JPWO2006064955A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JPWO2006064955A1
JPWO2006064955A1 JP2006549015A JP2006549015A JPWO2006064955A1 JP WO2006064955 A1 JPWO2006064955 A1 JP WO2006064955A1 JP 2006549015 A JP2006549015 A JP 2006549015A JP 2006549015 A JP2006549015 A JP 2006549015A JP WO2006064955 A1 JPWO2006064955 A1 JP WO2006064955A1
Authority
JP
Japan
Prior art keywords
fuel cell
refrigerant
line
cooling
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006549015A
Other languages
English (en)
Other versions
JP4711193B2 (ja
Inventor
克記 石垣
克記 石垣
博則 能登
博則 能登
山本 隆士
隆士 山本
太田 政孝
政孝 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006549015A priority Critical patent/JP4711193B2/ja
Publication of JPWO2006064955A1 publication Critical patent/JPWO2006064955A1/ja
Application granted granted Critical
Publication of JP4711193B2 publication Critical patent/JP4711193B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

冷媒に起因した燃料電池の温度変化を抑制できる燃料電池システムを課題とする。燃料電池(2)に冷媒を循環供給する冷媒循環系(10,11)を備えた燃料電池システム(1)であって、冷媒循環系(10,11)は、燃料電池2と所定の温度差がある冷媒が燃料電池(2)に流入するのを抑制する流動制御手段(3,23,42)を有するものである。

