JPWO2005013374A1 - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
JPWO2005013374A1
JPWO2005013374A1 JP2005507407A JP2005507407A JPWO2005013374A1 JP WO2005013374 A1 JPWO2005013374 A1 JP WO2005013374A1 JP 2005507407 A JP2005507407 A JP 2005507407A JP 2005507407 A JP2005507407 A JP 2005507407A JP WO2005013374 A1 JPWO2005013374 A1 JP WO2005013374A1
Authority
JP
Japan
Prior art keywords
insulating film
semiconductor device
film
gate electrode
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005507407A
Other languages
English (en)
Inventor
中村 誠
誠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2005013374A1 publication Critical patent/JPWO2005013374A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28176Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本発明は、高誘電体材料からなるゲート絶縁膜を有する半導体装置の製造において、前記ゲート絶縁膜のエッチングの制御性を良好とすることを目的とする。 そのため、本発明ではSi基板上に素子が形成されてなる半導体装置の製造方法であって、前記Si基板上にZrまたはHfの酸化物を含む絶縁膜を形成する第1の工程と、前記絶縁膜上にゲート電極膜を形成する第2の工程と、前記ゲート電極膜をエッチングする第3の工程とを有し、前記第3の工程の後にハロゲンを含む処理ガス雰囲気中で前記絶縁膜を加熱処理する第4の工程と、前記加熱処理された前記絶縁膜を除去する第5の工程を有することを特徴とする半導体装置の製造方法を用いた。

Description

本発明は半導体装置および半導体装置の製造方法に係り、特には微細化高速半導体装置および当該微細化高速半導体装置の製造方法に関する。
今日の超高速半導体装置では、微細化プロセスの進歩とともに、0.1μm以下のゲート長を有する素子を形成することが可能になってきている。一般に微細化とともに半導体装置の動作速度は向上するが、このように非常に微細化された半導体装置では、ゲート絶縁膜の膜厚を、微細化によるゲート長の短縮に伴って、スケーリング則に従って減少させる必要がある。
例えば、従来の半導体装置の製造工程でゲート電極を形成する工程を図1A〜図1Dに手順を追って示す。
まず、図1Aに示す工程で、例えばSiからなる基板101上に、絶縁膜102を形成する。
次に、図1Bに示す工程で、前記絶縁膜102上に、例えば多結晶Siからなるゲート電極膜103が形成される。
次に、図1Cに示す工程で、前記ゲート電極膜103をエッチングしてゲート電極103aを形成し、図1Dに示す工程で前記絶縁膜102をエッチングしてゲート絶縁膜102aを形成する。
前記ゲート絶縁膜102aには、従来シリコン酸化膜(SiO膜)が用いられてきた。しかし、しかしゲート長L0が0.1μm以下になると、ゲート絶縁膜の厚さTH0が、SiOを使った場合、1〜2nm、あるいはそれ以下に設定する必要があるが、このように非常に薄いゲート絶縁膜ではトンネル電流が増大し、その結果ゲートリーク電流が増大する問題を回避することができない。
このような事情で、比誘電率がSiO膜のものよりもはるかに大きく、このため実際の膜厚が厚くてもSiO膜に換算した場合の膜厚が小さい高誘電体材料をゲート絶縁膜に対して適用することが提案されている。このような高誘電体材料を使うことにより、ゲート長が0.1μm以下と、非常に微細な超高速半導体装置においても2〜5nm程度の膜厚のゲート絶縁膜を使うことができ、トンネル効果によるゲートリーク電流を抑制することができる。
SIA,EECA,EIAJ,KSIA and TSIA,“International Technology Road Map for Semiconductors”in 2001 update
しかし、このような高誘電体材料は、従来のSiO膜と性質が異なり、そのために従来のエッチング方法をそのまま高誘電体材料のエッチングに適用することができない。
例えば、高誘電体膜をエッチングする際のエッチング速度が極端に遅くなって従来の方法ではエッチングが困難となる場合や、基板との充分なエッチング選択比を取ることが困難となり、エッチングの制御性が困難となる問題があった。
また、そのために必要とされるゲート絶縁膜の形状が得られず、半導体装置の性能を低下させてしまう場合があった。
本発明では、上記の問題を解決した新規で有用な半導体装置の製造方法、および半導体装置を提供することを課題としている。
本発明の具体的な課題は、高誘電体材料でゲート絶縁膜を形成する場合の、当該高誘電体材料のエッチングの制御性を良好とした半導体装置の製造方法を提供することである。
本発明の別の課題は、良好な形状の、高誘電体材料からなるゲート絶縁膜を有する半導体装置を提供することである。
本発明では上記の課題を、Si基板上に素子が形成されてなる半導体装置の製造方法であって、前記Si基板上にZrまたはHfの酸化物を含む絶縁膜を形成する第1の工程と、前記絶縁膜上にゲート電極膜を形成する第2の工程と、前記ゲート電極膜をエッチングする第3の工程とを有し、前記第3の工程の後にハロゲンを含む処理ガス雰囲気中で前記絶縁膜を加熱処理する第4の工程と、前記加熱処理された前記絶縁膜を除去する第5の工程を有することを特徴とする半導体装置の製造方法を用いて解決する。
本発明によれば、高誘電体材料であるZrまたはHfの酸化物を含む絶縁膜のエッチングの速度を向上させることで、高誘電体材料からなるゲート絶縁膜を形成する場合のエッチングの制御性が良好となる。
また、本発明では上記の課題を、Si基板上に素子が形成されてなる半導体装置の製造方法であって、前記Si基板上にZrまたはHfの酸化物を含む絶縁膜を形成する第1の工程と、前記絶縁膜上にゲート電極膜を形成する第2の工程と、
前記ゲート電極膜をエッチングする第3の工程とを有し、前記第3の工程の後にハロゲンを含む処理ガスのラジカルで前記絶縁膜を処理する第4の工程と、当該第4の工程で処理された前記絶縁膜を除去する第5の工程を有することを特徴とする半導体装置の製造方法を用いて解決する。
本発明によれば、高誘電体材料であるZrまたはHfの酸化物を含む絶縁膜のエッチングの速度を向上させることで、高誘電体材料からなるゲート絶縁膜を形成する場合のエッチングの制御性が良好となる。
また、本発明では上記の課題を、Si基板と、前記Si基板上の素子領域と、前記素子領域上に形成されたZrの酸化物、またはHfの酸化物を含むゲート絶縁膜と、前記ゲート絶縁膜上に形成されたゲート電極とを有する電界効果型トランジスタを含む半導体装置であって、前記素子領域の第1の側から第2の側に向かう方向で、前記ゲート絶縁膜の長さが、前記ゲート電極のゲート長より小さく、前記ゲート絶縁膜の第1の側の端部から、前記ゲート電極の前記第1の側の端部までの距離が、前記ゲート絶縁膜の膜厚と略同一であることを特徴とする半導体装置を提供することが可能となる。
また、本発明では上記の課題を、Si基板上に素子が形成されてなる半導体装置の製造方法であって、前記Si基板上に、AlまたはSiを含むHf酸化物またはHf酸窒化物を含む絶縁膜を形成する第1の工程と、前記絶縁膜上にゲート電極膜を形成する第2の工程と、前記ゲート電極膜をエッチングする第3の工程と、前記第3の工程の後に、前記Si基板を処理液で処理する第4の工程とを含み、前記第4の工程の前に、前記絶縁膜を前記第2の工程のゲート電極膜の形成温度以上の温度で加熱処理する熱処理工程を設けたことを特徴とする半導体装置の製造方法を用いて解決する。
