下のようにして作製した。
 厚さ120μmの長尺ロールポリビニルアルコールフィルムを沃素1質量部、ホウ酸4質量部を含む水溶液100質量部に浸漬し、50℃で5倍に搬送方向に延伸して偏光膜を作った。
 次に、この偏光膜の片面にアクリル接着剤を用いて、実施例Aで作製した実施例1の光学フィルムにコロナ処理を施したのち、貼合した。
 更に偏光膜のもう一方の面にアルカリケン化処理した位相差フィルムであるコニカミノルタオプト社製KC8UCR-5を貼り合わせ、乾燥して偏光板P1を作製した。同様にして実施例2~12の光学フィルムを用いて偏光板P2~P12を作製した。
 本発明に係る光学フィルムを用いた偏光板は、滑り性に優れ、加工がし易かった。
 〈液晶表示装置の作製〉
 上記作製した偏光板を使用して、本発明に係る光学フィルムの表示特性評価を行った。
 株式会社東芝製32型テレビ32H2000の予め貼合されていた両面の偏光板を剥がして、上記作製した偏光板をそれぞれKC8UCR-5が液晶セルのガラス面側になるように、かつ、予め貼合されていた偏光板と同一の方向に吸収軸が向くように貼合し、液晶表示装置を各々作製した。
 上記作製した液晶表示装置は、カラーシフトが低減し正面コントラストにも優れた視認性の良好な液晶表示装置であることが分かった。
 1 溶解釜
 3、6、12、15 濾過器
 4、13 ストックタンク
 5、14 送液ポンプ
 8、16 導管
 10 紫外線吸収剤仕込釜
 20 合流管
 21 混合機
 30 ダイ
 31 金属支持体
 32 ウェブ
 33 剥離位置
 34 テンター延伸装置
 35 乾燥装置
 41 粒子仕込釜
 42 ストックタンク
 43 ポンプ
 44 濾過器

Claims (4)

  1.  セルロースアシレート樹脂を20~80質量%、アクリル樹脂を20~80質量%含有する光学フィルムにおいて、
     エステル系溶剤、ケトン系溶剤、及び脂肪族系溶剤から選択される少なくとも1種の溶剤を0.1質量%以上1.0質量%未満含有することを特徴とする光学フィルム。
  2.  請求項1に記載の光学フィルムを製造する方法であって、
     セルロースアシレート樹脂とアクリル樹脂を、塩化メチレンと、アルコールと、
     メタクリル酸メチル、エステル系溶剤、ケトン系溶剤、及び脂肪族系溶剤から選択される少なくとも1種の溶剤との混合溶剤に溶解してドープを作製することを特徴とする光学フィルムを製造する方法。
  3.  請求項1に記載の光学フィルムを用いて作製されたことを特徴とする液晶パネル。
  4.  請求項3に記載の液晶パネルを用いて作製されたことを特徴とする画像表示装置。
PCT/JP2010/053417 2009-04-09 2010-03-03 光学フィルム、光学フィルムを製造する方法、液晶パネル、及び画像表示装置 WO2010116823A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011508281A JPWO2010116823A1 (ja) 2009-04-09 2010-03-03 光学フィルム、光学フィルムを製造する方法、液晶パネル、及び画像表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-094703 2009-04-09
JP2009094703 2009-04-09

Publications (1)

Publication Number Publication Date
WO2010116823A1 true WO2010116823A1 (ja) 2010-10-14

Family

ID=42936111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053417 WO2010116823A1 (ja) 2009-04-09 2010-03-03 光学フィルム、光学フィルムを製造する方法、液晶パネル、及び画像表示装置

Country Status (4)