Description

本発明は、冷媒を循環供給して燃料電池を冷却する燃料電池システムに関するものである。
燃料電池の電気化学反応は発熱反応である。この発電時の燃料電池の温度を一定に保つために、燃料電池システムには燃料電池の冷却装置が設けられている(例えば、特許文献1参照。)。
この冷却装置は、燃料電池とラジエータとの間で冷媒をポンプにより循環させる循環通路と、ラジエータをバイパスするバイパス通路と、ラジエータ側およびバイパス通路側のどちらに冷媒を流すかを切り替えるサーモスタットバルブと、を有している。サーモスタットバルブは、このサーモスタットバルブを流れる冷媒の温度に基づいて切替え動作を行う。また、この冷却装置では、燃料電池の暖機運転時(始動時)における冷媒の放熱を抑制するために、単一のケースに、燃料電池、バイパス通路およびサーモスタットバルブを収容している。
また、燃料電池を通流した冷媒を熱源として空調に利用する燃料電池システムも知られている。例えば特許文献2に記載の燃料電池システムは、燃料電池自動車に搭載され、燃料電池を通流した冷媒の排熱を車室内の暖房に使用する。この燃料電池システムは、燃料電池に冷媒を循環させるライン(冷媒循環系)として、ラジエータを有する冷却ラインと、冷媒を空調気体と熱交換可能なヒータコアを有する排熱利用ラインと、を備える。車室内の暖房需要がある場合には、冷却ラインおよび排熱利用ラインで冷媒が流動する。これにより、ラジエータを通過した冷媒とヒータコアを通過した冷媒とが合流して燃料電池に流入する。
特開2004−158279号公報(第4頁および第1図) 特開2001−315524号公報(第1図)
特許文献1の燃料電池システムでは、燃料電池の始動時は、冷媒が低温であることを前提としている。このため、始動時には、低温の冷媒によりサーモスタットバルブがバイパス通路側に切替え動作する一方、このときにポンプを駆動するようにしている。そして、燃料電池の発電に伴い冷媒が比較的高温となると、サーモスタットバルブがラジエータ側に切替え動作する。
しかしながら、燃料電池の始動時であっても、冷媒の温度が高い場合がある。具体的には、燃料電池の停止から短時間後では、ケース内の燃料電池とケース外のラジエータとの間では冷媒の放熱量に差がある。このため、燃料電池側では比較的高温の冷媒が存在し、ラジエータ側では比較的低温の冷媒が存在する。
この両者の温度差が大きい状態で燃料電池を再始動すると、サーモスタットバルブには燃料電池側の比較的高温の冷媒が流入する。すると、サーモスタットバルブがラジエータ側に切替え動作してしまい、本来の仕様に反する事態となるおそれがあった。また、サーモスタッドバルブがラジエータ側に切替え動作してしまうと、ラジエータ側の比較的低温の冷媒が燃料電池に流入する。このため、燃料電池で急激な温度変化が生じる。この結果、燃料電池に熱衝撃を与え、燃料電池のセパレータに歪が生じるおそれがあった。
このように、従来の燃料電池の冷却装置では、燃料電池の再始動を考慮して流体弁(サーモスタットバルブ)の切替えを含む開度設定を行うものでなかった。しかも、流体弁が仕様外の開度の状態で冷媒の流動(ポンプの駆動)が行われることにより、燃料電池に温度変化に起因した悪影響を与えるおそれがあった。
一方、特許文献2の燃料電池システムでは、暖房需要がない場合には、冷却ラインのみを流動した冷媒が燃料電池を循環する。この場合、排熱利用ラインの冷媒の温度は、変化しないため、冷却ラインの冷媒の温度に比べて低いままとなる。ここで、燃料電池システムの運転を一旦停止し、その後に再起動した場合に暖房需要があると、排熱利用ラインの比較的低温の冷媒が、比較的高温の冷媒が残留する燃料電池に流入する。このため、燃料電池内で急激な温度変化が生じてしまう。この結果、燃料電池に熱衝撃を与えることになり、燃料電池のセパレータに歪が生じたり、水蒸気の凝縮によるフラッディングが生じたりするなど、燃料電池に温度変化に起因した悪影響を与えるおそれがあった。
本発明は、冷媒に起因した燃料電池の温度変化を抑制できる燃料電池システムを提供することをその目的としている。
具体的には、本発明は、排熱利用ラインの冷媒に起因した燃料電池の温度変化を抑制することできる燃料電池システムを提供することと、燃料電池の始動時に燃料電池での温度変化を抑制することができる燃料電池システム(燃料電池の冷却装置)を提供することとをその目的とする。
上記目的を達成するべく、本発明の燃料電池システムは、燃料電池に冷媒を循環供給する冷媒循環系を備えた燃料電池システムであって、冷媒循環系は、燃料電池と所定の温度差がある冷媒が燃料電池に流入するのを抑制する流動制御手段を有するものである。
この構成によれば、燃料電池と所定の温度差がある冷媒が燃料電池に流入することを抑制されるため、冷媒に起因した燃料電池の温度変化を抑制できる。これにより、燃料電池に熱衝撃を与えなくて済む。
上記目的を達成するべく、本発明の燃料電池システムは、燃料電池に通流する冷媒を循環させて燃料電池を冷却すると共に、燃料電池を通流した冷媒の排熱により空調ラインの空調気体を加熱可能な燃料電池システムであって、冷媒を冷却する第1の熱交換器を有し、冷媒を燃料電池に循環させる冷却ラインと、冷媒を空調ラインの空調気体と熱交換する第2の熱交換器を有し、冷媒を燃料電池に循環させる排熱利用ラインと、冷却ラインおよび排熱利用ラインでの冷媒の流動を制御する流動制御手段と、を備え、流動制御手段は、冷却ラインでの冷媒の流動を開始した後で、排熱利用ラインでの冷媒の流動を開始するものである。
この構成によれば、排熱利用ラインでの冷媒の流動が冷却ラインでの冷媒の流動よりも遅れるため、燃料電池に通流が開始される冷媒は冷却ラインの冷媒となる。これにより、冷却ライン(燃料電池)と排熱利用ラインとの間で冷媒に温度差が大きかったとしても、燃料電池の温度変化を抑制することが可能となる。特に、冷却ラインでの冷媒の流量が十分に増大してから、排熱利用ラインでの冷媒の流動を開始すれば、燃料電池の温度変化を好適に抑制することができる。この排熱利用ラインでの冷媒の流動を開始する際、その流量が徐々に上昇するように設定することで、さらに好適に燃料電池の温度変化を抑制することができる。
好ましくは、空調ラインの空調気体の送風を実行するための指示をユーザが入力可能な入力手段を更に備え、流動制御手段は、入力手段の入力結果に基づいて、冷却ラインおよび排熱利用ラインでの冷媒の流動を制御するとよい。
この構成によれば、ユーザの暖房需要の有無に応じて、冷却ラインおよび排熱利用ラインで冷媒を適切に流動させることができる。
好ましくは、流動制御手段は、入力手段への入力があったときに、冷却ラインでの冷媒の流動を排熱利用ラインでの流動に優先して開始するとよい。また、入力手段への入力がないときに、排熱利用ラインでの冷媒の流動を遮断して冷却ラインで冷媒を流動させるとよい。
この構成によれば、ユーザが暖房を使用するために入力手段に入力したときには、冷媒は排熱利用ラインに優先して冷却ラインで流動し始めるため、上記のように、燃料電池の温度変化を抑制し得る。また、ユーザが暖房を使用しないために入力手段への入力がなされなかったときには、排熱利用ラインでは冷媒が流動しないため、空調気体を加熱せずに済むと共に、冷却ラインで流動する冷媒によって燃料電池を適切に冷却することができる。
好ましくは、流動制御手段は、燃料電池の始動時には、入力手段への入力がないときでも、冷却ラインでの冷媒の流動の開始後に排熱利用ラインでの冷媒の流動を開始して、排熱利用ラインで冷媒を所定時間だけ流動させるとよい。
例えば夏場など、暖房を使用する頻度が低い場合に暖房を長期間使用しないと、排熱利用ラインの冷媒はそこに滞留し得る。このため、排熱利用ラインに異物が堆積したり、藻が発生したりするなど不具合が生じるおそれがある。上記構成によれば、燃料電池の始動時には、いったん排熱利用ラインの冷媒を流動させるため、暖房需要の有無を問わず、上記の不具合を適切に回避することができる。また、排熱利用ラインに冷媒を流動させるタイミングを燃料電池の始動時としているため、この制御を燃料電池の運転時に行う場合に比べて、制御を単純化することができる。
好ましくは、流動制御手段は、燃料電池の始動時に、冷却ラインでの冷媒の流動を開始した後で、排熱利用ラインでの冷媒の流動を開始するとよい。
この構成によれば、冷却ライン(燃料電池)と排熱利用ラインとの間で冷媒の温度差が大きくなり易い燃料電池の始動時(上記の課題で述べた再始動時)に、排熱利用ラインの冷媒に起因した燃料電池の温度変化を抑制できる。また、排熱利用ラインの冷媒が滞留することによる不具合を、制御性よく回避できる。
好ましくは、燃料電池システムは、燃料電池の停止から次の始動までの時間を計測するタイマ手段を更に備え、流動制御手段は、タイマ手段の計測結果に基づいて、燃料電池の始動時における排熱利用ラインでの冷媒の流動を開始する開始時間を可変するとよい。
この構成によれば、燃料電池の停止時間(停止時の放置時間)に応じて、排熱利用ラインでの冷媒の流動を開始する開始時間を可変することができる。これにより、例えば、その停止時間が比較的長い場合には、排熱利用ラインおよび冷却ラインの冷媒の流動を同時に開始することができる。また、停止時間が比較的短い場合には、排熱利用ラインでの冷媒の流動開始を冷却ラインに比べて十分に遅らせることができる。
好ましい一態様によれば、燃料電池システムは、冷媒の温度を検出する温度センサを更に備え、流動制御手段は、温度センサの検出結果に基づいて、燃料電池の始動時における排熱利用ラインでの冷媒の流動を開始する開始時間を可変してもよい。
この構成によれば、冷媒の温度に応じて、排熱利用ラインでの冷媒の流動を開始する開始時間を可変することができる。これにより、燃料電池での温度変化を好適に抑制することができる。なお、温度センサは複数の箇所に設けられることが好ましく、例えば冷却ラインおよび排熱利用ラインの両者に設けられることが好ましい。
好ましくは、流動制御手段は、燃料電池の間欠運転時に、冷却ラインおよび排熱利用ラインの少なくとも一方で冷媒を流動させるとよい。
ここで、燃料電池の間欠運転とは、燃料電池から負荷への電力供給を一時的に停止し、二次電池から負荷への電力供給を行うものである。間欠運転は、燃料電池に間欠的(断続的)に燃料ガスおよび酸化剤ガスを供給し、燃料電池の開放端電圧を所定範囲内に維持することで行われる。
上記構成とすることで、間欠運転時に燃料電池に冷媒を通流させることができる。つまり、間欠運転時に、燃料電池への冷媒の通流を続行することができるため、燃料電池の温度管理を適切に行い得る。
好ましくは、流動制御手段は、燃料電池の間欠運転時に、冷却ラインでの冷媒の流動を排熱利用ラインでの流動に優先して開始するとよい。
この構成によれば、間欠運転時に排熱利用ラインの冷媒を流動させるなら、冷却ラインの冷媒を先に流動させることができる。これにより、間欠運転時の燃料電池の温度変化を好適に抑制し得る。
好ましくは、流動制御手段は、燃料電池の停止時に、排熱利用ラインでの流動を冷却ラインでの冷媒の流動に優先して停止することが、好ましい。
この構成によれば、上記同様に、燃料電池の停止時に排熱利用ラインおよび冷却ラインの冷媒を流動させているなら、先ず排熱利用ラインの冷媒の流動を停止させることができる。これにより、停止時の燃料電池の温度変化を好適に抑制し得る。
好ましくは、流動制御手段は、冷却ラインで冷媒を圧送する冷却側ポンプと、排熱利用ラインで冷媒を圧送する排熱利用側ポンプと、冷却側ポンプおよび排熱利用側ポンプの駆動を制御する制御手段と、を備え、制御手段は、冷却側ポンプの駆動を開始した後で、排熱利用側ポンプの駆動を開始するとよい。
この構成によれば、冷却ラインおよび排熱利用ラインに個別のポンプを設けているので、各ラインでの冷媒の流動を適切に制御することができる。また、二つのポンプを協調して駆動開始タイミングを制御することで、上記した冷却ラインの冷媒の流動を開始後に排熱利用ラインの冷媒の流動開始を実行することができる。
好ましくは、制御手段は、冷却側ポンプによる冷媒の流量が排熱利用側ポンプによる冷媒の流量よりも大きくなるように流量制御するとよい。
この構成によれば、ポンプによる流量制御により、冷却ラインでの冷媒の流量が十分に増大してから、排熱利用ラインでの冷媒の流動を開始することができ、燃料電池の温度変化を好適に抑制することができる。この種の流量制御としては、ポンプの回転数制御や、デューティー比制御がある。
好ましくは、燃料電池システムは、冷媒の温度を検出する温度センサを更に備え、制御手段は、温度センサの検出結果に基づいて、冷却側ポンプ及び排熱利用側ポンプの駆動を制御するとよい。
この構成によれば、冷媒の温度に応じて、各ポンプの駆動条件を変更することができる。こうすることで、例えば、冷却ラインと排熱利用ラインとの間で温度差がない場合には、各ポンプの駆動を同時に開始することもできる。なお、温度センサは複数の箇所に設けられることが好ましく、例えば冷却ラインおよび排熱利用ラインの両者に設けられることが好ましい。
好ましくは、排熱利用ラインは、燃料電池の冷媒出口側において冷却ラインとの分岐点及び合流点に接続されており、この合流点より上流の冷却ラインには、合流点から燃料電池の冷媒出口への冷媒の流れを阻止する逆止弁が設けられていることが、好ましい。
この構成によれば、排熱利用ラインを流れる冷媒が燃料電池の冷媒出口へと流入することを阻止できる。これにより、排熱利用ラインの冷媒の温度が燃料電池の温度よりも低い場合でも、燃料電池に温度変化を与えなく済む。
好ましい一態様によれば、流動制御手段は、冷却ラインおよび排熱利用ラインで冷媒を圧送する単一のポンプと、ポンプの駆動を制御する制御手段と、を備え、冷却ラインでの流路抵抗は、冷却ラインの冷媒が排熱利用ラインの冷媒よりも優先して燃料電池に通流し始めるように、排熱利用ラインでの流路抵抗よりも低く設定されていてもよい。
この構成によれば、上記構成に比べてポンプを一つ削減することができ、制御手段によるポンプの制御を簡素化することができる。一つのポンプで冷却ラインおよび排熱利用ラインの両者で冷媒を圧送するようにしたため、両者の流路抵抗を上記のように設定することで、冷却ラインでの冷媒の流動を排熱利用ラインに優先して開始させることが可能となる。
ここで、流路抵抗を設定する圧損チューニングとして、例えば、排熱利用ラインの管径を冷却ラインの管径よりも十分に小さくすればよい。あるいは、排熱利用ラインの途中に、冷媒が流れにくくなるようなオリフィスなどの絞り部を設けてもよい。
好ましい一態様によれば、流動制御手段は、冷却ラインおよび排熱利用ラインで冷媒を圧送する単一のポンプと、燃料電池に対して、冷却ラインおよび排熱利用ラインの冷媒の通流を切り替える切替え弁と、ポンプの駆動および切替え弁を制御する制御手段と、を備え、制御手段は、燃料電池に対して排熱利用ラインの冷媒の通流を開始する場合には、切替え弁を冷却ライン側に切り替えて、燃料電池に対して冷却ラインの冷媒の通流を開始してもよい。
この構成によれば、冷却ラインおよび排熱利用ラインの圧損チューニングによらなくとも、切替え弁の制御により、燃料電池に対して冷却ラインの冷媒の通流を排熱利用ラインに優先して開始させることが可能となる。
好ましくは、冷却ラインおよび排熱利用ラインには、燃料電池の冷媒入口側で冷媒を合流させるための合流点が構成されていると共に、燃料電池の冷媒出口側で冷媒を分岐させるための分岐点が構成されているとよい。
この構成によれば、冷媒は燃料電池の出口側で分岐して冷却ラインおよび排熱利用ラインを流動し、再び燃料電池の入口側で合流して燃料電池に通流する。
上記目的を達成するべく、本発明の他の燃料電池システムは、燃料電池に通流する冷媒を循環させて燃料電池を冷却すると共に、燃料電池を通流した冷媒の排熱により空調ラインの空調気体を加熱可能な燃料電池システムであって、冷媒を冷却する第1の熱交換器を有し、冷媒を燃料電池に循環させる冷却ラインと、冷媒を空調ラインの空調気体と熱交換する第2の熱交換器を有し、冷媒を燃料電池に循環させる排熱利用ラインと、冷却ラインおよび排熱利用ラインでの冷媒の流動を制御する流動制御手段と、を備える。そして、流動制御手段は、冷却ラインおよび排熱利用ラインの冷媒を合流させて燃料電池に通流する際に、排熱利用ラインよりも冷却ラインの冷媒の流量が大きくなるように流量制御する。
この構成によれば、冷却ライン(燃料電池)と排熱利用ラインとの間で冷媒に温度差があったとしても、排熱利用ラインよりも冷却ラインの冷媒の流量が大きいため、両者の合流した冷媒の温度は、冷却ラインの冷媒に近い温度になる。これにより、冷媒の温度差が大きかったとしても、排熱利用ラインの冷媒に起因した燃料電池の温度変化を抑制することが可能となる。
上記目的を達成するべく、本発明の別の燃料電池システムは、燃料電池に通流する冷媒を循環させて燃料電池を冷却すると共に、燃料電池を通流した冷媒の排熱により空調ラインの空調気体を加熱可能な燃料電池システムであって、冷媒を冷却する第1の熱交換器を有し、冷媒を燃料電池に循環させる冷却ラインと、冷媒を空調ラインの空調気体と熱交換する第2の熱交換器を有し、燃料電池の冷媒入口側で冷却ラインに合流し且つ燃料電池の冷媒出口側で冷却ラインから分岐する排熱利用ラインと、燃料電池をバイパスして冷媒を流動させるバイパスラインと、冷却ライン、排熱利用ラインおよびバイパスラインでの冷媒の流動を制御する流動制御手段と、を備える。そして、流動制御手段は、バイパスラインで冷媒を流動させて、冷却ラインおよび排熱利用ラインの冷媒を混合した後、バイパスラインでの冷媒の流動を遮断して燃料電池に冷媒を循環させる。
この構成によれば、冷却ライン(燃料電池)と排熱利用ラインとの間で冷媒に温度差があったとしても、先ずはバイパスラインに冷媒を流動させることで冷却ラインおよび排熱利用ラインの冷媒が混合される。これにより、冷却ラインおよび排熱利用ラインにおいて、部分的に冷媒の温度が異なっていても、冷媒の温度が平準化される。このため、上記同様に、排熱利用ラインの冷媒に起因した燃料電池の温度変化を抑制することが可能となる。