本発明によれば、高誘電体材料である、AlまたはSiを含むHf酸化物またはHf酸窒化物を含む絶縁膜の熱処理を行うことで、高誘電体材料からなるゲート絶縁膜を形成する場合のエッチングの制御性が良好となる。
また、本発明では上記の課題を、Si基板と、前記Si基板上の素子領域と、前記素子領域上に形成された、AlまたはSiを含むHfの酸化物を含むゲート絶縁膜と、前記ゲート絶縁膜上に形成されたゲート電極とを有する電界効果型トランジスタを含む半導体装置であって、前記素子領域の第1の側から第2の側に向かう方向で、前記ゲート絶縁膜の長さが、前記ゲート電極のゲート長より小さく、前記ゲート絶縁膜の第1の側の端部から、前記ゲート電極の前記第1の側の端部までの距離が、前記ゲート絶縁膜の膜厚と略同一であることを特徴とする半導体装置を提供することが可能となる。
図1A〜図1Dは、従来の半導体装置の製造方法を示す図である。
図2A〜図2Cは、高誘電体材料からなるゲート絶縁膜を用いた半導体装置の製造方法を示す図(その1)である。
図3A〜図3Eは、高誘電体材料からなるゲート絶縁膜を用いた半導体装置の製造方法を示す図(その2)である。
図4は、図3A〜図3Eに示した方法と異なる方法を用いて形成した半導体装置の構成例である。
図5は、図3A〜図3Eの製造方法を用いて半導体素子が形成された、被処理基板の概要を模式的に示した図である。
図6A〜図6Kは、高誘電体材料からなるゲート絶縁膜を用いたCMOSを含む半導体装置の製造方法を示した図(その1)である。
図7は、図6A〜図6Kの製造方法により形成された半導体装置の一部拡大図である。
図8A〜図8Dは、高誘電体からなるゲート絶縁膜を用いた半導体装置の製造方法を示す図(その3)である。
図9A〜図9Eは、高誘電体膜のエッチング耐性を調べた結果を示す図である。
図10A〜図10Eは、高誘電体材料からなるゲート絶縁膜を用いた半導体装置の製造方法を示す図(その4)である。
図11A〜図11Eは、高誘電体からなるゲート絶縁膜を用いた半導体装置の製造方法を示す図(その5)である。
図12A〜図12Eは、高誘電体からなるゲート絶縁膜を用いた半導体装置の製造方法を示す図(その6)である。
図13A〜図13Kは、高誘電体からなるゲート絶縁膜を用いたCMOSを含む半導体装置の製造方法を示した図(その2)である。
図14は、図13A〜図13Kの製造方法により形成された半導体装置の一部拡大図である。
次に、本発明の実施の形態に関して図面に基づき、説明する。
[第1実施例]
図2A〜図2Cは、本発明の関連技術による、高誘電体をゲート絶縁膜に用いた半導体装置の製造方法を示す図である。
まず、図2Aに示す工程で、例えばSiからなる基板1の表面を前処理により、処理したあと、図示しない素子分離絶縁膜により分離された素子形成領域に、高誘電体材料、例えばHfOからなる絶縁膜2を形成する。
次に、図2Bに示す工程において、前記絶縁膜2上に、例えば多結晶Siからなるゲート電極膜3を形成する。この場合、多結晶Siを形成する温度は、600℃程度となる。さらに、多結晶Siをエッチングする際のハードマスクとなるシリコン酸化膜(SiO膜)からなるマスク膜4を成膜する。
次に、図2Cに示す工程において、前記ゲート電極膜3のエッチングを行う。エッチングは、まず、前記マスク膜4上に形成された、パターニングされたレジストをマスクに、当該マスク膜4のエッチングを行い、さらにエッチングされた当該マスク膜4をマスクにして、例えばBr系のガスを用いたRIE(反応性イオンエッチング)によって前記ゲート電極膜3のエッチングを行い、ゲート電極3aを形成する。
しかし、前記ゲート電極膜を形成する際に、前記絶縁膜2の温度が600℃程度となるために、当該絶縁膜2の結晶化が進行し、当該絶縁膜2のエッチングが困難となってしまう場合がある。
この場合、通常の例えばBrガスを用いたRIEではエッチング速度が極端に遅く、基板が露出すると基板のエッチングが早く進行してしまうという問題がある。また薬液(無機酸など)を用いたエッチング処理でも結晶化が進行した前記絶縁膜2のエッチング速度は極端に遅く、当該絶縁膜2をエッチングすることが困難になっていた。
そこで、次に、結晶化が進行した高誘電体膜をエッチングする方法を含む、本発明の第1実施例による半導体装置の製造方法を図3A〜図3Eに示す。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
まず、図3Aに示す工程で、例えばSiからなる基板1の表面を前処理により、処理した後、図示しない素子分離絶縁膜により分離された素子形成領域に、例えばALD法(Atomic Layer Deposition、ALCVD法と呼ぶ場合もある、原子層化学気相堆積法;原料ガスを断続的に、例えば複数の原料ガスを交互に供給することにより、分子層または原子層に近いレベルで高品質の成膜を行う方法)、もしくはMOCVD法(有機金属を用いた化学気相堆積法)によって高誘電体膜、例えばHfOを3nm形成する。
次に、図3Bに示す工程において、前記絶縁膜2上に、例えば多結晶Siからなるゲート電極膜3を100nm形成する。この場合、多結晶Siを形成する温度は、600〜650℃程度となる。さらに、多結晶Siをエッチングする際のハードマスクとなるシリコン酸化膜(SiO膜)からなるマスク膜4を50nm成膜する。
次に、図3Cに示す工程で、前記ゲート電極膜3のエッチングを行う。エッチングは、まず、前記マスク膜4上に形成された、パターニングされたレジストをマスクに、当該マスク膜4のエッチングを行い、さらにエッチングされた当該マスク膜4をマスクにして、例えばBr系のガスを用いたRIEによって前記ゲート電極膜3のエッチングを行い、ゲート電極3aを形成する。
次に、図3Dに示す工程で、前記基板1の近傍にハロゲンガス、例えばClを含むCClガスを導入し、例えばランプ加熱により当該基板1を好ましくは450℃〜500℃、例えば500℃で30分間加熱することで、前記基板1上に形成された金属酸化物が金属塩化物変化する反応、例えばHfOがHfClへと変化する反応が生じる。このように、HfOを、CCl雰囲気中で450℃〜500℃に加熱すると、HfClが形成されることが知られている。(化合物の辞典、高木進著、参照)。
また、このような変化は、前記絶縁膜2が、前記ゲート電極3aで覆われていない部分(裏面やベベルなどを含む)で、高誘電体膜、例えばHfOがハロゲンガスに曝される部分で、略選択的に生じる。
この場合、前記ゲート電極3aを保護するために、前記マスク膜4を通常の場合に比べて厚くする、または前記マスク膜4と前記ゲート電極3aの間にシリコン窒化膜(SiN膜)を形成すると、前記ゲート電極3aがハロゲンガスによって変質することを防止することが可能となり、好適である。
次に、図3Eに示す工程において、前記基板1を、例えば減圧下で320℃に加熱処理することにより、図3Dに示す工程において形成された金属塩化物、例えばHfClが昇華し、前記ゲート電極3aで覆われていない前記絶縁膜2が、略選択的に除去され、ゲート絶縁膜2aが形成される。また、HfClは、315℃以上で昇華することが知られているが、減圧下ではHfClの昇華が開始される温度が低くなるため、HfClを昇華させる場合は、減圧下で行うと好適である。
また、HfClは、加水分解するため、前記基板1を水、もしくは水を含む溶液などで処理することで、HfClを除去して、ゲート絶縁膜2aを形成することも可能である。
次に、このようにしてHfClを除去した後、前記基板1上に残留する、残留物を、dHF(希フッ酸)で処理することにより、除去して、ゲート電極の形成が完了する。前記基板1上には、例えば自然酸化膜が存在し、当該自然酸化膜中には、例えばHfとSiの反応層が存在する場合があるが、dHFにより、SiO換算で10nm程度エッチングすることにより、Si表面の残留物の濃度は10−10atoms/cm以下にすることができた。