Country Link
JP (1) JPWO2010116823A1 (ja)
KR (1) KR20120027135A (ja)
TW (1) TW201107395A (ja)
WO (1) WO2010116823A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109306078A (zh) * 2017-07-27 2019-02-05 富士施乐株式会社 树脂组合物以及树脂成型体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014068802A1 (ja) * 2012-11-02 2016-09-08 コニカミノルタ株式会社 光学フィルムおよび光学フィルムの製造方法、偏光板および液晶表示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284264A (ja) * 1988-04-09 1988-11-21 Nippon Carbide Ind Co Ltd 易滑性熱可塑性樹脂組成物
JPH05119217A (ja) * 1991-10-23 1993-05-18 Kanegafuchi Chem Ind Co Ltd 偏光膜保護用フイルム
JPH11292988A (ja) * 1998-04-14 1999-10-26 Konica Corp セルロースアシレートフィルムの製造方法及びセルロースアシレートフィルム
JP2002179838A (ja) * 2000-12-12 2002-06-26 Fuji Photo Film Co Ltd セルロースアシレート溶液およびセルロースアシレートフイルムの製造方法
JP2002316331A (ja) * 2001-04-19 2002-10-29 Fuji Photo Film Co Ltd 溶液製膜方法及び偏光板等
WO2007108294A1 (ja) * 2006-03-16 2007-09-27 Daicel Chemical Industries, Ltd. 防眩性フィルム
JP2007304559A (ja) * 2006-04-14 2007-11-22 Konica Minolta Opto Inc 偏光散乱異方性を有する偏光板保護フィルム、それを用いた偏光板及び液晶表示装置
WO2008126528A1 (ja) * 2007-03-12 2008-10-23 Konica Minolta Opto, Inc. 防眩性反射防止フィルムの製造方法、防眩性反射防止フィルム、偏光板及び表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284264A (ja) * 1988-04-09 1988-11-21 Nippon Carbide Ind Co Ltd 易滑性熱可塑性樹脂組成物
JPH05119217A (ja) * 1991-10-23 1993-05-18 Kanegafuchi Chem Ind Co Ltd 偏光膜保護用フイルム
JPH11292988A (ja) * 1998-04-14 1999-10-26 Konica Corp セルロースアシレートフィルムの製造方法及びセルロースアシレートフィルム
JP2002179838A (ja) * 2000-12-12 2002-06-26 Fuji Photo Film Co Ltd セルロースアシレート溶液およびセルロースアシレートフイルムの製造方法
JP2002316331A (ja) * 2001-04-19 2002-10-29 Fuji Photo Film Co Ltd 溶液製膜方法及び偏光板等
WO2007108294A1 (ja) * 2006-03-16 2007-09-27 Daicel Chemical Industries, Ltd. 防眩性フィルム
JP2007304559A (ja) * 2006-04-14 2007-11-22 Konica Minolta Opto Inc 偏光散乱異方性を有する偏光板保護フィルム、それを用いた偏光板及び液晶表示装置
WO2008126528A1 (ja) * 2007-03-12 2008-10-23 Konica Minolta Opto, Inc. 防眩性反射防止フィルムの製造方法、防眩性反射防止フィルム、偏光板及び表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109306078A (zh) * 2017-07-27 2019-02-05 富士施乐株式会社 树脂组合物以及树脂成型体

Also Published As

Publication number Publication date
KR20120027135A (ko) 2012-03-21
TW201107395A (en) 2011-03-01
JPWO2010116823A1 (ja) 2012-10-18

Similar Documents

Publication Publication Date Title
JP4379547B2 (ja) 光学フィルムの製造方法
JP5521552B2 (ja) アクリル樹脂含有フィルム、それを用いた偏光板及び液晶表示装置
JP5463914B2 (ja) アクリル樹脂含有フィルム、それを用いた偏光板及び液晶表示装置
JP5545294B2 (ja) 光学素子
JP5040688B2 (ja) アクリル樹脂含有フィルム、それを用いた偏光板及び表示装置
WO2009081607A1 (ja) アクリル樹脂含有フィルム、それを用いた偏光板及び液晶表示装置
JP5333447B2 (ja) アクリルフィルムの製造方法およびその製造方法によって製造したアクリルフィルム
WO2011045991A1 (ja) 光学フィルム
JP5533858B2 (ja) 光学フィルム、それを用いた偏光板及び液晶表示装置
JP5533857B2 (ja) 光学フィルム、それを用いた偏光板及び液晶表示装置
WO2011055590A1 (ja) 液晶偏光板用保護フィルムロール及びその製造方法
WO2010116830A1 (ja) 光学フィルム
WO2009119268A1 (ja) アクリル樹脂含有フィルム、アクリル樹脂含有フィルム製造方法、それを用いた偏光板及び液晶表示装置
WO2010116823A1 (ja) 光学フィルム、光学フィルムを製造する方法、液晶パネル、及び画像表示装置
JPWO2009090900A1 (ja) アクリル樹脂含有フィルム及びその製造方法
WO2010116822A1 (ja) 光学フィルム、光学フィルムを製造する方法、液晶パネル、及び画像表示装置
JP2009271284A (ja) 偏光板用保護フィルム、偏光板及び液晶表示装置
JP2010242017A (ja) 光学フィルムの製造方法
WO2011138913A1 (ja) 偏光板、その製造方法、及び液晶表示装置
JP2012016845A (ja) 光学フィルムの製造方法、光学フィルム、偏光板及び液晶表示装置
JP2013023522A (ja) アクリル樹脂含有セルロースエステルフィルムとその製造方法
JP2012016844A (ja) 光学フィルムの製造方法、光学フィルム、偏光板及び液晶表示装置
JP5263299B2 (ja) 光学フィルム、偏光板、液晶表示装置、および光学フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761525

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011508281

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117023359

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761525

Country of ref document: EP

Kind code of ref document: A1