上記目的を達成するべく、本発明の燃料電池システムは、冷媒を冷却する熱交換器と、熱交換器と燃料電池との間で冷媒をポンプにより循環させる循環通路と、熱交換器をバイパスして、循環通路の冷媒を燃料電池に供給するバイパス通路と、熱交換器およびバイパス通路への冷媒の通流を設定する流体弁と、流体弁およびポンプを制御する制御手段と、を備える。そして、制御手段は、燃料電池の始動時に、流体弁の開度を当該始動前の初期開度から所定開度に変更した後、ポンプの駆動を開始させる。
この構成によれば、燃料電池の始動時に、流体弁は初期開度から所定開度へと開度設定され、その後でポンプが駆動を開始する。このため、流体弁が仕様に適した開度になったところで、循環される冷媒を燃料電池に供給することができ、燃料電池での温度変化を抑制することが可能となる。
ここで、「所定開度に変更した後」には、この変更に遅延してポンプの駆動開始となる場合のほか、この変更と同時にポンプの駆動開始となる場合が含まれる。
好ましくは、燃料電池システムは、冷媒の温度を検出する温度センサを更に備え、制御手段は、燃料電池の始動時に、温度センサの検出結果に基づいて流体弁を所定開度に設定するとよい。
この構成によれば、冷媒の温度に応じて流体弁を所定開度に設定することができ、燃料電池での温度変化を好適に抑制することができる。
好ましくは、温度センサは、循環通路およびバイパス通路に亘って1つまたは複数が設けられ、制御手段は、燃料電池の始動時に、複数の温度センサの検出結果に基づいて流体弁を所定開度に設定するとよい。
この構成によれば、複数の温度センサにより複数の位置で冷媒の温度を検出することができる。これにより、複数の検出結果を加味して流体弁を所定開度に設定することができ、冷却装置の制御性および信頼性を高めることができる。
ここで、複数の温度センサは、燃料電池の冷媒流入口側およびその冷媒流出口側、並びに熱交換器の上流側およびその下流側などに設ければよい。燃料電池の冷媒流出口側の温度センサによれば、燃料電池内の冷媒の温度を好適に反映することができる。また、熱交換器の下流側の温度センサによれば、熱交換器内の冷媒の温度を好適に反映することができる。
好ましくは、燃料電池システムは、燃料電池における冷媒の温度を検出する第1の温度センサと、熱交換器における冷媒の温度を検出する第2の温度センサと、を更に備え、制御手段は、燃料電池の始動時に、第1の温度センサおよび第2の温度センサによる検出結果の温度差に基づいて、流体弁を所定開度に設定するとよい。
この構成によれば、燃料電池側の冷媒と熱交換器側の冷媒との温度差に応じて流体弁を所定開度に設定することができる。
ここで、第1の温度センサは、燃料電池における冷媒の温度を反映する温度を検出可能であればよい。このため、第1の温度センサを燃料電池内に設けずに、燃料電池の冷媒流出口側の循環通路に設ければよい。同様に、第2の温度センサは、熱交換器における冷媒の温度を反映する温度を検出可能であればよい。このため、第2の温度センサを熱交換器内に設けずに、熱交換器の下流側の循環通路に設ければよい。
好ましくは、制御手段は、温度差が閾値以上のときに、流体弁の所定開度として、流体弁が熱交換器への冷媒の通流を遮断し且つバイパス通路への冷媒を通流可能な開度に設定するとよい。
この構成によれば、温度差が大きい場合に、熱交換器側の比較的低温の冷媒を燃料電池側の比較的高温の冷媒に合流させなくて済むため、燃料電池での温度変化を好適に抑制できる。
ここで、「バイパス通路への冷媒を通流可能な開度」には、流体弁がバイパス通路側に対して全開状態となる開度のみならず、一部開いた状態となる開度が含まれる。
好ましくは、所定開度は、流体弁がバイパス通路側に対して全開状態となる開度であり、制御手段は、燃料電池の始動時に、流体弁を全開状態とするゼロ点調整後に、ポンプの駆動を開始させるとよい。
この構成によれば、ポンプの駆動開始に優先して、流体弁がバイパス通路側に全開状態となっており、このとき流体弁のゼロ点調整が行われる。すなわち、上記の温度差が閾値以上のときには、流体弁のゼロ点調整を兼ねて、バイパス通路側にのみ冷媒を通流可能な状態にすることができる。ゼロ点調整により、燃料電池の発電時には、流体弁の開度を高精度に制御することが可能となる。
好ましい一態様によれば、所定開度は、流体弁が少なくともバイパス通路への冷媒を通流可能な開度であってもよい。
この構成によれば、燃料電池の始動時には、少なくともバイパス通路側に流した冷媒を燃料電池に供給することができる。これにより、燃料電池での温度変化を良好に抑制することができる。
なお、「少なくともバイパス通路への冷媒を通流可能」とする場合には、バイパス通路側にのみ、またはバイパス通路側および熱交換器側の両方に、冷媒を通流させる場合を意味する。後者の場合の比率(通流比)は、例えば上記の冷媒温度に応じて適宜設定可能である。
好ましくは、所定開度は、流体弁が熱交換器側に対して全閉状態となる開度である。
この構成によれば、燃料電池の始動時に、熱交換器側の冷媒を燃料電池に確実に供給させなくて済む。このため、燃料電池での温度変化を確実に抑制することができる。
好ましい一態様によれば、所定開度は、流体弁がバイパス通路に対して全開状態となる開度であり、制御手段は、燃料電池の始動時に、流体弁を全開状態とするゼロ点調整後に、ポンプの駆動を開始させてもよい。
この構成によれば、バイパス通路側にのみ冷媒を通流させる流体弁の設定をポンプの駆動開始に優先して行う際に、流体弁のゼロ点調整を兼ねることができる。また、ゼロ点調整により、燃料電池の発電時の流体弁の開度制御を高精度にし得る。
好ましい一態様によれば、制御手段は、燃料電池の始動時に、初期開度の流体弁のゼロ点調整後に流体弁を所定開度(すなわち、流体弁が少なくともバイパス通路への冷媒を通流可能な開度。)に変更してもよい。
この構成によれば、燃料電池の始動時には、少なくともバイパス通路側に流した冷媒を燃料電池に供給することができる。このため、燃料電池での温度変化を良好に抑制することができる。また、この前に流体弁のゼロ点調整を行うため、燃料電池の発電時に流体弁の開度制御を高精度に行い得る。
好ましくは、制御手段は、流体弁のゼロ点調整として、流体弁をバイパス通路側に対して全開状態にするとよい。
この構成によれば、ゼロ点調整後に、流体弁をバイパス通路側への上記の所定開度に迅速に設定することができる。
好ましい一態様によれば、制御手段は、流体弁のゼロ点調整として、流体弁を熱交換器側に対して全開状態にしてもよい。
この構成によれば、例えばゼロ点調整後に流体弁が故障により開度設定不能になったとしても、燃料電池の発電時には、熱交換器で冷却された冷媒が燃料電池に供給される。これにより、燃料電池のオーバーヒートを防止することができる。すなわち、フェイルセーフを達成することができる。
好ましくは、初期開度は、流体弁が熱交換器への冷媒を通流可能な開度である。
この構成によれば、燃料電池の停止時に、燃料電池側の冷媒の自然放熱を促進することができる。また、例えば熱交換器側へのゼロ点調整を迅速に行うことが可能となる。流体弁が固着した場合などの故障時に、燃料電池のオーバーヒートを防止し得る。
好ましい一態様によれば、初期開度は、流体弁がバイパス通路への冷媒を通流可能な開度であってもよい。
この構成によれば、例えばバイパス通路側へのゼロ点調整を迅速に行うことが可能となる。
好ましい一態様によれば、初期開度は、流体弁が熱交換器およびバイパス通路への両方に冷媒を通流可能な開度であってもよい。
この構成によれば、流体弁の故障時に、発電中の燃料電池の過冷却および過熱を抑制することができ、フェイルセーフを好適に達成することができる。また、例えば熱交換器側およびバイパス通路側のどちら側にもゼロ点調整を迅速に行い得る。
好ましくは、制御手段は、燃料電池の停止時に、流体弁を初期開度に設定するとよい。
この構成によれば、燃料電池の始動時に流体弁を所望の初期開度に適切に設定することができる。なお、燃料電池の停止時に、ポンプの駆動を停止した後に流体弁を初期開度に設定することが好ましい。
上記目的を達成するべく、本発明の他の燃料電池システムは、冷媒を冷却する熱交換器と、熱交換器と燃料電池との間で冷媒をポンプにより循環させる循環通路と、熱交換器をバイパスして、循環通路の冷媒を燃料電池に供給するバイパス通路と、熱交換器およびバイパス通路への冷媒の通流を設定する流体弁と、流体弁およびポンプを制御する制御手段と、を備える。そして、制御手段は、燃料電池の停止時に、ポンプの駆動を停止した後に流体弁を所定の初期開度に設定する。この場合、初期開度は、流体弁が熱交換器への冷媒を通流可能な開度であることが、好ましい。
これらの構成によれば、燃料電池の停止時にポンプの駆動を停止して冷媒の循環を停止し、その後で流体弁が所定の初期開度に設定される。燃料電池の停止時に、流体弁が故障により開度設定不能になったとしても、燃料電池の発電時には、熱交換器で冷却された冷媒が燃料電池に供給されるため、燃料電池のオーバーヒートを防止することができる。すなわち、燃料電池での温度変化を抑制して、フェイルセーフを達成することができる。
好ましくは、制御手段は、燃料電池の始動時に、流体弁を初期開度から所定開度に変更した後、ポンプの駆動を開始させるとよい。
この構成によれば、燃料電池の始動時に、流体弁は初期開度から所定開度へと開度設定され、その後でポンプが駆動を開始する。このため、流体弁が仕様に適した開度になったところで、冷媒を燃料電池に供給することができる。これにより、燃料電池の始動時に、その温度変化を抑制することが可能となる。
上記目的を達成するべく、本発明の別の燃料電池システムは、冷媒を冷却する熱交換器と、熱交換器と燃料電池との間で冷媒をポンプにより循環させる循環通路と、熱交換器をバイパスして、循環通路の冷媒を燃料電池に供給するバイパス通路と、熱交換器およびバイパス通路への冷媒の通流を設定する流体弁と、流体弁およびポンプを制御する制御手段と、を備える。そして、制御手段は、燃料電池の始動時に、ポンプの駆動の開始に優先して、流体弁をゼロ点調整すると共にこのゼロ点調整後の開度を所定開度に変更する。
この構成によれば、燃料電池の始動時に、流体弁はゼロ点調整されると共に所定開度へと開度設定され、その後でポンプが駆動を開始する。このため、燃料電池の始動時には、流体弁が仕様に適した開度になったところで、冷媒を燃料電池に供給することができ、燃料電池での温度変化を抑制することが可能となる。また、ゼロ点調整により、燃料電池の発電時の流体弁の開度制御を高精度に行うことができる。
好ましくは、流体弁はロータリバルブであることが、好ましい。
この構成によれば、温度制御にセンシティブな燃料電池に、適切に且つ精度良く対応することができる。
図1は、第1実施形態に係る燃料電池システムの構成を示す構成図である。
図2は、第1実施形態に係る燃料電池システムのブロック図である。
図3は、第2実施形態に係る燃料電池システムの構成を示す構成図である。
図4は、第3実施形態に係る燃料電池システムの構成を示す構成図である。
図5は、第4実施形態に係る燃料電池システムの構成を示す構成図である。
図6は、第5実施形態に係る燃料電池システムの構成を示す構成図である。
図7は、第6実施形態に係る燃料電池システムの構成を示す構成図である。
図8は、第7実施形態に係る燃料電池システムの構成を示す構成図である。
図9は、第8実施形態に係る燃料電池システムに設けられた燃料電池の冷却装置を示す構成図である。
図10は、第8実施形態に係る燃料電池の冷却装置の処理フローを示しており、燃料電池の始動時におけるフローチャートである。
図11は、第9実施形態に係る燃料電池の冷却装置の処理フローを示しており、燃料電池の停止時におけるフローチャートである。
図12は、第10実施形態に係る流体弁としてのロータリバルブを模式的に示す斜視図である。
図13(A)〜(C)は、図12に示すロータリバルブの開度について模式的に説明する断面図である。
図14は、第11実施形態に係る燃料電池の冷却装置のタイムチャートである。
図15は、第12実施形態に係る燃料電池の冷却装置のタイムチャートである。
図16は、第13実施形態に係る燃料電池の冷却装置のタイムチャートである。
図17は、第14実施形態に係る燃料電池の冷却装置のタイムチャートである。
図18は、第15実施形態に係る燃料電池の冷却装置のタイムチャートである。
図19は、第16実施形態に係る燃料電池システムに設けられた燃料電池の冷却装置を示す構成図である。
以下、添付図面を参照して、本発明の好適な実施形態に係る燃料電池システムについて説明する。この燃料電池システムは、燃料電池に冷媒を循環供給する冷媒循環系を備え、冷媒循環系は、燃料電池と所定の温度差がある冷媒が燃料電池に流入するのを抑制するものである。以下では、排熱利用を考慮した構成の燃料電池システムと、排熱利用とは別の観点を考慮した構成の燃料電池システムとについて説明する。
具体的には、第1実施形態〜第7実施形態(図1〜図8)では、燃料電池を冷却した冷媒の排熱を利用する燃料電池システムについて説明する。概要を簡単に説明すると、この燃料電池システムは、自動車などの燃料電池車両に搭載されるものである。そして、燃料電池システムは、メインの冷却ラインの冷媒により燃料電池を冷却すると共に、燃料電池を冷却した冷媒の排熱を例えば車室内を暖房するのに利用するものである。この本発明の燃料電池システムの特徴部分は、冷却ラインおよび排熱利用ラインでの冷媒の流動を制御することで、排熱利用ラインの低温の冷媒によって燃料電池に熱衝撃を与えないようにしたことである。
また、第8実施形態〜第16実施形態(図9〜図19)では、排熱利用とは別の観点を考慮した他の燃料電池システムについて説明する。概要を簡単に説明すると、燃料電池システムは燃料電池の冷却装置を有し、この冷却装置は、発電に伴う燃料電池の温度を低減して、発電時の燃料電池の温度管理を行うものである。本発明の燃料電池システムの主な特徴部分は、燃料電池の冷却装置が流体弁およびポンプについて所定の制御を行うことで、発電時はもとより、燃料電池の始動時(暖機時)に燃料電池の温度変化を好適に抑制したことである。
<第1実施形態>
図1は、燃料電池システムの冷却系を示すシステム図である。
燃料電池システム1は、基本単位となる多数の単セルを積層したスタック構造の燃料電池2と、システム全体を統括制御する制御装置3(図2参照)と、を有している。燃料電池2は、その周辺の検出機器などと一緒にスタックケース5に収容されている。スタックケース5は、金属や硬質樹脂により形成され、車室の床下などにブラケット等を介して固定される。燃料電池2には、図外の配管ラインにより、燃料ガスとしての水素ガスと、酸化剤ガスとしての空気が供給される。燃料電池2は、これら両ガスの電気化学反応によって発電すると共に、発熱する。
燃料電池2としては、リン酸型など複数の種類があるが、ここでは車載に好適な固体高分子電解質型で構成されている。図示省略したが、燃料電池2の単セルは、MEA(Membrane Electrode Assembly)をメタルなどの一対のセパレータで挟持して構成されている。スタック構造の燃料電池2の内部流路としては、燃料ガスの流路、酸化剤ガスの流路、および冷却水の流路が設けられている。これらの流路は、主としてセパレータの面内に形成されている。燃料電池2は、その冷却水の内部流路に冷媒としての冷却水を通流されて、冷却される。
燃料電池システム1は、燃料電池2に冷却水を循環させるライン(冷媒循環系)として、図示左側の冷却ライン10と、図示右側の排熱利用ライン11と、を有している。冷却ライン10と排熱利用ライン11とには、燃料電池2の冷却水入口2a側で冷却水を合流させるための合流点13が構成されていると共に、燃料電池2の冷却水出口2b側で冷却水を分岐させるための分岐点14が構成されている。なお、合流点13および分岐点14に三方弁などの弁を設けて、合流点13での冷却水の合流の遮断や、分岐点14での冷却水の一方側のみへの分岐などを行える構成としてもよい。
冷却ライン10には、燃料電池2から排出される冷却水を冷却するラジエータ21と、ラジエータ21をバイパスするバイパス通路22と、冷却ライン10の冷却水を圧送する冷却側ポンプ23と、ラジエータ21およびバイパス通路22への冷却水の通流を設定する切替え弁24と、が設けられている。冷却ライン10は、燃料電池2の冷却水出口2bからラジエータ21の入口までの第一通路31と、ラジエータ21の出口から切替え弁24の第一ポート24aまでの第二通路32と、切替え弁24の第二ポート24bから燃料電池2の冷却水入口2aまでの第三通路33と、により主として構成されている。
ラジエータ21(第1の熱交換器)は、燃料電池2の発電反応により昇温した冷却水を導く通路を内部に有しており、冷却水は、ラジエータ21内の通路を通過することで外気と熱交換される(放熱される)。ラジエータ21は、例えば車両の前部に設けられる。ラジエータ21には、その内部の通路に外気を送風するためのファン26が併設されている。ファン26は、ラジエータ21での冷却水の冷却を促進する。ファン26は、制御装置3に接続されており、その駆動を制御装置3に制御される。
バイパス通路22は、その上流端が第一通路31の冷却側ポンプ23の下流側に接続され、下流端が切替え弁24の第三ポート24cに接続されている。バイパス通路22には、冷却作用のある補助機器は設けられていない。
冷却側ポンプ23は、制御装置3に接続されており、制御装置3によりその駆動を制御される。冷却側ポンプ23の駆動が開始されることで冷却ライン10の冷却水が流動し、燃料電池2の温度が所定範囲内に保たれるようになる。そして、冷却側ポンプ23の駆動が停止されることで冷却ライン10の冷却水の流動が停止する。なお、冷却側ポンプ23の位置をラジエータ21の上流側としたが、もちろんラジエータ21や切替え弁24の下流側としてもよい。
切替え弁24は、上記の第一ポート24a、第二ポート24bおよび第三ポート24cを有する三方弁構造を有している。切替え弁24は、例えばロータリバルブからなり、冷却水をラジエータ21およびバイパス通路22の一方に、またはこの両方に切り替えることができるように構成されている。