また、前記図3Dに示した、金属酸化物を金属ハロゲン化物に変化させる反応は、ハロゲンガスに換えてハロゲンのラジカルやイオン、例えばClラジカルを基板近傍に供給して行うことも可能である。この場合、ラジカルを形成する方法として、例えばプラズマを用いる方法がある。例えば平行平板プラズマ、ECRプラズマ、またはICPなどを用いてハロゲンガスを解離し、例えばClラジカルを形成する方法がある。また、ラジカルを形成する方法はプラズマに限定されるものではなく、例えば光励起、または触媒を用いるなどの方法によってラジカルを形成することも可能である。
このようにして形成した、ハロゲンのラジカルを用いた場合にも、ハロゲンガス中で加熱処理した前記図3Dに示した工程を行った場合と同様の効果を得ることが可能である。
また、本実施例によって前記ゲート絶縁膜2aを形成する際は、前記ゲート電極3aで覆われていない前記絶縁膜2部分が、略選択的に除去される。しかし、ハロゲンの拡散があるため、ゲート絶縁膜2aの、前記ゲート電極3aで覆われた部分のうち、当該ゲート電極3aの端部付近が金属ハロゲン化物(例えばHfC)になり、その結果図3Eに示すように、僅かにエッチングされる。
そのため、前記ゲート電極3aのゲート長L1よりも、前記ゲート絶縁膜2aの前記ゲート長L1に平行な長さD1が僅かに小さくなる、すなわちアンダーカットが存在することになる。
この場合、前記ゲート電極3aの前記ゲート絶縁膜2aに接する側の端部から、前記ゲート絶縁膜2aの端部までの長さであるアンダーカットUC1は、前記ゲート絶縁膜2aの厚さTH1と略同一に抑制される。
また、他の方法を用いて前記絶縁膜2をエッチングした場合には、このように前記絶縁膜2aの形状が良好な形状とすることは困難である。
例えば、図3Dに示した工程において、イオン照射によって前記絶縁膜2を非晶質化して、当該前記絶縁膜2をエッチングする方法をとった場合、イオンが前記ゲート電極3aの端部付近に十分に照射されず、非晶質化されない前記絶縁膜2が存在してしまうため、例えば、図4に示すように、前記ゲート電極3aの端部にかけて前記ゲート絶縁膜2が残留してしまう問題が生じる場合がある。
また、塩素系のガスのプラズマを用いて、結晶化した前記絶縁膜2をRIEによって除去しようとすると、金属酸化膜からなる前記絶縁膜2より、エッチング耐性の小さいSi基板が大きくエッチングされてしまう問題が生じる。
本実施例ではこのような問題を解決し、前記アンダーカットUCを、前記ゲート絶縁膜2aの厚さTHと略同一に制御して、良好な形状の高誘電体からなるゲート絶縁膜を形成し、当該ゲート絶縁膜を用いることで、微細化された、高速度で動作する半導体装置を形成することが可能となる。
また、本実施例を用いることで、前記基板1のベベル部(基板周縁の端部)や、前記基板1の、素子が形成される面と反対側の裏面に形成された、高誘電体膜、例えばHfOを削除することが可能となる効果を奏する。
図5には、図3Eに示した工程における、前記基板1の全体を模式的に示した断面図を示す。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
図5を参照するに、図3A〜図3Dに示した工程によって、基板1上にはゲート絶縁膜2aおよび当該ゲート絶縁膜2a上にゲート電極3aが形成されている。また、実際は前記ゲート電極3aおよびゲート絶縁膜2aは微細にパターニングされているが、図中ではパターニングを省略して図示している。
前記基板1のベベル部1a(基板の周縁部の端部)や、前記基板1の裏面部1bには、図3Aに示した工程において、前記絶縁膜2が付着する。しかし、本実施例においては、前記絶縁膜2を、図3D〜図3Eに示す工程によって、除去することが可能である。
但し、その場合は、図3Bに示した工程において、前記絶縁膜2を覆うように、前記基板1のベベル部1aや、前記基板1の裏面部1bに付着した前記ゲート電極膜3、例えば多結晶Siを除去することが必要であり、その場合、例えば、前記基板をフッ硝酸(HF/HNO)によってウェット処理することで前記ゲート電極膜3を除去する方法が好適である。
また、他の方法で、例えば、図3Dに示した工程において、イオン照射によって前記絶縁膜2を非晶質化して、当該前記絶縁膜2をエッチングする方法をとった場合、イオンは直進性が強いために、前記べベル部1aや、裏面1bにイオンを照射することは困難であり、前記ベベル部1aや、裏面1bに付着した前記絶縁膜2を除去することは困難である。
このような前記ベベル部1aや、裏面1bに付着した前記絶縁膜2は、半導体装置の製造工程において、不純物として問題となる場合があるため、除去することが必要である。
本実施例においては、ハロゲンガス、またはハロゲンガスを解離したラジカルを用いているため、前記ベベル部1aや前記裏面1bに当該ハロゲンガスまたは当該ハロゲンのラジカルが到達し、金属酸化物を金属ハロゲン化物に変化させる反応を生じさせる効果を得ることができる。
そのため、除去することが困難であった基板のベベル部や裏面の、結晶化が進行した高誘電体膜を除去することが可能となった。そのため、高誘電体からなる膜をゲート絶縁膜に用いることが可能となり、微細化された、高速度で動作する半導体装置を製造することが可能となった。
また、本実施例中では、おもにゲート絶縁膜に用いる材料として、HfOを例にとって説明したが、他の金属酸化物、例えばZrOを用いた場合にも、本実施例中に記載した場合と同様の効果を得ることが可能である。また、金属酸化膜、例えばHfOやZrOは、膜中に窒素を含んでいてもよく、この場合、本実施例を同様に適用することができると共に、ゲート絶縁膜のバリア性が向上し、不純物の突き抜けを防止することが可能となる効果がある。
また、金属酸化物をハロゲン化物に変化させるためのハロゲンとしては、塩素を含むガス、例えばCClを例にとって実施例を記載したが、これに限定されるものではなく、他の塩素を含むガス、または塩素、さらには他のハロゲンガスとして、例えばF,Brなどを用いることも可能であり、本実施例に記載した場合と同様の効果を奏する。
[第2実施例]
次に、第1実施例に記載した方法を用いた、CMOSを含む半導体装置の製造方法を図6A〜6Kを用いて手順を追って説明する。
まず、図6Aに示す工程において、Siからなる基板11上に、素子分離絶縁膜12を、例えばSTI法、またはLOCOS法により複数形成して、P型不純物とN型不純物の注入をおこなって、例えば低濃度P型不純物拡散層からなる素子形成領域11Aと、低濃度N型不純物拡散層からなる素子形成領域11Bを形成する。
次に、図6Bに示す工程において、前記素子形成領域11Aおよび11B上に、前記ALD法、または前記MOCVD法により、高誘電体膜である金属酸化物膜、例えばHfOからなる絶縁膜13を3nm形成する。
次に、図6Cに示す工程において、前記絶縁膜13上に、例えば多結晶Siからなるゲート電極膜14を、例えばLPCVD法(Low Pressure CVD法、減圧化学気相堆積法)により、110nm形成する。
次に、図6Dに示す工程において、CVD法によって前記ゲート電極14上に、例えばシリコン酸化膜、またはシリコン窒化膜からなる、前記ゲート電極膜14をエッチングする際のハードマスクとなるマスク膜15を、例えば50nm堆積する。
次に、図6Eに示す工程において、前記マスク膜15上に、レジストを塗布し、フォトリソグラフィ法によってゲート電極形成のためのパターニングを施し、例えばCF系のガスによって、前記マスク膜15のパターニングを行い、さらに前記マスク膜15をハートマスクとして、例えばBr系のガスを用いたRIEによって前記ゲート電極膜14のパターニングを行って、ゲート電極14aを形成する。
また、RIEによるパターニング後には、薬液を用いたウェット処理を行った後にアッシングを行い、さらにアッシング後に、エッチング中の堆積物や残渣物などを除去するために、薬液を用いたウェット処理を行う。
次に、図6Fに示す工程において、まずマスク膜15を除去した後、図6Cに示した工程において、基板のベベル部や裏面、または基板のエッジ部に堆積した、多結晶Siからなるゲート電極膜14を、フッ硝酸(HF/HNO)によって選択的に除去する。