例えば、切替え弁24がラジエータ21側に切り替えられたときには、冷却ライン10はラジエータ21と燃料電池2との間で冷却水を循環させる循環通路として機能する。一方、切替え弁24がバイパス通路22側に切り替えられたときには、冷却ライン10は、ラジエータ21を迂回して冷却水を燃料電池2に循環供給する循環通路として機能する。この場合には、ラジエータ21による放熱効果を受けない冷却水が燃料電池2に流入する。
切替え弁24は、弁の開度を調整可能に構成され、ラジエータ21およびバイパス通路22への冷却水の流入量を調整可能に構成されている。切替え弁24は、制御装置3に接続されており、制御装置3からの出力信号によって切替え動作を含む弁の開度を制御される。この種の切替え弁24は、例えばソレノイドによって駆動される電磁弁タイプや、モータによって駆動される電動弁タイプや、圧電素子や磁歪素子などの電気・磁気力によって駆動されるタイプで構成することができる。
排熱利用ライン11には、燃料電池2から排出される冷却水を空調気体と熱交換するヒータコア41(第2の熱交換器)と、排熱利用ライン11の冷却水を圧送する排熱利用側ポンプ42と、が設けられている。排熱利用ライン11は、燃料電池2から排出される冷却水の排熱を利用して、空調気体を加熱して冷却水を冷却するラインであり、ヒータコア41と燃料電池2との間で冷却水を循環させる循環通路として機能する。
排熱利用側ポンプ42は、制御装置3に接続されており、制御装置3によりその駆動を制御される。後述するように、排熱利用側ポンプ42は、冷却側ポンプ23と協調制御される。排熱利用側ポンプ42の駆動が開始されることで排熱利用ライン11の冷却水が流動し、ヒータコア41で熱交換された冷却水が燃料電池2に流入する。そして、排熱利用側ポンプ42の駆動が停止されることで排熱利用ライン11の冷却水の流動が停止する。なお、排熱利用側ポンプ42の位置をヒータコア41の上流側としたが、もちろんヒータコア41の下流側としてもよい。
ヒータコア41は、ラジエータ21と同様に例えば車両の前部に設けられる。ヒータコア41は、燃料電池2の発電反応により昇温した冷却水を導く通路を内部に有しており、冷却水は、ヒータコア41内の通路を通過することで空調気体と熱交換される(放熱される)。このため、ヒータコア41は、空調気体の通路となる空調装置50の空調ライン51(ダクト)内に配設されている。
空調装置50は、例えば車室内の空気(内気)または車室外の空気(外気)を取り込み、これを調整して車室内に送風する。空調装置50は、いずれも図示省略したが、空調ライン51におけるヒータコア41の上流側に設けられたエバポレータと、エバポレータの上流側に設けられて、空調気体をヒータコア41に向かって圧送するブロワと、を有している。そして、空調ライン51の最下流には、例えば車室内に空調気体を供給する吹出し口が設けられている。
また、空調装置50は、スイッチなどのユーザが入力操作可能な入力手段52を有している(図2参照)。ユーザは、入力手段52によって、空調ライン51の空調気体の送風を実行することについて指示することができる。すなわち、入力手段52への入力があったときには、空調装置50が暖房運転する。このとき、冷却水は冷却ライン10および排熱利用ライン11の両方を流動し、ヒータコア41で加熱された空調気体が車室内に供給される。一方、入力手段52への入力がないときには、空調装置50は運転せず、車室内への空調気体の供給が遮断されると共に、冷却水は冷却ライン10のみを流動する。なお、入力手段52によって空調装置50を冷房運転に切替え可能な構成としてもよい。
冷却ライン10および排熱利用ライン11には、これらに亘って複数の温度センサ61〜65が分散して設けられている。具体的には、ラジエータ21の下流側の温度センサ61と、バイパス通路22上の温度センサ62と、燃料電池2の冷却水入口2a側の温度センサ63と、その冷却水出口2b側の温度センサ64と、ヒータコア41の下流側の温度センサ65と、が配設されている。燃料電池2の冷却水入口2aおよび冷却水出口2bに近い各温度センサ63,64は、スタックケース5内に収容されている。もっとも、これらの温度センサ63,64をスタックケース5外に設けてもよい。
ラジエータ21の下流側の温度センサ61は、ラジエータ21の出口における冷却水の温度を反映した温度を検出する。また、冷却水出口2b側の温度センサ64は、燃料電池2内の冷却水の温度を反映した温度を検出する。ヒータコア41の下流側の温度センサ65は、ヒータコア41を通過した冷却水の温度を反映した温度を検出する。これらの複数の温度センサ61〜65は、制御装置3に接続されており、その検出結果を制御装置3に入力する。
図2は、燃料電池システム1の制御構成を示すブロック図である。制御装置3(ECU)は、いずれも図示省略したが、CPU、CPUで処理する制御プログラムや制御データを記憶したROM、主として制御処理のための各種作業領域として使用されるRAM、および入出力インターフェースを有し、これらは互いにバスを介して接続されている。
入出力インターフェースには、冷却側ポンプ23、切替え弁24および排熱利用側ポンプ42等を駆動する各種ドライバのほか、複数の温度センサ61〜65などの各種センサや、空調装置50の入力手段52が接続されている。制御装置3は、冷却側ポンプ23および排熱利用側ポンプ42と協働して、冷却ライン10および排熱利用ライン11での冷却水の流動を制御する流動制御手段として機能する。この流動制御手段は、後述するように、燃料電池2と所定の温度差がある冷却水が燃料電池2に流入するのを抑制する。
CPUは、ROM内の制御プログラムに従って、入出力インターフェースを介して温度センサ61〜65等の検出信号や入力手段52の入力信号を入力し、RAM内の各種データ等を処理した後、入出力インターフェースを介して各種ドライバに制御信号を出力することにより、冷却側ポンプ23および排熱利用側ポンプ42を協調制御するなど、燃料電池システム1全体を統括制御している。
上記したように、燃料電池システム1の運転中に車室内の暖房需要がない場合には、冷却水は冷却ライン10のみを流動する。このため、排熱利用ライン11の滞留した冷却水は、冷却ライン10や燃料電池2内の冷却水に比べて低温である。ここで、燃料電池システム1の運転を一旦停止し、短時間後に再起動した際に暖房需要があった場合に、排熱利用ライン11の冷却水が冷却ライン10の冷却水よりも先に燃料電池2に通流してしまうと、冷却水の温度差によって燃料電池2に熱衝撃を与えてしまう。そこで本実施形態では、冷却ライン10での冷却水の流動を開始した後で、排熱利用ライン11での冷却水の流動を開始するように制御している。
1.始動時
具体的には、制御装置3は、燃料電池2の始動時(暖機時)に入力手段52への暖房需要の入力があったときには、冷却側ポンプ23の駆動を開始した後で、排熱利用側ポンプ42の駆動を開始する。これにより、排熱利用ライン11の冷却水の流動が冷却ライン10の冷却水の流動よりも遅れるため、冷却ライン10の冷却水を先に燃料電池2に通流させることができる。したがって、冷却ライン10と排熱利用ライン11との間の冷却水の温度差が大きかったとしても、燃料電池2の温度変化が抑制される。
このとき、制御装置3は、冷却側ポンプ23による冷却水の流量が十分に上昇してから、排熱利用側ポンプ42の駆動を開始するようにすれば、燃料電池2の温度変化をより一層抑制することができる。すなわち、制御装置3は、両ポンプ23,42を協調制御する駆動初期においては、冷却側ポンプ23による冷却水の流量が排熱利用側ポンプ42による冷却水の流量よりも大きくなるように流量制御することが好ましい。また、排熱利用ライン11での冷却水の流量が徐々に上昇するように、排熱利用側ポンプ42の駆動を制御することが好ましい。
排熱利用側ポンプ42の駆動を開始するタイミングは、冷却側ポンプ23の駆動を開始してから、例えばROMに予め記憶させた所定時間が経過したタイミングであってもよいし、冷却ライン10における例えば燃料電池2の冷却水入口2a側に設けた図外の流量センサの検出結果に基づいたタイミングであってもよい。また、別の態様では、冷却側ポンプ23の回転数が所定数以上になったとき、例えば冷却側ポンプ23が完全に立ち上がったときに、排熱利用側ポンプ42の駆動を開始するようにしてもよい。なお、冷却側ポンプ23の回転数は、冷却側ポンプ23に接続した回転数センサで検出すればよい。
また、流量センサと協働してあるいは独立して、制御装置3に組み込んだタイマにより、燃料電池2の停止から次の始動までの時間を計測し、その計測時間の長さに応じて排熱利用側ポンプ42の駆動を開始する開始時間を可変してもよい。これにより、燃料電池2の停止時間が比較的長い場合には、冷却側ポンプ23の駆動開始に対して排熱利用側ポンプ42の駆動開始を遅延させなくて済む。また、燃料電池2の停止時間が比較的短い場合には、冷却ライン10の冷却水の流量が十分に増大するまで、排熱利用側ポンプ42の駆動の開始を十分に遅らせることができる。
そして好ましくは、流量センサやタイマと協働してあるいは独立して、上記の温度センサ61〜65による検出結果に基づいて、排熱利用側ポンプ42の駆動を開始する開始時間を可変する。例えば燃料電池車両がおかれる環境によって冷却水の各部の放熱条件が変動するため、タイマのみで排熱利用側ポンプ42の駆動の開始時間を設定するよりも、冷却水の温度を検出する複数の温度センサ61〜65の検出結果に基づくことで、燃料電池2の温度変化をより一層抑制することが可能となる。
例えば、複数の温度センサ61〜65のうち、特に燃料電池2の冷却水出口2b側の温度センサ64と排熱利用ライン11の温度センサ65との検出結果により、燃料電池2内の冷却水と排熱利用ライン11内の冷却水との温度差に基づいて、排熱利用側ポンプ42の駆動の開始時間を設定する。あるいは、温度センサ61と温度センサ65との検出結果により、冷却ライン10と排熱利用ライン11との冷却水の温度差に基づいて、排熱利用側ポンプ42の駆動の開始時間を設定する。このとき、温度差がない場合には、冷却側ポンプ23及び排熱利用側ポンプ42を同時に駆動開始してもよい。このように、冷却水の温度に応じて冷却側ポンプ23及び排熱利用側ポンプ42の駆動条件を変更してもよい。
また上記の制御構成に代えて、制御装置3は、燃料電池2の始動時に入力手段52への暖房需要の入力があったときに、冷却側ポンプ23および排熱利用側ポンプ42の駆動を同時に開始してもよい。もっとも、燃料電池2に通流する冷却水の温度変化を回避するために、冷却側ポンプ23による冷却水の流量が排熱利用側ポンプ42による冷却水の流量よりも大きくなるように、流量制御する必要がある。このような流量制御をすることで、冷却ライン10および排熱利用ライン11の合流した冷却水の温度を、冷却ライン10の冷却水に近い温度にすることができる。この種の流量制御は、冷却側ポンプ23および排熱利用側ポンプ42の回転数制御やデューティー比制御で実行することができる。
また上記の制御構成に代えて、制御装置3は、燃料電池2の始動時に入力手段52への暖房需要の入力がないときでも、この始動時には常に、冷却側ポンプ23の駆動を開始後に排熱利用側ポンプ42の駆動を開始し、排熱利用側ポンプ42の駆動を所定時間だけ行うようにしてもよい。もちろんこのとき、冷却側ポンプ23および排熱利用側ポンプ42の駆動を同時に開始しつつ、冷却側ポンプ23による流量が大きくなるように流量制御してもよい。
このような制御構成とすることで、入力手段52への入力がない場合に一律に排熱利用ライン11の冷却水を流動させない構成に比べて有用となる。具体的には、夏場など暖房を長期間使用しないと、排熱利用ライン11の冷却水はここに滞留し得るため、排熱利用ライン11に異物が堆積したり、藻が発生したりするなど不具合が生じ得る。上記制御構成のように、燃料電池2の始動時に、暖房需要の有無を問わず(入力手段52の入力の有無を問わず)、排熱利用側ポンプ42を一時的に駆動することで、排熱利用ライン11の冷却水が流動するため、上記の不具合を適切に回避することができる。
以上のように、各種の流量制御を行うことで、燃料電池2の始動時に排熱利用ライン11の冷却水によって燃料電池2に熱衝撃を与えることを回避することができる。なお、燃料電池2の停止時に冷却側ポンプ23および排熱利用側ポンプ42の両方を駆動している場合には、先ず排熱利用側ポンプ42の駆動を停止し、その後冷却側ポンプ23の駆動を停止するとよい。これにより、排熱利用ライン11での冷却水の流動を冷却ライン10での冷却水の流動に優先して停止することができ、燃料電池2の温度変化を好適に抑制し得る。
2.間欠運転時
次に、燃料電池2の間欠運転時における冷却水の流動制御について、簡単に説明する。燃料電池2の間欠運転とは、燃料電池2から負荷への電力供給を一時的に停止し、二次電池から負荷への電力供給を行うものである。間欠運転は、燃料電池2に間欠的に燃料ガスおよび酸化剤ガスを供給し、燃料電池2の開放端電圧を所定範囲内に維持することで行われる。間欠運転時には、ポンプの駆動を止めて、燃料電池2に通流させる冷却水の流動を停止させることが行われる場合もある。
本実施形態の燃料電池システム1では、制御装置3は、燃料電池2の間欠運転時に、二次電池からの電力供給により冷却側ポンプ23の駆動を続行して、燃料電池2への冷却水の通流を続行するようにしている。これにより、間欠運転時にも燃料電池2の温度管理を適切に行うことができる。
もっとも、間欠運転時に、冷却側ポンプ23でなく排熱利用側ポンプ42を駆動することで、排熱利用ライン11の冷却水を燃料電池2に通流させることもできる。ただし、間欠運転時に、排熱利用側ポンプ42を駆動する場合には、冷却側ポンプ23の駆動開始後に排熱利用側ポンプ42の駆動を開始することが好ましい。もちろんこのとき、冷却側ポンプ23および排熱利用側ポンプ42の駆動を同時に開始しつつ、冷却側ポンプ23による流量が大きくなるように流量制御してもよい。間欠運転時においても、上記同様に、排熱利用ライン11の冷却水によって燃料電池2に熱衝撃を与えることを回避するためである。
以下に、第2実施形態〜第7実施形態について説明するが、第1実施形態で説明した制御例は、これら各実施形態に適用することができる。以下の説明では、重複した記載を避けるべく、第1実施形態との共通部分については同一の符号を付してその説明を省略し、第1実施形態との相違点について中心に言及する。
<第2実施形態>
図3を参照して、第2実施形態に係る燃料電池システム1について説明する。第1実施形態との相違点は、冷却水を循環させるポンプ71を一つとしたことと、それに伴い冷却ライン10および排熱利用ライン11について圧損チューニングをしたことである。
本実施形態のポンプ71は、冷却ライン10および排熱利用ライン11の分岐点14の上流側に設けられている。もっとも、ポンプ71を合流点13の下流側に設けてもよい。ポンプ71は、その駆動を制御装置3に制御されて、冷却ライン10および排熱利用ライン11で冷却水を圧送する。ポンプ71は、制御装置3と協働して、冷却ライン10および排熱利用ライン11での冷却水の流動を制御する流動制御手段として機能する。この流動制御手段は、第1実施形態と同様に、燃料電池2と温度差がある冷却水が燃料電池2に流入するのを抑制する。
冷却ライン10での冷却水の流路抵抗は、排熱利用ライン11での冷却水の流路抵抗よりも低く設定されている。この流路抵抗を設定する圧損チューニングとして、排熱利用ライン11の管径が冷却ライン10の管径の約1/10に設定されている。もっともこれに代えて、排熱利用ライン11の途中に、冷却水の流れを妨げるようなオリフィスなどの絞り部を設けることで、圧損チューニングを行ってもよい。
本実施形態によれば、燃料電池2の始動時や間欠運転時にポンプ71を駆動しても、上記のような圧損チューニングがなされているため、冷却ライン10の冷却水が排熱利用ライン11の冷却水よりも優先して燃料電池2に通流し始める。これにより、ポンプを一つ削減したとしても、燃料電池2の始動時等の温度変化を抑制することが可能となる。また、一つのポンプ71で冷却水の流動を制御するため、その制御を簡素化することができる。
なお、排熱利用ライン11にシャットバルブを設け、暖房需要があるときにはシャットバルブを開放し、暖房需要がないときにはシャットバルブを閉塞するようにしてもよい。そして、シャットバルブの開閉動作を、上記のタイマの計測結果や、流量センサや温度センサ61〜65の検出結果に応じて行ってもよい。例えば、燃料電池2の始動時に入力手段52への暖房需要の入力があったときには、タイマや各種センサの検出結果に基づいて、閉塞したシャットバルブを開放するタイミングを設定することができる。
また、第2実施形態の変形として、例えば、冷却ライン10および排熱利用ライン11の合流点13または分岐点14に、冷却ライン10および排熱利用ライン11の冷却水の通流を切り替える切替え弁73を設けてもよい(図3では制御装置3からの信号線のみを示している。)。切替え弁73は、上記したラジエータ21側の切替え弁24と同様に構成することができ、制御装置3に接続される。切替え弁73は、ポンプ71および制御装置3とともに、冷却ライン10および排熱利用ライン11での冷却水の流動を制御する流動制御手段を構成する。
そして、燃料電池2に対して排熱利用ライン11の冷却水の通流を開始する場合には、制御装置3は、切替え弁73を冷却ライン10側に切り替えて、燃料電池2に対して冷却ライン10の冷却水の通流を先ず開始する。その後、切替え弁73を冷却ライン10および排熱利用ライン11の両者に切り替えて、燃料電池2に対して冷却ライン10および排熱利用ライン11の冷却水を通流させるようにする。このような切替え弁73の制御によっても、燃料電池2に対して冷却ライン10の冷却水の通流を排熱利用ライン11に優先して開始させることが可能となり、燃料電池2の温度変化を抑制することができる。また、冷却ライン10および排熱利用ライン11の複雑な圧損チューニングが不要となる。
<第3実施形態>