次に前記基板11を、真空排気が可能な処理容器に搬送する。そこで、減圧状態のCCl雰囲気とした当該処理容器内で、500℃にて30分加熱処理され、前記絶縁膜13が露出している部分、すなわち前記絶縁膜13が前記ゲート電極14aで覆われていない部分は略選択的に金属酸化物から金属ハロゲン化物、例えばHfOからHfClが形成される反応が生じる。また、HfOからHfClが形成される反応を生じさせるために、図3Dの説明で前記したように、ハロゲンのラジカルを用いても同様の効果を得ることができる。
次に、前記基板1を減圧下で、例えば320℃に加熱することにより、形成されたHfClを昇華させて除去し、ゲート絶縁膜13aを形成する。
また、HfClは、加水分解するため、前記基板11を水、もしくは水を含む溶液などで処理することで、HfClを除去して、ゲート絶縁膜13aを形成することも可能である。
また、図3Eに示したように、本実施例によって前記ゲート絶縁膜13aを形成する際は、前記ゲート電極14aで覆われていない前記絶縁膜13部分が、略選択的に除去されるが、ハロゲン化物の拡散によって、ゲート端部13の端部付近のHfOがHfClに変化するために、前記ゲート電極14aのゲート長L2よりも、前記ゲート絶縁膜13aの前記ゲート長L2に平行な長さD2が僅かに小さくなる。
また、本工程においては、図5に示したように、基板11のベベル部や裏面、さらにはエッジ部などに堆積した絶縁膜13を除去することが可能となり、本工程の後工程に対して、汚染物となることを防止して、半導体回路の汚染を防止した、信頼性の高い半導体装置を製造することを可能としている。
また、このようにして前記素子形成領域11Aと、素子形成領域11B上のHfOを除去する前に、例えば図6Bの工程の後の工程のいずれかにおいて、図6Fに示す工程と同様の処理を行って、基板11の裏面やベベル部、またはエッジのHfOの除去を行う工程を別に設けることも可能であり、その場合、基板11のベベル部や裏面、またはエッジ部などに堆積した絶縁膜13を除去して、半導体回路の汚染を防止した、信頼性の高い半導体装置を製造することを可能とする。
次に、図6Gに示す工程において、前記素子形成領域11BをレジストRbでマスクし、前記素子形成領域11Aに、N型不純物を注入して低濃度不純物拡散領域11aを形成する。
次に、同様にして図6Hに示す工程において、前記素子形成領域11AをレジストRaでマスクし、前記素子形成領域11Bに、N型不純物を注入して低濃度不純物拡散領域11bを形成する。
次に、図6Iに示す工程において、前記素子形成領域11A,11Bおよび前記ゲート電極14aを覆うように、CVD法によりシリコン酸化膜からなる絶縁膜を形成し、当該絶縁膜をエッチングして、側壁絶縁膜16を形成する。
次に、図6Jに示す工程において、図6G〜図6Hに示した工程と同様にして、前記素子形成領域11Aおよび11Bに、それぞれN型不純物およびP型不純物を注入する。その結果、前記素子形成領域11Aには、前記隔壁絶縁16の端部から前記素子分離絶縁膜12にかけて高濃度不純物拡散領域11dが、また、前記素子形成領域11Bには、前記隔壁絶縁16の端部から前記素子分離絶縁膜12にかけて高濃度不純物拡散領域11cが形成される。
次に、図6Kに示す工程において、前記素子形成領域11A,11Bおよび前記ゲート電極14aなどを覆うように、CVD法によって、例えばPSG(リンガラス)からなる絶縁膜17を堆積し、当該絶縁膜17中に、前記高濃度不純物拡散層11cおよび11dに電気的に接続する、バリア膜20に覆われた、例えばWからなるコンタクトプラグ19を形成する。
次に、前記コンタクトプラグ19に電気的に接続される配線層を形成する。前記絶縁膜17を覆うように、例えば、シリコン酸化膜、フッ素添加シリコン酸化膜、有機絶縁膜、多孔質絶縁膜などからなる層間絶縁膜層18を形成し、当該層間絶縁膜層18内に、前記コンタクトプラグ19に電気的に接続される、例えばCuまたはAlなどからなる、バリア膜22に覆われた配線層21を形成する。
さらに、このような層間絶縁膜や配線層を多層に形成して、半導体装置10を形成する。
また、ゲート絶縁膜13aの形状について、図6K中のX部の拡大図を、図7に示す。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
図7を参照するに、前記ゲート電極14aの、前記ゲート絶縁膜13aに接する側の端部Ed1から、前記ゲート絶縁膜13aの、前記ゲート電極14aに接する側の端部Ed2までの距離である、アンダーカットUC2は、前記ゲート絶縁膜13aの厚さTH2と略同一となる。
また、本実施例以外の方法を用いて前記絶縁膜2をエッチングした場合には、このように前記絶縁膜13aの形状を良好とするのは困難である。例えばイオン照射によって前記絶縁膜13を非晶質化して、当該前記絶縁膜13をエッチングする方法をとった場合、イオンが前記ゲート電極14aの端部付近に十分に照射されず、非晶質化されない前記絶縁膜13が存在してしまうため、前記ゲート電極14aの端部にかけて前記ゲート絶縁膜13が残留してしまう問題が生じる。
また、塩素系のガスやBr系のガスを用いて、結晶化した前記絶縁膜13をRIEによって除去しようとすると、金属酸化膜からなる前記絶縁膜13より、エッチング耐性の小さいSi基板が大きくエッチングされてしまう問題が生じる。
本実施例ではこのような問題を解決し、前記アンダーカットUC2は、前記ゲート絶縁膜13aの厚さTH2と同じ程度になり、良好な形状の高誘電体からなるゲート絶縁膜を形成し、微細化された、高速度で動作する半導体装置を形成することを可能としている。
[第3実施例]
また、図8A〜図8Cは、別の高誘電体材料をゲート絶縁膜に用いた、本発明の別の関連技術による半導体装置の製造方法を示す図である。
まず、図8Aに示す工程で、例えばSiからなる基板31の表面を前処理により、処理したあと、図示しない素子分離絶縁膜により分離された素子形成領域に、高誘電体材料、例えばAlを含むHfの酸化物(HfとAlとOを含む化合物)であるハフニウムアルミネートからなる絶縁膜32を形成する。
次に、図8Bに示す工程において、前記絶縁膜32上に、例えば多結晶Siからなるゲート電極膜33を形成する。この場合、多結晶Siを形成する温度は、600℃程度となる。さらに、多結晶Siをエッチングする際のハードマスクとなるシリコン酸化膜(SiO膜)からなるマスク膜34を成膜する。
次に、図8Cに示す工程において、前記ゲート電極膜33のエッチングを行う。エッチングは、まず、前記マスク膜34上に形成された、パターニングされたレジストをマスクに、当該マスク膜34のエッチングを行い、さらにエッチングされた当該マスク膜34をマスクにして、例えばBr系のガスを用いたRIE(反応性イオンエッチング)によって前記ゲート電極膜33のエッチングを行い、ゲート電極33aを形成する。
次に、図8Dに示す工程で、アッシングの後、例えばdHF(希フッ酸)とHSO(硫酸)およびH(過酸化水素水)の混合溶液からなる無機酸の薬液を用いたウェット処理を行い、RIEによるパターニングの際に、エッチング物が再付着して堆積した堆積物や、エッチング残渣物などを除去する。
しかし、ハフニウムアルミネートはこのような無機酸に対する耐性が弱いため、薬液処理によりエッチングされて、図8Dに示すように、前記ゲート電極33aのゲート長に対して、ゲート絶縁膜32aが大きくエッチングされる、いわゆるアンダーカットが大きくなってしまう問題が生じていた。
このような問題を解決するため、例えば前記絶縁膜32を熱処理して、薬液耐性を向上させる、すなわち薬液に対するエッチング速度を小さくする方法がある。
本発明の発明者は、高誘電体からなる絶縁膜、例えばハフニウムアルミネートからなる絶縁膜は、熱処理すると、当該絶縁膜の薬液耐性が向上する、すなわち薬液に対するエッチング速度が小さくなる傾向があることを見出した。これは、熱処理することによって、前記絶縁膜中の不純物が減少すると共に膜が緻密となって、薬液耐性が向上していることがその原因であると推察される。