図4を参照して、第3実施形態に係る燃料電池システム1について説明する。第1実施形態との相違点は、冷却ライン10および排熱利用ライン11の合流点13および分岐点14の位置を変更したことである。具体的には、合流点13および分岐点14は、燃料電池2の冷却水出口2b側に設けられると共に、合流点13は、分岐点14の下流側であって冷却側ポンプ23の上流側に設けられている。このような配管系統であっても、冷却側ポンプ23および排熱利用側ポンプ42を第1実施形態と同様に協調制御することで、第1実施形態と同様の効果を奏することが可能となる。
特に本実施形態では、燃料電池2の始動時に、先ず切替え弁24をバイパス通路22側に切り替えて冷却側ポンプ23の駆動を開始し、その後、排熱利用側ポンプ42の駆動を開始しつつ、切替え弁24をラジエータ21側に切り替えることが好ましい。なお、冷却側ポンプ23の位置をラジエータ21の下流側としてもよいし、排熱利用側ポンプ42の位置をヒータコア41の下流側としてもよい。
<第4実施形態>
図5を参照して、第4実施形態に係る燃料電池システム1について説明する。第1実施形態との相違点は、燃料電池2をバイパスして冷却水を流動させるバイパスライン81を設けたことと、合流点13の下流側と燃料電池2の冷却水入口2a側との間にシャットバルブ82を設けたことと、分岐点14の上流側と燃料電池2の冷却水出口2b側との間にシャットバルブ83を設けたこと、である。
バイパスライン81は、上流端となる一端を冷却ライン10における切替え弁24の下流側に接続され、下流端となる他端を冷却ライン10における冷却側ポンプ23の上流側に接続されている。バイパスライン81には、これを開閉するシャットバルブ84が設けられている。燃料電池2の近傍の二つのシャットバルブ82,83は各々、例えば電磁弁で構成されており、制御装置3によりその開閉動作を制御される。バイパスライン81および三つシャットバルブ82,83,84は、排熱利用ライン11の冷却水による燃料電池2への熱衝撃の回避のために用いられる。
例えば、燃料電池2の始動時に、入力手段52への暖房需要の入力があった場合又はなかった場合に、制御装置3は、先ず、燃料電池2近傍の二つのシャットバルブ82,83を閉弁し且つバイパスライン81のシャットバルブ84を開弁する。その後、制御装置3は、冷却側ポンプ23および排熱利用側ポンプ42の両方の駆動を開始する。すると、冷却ライン10の冷却水および排熱利用ライン11の冷却水は、バイパスライン81の上流端で合流し、バイパスライン81を流動する間に混合される。そして、バイパスライン81の冷却水は、バイパスライン81の下流端で分岐して、燃料電池2を迂回するように冷却ライン10および排熱利用ライン11を再び流動する。
これにより、冷却ライン10と排熱利用ライン11との間で冷却水に温度差があったり、冷却ライン10および排熱利用ライン11において部分的に冷却水の温度が異なっていたりしても、冷却水の温度が平準化される。そして、冷却側ポンプ23および排熱利用側ポンプ42の駆動開始から所定時間経過後に、燃料電池2への冷却水の通流を開始する場合には、燃料電池2の近傍の二つのシャットバルブ82,83を開弁すると共にバイパスライン81のシャットバルブ84を閉弁する。このような制御を行うことで、排熱利用ライン11の冷却水に起因した燃料電池2の温度変化を抑制することが可能となる。
なお、燃料電池2の始動時の流動制御時に、第1実施形態と同様に、タイマの計測結果や、温度センサ61〜65などの各種センサの検出結果に応じて、バイパスライン81に冷却水を流動させている時間や、冷却側ポンプ23や排熱利用側ポンプ42の回転量を制御してもよい。また、燃料電池2の間欠運転時や停止時には、第1実施形態と同様の制御を行えばよい。また、バイパスライン81の位置として冷却ライン10側に設けたが、もちろん排熱利用ライン11側に設けてもよい。
さらに、シャットバルブ82〜84を三つ設けたが、もちろんのその個数はこれに限るものではない。例えば、燃料電池2の近傍の二つのシャットバルブ82,83の一方については、省略することができる。また、バイパスライン81にシャットバルブ84を設けたが、シャットバルブでなくて、例えばバイパスライン81と冷却ライン10との接続部に、上記の切替え弁24と同様構造の切替え弁を設けてもよい。
<第5実施形態>
次に、図6を参照して、第5実施形態に係る燃料電池システム1について説明する。本実施形態は、図4に示す第3実施形態の燃料電池システム1に逆止弁91を追加したものである。逆止弁91は、合流点13と分岐点14との間の冷却ライン10に設けられている。逆止弁91は、合流点13から分岐点14への冷却水の流れを阻止する。
本実施形態の作用について述べる。冷却側ポンプ23が駆動していないときに、排熱利用側ポンプ42が駆動すれば、排熱利用ライン11を流れた冷却水の一部は、合流点13から分岐点14へと流れ得る。本実施形態では、逆止弁91を設けているので、合流点13から分岐点14への冷却水の流動を阻止でき、燃料電池2の冷却水出口2bへの冷却水の流入を阻止できる。これにより、排熱利用ライン10の冷却水の温度が燃料電池2の温度よりも低い場合でも、燃料電池2に熱衝撃を与えなく済む。
なお、本実施形態においても、第3実施形態や第1実施形態で述べた、冷却側ポンプ23および排熱利用側ポンプ42の協調制御を行うことで、上記実施形態と同様の効果を奏し得る。また、逆止弁91を分岐点14と燃料電池2の冷却水出口2bとの間に設けてもよい。
<第6実施形態>
次に、図7を参照して、第6実施形態に係る燃料電池システム1について説明する。本実施形態は、配管系統が図4に示す第3実施形態の燃料電池システム1と共通であるが、制御系統が異なっている。具体的には、第3実施形態は、制御系統の一例として一つの制御装置3を設けたのに対し、本実施形態は、二つの制御装置3,3´を設けることにした。なお、二つの制御装置3,3´は、特許請求の範囲に記載の「流動制御手段」の一部又は「制御手段」に相当する。
一方の制御装置3(ECU)は、冷却側ポンプ23の駆動を制御するものであり、冷却側ポンプ23の回転数センサ92が接続されている。また、制御装置3は、切替え弁24も制御するメインの制御装置として機能し、温度センサ61〜65などの各種のセンサが接続されている。他方の制御装置(ECU)3´は、排熱利用側ポンプ42の駆動を制御するものである。制御装置3´と排熱利用側ポンプ42との間の制御回路には、二つのリレー93,94が設けられている。制御装置3´は、リレー93を開閉し、制御装置3は、リレー94を開閉する。
本実施形態の制御系統によっても、上記実施形態と同様の作用効果を奏することができる。例えば、燃料電池2の始動時に、冷却側ポンプ23の回転数が所定数以上になった旨を回転数センサ92が検出したとき、制御装置3は、リレー94を閉じて、排熱利用側ポンプ42の駆動を許可するようにしてもよい。そして、制御装置3´は、リレー93を閉じて、排熱利用側ポンプ42の駆動を制御すればよい。こうすることで、排熱利用ライン11の冷却水が燃料電池2の冷却水出口2b側に逆流することを抑制でき、燃料電池2の温度変化を抑制し得る。
<第7実施形態>
次に、図8を参照して、第7実施形態に係る燃料電池システム1について説明する。第6実施形態との相違点は、制御装置3が制御装置3´と通信を行うようにしたことである。例えば、燃料電池2の始動時に、制御装置3は、排熱利用側ポンプ42の駆動を許可する旨を制御装置3´に伝え、それにより、制御装置3´は、リレー93を閉じて、排熱利用側ポンプ42の駆動を制御する。これにより、第6実施形態と同様の作用効果を奏することができる。第6実施形態と比べて有用となる点は、リレー(94)が不要となり、コストを低減できることである。
なお、上記各実施形態では、燃料電池2の排熱の熱エネルギーを暖房に用いたが、例えば燃料電池システム1が定置用である場合には、燃料電池2の排熱の熱エネルギーを給湯や風呂に用いることもできる。このような場合には、排熱利用ライン11の加熱用熱交換器(ヒータコア41)は空調気体以外の他の媒体と熱交換するが、上記同様に、冷却水の流動について制御を行うと燃料電池2にとって有用である。
<第8実施形態>
図9は、燃料電池システム1の一部である、燃料電池の冷却装置を示すシステム図である。燃料ガスおよび酸化剤ガスを供給される燃料電池100は、基本単位となる多数の単セルを積層したスタック構造を有している。燃料電池100は、その周辺の検出機器などと一緒にスタックケース200に収容されている。スタックケース200は、金属や硬質樹脂により形成され、車室の床下などにブラケット等を介して固定される。
燃料電池100としては、リン酸型など複数の種類があるが、ここでは車載に好適な固体高分子電解質型で構成されている。図示省略したが、燃料電池100の単セルは、MEA(Membrane Electrode Assembly)をメタルなどの一対のセパレータで挟持して構成されている。スタック構造の燃料電池100の内部流路としては、燃料ガスの流路、酸化剤ガスの流路、および冷却水の流路が設けられている。これらの流路は、主としてセパレータの面内に形成されている。燃料電池100は、その冷却水の内部流路に冷媒としての冷却水を冷却装置101により通流されて、冷却される。
冷却装置101は、燃料電池100から排出される冷却水を冷却するラジエータ110と、ラジエータ110と燃料電池100との間で冷却水を循環させるための循環通路120と、ラジエータ110をバイパスするバイパス通路130と、燃料電池100の下流側の循環通路120に位置して冷却水を圧送するポンプ140と、ラジエータ110およびバイパス通路130への冷却水の通流を設定する流体弁150と、冷却装置101全体を統括制御する制御装置160と、を備えている。循環通路120及びバイパス通路130は、燃料電池に冷媒を循環供給する冷媒循環系として機能する。
ラジエータ110(熱交換器)は、燃料電池100の発電反応により昇温した冷却水を導く通路を内部に有しており、この通路を冷却水が通過することで冷却水の熱が外部に放熱される。ラジエータ110は、例えば車両の前部に設けられる。ラジエータ110には、ラジエータ110内の通路に外気を送風するためのファン180が併設されている。ファン180は、ラジエータ110での冷却水の冷却を促進する。ファン180は、制御装置160に接続されており、その駆動を制御装置160に制御される。
循環通路120は、燃料電池100の冷却水出口100bからラジエータ110の入口までの第一通路210と、ラジエータ110の出口から流体弁150の第一ポート150aまでの第二通路220と、流体弁150の第二ポート150bから燃料電池100の冷却水入口100aまでの第三通路230と、により主として構成されている。
バイパス通路130は、その上流端が第一通路210のポンプ140の下流側に接続され、下流端が流体弁150の第三ポート150cに接続されている。バイパス通路130は、循環通路120に比較して小さなまたは同等の内径の管で構成されている。バイパス通路130には、冷却作用のある補助機器は設けられていない。バイパス通路130への冷却水は、循環通路120の第一通路210からラジエータ110を迂回することで流れ込む。そして、バイパス通路130を流れた冷却水は、流体弁150を介して第三通路230を流れ、燃料電池100に流入する。
循環通路120およびバイパス通路130には、これらに亘って複数の温度センサ310,320,330,340が分散して設けられている。具体的には、バイパス通路130には、流体弁150の近傍に一つの温度センサ310が設けられている。循環通路120上の複数の温度センサ320,330,340は、燃料電池100の冷却水入口100a側、その冷却水出口100b側、およびラジエータ110の下流側に設けられている。燃料電池100の冷却水入口100aおよび冷却水出口100bに近い各温度センサ320,330は、スタックケース200内に収容されている。もっとも、これらの温度センサ320,330をスタックケース200外に設けてもよい。
冷却水出口100b側の温度センサ330(第1の温度センサ)は、燃料電池100内の冷却水の温度を反映した温度を検出する。また、ラジエータ110の下流側の温度センサ340(第2の温度センサ)は、ラジエータ110の出口における冷却水の温度を反映した温度を検出する。これらの複数の温度センサ310〜340は、制御装置160に接続されており、その検出結果を制御装置160に入力する。
ポンプ140は、制御装置160に接続されており、制御装置160によりその駆動を制御される。ポンプ140の駆動が開始されると、循環通路120の冷却水がラジエータ110および/またはバイパス通路130を流れて循環される。これにより、燃料電池100の温度が所定範囲内に保たれるように温度管理がなされ、燃料電池100の発電反応が効率良く進行するようになる。ポンプ140の駆動が停止されると、循環通路120の冷却水の流動が停止する。なお、ポンプ140の位置をラジエータ110および流体弁150の上流側としたが、もちろんラジエータ110および流体弁150の下流側としてもよい。
流体弁150は、上記の第一ポート150a、第二ポート150bおよび第三ポート150cを有する三方弁構造を有している。流体弁150は、冷却水をラジエータ110およびバイパス通路130の一方に、またはこの両方に切替えることができるように構成されている。例えば、流体弁150がバイパス通路130側に完全に切り替えられた場合には、ラジエータ110による放熱効果を受けない冷却水が燃料電池100に流入する。
また、流体弁150は、弁の開度を調整可能に構成されており、ラジエータ110およびバイパス通路130への冷却水の流入量を調整することができる。例えば、流体弁150の開度として、ラジエータ110側への開度を10%とし、バイパス通路130側への開度を90%とすることができる。このように、流体弁150は、冷却水をラジエータ110およびバイパス通路130のどちらに通流させるかを切り替える切替手段として機能すると共に、その通流させる際の開度を可変することができる。
ここで、以下では、しばしば次のように「ラジ全開(ラジエータ全開)」や「バイパス全開」と略記して説明する。「ラジ全開」とは、流体弁150がラジエータ110側に対し全開状態となり且つバイパス通路130側に対し全閉状態となることをいう。「ラジ全開」では、ラジエータ110を通過した冷却水が燃料電池100に供給され、バイパス通路130の冷却水が燃料電池100に供給されることは遮断される。同様に、「バイパス全開」とは、流体弁150がバイパス通路130側に対し全開状態となり且つラジエータ110側に対し全閉状態となることをいう。「バイパス全開」では、バイパス通路130を流れた冷却水が燃料電池100に供給され、ラジエータ110を通過した冷却水が燃料電池100に供給されることは遮断される。
流体弁150は、制御装置160に接続されており、制御装置160からの出力信号によって切替えを含む弁の開度を制御される。この種の流体弁150は、例えばソレノイドによって駆動される電磁弁タイプのものや、モータによって駆動される電動弁タイプのものや、圧電素子や磁歪素子などの電気・磁気力によって駆動されるタイプのもので、構成することができる。なお、他の実施形態として後述するように、流体弁150をロータリバルブで構成すると好適である。
図中の符号410は、流体弁150に組み込まれた位置センサである。位置センサ410は、流体弁150の弁体の位置、すなわち弁の開度を検出するものである。位置センサ410の検出結果は、制御装置160に入力される。
一般に、位置センサ410のドリフトなどによりその精度が低下するおそれがあるため、位置センサ410をリセットする流体弁150のゼロ点調整が行われる。ゼロ点調整は、通常、燃料電池100の始動時(燃料電池システム1の起動時)に行われる。ゼロ点調整をすることにより、実際の燃料電池100の運転の前に、流体弁150は、制御装置160の指令値に基づく開度と、その指令に基づいて設定された実際の開度とのずれを解消される。これにより、燃料電池100の発電時には、流体弁150の開度を高精度に制御することができる。
制御装置160(ECU)は、図示省略したCPU、CPUで処理する制御プログラムや制御データを記憶したROM、主として制御処理のための各種作業領域として使用されるRAMなどを有している。制御装置160は、複数の温度センサ310〜340や位置センサ410などの各種センサからの検出信号を入力する。また、制御装置160は、各種ドライバに制御信号を出力することによりポンプ140や流体弁150等を制御するなど、冷却装置101全体を統括制御している。別の観点からいえば、制御装置160は、ポンプ140や流体弁150と協働して、燃料電池2と所定の温度差がある冷却水が燃料電池2に流入するのを抑制する流動制御手段として機能する。
図10は、燃料電池100の始動時における冷却装置101の処理フローを示すフローチャートである。燃料電池100の始動時には、先ず、流体弁150のゼロ点調整が行われる(S1)。ゼロ点調整は、制御装置160により流体弁150の弁体を移動させ、その弁体の移動が移動端位置で規制されるまで、流体弁150のモータなどの駆動源を所定時間だけ駆動させる。本実施形態の流体弁150は切替え弁であるため、流体弁150がラジエータ110側およびバイパス通路130側の一方に完全に切り替えられるまで、制御装置160により流体弁150を制御する。
例えば、ゼロ点調整は、流体弁150の状態として「ラジ全開」が所定時間だけ維持されるまで行われる(S2;No)。ラジ全開側でゼロ点調整を行うことで、ゼロ点調整中に流体弁150が固着して故障したとしても、燃料電池100の発電時には、ラジエータ110で降温された冷却水を燃料電池100に供給することができる。これにより、燃料電池100のオーバーヒートを防止することができ、フェイルセーフを達成することができる。
もっとも、「ラジ全開」でなく、「バイパス全開」でゼロ点調整を行ってもよい。この場合にも、ゼロ点調整は、流体弁150の状態としてバイパス全開が所定時間だけ維持されるまで行われる(S2;No)。こうすることで、ゼロ点調整後に、流体弁150の開度としてバイパス全開にしたい場合や、バイパス全開に近い開度にしたい場合に、流体弁150の開度を迅速に設定することができる。実際、後述するように、ラジエータ110側と燃料電池100側とで冷却水の温度差が大きい場合には、流体弁150をバイパス全開にするため、ゼロ点調整をバイパス全開で行うことは有用である。