図9A〜図9Dは、ALD法によって形成されたハフニウムアルミネート(Hf:Alが80:20の比)を、薬液でエッチングした場合の膜厚の変化を示したものである。図中、横軸にエッチング時間、縦軸にハフニウムアルミネートの膜厚を示してある。
また、図9A〜図9Dは、それぞれ、dHF、HSO(液温度110℃)、HSO(液温度130℃)、SPM(dHF、HSO、Hの混合液)によって、Si基板上に形成された、ハフニウムアルミネートがエッチングされる量を、膜厚で示したものである。
また、図9Aでは、ハフニウムアルミネートの熱処理無しでのエッチング量の測定結果を実験a1で、同様にハフニウムアルミネートの熱処理温度を700℃とした場合の結果を実験a2で、また同様にハフニウムアルミネートの熱処理温度を800℃とした場合の結果を実験a3でそれぞれ示している。
以下同様に、図9B〜図9Dにおいて、熱処理無しの結果をそれぞれ実験b1、c1およびd1で、熱処理温度700℃の結果をそれぞれ実験b2、c2およびd2で、さらに熱処理温度800℃の結果をそれぞれ実験b3、c3およびc4でそれぞれ示す。
図9A〜図9Dを参照するに、いずれの薬液を用いた場合も、ハフニウムアルミネートを熱処理することで、薬液によるエッチング量が小さくなって、ハフニウムアルミネートの薬液耐性が向上していることがわかる。特に、熱処理無しの条件から、熱処理温度700℃、さらに熱処理温度800℃と処理温度を上げるに従い、エッチング耐性が大きくなっていることがわかる。
このような性質を有する高誘電体膜からなる絶縁膜、例えばハフニウムアルミネートをゲート絶縁膜として用いる半導体装置を製造する場合には、当該絶縁膜を熱処理して用いると、薬液耐性が向上して好適である。
例えば、前記図8A〜8Dに示した半導体装置の製造方法において、図8Dに示した薬液処理の前に、前記絶縁膜32を、前記ゲート電極膜33が形成される場合の温度以上の温度で熱処理することにより、薬液耐性を向上させることが可能となる。この場合の熱処理温度は、例えば図8Bの工程において、多結晶Siを形成する場合の温度以上が好適であり、好ましくは700℃以上、より好ましくは800℃以上とするのがよい。
次に、例えば、このような熱処理を含む、本発明の第3実施例による半導体装置の製造方法を図10A〜図10Dに示す。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
まず、図10Aに示す工程で、例えばSiからなる基板31の表面を前処理により、処理した後、図示しない素子分離絶縁膜により分離された素子形成領域に、例えばALD法、もしくはMOCVD法によって高誘電体膜、例えばハフニウムアルミネート(Hf:Alが80:20の比)からなる絶縁膜32を3nm形成する。
次に、図10Bに示す工程において、例えばランプ加熱により、前記絶縁膜32が形成された前記基板31を、窒素雰囲気中で、800℃で10分間保持し、前記絶縁膜32の熱処理を行い、当該絶縁膜32の薬液耐性を向上させる。また、この場合、熱処理の前に前記絶縁膜32の表面を窒化してもよい。
次に、図10Cに示す工程において、前記絶縁膜32上に、例えば多結晶Siからなるゲート電極膜33を100nm形成する。この場合、多結晶Siを形成する温度は、600℃程度となる。さらに、多結晶Siをエッチングする際のハードマスクとなるシリコン酸化膜(SiO膜)からなるマスク膜34を30nm成膜する。この場合、前記ゲート電極膜33を形成する前に、窒化シリコン膜からなる層を形成してもよい。
次に、図10Dに示す工程で、前記ゲート電極膜33のエッチングを行う。エッチングは、まず、前記マスク膜34上に形成された、パターニングされたレジストをマスクに、当該マスク膜34のエッチングを行い、さらにエッチングされた当該マスク膜34をマスクにして、例えばHBr系のガスを用いたRIEによって前記ゲート電極膜33のエッチングを行い、ゲート電極33aを形成する。
次に、アッシングを行い、さらにdHFとHSOとHの混合溶液によるウェット処理によって、RIEによるパターニングの際に、エッチング物が再付着して堆積した堆積物や、エッチング残渣物などを除去する。
この場合、熱処理によってハフニウムアルミネートの薬液耐性が向上しているため、当該ウェット処理で、図8Dに示した工程でみられたような大きなアンダーカットが形成されることがなく、当該ウェット処理で前記絶縁膜32がエッチングされる量はごく僅かとなる。
次に、図10Eに示す工程において、135℃の濃硫酸処理を30分行い、さらに濃度2%の気フッ化水素水に15秒間浸漬することにより、前記ゲート電極33で覆われていない部分のハフニウムアルミネートからなる前記絶縁膜32を略選択的にエッチングすることができる。当該ハフニウムアルミネートは、熱処理により薬液耐性が向上しているが、前記10Dに示す工程に比べて薬液温度を上げること、また長時間浸漬することにより、ハフニウムアルミネートを完全に除去することができる。
また、この場合ハフニウムアルミネートのエッチングレートが小さくなっているため、エッチングの制御性が良好となる効果がある。例えば、薬液耐性が弱く、エッチングレートが大きい場合は適正なエッチング量でエッチングを停止することが困難であり、前記したようなアンダーカット量が大きくなったり、また逆にエッチング残渣が大きくなってしまう場合がある。また、基板の面内で、例えば前記絶縁膜32の膜質や膜厚が異なった場合、エッチングレートが大きいと、基板面内でのエッチング量の差が大きくなってしまう。
本実施例ではこのような問題を解決し、適切なエッチング量に制御することを容易とし、また基板面内でのゲート絶縁膜のエッチング量の差を小さくすることが可能となる。
また、本実施例によれば、前記ゲート電極33aのゲート長L3よりも、前記ゲート絶縁膜32aの、前記ゲート長L3に平行な長さD3が僅かに小さくなるが、この形状については図14で後述する。
[第4実施例]
また、図10A〜図10Eに示した第3実施例は、図11A〜図11Eに示す第4実施例のように変形することも可能であり、第3実施例の場合と同様の効果を奏する。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
まず、図11Aに示す工程において、例えばSiからなる基板31の表面を前処理により、処理した後、図示しない素子分離絶縁膜により分離された素子形成領域に、例えばALD法、もしくはMOCVD法によって高誘電体膜、例えばハフニウムアルミネート(Hf:Alが80:20の比)からなる絶縁膜32を3nm形成する。
次に、前記絶縁膜32上に、例えば多結晶Siからなるゲート電極膜33を100nm形成する。この場合、多結晶Siを形成する温度は、600℃程度となる。また、この場合、前記ゲート電極膜33を形成する前に前記絶縁膜32の表面を窒化してもよい。
次に、図11Bに示す工程において、例えばランプ加熱により、前記絶縁膜32が形成された前記基板31を、窒素雰囲気中で、800℃で10分間保持し、前記絶縁膜32の熱処理を行い、当該絶縁膜32の薬液耐性を向上させる。
次に図11Cの工程において、前記ゲート電極膜33上に、多結晶Siをエッチングする際のハードマスクとなるシリコン酸化膜(SiO膜)からなるマスク膜34を30nm成膜する。この場合、必要に応じて当該マスク膜34上に反射防止膜を形成してもよい。
図11Dおよび図11Eに示す工程は、図10Dおよび図10Eに示した工程と同一である。
本実施例の場合、例えば前記絶縁膜32の形成から前記ゲート電極膜33まで連続的に行われるため、第5実施例の場合に比べて前記ゲート電極膜33の表面が清浄に保持されるという効果を奏する。
通常、前記絶縁膜32の形成を行う処理装置と、熱処理を行う処理装置は異なるため、例えば前記絶縁膜32が露出した状態で基板を処理装置間で搬送すると、当該絶縁膜32の表面が汚染される恐れがある。また、熱処理の際も前記絶縁膜32の表面の汚染が危惧される。
本実施例では、前記絶縁膜32を形成した後、連続的に前記ゲート電極膜33を形成するため、前記絶縁膜32の表面が保護されるため、このような、前記絶縁膜32の表面の汚染を防止することが可能となっている。