ゼロ点調整の完了後には(S2;Yes)、流体弁150の制御が開始される(S3)。流体弁150の制御は、制御装置160の指令により流体弁150の開度をゼロ点調整後の開度(ラジ全開またはバイパス全開)から所定開度に変更することで行われる。もっとも、ゼロ点調整を実行しない場合には、流体弁150は、燃料電池100を始動する前の初期開度から所定開度に変更される。
すなわち、本書類にいう「初期開度」とは、燃料電池100を始動する処理フローを実行する直前の流体弁150の開度をいい、ステップS3〜S4では、流体弁150の開度が、初期開度からゼロ点調整後の開度を経て所定開度に変更される。なお、「初期開度」の具体例については、第9実施形態で後述する。
また、「所定開度」とは、後のステップで燃料電池100に流入し始める冷却水によって、燃料電池100に急激な温度変化を生じさせない仕様に適する開度をいう。「所定開度」は、制御装置160のROMに予め記憶させておいた開度であってもよいし、燃料電池システム1のソーク時間(燃料電池100の停止時の放置時間)に基づいて設定される開度であってもよい。後者については、例えば、制御装置160に組み込んだタイマーにより燃料電池100の停止時から次の始動時までを計測し、そのソーク時間の長さに応じて所定開度を設定する。
これを詳述するに、ソーク時間が比較的長時間の場合には、冷却水が放熱されるのに十分な時間が経過する。このため、ラジエータ110内の冷却水と燃料電池100内の冷却水とは温度が等しくなる。この場合には、燃料電池100の始動時に流体弁150の開度がどの程度であるかは、燃料電池100での温度変化の関係上、特に問題とならない。したがって、流体弁150の所定開度を任意に設定することができる。なお好ましくは、流体弁150の所定開度を「バイパス全開」などバイパス通路130側にすることで、燃料電池100の暖機時間を短縮し得る。
一方、ソーク時間が比較的短時間の場合には、スタックケース200内の燃料電池100とスタックケース200外のラジエータ110との間では冷却水の放熱量に差があり、ラジエータ110内の冷却水は、燃料電池100に比して低温となる。そこで、この場合には、流体弁150の所定開度を「バイパス全開」などバイパス通路130側にすることで、ラジエータ110内の冷却水が燃料電池100に流入することを防止できる。これにより、燃料電池100での温度変化を抑制することができる。
そして好ましくは、タイマーと協働してあるいは独立して、上記の温度センサ310,320,330,340による検出結果に基づいて、流体弁150の所定開度を設定する。例えば燃料電池車両がおかれる環境によって冷却水の各部の放熱条件が変動するため、、タイマーで一義的に流体弁150を所定開度に設定するよりも、冷却水の温度を検出する複数の温度センサ310,320,330,340の検出結果に基づいて所定開度に設定する。こうすることで、燃料電池100での温度変化をより一層抑制することが可能となる。
具体的には、複数の温度センサ310〜340のうち、特に燃料電池100の温度センサ330と温度センサ340との検出結果により、燃料電池100内の冷却水とラジエータ110内の冷却水との温度差に基づいて、流体弁150を所定開度に設定する。例えば、その温度差が第1の所定の閾値を超える場合には、所定開度として「バイパス全開」とする。また、その温度差が第1の所定の閾値よりも低い第2の所定の閾値以下である場合には、所定開度として「ラジ全開」など任意の開度に設定することができる。
もっとも、第1の所定の閾値以上であっても、あるいは第2の所定の閾値以下であっても、バイパス通路130およびラジエータ110の両方を冷却水が通流する構成であってもよく、この場合に両者の通流比(流量比)を適宜設定してもよい。また、検出結果の温度差のみならず、一つの温度センサ(310〜340のどれか)による検出結果に基づいて、流体弁150を所定開度に設定してもよい。
流体弁150が所定開度に変更された後に(S4;Yes)、制御装置160の指令に基づいてポンプ140が駆動を開始する(S5)。ポンプ140の駆動が開始されるタイミングは、流体弁150が所定開度に変更された直後またはこの変更と同時のいずれであってもよい。つまり、ポンプ140の駆動の開始処理が実行される前に、流体弁150の開度変更の処理が終了していればよい。ポンプ140の駆動の開始により、所定開度の流体弁150の下で冷却水が燃料電池100に供給され、燃料電池100の運転(発電)が開始される(S6)。
以上のように、本実施形態の燃料電池システム1に設けた冷却装置101によれば、燃料電池100の始動時に、ポンプ140の駆動の開始に優先して流体弁150を所定の開度に設定している。このため、燃料電池100の温度変化を好適に抑制することができる。したがって、熱衝撃によるセパレータの歪など、燃料電池100の始動時に与える熱的影響を回避することができ、燃料電池100の信頼性を高めることができる。また、流体弁150のゼロ点調整を行うため、燃料電池100の発電中に、流体弁150の開度を適宜バイパス通路130側やラジエータ110側に高精度に制御することができる。
なお、本実施形態では、流体弁150のゼロ点調整を行ったが、流体弁150が高精度な弁である場合などには、ゼロ点調整を行わなくてもよい。また、流体弁150をラジエータ110の下流側に設けたが、ラジエータ110の上流側に設けてもよい。
<第9実施形態>
次に、第9実施形態に係る燃料電池システム1の冷却装置101について説明する。図11は、燃料電池100の停止時における冷却装置101の処理フローを示すフローチャートである。同図に示すように、燃料電池100の運転が停止されると(S11)、先ず、制御装置160によりポンプ140の駆動が停止される(S12)。続いて、流体弁150の制御が開始される(S13)。流体弁150の制御は、制御装置160の指令により流体弁150の開度を停止前の開度から上記の「初期開度」に変更することで行われる。
ここで、初期開度として、流体弁150がラジエータ110への冷却水を通流可能な「ラジ全開」を含む開度とした場合には、燃料電池100の停止時に、燃料電池100内の冷却水の自然放熱を促進することができる。また、上記のゼロ点調整を「ラジ全開」側で行う場合に、迅速に行うことができる。これに代えて、初期開度として、流体弁150がバイパス通路130への冷却水を通流可能な「バイパス全開」を含む開度としてもよい。こうすることで、ゼロ点調整を「バイパス全開」側で行う場合に、迅速に行うことができる。
あるいは、これらの開度に代えて、初期開度として、流体弁150がラジエータ110およびバイパス通路130への両方に冷媒を通流可能な開度としてもよい。その場合の両者の比率は適宜設定することができる。この開度とすることで、流体弁150の故障時に、発電中の燃料電池100の過冷却および過熱を抑制することができ、フェイルセーフを好適に達成することができる。また、ゼロ点調整を「ラジ全開」および「バイパス全開」のどちらにも迅速に行うことができる。流体弁150の初期開度が設定されると、この処理フローは終了する(S14;Yes)。
そして、燃料電池100の所定の停止時間後に、燃料電池100が再び始動するときには、冷却装置101は図10に示すフローに従って駆動される。つまり、流体弁150に着目すると、流体弁150は、燃料電池100の停止時に設定された「初期開度」からゼロ点調整の開度となり、その後「所定開度」へと変更される。
<第10実施形態>
次に、図12および図13を参照して、本発明の燃料電池システム1の冷却装置101の第10実施形態として、流体弁150の構成例について説明する。本実施形態の流体弁150は、弁の開度を電気制御的に調整可能なロータリバルブ500で構成されている。流体弁150をロータリバルブ500で構成することで、温度制御にセンシティブな燃料電池100に、適切に且つ精度良く対応することができる。
図12は、ロータリバルブ500の内部構造の要部を示している。ロータリバルブ500の弁部510は、ラジエータ110からの第二通路220、バイパス通路130、および燃料電池100に通じる第三通路230の合流点に位置している。ロータリバルブ500は、弁部510を回転させる駆動源となるステッピングモータ520と、ステッピングモータ520からの動力を弁部510に伝達する歯車列530,540と、弁部510の回転の終端位置を規制する位置規制機構550と、を有している。
弁部510は、第二通路220と第三通路230との間やバイパス通路130と第三通路230との間を可変に連通するための開口部570を周方向に有している。弁部510の上部中心部は、歯車列530,540のファイナルギア540の下面の中心部に、ロッド580を介して同軸連結されている。ロータリバルブ500は、弁部510が回転することで開口部570の位置が変動し、弁部510の回転が停止した開口部570の位置に対応した開度に設定される。
図13(A)は、「バイパス全開」のロータリバルブ500の状態を示しいる。この状態では、弁部510の開口部570がバイパス通路130に臨み、バイパス通路130と第三通路230とが連通されている。図13(B)は、「ラジ全開」のロータリバルブ500の状態を示している。この状態では、弁部510の開口部570がラジエータ110側の第二通路220に臨み、第二通路220と第三通路230とが連通されている。図13(C)は、弁部510の開口部570の半部がバイパス通路130に臨み且つ開口部570の残りの半部が第二通路220に臨んだ状態を示している。この状態では、バイパス通路130および第二通路220の両者が第三通路230に連通している。
ステッピングモータ520は、制御装置160に接続されており、正逆方向に駆動回転可能に構成されている。例えば、ステッピングモータ520が正方向に駆動回転すると、弁部510を正方向に回転させ、ロータリバルブ500の開度が「バイパス全開」側に移行される。一方、ステッピングモータ520が逆方向に駆動回転すると、弁部510を負方向に回転させ、ロータリバルブ500の開度が「ラジ全開」側に移行される。ステッピングモータ520のステップ数の制御により、弁部510の開口部570を目標とする位置(開度)に移動させることができる。
位置規制機構550は、ベース710と、ベース710に立設した二つのストッパ720,730と、ファイナルギア540に貫通形成された二つの規制溝740,750と、で構成されている。ベース710には、ロッド580を挿通させるための貫通孔が形成されている。二つの規制溝740,750は、ファイナルギア540の中心を挟んで対向して設けられ、この中心を曲率中心とする円弧の溝で構成されている。二つの規制溝740,750には、それぞれストッパ720,730が挿通されており、各ストッパ720,730は、各規制溝740,750内を摺動可能に構成されている。ストッパ720,730が規制溝740,750内の端に当接することで、弁部510の回転の終端位置が規制される。位置規制機構550は、ロータリバルブ500のゼロ点調整の際に機能する。
具体的には、「バイパス全開」側でゼロ点調整する際には、ステッピングモータ520を正方向に駆動回転させて、一方の規制溝740に挿通されたストッパ720をその規制溝740の端に突き当てる。これを所定時間維持することで、ゼロ点調整が完了する(図10のS2参照)。同様に、「ラジ全開」側でゼロ点調整する際には、ステッピングモータ520を逆方向に駆動回転させて、他方の規制溝750に挿通されたストッパ730をその規制溝750の端に突き当てる。これを所定時間維持することで、ゼロ点調整が完了する(同様に、図10のS2参照)。
なお、ゼロ点調整でリセットされる位置センサ(第8実施形態では位置センサ410)を図示省略したが、位置センサは、例えば光学式のロータリエンコーダで構成することができる。この場合には、ロータリエンコーダのスリット付き回転板をファイナルギア540と同軸に設け、回転板のスリットに臨んで受光素子および発光素子の光路を設け、これら両素子を制御装置160に接続すればよい。
<第11実施形態>
次に、図14を参照して、第11実施形態に係る燃料電池システム1の冷却装置101について説明する。図14は、燃料電池100の始動時における冷却装置101のタイムチャートの一例を示している。
図14に示す「キー操作」とは、燃料電池システム1を起動する操作手段の操作をいい、例えば燃料電池自動車を駆動させるためのキー操作をいう。「バルブ開度」は、流体弁150の開度を意味する。
本実施形態では、燃料電池100の停止時の流体弁150の開度(初期開度)は、「ラジ全開」に設定されている。燃料電池システム1を起動するためにキー操作されると、これに伴い流体弁150の制御として、流体弁150のゼロ点調整が「バイパス全開」側で行われる。流体弁150が第10実施形態のロータリバルブ500である場合には、ストッパ720(または730)の突き当てによりゼロ点調整が行われる。
ゼロ点調整が完了したかなど、燃料電池システム1のシステムチェック後に、燃料電池100の発電が開始されると共にこれと同期してポンプ140の駆動が開始される。すなわち、本実施形態では、流体弁150の上記の「所定開度」はバイパス全開となっている。このような構成により、燃料電池100の始動時に、その温度変化を好適に抑制することができるなど、上記実施形態(第8〜第10実施形態)で説明した効果を奏することができる。
<第12実施形態>
図15は、燃料電池システム1の冷却装置101の第12実施形態を示しており、第12実施形態は第11実施形態の変形例である。第11実施形態との相違点は、ポンプ140の駆動を開始するタイミングを第11実施形態よりも僅かに遅らせたことである。より詳細には、流体弁150のゼロ点調整が完了し、燃料電池100の発電が開始されて所定時間後に、ポンプ140が駆動を開始する。本実施形態は、ゼロ点調整に比較的時間を要する場合に有用となる。
<第13実施形態>
図16は、燃料電池システム1の冷却装置101の第13実施形態を示しており、第13実施形態は第11実施形態の変形例である。第11実施形態との相違点は、ポンプ140の駆動を開始するタイミングである。
具体的には、流体弁150を初期開度の「ラジ全開」から「バイパス全開」にゼロ点調整する途中で、ポンプ140の駆動を開始するが、ポンプ140の駆動を開始するタイミングは、流体弁150がラジエータ110側への冷却水の通流を遮断するときである。このタイミングは、例えば流体弁150が第10実施形態のロータリバルブ500である場合には、弁部510の開口部570がラジエータ110側の第二通路220から外れた位置に臨んだときである。
ポンプ140の駆動を開始するタイミングのとき、流体弁150の開度は、「バイパス全開」となる前の開度であり、バイパス通路130への冷却水の通流が可能な開度となる。そして、ポンプ140の駆動開始後に、流体弁150の開度は「バイパス全開」に移行し、ゼロ点調整が実行されると共に、燃料電池100の発電が開始される。
<第14実施形態>
図17は、燃料電池システム1の冷却装置101の第14実施形態を示しており、第14実施形態は第11実施形態の変形例である。第11実施形態との相違点は、流体弁150の「初期開度」として、流体弁150がラジエータ110およびバイパス通路130への両方に冷却水を通流可能な開度としたことである。例えば、第10実施形態のロータリバルブ500に適用した場合には、ロータリバルブ500の開度は図13(c)に示す状態となる。こうすることで、上述のように、「バイパス全開」へのゼロ点調整を迅速に行うことができる。
なお、本実施形態の「初期開度」は、ラジエータ110およびバイパス通路130への冷却水の通流について一方が他方よりも優先するなど、流体弁150の開度を適宜設計変更可能である。
<第15実施形態>
図18は、燃料電池システム1の冷却装置101の第15実施形態を示しており、第15実施形態は第11実施形態の変形例である。第11実施形態との相違点は、流体弁150の「初期開度」である。具体的には、「初期開度」として、「バイパス全開」となる前の開度であって、流体弁150がラジエータ110への冷却水の通流を遮断し且つバイパス通路130への冷却水の通流を可能な開度としている。こうすることで、「バイパス全開」へのゼロ点調整を第14実施形態の場合よりも迅速に行うことができる。
<第16実施形態>
次に、図19を参照して、第16実施形態に係る燃料電池システム1の冷却装置101について説明する。第8実施形態との相違点は、ポンプ140の位置を流体弁150の下流側の第三通路230上に変更したことと、サブラジエータとして第2のラジエータ910を設けたことである。
第2のラジエータ910は、上記したラジエータ110(以下、第1のラジエータという)と同様の構成からなり、制御装置160に接続されたファン920を併設している。第2のラジエータ910を介設した第2の循環通路940は、上流端を第一通路210に分岐接続され、その接続位置がバイパス通路130の上流側となっている。また、循環通路940の下流端は、第1のラジエータ110の下流側の第二通路220に分岐接続されている。
このような構成であっても、流体弁150が例えば「バイパス全開」などバイパス通路130側に切り替えられ、第1のラジエータ110側への冷却水の通流が遮断されると、冷却水は第1のラジエータ110および第2のラジエータ910を迂回して燃料電池100に供給される。一方、流体弁150が例えば「ラジ全開」など第1のラジエータ110側に切り替えられると、第1のラジエータ110で冷却された冷却水および第2のラジエータ910で冷却された冷却水が、流体弁150を通って燃料電池100に供給される。
本実施形態の燃料電池システム1の冷却装置101によっても同様に、燃料電池100の始動時に、その温度変化を好適に抑制することができる。また、燃料電池100の発電中には、二つのラジエータ110,910により、燃料電池100をより一層適切に冷却することができる。