[第5実施例]
また、図10A〜図10Eに示した第3実施例は、図12A〜図12Eに示す第5実施例のように変形することも可能であり、第3実施例の場合と同様の効果を奏する。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
図12A〜図12Cに示した工程は図11A〜図11Cに示した工程と同一である。本実施例の場合、図12Dに示した工程において、まず図10Dに示した工程と同様の工程で処理した後、さらに、例えばNプラズマなど、プラズマ励起を行うことで生成されるイオンにより、前記絶縁膜32にイオン衝撃を与える処理を追加している。イオン衝撃を与えられた前記絶縁膜32は、よりエッチングされやすくなり、次の図12Eに示す前記絶縁膜32のエッチング工程がより容易になる。
次に、図12Eに示す工程において、135℃の濃硫酸処理を3分行い、さらに濃度2%の気フッ化水素水に15秒間浸漬することにより、前記ゲート電極33で覆われていない部分のハフニウムアルミネートからなる前記絶縁膜32を、略選択的にエッチングすることができる。
前記絶縁膜32は、熱処理により一旦薬液耐性が向上するが、図12Dに示した工程でプラズマ照射をすることで薬液によるエッチングが容易となり、処理効率が向上する効果を奏する。
本工程では図10Eまたは図11Eに示した工程と比べた場合、濃硫酸処理に必要な時間が1/10に短縮されている。
また、第3実施例〜第5実施例については、前記ゲート絶縁膜32として、おもにハフニウムアルミネート(HfとAlとOの化合物)を用いた場合について示したが、本発明によるゲート絶縁膜の材料は、これに限定されるものではない。例えば、実施例中でゲート絶縁膜32としてハフニウムシリケート(Siを含むHfの酸化物、またはHfとSiとOの化合物)を用いた場合にも、第3〜第5実施例に記載した場合と同様の効果を奏する。
また、ハフニウムアルミネート、ハフニウムシリケートはそれぞれ窒素を含んでいても良く、また、ハフニウムアルミネートとハフニウムシリケートを積層した構造をゲート絶縁膜として用いてもよい。
またハフニウムアルミネートとハフニウムシリケートのいずれか、または双方が窒素を含み、それらを積層した構造をゲート絶縁膜に用いた場合にも、第3実施例〜第5実施例に記載した場合と、同様の効果を得ることが可能である。
[第6実施例]
次に、例えば、第4実施例に記載した方法を用いた、CMOSを含む半導体装置の製造方法を、図13A〜13Kを用いて手順を追って説明する。
まず、図13Aに示す工程において、Siからなる基板51上に、素子分離絶縁膜52を、例えばSTI法、またはLOCOS法により複数形成して、P型不純物とN型不純物の注入をおこなって、例えば低濃度P型不純物拡散層からなる素子形成領域51Aと、低濃度N型不純物拡散層からなる素子形成領域51Bを形成する。
次に、図13Bに示す工程において、前記素子形成領域51Aおよび51B上に、前記ALD法、または前記MOCVD法により、高誘電体膜である、例えばハフニウムアルミネートからなる絶縁膜53を3nm形成する。
次に、図13Cに示す工程において、前記絶縁膜53上に、例えば多結晶Siからなるゲート電極膜54を、例えばLPCVD法(Low Pressure CVD法、減圧化学気相堆積法)により、100nm形成する。
次に、例えばランプ加熱により前記基板11を、窒素雰囲気中で、800℃で10分間保持し、前記絶縁膜53の熱処理を行い、当該絶縁膜53を、薬液耐性を向上させた絶縁膜とする。また、この熱処理工程は、第5実施例に記載したように、図13Bに示す工程の直後に行うことも可能である。
次に、図13Dに示す工程において、CVD法によって前記ゲート電極膜54上に、例えばシリコン酸化膜、またはシリコン窒化膜からなる、前記ゲート電極膜54をエッチングする際のハードマスクとなるマスク膜55を、例えば30nm堆積する。
次に、図13Eに示す工程において、前記マスク膜55上に、レジストを塗布し、フォトリソグラフィ法によってゲート電極形成のためのパターニングを施し、例えばCF系のガスによって、前記マスク膜55のパターニングを行い、さらに前記マスク膜55をハートマスクとして、例えばHBr系のガスを用いたRIEによって前記ゲート電極膜54のパターニングを行って、ゲート電極54aを形成する。
次に、アッシングを行い、さらにdHFおよびHSOとHの混合溶液によるウェット処理によって、RIEによるパターニングの際に、エッチング物が再付着して堆積した堆積物や、エッチング残渣物などを除去する。
この場合、熱処理によってハフニウムアルミネートの薬液耐性が向上しているため、当該ウェット処理で、大きなアンダーカットが形成されることがなく、当該ウェット処理で前記絶縁膜53がエッチングされる量はごく僅かとなる。
次に、図13Fに示す工程において、135℃の濃硫酸処理を30分行い、さらに濃度2%の気フッ化水素水に15秒間浸漬することにより、前記ゲート電極14aで覆われていない部分のハフニウムアルミネートからなる前記絶縁膜53を略選択的にエッチングすることができる。当該ハフニウムアルミネートは、熱処理により薬液耐性が向上しているが、前記13Eに示す工程に比べて薬液温度を上げること、また長時間浸漬することにより、ハフニウムアルミネートを完全に除去することができる。
また、本工程の前に、図12Dに示したように、プラズマ照射によって、前記絶縁膜53にイオン衝撃を与えることで、本工程でのウエットエッチング時間を短縮することも可能である。
また、本実施例の場合、前記ゲート電極14aのゲート長L2より、前記ゲート絶縁膜13aの前記ゲート長L2に平行な長さD2が僅かに小さくなる。
次に、図13Gに示す工程において、前記素子形成領域51BをレジストRBでマスクし、前記素子形成領域51Aに、N型不純物を注入して低濃度不純物拡散領域51aを形成する。
次に、同様にして図13Hに示す工程において、前記素子形成領域51AをレジストRAでマスクし、前記素子形成領域51Bに、N型不純物を注入して低濃度不純物拡散領域51bを形成する。
このように、図13G〜13Hの工程においては、レジストを用い、またレジストを剥離する場合には、薬液が用いられるが、本実施例の場合には絶縁膜53を熱処理することで薬液耐性が向上しているため、薬液によってゲート絶縁膜53aがエッチングされる量はごく僅かとなる。
例えば、本実施例に示すようにCMOSを形成する場合には、P型不純物の注入およびN型不純物の注入をそれぞれ行う必要があり、レジストを剥離する回数が2倍になるため、薬液耐性に優れたゲート絶縁膜を用いた本実施例は、ゲート絶縁膜の形状を保持するのに特に有効な方法である。
次に、図13Iに示す工程において、前記素子形成領域51A,51Bおよび前記ゲート電極54aを覆うように、CVD法によりシリコン酸化膜からなる絶縁膜を形成し、当該絶縁膜をエッチングして、側壁絶縁膜56を形成する。
次に、図13Jに示す工程において、図13G〜図13Hに示した工程と同様にして、前記素子形成領域51Aおよび51Bに、それぞれN型不純物およびP型不純物を注入する。その結果、前記素子形成領域51Aには、前記隔壁絶縁56の端部から前記素子分離絶縁膜52にかけて高濃度不純物拡散領域51dが、また、前記素子形成領域51Bには、前記隔壁絶縁56の端部から前記素子分離絶縁膜52にかけて高濃度不純物拡散領域51cが形成される。
また、本工程においてもレジストを薬液によって剥離する工程があり、CMOSの場合は、型不純物の注入およびN型不純物の注入をそれぞれ行う必要があり、レジストを剥離する回数が2倍になるため、薬液耐性に優れたゲート絶縁膜を用いた本実施例は特に有効な方法である。
次に、図6Kに示す工程において、前記素子形成領域51A,51Bおよび前記ゲート電極54aなどを覆うように、CVD法によって、例えばPSG(リンガラス)からなる絶縁膜57を堆積し、当該絶縁膜57中に、前記高濃度不純物拡散層51cおよび51dに電気的に接続する、バリア膜60に覆われた、例えばWからなるコンタクトプラグ59を形成する。
次に、前記コンタクトプラグ59に電気的に接続される配線層を形成する。前記絶縁膜57を覆うように、例えば、シリコン酸化膜、フッ素添加シリコン酸化膜、有機絶縁膜、多孔質絶縁膜などからなる層間絶縁膜層58を形成し、当該層間絶縁膜層58内に、前記コンタクトプラグ59に電気的に接続される、例えばCuまたはAlなどからなる、バリア膜62に覆われた配線層61を形成する。
さらに、このような層間絶縁膜や配線層を多層に形成して、半導体装置50を形成する。
また、ゲート絶縁膜53aの形状について、図13K中のY部の拡大図を、図14に示す。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
図14を参照するに、前記ゲート電極54aの、前記ゲート絶縁膜53aに接する側の端部Ed3から、前記ゲート絶縁膜の、前記ゲート電極54aに接する側の端部Ed4までの距離である、アンダーカットUC4は、前記ゲート絶縁膜13aの厚さTH4と略同一程度に抑制されている。
本実施例では、前記ゲート絶縁膜53aを熱処理することで、例えばエッチングの後処理や、レジスト剥離に用いる薬液の耐性を向上させて、前記ゲート絶縁膜13aが過剰にエッチングされ、過大なアンダーカットが形成されることを防止している。
そのため、前記半導体装置50の、前記ゲート絶縁膜53aの形状不良に起因する動作の不具合を防止し、高誘電体膜をゲート絶縁膜に用いることを可能としたため、微細化され、高速度で動作する、高性能の半導体装置を提供することが可能となった。
以上、本発明を好ましい実施例について説明したが、本発明は上記の特定の実施例に限定されるものではなく、特許請求の範囲に記載した要旨内において様々な変形・変更が可能である。
本発明によれば、高誘電体材料からなるゲート絶縁膜を有する半導体装置の製造において、前記ゲート絶縁膜のエッチングの制御性を良好とすることが可能となった。
また、良好な形状の高誘電体のゲート絶縁膜を有する半導体装置を提供することが可能となった。

Claims (20)

  1. Si基板上に素子が形成されてなる半導体装置の製造方法であって、
    前記Si基板上にZrまたはHfの酸化物を含む絶縁膜を形成する第1の工程と、
    前記絶縁膜上にゲート電極膜を形成する第2の工程と、
    前記ゲート電極膜をエッチングする第3の工程とを有し、
    前記第3の工程の後にハロゲンを含む処理ガス雰囲気中で前記絶縁膜を加熱処理する第4の工程と、前記加熱処理された前記絶縁膜を除去する第5の工程を有することを特徴とする半導体装置の製造方法。
  2. 前記第4の工程では、ZrまたはHfのハロゲン化物が形成されることを特徴とする請求項1記載の半導体装置の製造方法。
  3. 前記第5の工程では、加熱により前記ハロゲン化物を除去することを特徴とする請求項2記載の半導体装置の製造方法。
  4. 前記第5の工程では、加水分解により前記ハロゲン化物を除去することを特徴とする請求項2記載の半導体装置の製造方法。
  5. 前記ゲート電極膜は多結晶Siからなることを特徴とする請求項1記載の半導体装置の製造方法。
  6. 前記ハロゲンはClであることを特徴とする請求項1記載の半導体装置の製造方法。
  7. 前記第4の工程の前記加熱処理の処理温度は400℃〜550℃であることを特徴とする請求項1記載の半導体装置の製造方法。
  8. Si基板上に素子が形成されてなる半導体装置の製造方法であって、
    前記Si基板上にZrまたはHfの酸化物を含む絶縁膜を形成する第1の工程と、
    前記絶縁膜上にゲート電極膜を形成する第2の工程と、
    前記ゲート電極膜をエッチングする第3の工程とを有し、
    前記第3の工程の後にハロゲンを含む処理ガスのラジカルで前記絶縁膜を処理する第4の工程と、当該第4の工程で処理された前記絶縁膜を除去する第5の工程を有することを特徴とする半導体装置の製造方法。
  9. 前記第4の工程では、ZrまたはHfのハロゲン化物が形成されることを特徴とする請求項8記載の半導体装置の製造方法。
  10. Si基板と、
    前記Si基板上の素子領域と、
    前記素子領域上に形成されたZrの酸化物、またはHfの酸化物を含むゲート絶縁膜と、
    前記ゲート絶縁膜上に形成されたゲート電極とを有する電界効果型トランジスタを含む半導体装置であって、
    前記素子領域の第1の側から第2の側に向かう方向で、前記ゲート絶縁膜の長さが、前記ゲート電極のゲート長より小さく、前記ゲート絶縁膜の第1の側の端部から、前記ゲート電極の前記第1の側の端部までの距離が、前記ゲート絶縁膜の膜厚と略同一であることを特徴とする半導体装置。
  11. Si基板上に素子が形成されてなる半導体装置の製造方法であって、
    前記Si基板上に、AlまたはSiを含むHf酸化物を含む絶縁膜を形成する第1の工程と、
    前記絶縁膜上にゲート電極膜を形成する第2の工程と、
    前記ゲート電極膜をエッチングする第3の工程と、
    前記第3の工程の後に、前記Si基板を処理液で処理する第4の工程とを含み、
    前記第4の工程の前に、前記絶縁膜を前記第2の工程のゲート電極膜の形成温度以上の温度で加熱処理する熱処理工程を設けたことを特徴とする半導体装置の製造方法。
  12. 前記温度は800℃以上であることを特徴とする請求項11記載の半導体装置の製造方法。
  13. 前記処理液は、HF、H、HSOのいずれかを含むことを特徴とする請求項11記載の半導体装置の製造方法。
  14. 前記第4の工程の後に、前記絶縁膜をエッチングする工程を有することを特徴とする請求項11記載の半導体装置の製造方法。
  15. 前記エッチングは、ウェットエッチング処理によって行われることを特徴とする請求項14記載の半導体装置の製造方法。
  16. 前記エッチングは、プラズマを用いたドライエッチング処理によって行われることを特徴とする請求項14記載の半導体装置の製造方法。
  17. 前記ゲート電極膜は、多結晶Siからなることを特徴とする請求項11記載の半導体装置の製造方法。
  18. 前記熱処理工程は、前記第1の工程と前記第2の工程の間に行われることを特徴とする請求項11記載の半導体装置の製造方法。
  19. 前記熱処理工程は、前記第2の工程の後に行われることを特徴とする請求項11記載の半導体装置の製造方法。
  20. Si基板と、
    前記Si基板上の素子領域と、
    前記素子領域上に形成された、AlまたはSiを含むHfの酸化物を含むゲート絶縁膜と、
    前記ゲート絶縁膜上に形成されたゲート電極とを有する電界効果型トランジスタを含む半導体装置であって、
    前記素子領域の第1の側から第2の側に向かう方向で、前記ゲート絶縁膜の長さが、前記ゲート電極のゲート長より小さく、前記ゲート絶縁膜の第1の側の端部から、前記ゲート電極の前記第1の側の端部までの距離が、前記ゲート絶縁膜の膜厚と略同一であることを特徴とする半導体装置。
JP2005507407A 2003-08-05 2003-08-05 半導体装置および半導体装置の製造方法 Pending JPWO2005013374A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/009927 WO2005013374A1 (ja) 2003-08-05 2003-08-05 半導体装置および半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JPWO2005013374A1 true JPWO2005013374A1 (ja) 2006-09-28

Family

ID=34113495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005507407A Pending JPWO2005013374A1 (ja) 2003-08-05 2003-08-05 半導体装置および半導体装置の製造方法

Country Status (3)

Country Link