Claims (41)

  1. 燃料電池に冷媒を循環供給する冷媒循環系を備えた燃料電池システムであって、
    前記冷媒循環系は、前記燃料電池と所定の温度差がある冷媒が前記燃料電池に流入するのを抑制する流動制御手段を有する燃料電池システム。
  2. 燃料電池に通流する冷媒を循環させて当該燃料電池を冷却すると共に、当該燃料電池を通流した冷媒の排熱により空調ラインの空調気体を加熱可能な燃料電池システムであって、
    冷媒を冷却する第1の熱交換器を有し、冷媒を前記燃料電池に循環させる冷却ラインと、
    冷媒を前記空調ラインの空調気体と熱交換する第2の熱交換器を有し、冷媒を前記燃料電池に循環させる排熱利用ラインと、
    前記冷却ラインおよび前記排熱利用ラインでの冷媒の流動を制御する流動制御手段と、を備え、
    前記流動制御手段は、前記冷却ラインでの冷媒の流動を開始した後で、前記排熱利用ラインでの冷媒の流動を開始する燃料電池システム。
  3. 前記空調ラインの空調気体の送風を実行するための指示をユーザが入力可能な入力手段を、更に備え、
    前記流動制御手段は、前記入力手段の入力結果に基づいて、前記冷却ラインおよび前記排熱利用ラインでの冷媒の流動を制御する請求項2に記載の燃料電池システム。
  4. 前記流動制御手段は、前記入力手段への入力があったときに、前記冷却ラインでの冷媒の流動を前記排熱利用ラインでの流動に優先して開始し、前記入力手段への入力がないときに、前記排熱利用ラインでの冷媒の流動を遮断して前記冷却ラインで冷媒を流動させる請求項3に記載の燃料電池システム。
  5. 前記流動制御手段は、前記燃料電池の始動時には、前記入力手段への入力がないときでも、前記冷却ラインでの冷媒の流動の開始後に前記排熱利用ラインでの冷媒の流動を開始して、前記排熱利用ラインで冷媒を所定時間だけ流動させる請求項4に記載の燃料電池システム。
  6. 前記流動制御手段は、前記燃料電池の始動時に、前記冷却ラインでの冷媒の流動を開始した後で、前記排熱利用ラインでの冷媒の流動を開始する請求項2ないし4のいずれか一項に記載の燃料電池システム。
  7. 前記燃料電池の停止から次の始動までの時間を計測するタイマ手段を更に備え、
    前記流動制御手段は、前記タイマ手段の計測結果に基づいて、前記燃料電池の始動時における前記排熱利用ラインでの冷媒の流動を開始する開始時間を可変する請求項6に記載の燃料電池システム。
  8. 冷媒の温度を検出する温度センサを更に備え、
    前記流動制御手段は、前記温度センサの検出結果に基づいて、前記燃料電池の始動時における前記排熱利用ラインでの冷媒の流動を開始する開始時間を可変する請求項6に記載の燃料電池システム。
  9. 前記流動制御手段は、前記燃料電池の間欠運転時に、前記冷却ラインおよび前記排熱利用ラインの少なくとも一方で冷媒を流動させる請求項2ないし4のいずれか一項に記載の燃料電池システム。
  10. 前記流動制御手段は、前記燃料電池の間欠運転時に、前記冷却ラインでの冷媒の流動を前記排熱利用ラインでの流動に優先して開始する請求項9に記載の燃料電池システム。
  11. 前記流動制御手段は、前記燃料電池の停止時に、前記排熱利用ラインでの流動を前記冷却ラインでの冷媒の流動に優先して停止する請求項2ないし4のいずれか一項に記載の燃料電池システム。
  12. 前記流動制御手段は、
    前記冷却ラインで冷媒を圧送する冷却側ポンプと、
    前記排熱利用ラインで冷媒を圧送する排熱利用側ポンプと、
    前記冷却側ポンプおよび前記排熱利用側ポンプの駆動を制御する制御手段と、を備え、
    前記制御手段は、前記冷却側ポンプの駆動を開始した後で、前記排熱利用側ポンプの駆動を開始する請求項2ないし11のいずれか一項に記載の燃料電池システム。
  13. 前記制御手段は、前記冷却側ポンプによる冷媒の流量が前記排熱利用側ポンプによる冷媒の流量よりも大きくなるように流量制御する請求項12に記載の燃料電池システム。
  14. 冷媒の温度を検出する温度センサを更に備え、
    前記制御手段は、前記温度センサの検出結果に基づいて、前記冷却側ポンプ及び前記排熱利用側ポンプの駆動を制御する請求項12又は13に記載の燃料電池システム。
  15. 前記排熱利用ラインは、前記燃料電池の冷媒出口側において前記冷却ラインとの分岐点及び合流点に接続されており、
    前記合流点より上流の前記冷却ラインに設けられ、当該合流点から前記燃料電池の冷媒出口への冷媒の流れを阻止する逆止弁を、更に備えた請求項12ないし14のいずれか一項に記載の燃料電池システム。
  16. 前記流動制御手段は、
    前記冷却ラインおよび前記排熱利用ラインで冷媒を圧送する単一のポンプと、
    前記ポンプの駆動を制御する制御手段と、を備え、
    前記冷却ラインでの流路抵抗は、当該冷却ラインの冷媒が前記排熱利用ラインの冷媒よりも優先して前記燃料電池に通流し始めるように、前記排熱利用ラインでの流路抵抗よりも低く設定されている請求項2ないし11のいずれか一項に記載の燃料電池システム。
  17. 前記流動制御手段は、
    前記冷却ラインおよび前記排熱利用ラインで冷媒を圧送する単一のポンプと、
    前記燃料電池に対して、前記冷却ラインおよび前記排熱利用ラインの冷媒の通流を切り替える切替え弁と、
    前記ポンプの駆動および前記切替え弁を制御する制御手段と、を備え、
    前記制御手段は、前記燃料電池に対して前記排熱利用ラインの冷媒の通流を開始する場合には、前記切替え弁を前記冷却ライン側に切り替えて、前記燃料電池に対して前記冷却ラインの冷媒の通流を開始する請求項2ないし11のいずれか一項に記載の燃料電池システム。
  18. 前記冷却ラインおよび前記排熱利用ラインには、前記燃料電池の冷媒入口側で冷媒を合流させるための合流点が構成されていると共に、前記燃料電池の冷媒出口側で冷媒を分岐させるための分岐点が構成されている請求項2ないし17のいずれか一項に記載の燃料電池システム。
  19. 燃料電池に通流する冷媒を循環させて当該燃料電池を冷却すると共に、当該燃料電池を通流した冷媒の排熱により空調ラインの空調気体を加熱可能な燃料電池システムであって、
    冷媒を冷却する第1の熱交換器を有し、冷媒を前記燃料電池に循環させる冷却ラインと、
    冷媒を前記空調ラインの空調気体と熱交換する第2の熱交換器を有し、冷媒を前記燃料電池に循環させる排熱利用ラインと、
    前記冷却ラインおよび前記排熱利用ラインでの冷媒の流動を制御する流動制御手段と、を備え、
    前記流動制御手段は、前記冷却ラインおよび前記排熱利用ラインの冷媒を合流させて前記燃料電池に通流する際に、前記排熱利用ラインよりも前記冷却ラインの冷媒の流量が大きくなるように流量制御する燃料電池システム。
  20. 燃料電池に通流する冷媒を循環させて当該燃料電池を冷却すると共に、当該燃料電池を通流した冷媒の排熱により空調ラインの空調気体を加熱可能な燃料電池システムであって、
    冷媒を冷却する第1の熱交換器を有し、冷媒を前記燃料電池に循環させる冷却ラインと、
    冷媒を前記空調ラインの空調気体と熱交換する第2の熱交換器を有し、前記燃料電池の冷媒入口側で前記冷却ラインに合流し且つ前記燃料電池の冷媒出口側で前記冷却ラインから分岐する排熱利用ラインと、
    前記燃料電池をバイパスして冷媒を流動させるバイパスラインと、
    前記冷却ライン、前記排熱利用ラインおよび前記バイパスラインでの冷媒の流動を制御する流動制御手段と、を備え、
    前記流動制御手段は、前記バイパスラインで冷媒を流動させて、前記冷却ラインおよび前記排熱利用ラインの冷媒を混合した後、前記バイパスラインでの冷媒の流動を遮断して前記燃料電池に冷媒を循環させる燃料電池システム。
  21. 冷媒を冷却する熱交換器と、
    前記熱交換器と燃料電池との間で冷媒をポンプにより循環させる循環通路と、
    前記熱交換器をバイパスして、前記循環通路の冷媒を前記燃料電池に供給するバイパス通路と、
    前記熱交換器および前記バイパス通路への冷媒の通流を設定する流体弁と、
    前記流体弁および前記ポンプを制御する制御手段と、を備え、
    前記制御手段は、前記燃料電池の始動時に、前記流体弁の開度を当該始動前の初期開度から所定開度に変更した後、前記ポンプの駆動を開始させる燃料電池の冷却装置。
  22. 冷媒の温度を検出する温度センサを更に備え、
    前記制御手段は、前記燃料電池の始動時に、前記温度センサの検出結果に基づいて前記流体弁を前記所定開度に設定する請求項21に記載の燃料電池の冷却装置。
  23. 前記温度センサは、前記循環通路および前記バイパス通路に亘って複数が設けられ、
    前記制御手段は、前記燃料電池の始動時に、前記複数の温度センサの検出結果に基づいて前記流体弁を前記所定開度に設定する請求項22に記載の燃料電池の冷却装置。
  24. 前記燃料電池における冷媒の温度を検出する第1の温度センサと、
    前記熱交換器における冷媒の温度を検出する第2の温度センサと、を更に備え、
    前記制御手段は、前記燃料電池の始動時に、前記第1の温度センサおよび前記第2の温度センサによる検出結果の温度差に基づいて、前記流体弁を前記所定開度に設定する請求項21に記載の燃料電池の冷却装置。
  25. 前記制御手段は、前記温度差が閾値以上のときに、前記流体弁の前記所定開度として、当該流体弁が前記熱交換器への冷媒の通流を遮断し且つ前記バイパス通路への冷媒を通流可能な開度に設定する請求項24に記載の燃料電池の冷却装置。
  26. 前記所定開度は、前記流体弁が前記バイパス通路側に対して全開状態となる開度であり、
    前記制御手段は、前記燃料電池の始動時に、前記流体弁を前記全開状態とするゼロ点調整後に、前記ポンプの駆動を開始させる請求項25に記載の燃料電池の冷却装置。
  27. 前記所定開度は、前記流体弁が少なくとも前記バイパス通路への冷媒を通流可能な開度である請求項21ないし23のいずれか一項に記載の燃料電池の冷却装置。
  28. 前記所定開度は、前記流体弁が前記熱交換器側に対して全閉状態となる開度である請求項27に記載の燃料電池の冷却装置。
  29. 前記所定開度は、前記流体弁が前記バイパス通路に対して全開状態となる開度であり、
    前記制御手段は、前記燃料電池の始動時に、前記流体弁を前記全開状態とするゼロ点調整後に、前記ポンプの駆動を開始させる請求項27または28に記載の燃料電池の冷却装置。
  30. 前記制御手段は、前記燃料電池の始動時に、前記初期開度の前記流体弁のゼロ点調整後に当該流体弁を前記所定開度に変更する請求項27に記載の燃料電池の冷却装置。
  31. 前記制御手段は、前記流体弁のゼロ点調整として、前記流体弁を前記バイパス通路側に対して全開状態にする請求項30に記載の燃料電池の冷却装置。
  32. 前記制御手段は、前記流体弁のゼロ点調整として、前記流体弁を前記熱交換器側に対して全開状態にする請求項30に記載の燃料電池の冷却装置。
  33. 前記初期開度は、前記流体弁が前記熱交換器への冷媒を通流可能な開度である請求項21ないし32のいずれか一項に記載の燃料電池の冷却装置。
  34. 前記初期開度は、前記流体弁が前記バイパス通路への冷媒を通流可能な開度である請求項21ないし32のいずれか一項に記載の燃料電池の冷却装置。
  35. 前記初期開度は、前記流体弁が前記熱交換器および前記バイパス通路への両方に冷媒を通流可能な開度である請求項21ないし32のいずれか一項に記載の燃料電池の冷却装置。
  36. 前記制御手段は、前記燃料電池の停止時に、前記流体弁を前記初期開度に設定する請求項21ないし35のいずれか一項に記載の燃料電池の冷却装置。
  37. 冷媒を冷却する熱交換器と、
    前記熱交換器と燃料電池との間で冷媒をポンプにより循環させる循環通路と、
    前記熱交換器をバイパスして、前記循環通路の冷媒を前記燃料電池に供給するバイパス通路と、
    前記熱交換器および前記バイパス通路への冷媒の通流を設定する流体弁と、
    前記流体弁および前記ポンプを制御する制御手段と、を備え、
    前記制御手段は、前記燃料電池の停止時に、前記ポンプの駆動を停止した後に前記流体弁を所定の初期開度に設定する燃料電池の冷却装置。
  38. 前記初期開度は、前記流体弁が前記熱交換器への冷媒を通流可能な開度である請求項37に記載の燃料電池の冷却装置。
  39. 前記制御手段は、前記燃料電池の始動時に、前記流体弁を前記初期開度から所定開度に変更した後、前記ポンプの駆動を開始させる請求項37または38に記載の燃料電池の冷却装置。
  40. 冷媒を冷却する熱交換器と、
    前記熱交換器と燃料電池との間で冷媒をポンプにより循環させる循環通路と、
    前記熱交換器をバイパスして、前記循環通路の冷媒を前記燃料電池に供給するバイパス通路と、
    前記熱交換器および前記バイパス通路への冷媒の通流を設定する流体弁と、
    前記流体弁および前記ポンプを制御する制御手段と、を備え、
    前記制御手段は、前記燃料電池の始動時に、前記ポンプの駆動の開始に優先して、前記流体弁をゼロ点調整すると共にこのゼロ点調整後の開度を所定開度に変更する燃料電池の冷却装置。
  41. 前記流体弁は、ロータリバルブである請求項21ないし40のいずれか一項に記載の燃料電池の冷却装置。
JP2006549015A 2004-12-15 2005-12-14 燃料電池システム Active JP4711193B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006549015A JP4711193B2 (ja) 2004-12-15 2005-12-14 燃料電池システム

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004363040 2004-12-15
JP2004363040 2004-12-15
JP2004370436 2004-12-22
JP2004370436 2004-12-22
JP2006549015A JP4711193B2 (ja) 2004-12-15 2005-12-14 燃料電池システム
PCT/JP2005/023422 WO2006064955A1 (ja) 2004-12-15 2005-12-14 燃料電池システム

Publications (2)

Publication Number Publication Date
JPWO2006064955A1 true JPWO2006064955A1 (ja) 2008-06-12
JP4711193B2 JP4711193B2 (ja) 2011-06-29

Family

ID=36587994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006549015A Active JP4711193B2 (ja) 2004-12-15 2005-12-14 燃料電池システム

Country Status (6)

Country Link
US (2) US8142946B2 (ja)
JP (1) JP4711193B2 (ja)
CN (1) CN101073176B (ja)
CA (1) CA2590842C (ja)
DE (1) DE112005003074B8 (ja)
WO (1) WO2006064955A1 (ja)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925217A (ja) * 1995-07-14 1997-01-28 Kanebo Ltd 粉体化粧料
JP4940877B2 (ja) * 2006-10-10 2012-05-30 トヨタ自動車株式会社 空調制御システム
JP5212882B2 (ja) * 2007-03-06 2013-06-19 トヨタ自動車株式会社 燃料電池システム及び燃料電池の冷却方法
US9328932B2 (en) 2007-06-27 2016-05-03 Racool, L.L.C. Building designs and heating and cooling systems
US10082317B2 (en) * 2007-06-27 2018-09-25 Racool, L.L.C. Building designs and heating and cooling systems
US10866014B2 (en) 2007-06-27 2020-12-15 Racool, L.L.C. Building designs and heating and cooling systems
JP4975535B2 (ja) * 2007-07-04 2012-07-11 エスペック株式会社 燃料電池システム、燃料電池システムの制御方法、燃料電池システム制御プログラム、該プログラムを記録したコンピュータ読み取り可能な記録媒体
JP4363476B2 (ja) 2007-10-01 2009-11-11 トヨタ自動車株式会社 燃料電池システム
JP5081603B2 (ja) * 2007-12-17 2012-11-28 本田技研工業株式会社 燃料電池システム
JP2009199940A (ja) * 2008-02-22 2009-09-03 Nissan Motor Co Ltd 燃料電池システム
US9711808B2 (en) 2008-03-24 2017-07-18 GM Global Technology Operations LLC Method for optimized execution of heating tasks in fuel cell vehicles
DE102008020903A1 (de) * 2008-04-18 2009-10-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Flüssigkeitskühlungsvorrichtung für eine Brennstoffzelleneinrichtung und Brennstoffzellensystem
US8117969B1 (en) * 2008-08-05 2012-02-21 Bnsf Railway Company Hydrogen fuel cell hybrid locomotives
KR20120051826A (ko) * 2010-11-15 2012-05-23 현대자동차주식회사 냉각수 폐열을 이용하는 연료전지 자동차의 난방시스템
EP2648256B1 (en) * 2010-11-30 2018-06-20 Kyocera Corporation Fuel cell system and operating method therefor
US9285140B2 (en) * 2011-06-20 2016-03-15 Melink Corporation Ground loop bypass for ground source heating or cooling
US10873094B2 (en) * 2011-09-02 2020-12-22 Nissan Motor Co., Ltd. Fuel cell system
FR2985382B1 (fr) * 2012-01-03 2015-03-13 Air Liquide Pile a combustible
US9537189B2 (en) 2012-06-11 2017-01-03 Siemens Aktiengesellschaft Temperature control system for a high-temperature battery or a high-temperature electrolyzer
US8522691B1 (en) * 2012-09-28 2013-09-03 Electro-Motive Diesel, Inc. Apparatus and method for supplemental cooling
DE102012021094A1 (de) * 2012-10-26 2014-04-30 Daimler Ag Ventileinrichtung für ein Brennstoffzellensystem
JP6065572B2 (ja) * 2012-12-18 2017-01-25 トヨタ自動車株式会社 燃料電池の冷却システム
DE102013011057B4 (de) 2013-07-02 2023-02-09 Cellcentric Gmbh & Co. Kg Kühlsystem für ein Brennstoffzellensystem
JP6256202B2 (ja) * 2014-05-29 2018-01-10 住友電気工業株式会社 電解液循環型電池
JP2016031776A (ja) * 2014-07-25 2016-03-07 本田技研工業株式会社 燃料電池システムの起動方法
KR101655579B1 (ko) * 2014-11-26 2016-09-07 현대자동차주식회사 연료전지 시스템의 냉각 펌프 제어 장치 및 그 방법
JP6323344B2 (ja) * 2015-01-21 2018-05-16 株式会社デンソー 燃料電池システム
DE102015202778A1 (de) * 2015-02-16 2016-08-18 Bayerische Motoren Werke Aktiengesellschaft Kühlsystem für mindestens eine Brennstoffzelle eines Brennstoffzellensystems sowie Verfahren zum Kühlen mindestens einer Brennstoffzelle
CN105644381A (zh) * 2015-12-23 2016-06-08 奇瑞汽车股份有限公司 一种电动汽车及其热管理系统
JP6766638B2 (ja) * 2016-12-26 2020-10-14 株式会社デンソー 燃料電池冷却システム
US10355290B2 (en) 2017-03-22 2019-07-16 Honeywell International Inc. High power fuel cell system
JP6788228B2 (ja) * 2017-03-31 2020-11-25 トヨタ自動車株式会社 燃料電池車両
JP6610622B2 (ja) * 2017-07-10 2019-11-27 トヨタ自動車株式会社 熱交換システムの制御装置
JP6627826B2 (ja) * 2017-07-10 2020-01-08 トヨタ自動車株式会社 熱交換システムの制御装置
JP6610621B2 (ja) * 2017-07-10 2019-11-27 トヨタ自動車株式会社 熱交換システムの制御装置
CN109263432B (zh) * 2017-07-14 2020-02-18 上海重塑能源科技有限公司 一种氢燃料电池车取暖设备及取暖控制方法
AT521086B1 (de) * 2018-03-28 2020-02-15 Avl List Gmbh Konditioniereinrichtung zur Regelung eines gasförmigen oder
JP7047740B2 (ja) * 2018-12-10 2022-04-05 トヨタ自動車株式会社 燃料電池車両の空調装置
JP7163897B2 (ja) * 2019-11-05 2022-11-01 トヨタ自動車株式会社 燃料電池システム
DE102020102718A1 (de) 2020-02-04 2021-08-05 Audi Aktiengesellschaft Brennstoffzellenvorrichtung mit einer dem Kühlmittelkreislauf zugeordneten und verstellbaren Lamellenstruktur, Verfahren zum Betreiben einer Brennstoffzellenvorrichtung sowie Brennstoffzellenfahrzeug
DE102021113063A1 (de) 2021-05-20 2022-11-24 Audi Aktiengesellschaft Kühlsystem und Verfahren zum Betreiben eines Kühlsystems
KR102550728B1 (ko) * 2021-07-01 2023-07-04 현대모비스 주식회사 연료전지 시스템에서 결함에 대처하기 위한 방법
KR20230015129A (ko) * 2021-07-22 2023-01-31 현대자동차주식회사 통합 연료전지 제어 시스템 및 이를 이용한 제어 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109637A (ja) * 2001-09-28 2003-04-11 Nissan Motor Co Ltd 燃料電池冷却装置及び燃料電池冷却装置の制御方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3539397A (en) 1967-05-23 1970-11-10 United Aircraft Corp Fuel cell with temperature control
JP3037666U (ja) * 1996-11-11 1997-05-20 大塚刷毛製造株式会社 ローラーブラシのハンドル
US6096448A (en) 1997-12-23 2000-08-01 Ballard Power Systems Inc. Method and apparatus for operating an electrochemical fuel cell with periodic fuel starvation at the anode
DE19931061A1 (de) 1999-07-01 2001-01-11 Mannesmann Ag Anordnung zum Beheizen/Kühlen einer Brennstoffzelle und Brennstoffzellensystem
JP2001167779A (ja) 1999-12-14 2001-06-22 Isuzu Motors Ltd 車両用燃料電池システム
JP2001315524A (ja) 2000-03-02 2001-11-13 Denso Corp 車両用空調装置
JP2002266640A (ja) 2001-03-09 2002-09-18 Aisin Seiki Co Ltd 車両用エンジン冷却装置
JP4867094B2 (ja) 2001-07-19 2012-02-01 トヨタ自動車株式会社 燃料電池システム
JP3776012B2 (ja) * 2001-07-26 2006-05-17 シャープ株式会社 電話機能内蔵携帯情報端末
JP3659213B2 (ja) 2001-10-30 2005-06-15 日産自動車株式会社 車両用冷却装置
JP4008335B2 (ja) 2002-11-06 2007-11-14 本田技研工業株式会社 燃料電池自動車の燃料電池冷却装置
JP2004247096A (ja) 2003-02-12 2004-09-02 Nissan Motor Co Ltd 燃料電池車両の冷却システム
US7368196B2 (en) * 2003-04-03 2008-05-06 General Motors Corporation Cold start pre-heater for a fuel cell system
CA2464224C (en) * 2003-04-15 2009-10-13 Honda Motor Co., Ltd. Apparatus for cooling fuel cell
JP2004345426A (ja) 2003-05-20 2004-12-09 Denso Corp 燃料電池車用空調装置
JP4929557B2 (ja) 2003-06-11 2012-05-09 トヨタ自動車株式会社 燃料電池システム
US6904762B2 (en) * 2003-10-14 2005-06-14 Ford Global Technologies, Llc Pump pressure limiting method
JP2005259470A (ja) 2004-03-10 2005-09-22 Toyota Motor Corp 燃料電池の冷却装置
JP5067707B2 (ja) 2007-05-31 2012-11-07 トヨタ自動車株式会社 燃料電池システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109637A (ja) * 2001-09-28 2003-04-11 Nissan Motor Co Ltd 燃料電池冷却装置及び燃料電池冷却装置の制御方法

Also Published As

Publication number Publication date
CA2590842C (en) 2011-02-15
CA2590842A1 (en) 2006-06-22
US8420270B2 (en) 2013-04-16
DE112005003074B4 (de) 2023-06-07
CN101073176B (zh) 2010-07-21
DE112005003074T5 (de) 2007-10-04
US20070298298A1 (en) 2007-12-27
US8142946B2 (en) 2012-03-27
CN101073176A (zh) 2007-11-14
WO2006064955A1 (ja) 2006-06-22
US20110195328A1 (en) 2011-08-11
DE112005003074B8 (de) 2023-07-27
JP4711193B2 (ja) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4711193B2 (ja) 燃料電池システム
US6383672B1 (en) Temperature regulator for fuel cell
JP4883225B2 (ja) 車両の冷却装置
CN108699945B (zh) 车辆用内燃机的冷却装置及控制方法
US9816429B2 (en) Cooling device for internal combustion engine and control method for cooling device
US11541721B2 (en) Vehicular heat management system
CN108138641B (zh) 车辆用内燃机的冷却装置、其所使用的控制装置及流量控制阀、控制方法
WO2007007775A1 (ja) エンジンの冷却装置
JP5463982B2 (ja) 冷媒回路調整装置
JP2010267471A (ja) 燃料電池システムの冷却水温制御装置
JP2011099400A (ja) 車両の冷却装置
JP5400570B2 (ja) 車両の空調装置
JP2008123697A (ja) 燃料電池システム
JP2011178365A (ja) 空調装置および空調制御方法
JP2014119206A (ja) ヒートポンプシステム
KR101240974B1 (ko) 바이패스 구조를 갖는 연료전지용 냉각수 가열장치를 구비한 연료전지 시스템
JP2015115306A (ja) 燃料電池システム
JP7471247B2 (ja) 流体循環式加熱システム
JP4034010B2 (ja) 車両用蓄熱システム
KR101836583B1 (ko) 연료전지차량의 가습기 승온시스템 및 그 제어방법
JP2004311229A (ja) 燃料電池システム
JP2013024188A (ja) エンジン冷却装置
KR20220168395A (ko) 전기 자동차의 난방 시스템
JP2013024187A (ja) エンジン冷却装置
JP2002067660A (ja) 車両用空調装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310

R151 Written notification of patent or utility model registration

Ref document number: 4711193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3