US (1) US7732347B2 (ja)
JP (1) JPWO2005013374A1 (ja)
WO (1) WO2005013374A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070063277A1 (en) * 2005-09-22 2007-03-22 International Business Machines Corporation Multiple low and high k gate oxides on single gate for lower miller capacitance and improved drive current
KR100693789B1 (ko) * 2005-10-18 2007-03-12 주식회사 하이닉스반도체 반도체 소자의 제조방법
JP2008078580A (ja) * 2006-09-25 2008-04-03 Toshiba Corp 半導体装置の製造方法
JP4902888B2 (ja) * 2009-07-17 2012-03-21 パナソニック株式会社 半導体装置およびその製造方法
JP2011100822A (ja) * 2009-11-05 2011-05-19 Hitachi High-Technologies Corp 半導体素子加工方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931716A (ja) * 1972-07-24 1974-03-22
JPH01283936A (ja) * 1988-05-11 1989-11-15 Hitachi Ltd 表面処理方法および装置
JPH07302798A (ja) * 1992-09-08 1995-11-14 Intel Corp 金属膜をエッチングする方法
JP2002075972A (ja) * 2000-09-04 2002-03-15 Hitachi Ltd 半導体装置の製造方法
JP2003023155A (ja) * 2001-05-04 2003-01-24 Internatl Business Mach Corp <Ibm> Mosfetおよびその製造方法
US20030022432A1 (en) * 2001-07-26 2003-01-30 Hobbs Christopher C. Selective metal oxide removal
JP2003174009A (ja) * 2001-12-04 2003-06-20 Dainippon Screen Mfg Co Ltd エッチング方法およびエッチング装置
JP2003188374A (ja) * 2001-12-18 2003-07-04 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2003204058A (ja) * 2002-01-10 2003-07-18 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
WO2008139509A1 (ja) * 2007-05-14 2008-11-20 Fujitsu Microelectronics Limited 半導体装置の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489231B1 (en) * 2001-07-17 2002-12-03 Lsi Logic Corporation Method for forming barrier and seed layer
US6613695B2 (en) * 2000-11-24 2003-09-02 Asm America, Inc. Surface preparation prior to deposition
US6573197B2 (en) * 2001-04-12 2003-06-03 International Business Machines Corporation Thermally stable poly-Si/high dielectric constant material interfaces
US6797599B2 (en) * 2001-08-31 2004-09-28 Texas Instruments Incorporated Gate structure and method
US6800519B2 (en) * 2001-09-27 2004-10-05 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US6514808B1 (en) * 2001-11-30 2003-02-04 Motorola, Inc. Transistor having a high K dielectric and short gate length and method therefor
US6667246B2 (en) * 2001-12-04 2003-12-23 Matsushita Electric Industrial Co., Ltd. Wet-etching method and method for manufacturing semiconductor device
US6941956B2 (en) * 2002-03-18 2005-09-13 Dainippon Screen Mfg. Co., Ltd. Substrate treating method and apparatus
US6764898B1 (en) * 2002-05-16 2004-07-20 Advanced Micro Devices, Inc. Implantation into high-K dielectric material after gate etch to facilitate removal
US6632729B1 (en) * 2002-06-07 2003-10-14 Advanced Micro Devices, Inc. Laser thermal annealing of high-k gate oxide layers
US7887711B2 (en) * 2002-06-13 2011-02-15 International Business Machines Corporation Method for etching chemically inert metal oxides
US6858547B2 (en) * 2002-06-14 2005-02-22 Applied Materials, Inc. System and method for forming a gate dielectric
US6818516B1 (en) * 2003-07-29 2004-11-16 Lsi Logic Corporation Selective high k dielectrics removal
US7037845B2 (en) * 2003-08-28 2006-05-02 Intel Corporation Selective etch process for making a semiconductor device having a high-k gate dielectric
US7161203B2 (en) * 2004-06-04 2007-01-09 Micron Technology, Inc. Gated field effect device comprising gate dielectric having different K regions

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931716A (ja) * 1972-07-24 1974-03-22
JPH01283936A (ja) * 1988-05-11 1989-11-15 Hitachi Ltd 表面処理方法および装置
JPH07302798A (ja) * 1992-09-08 1995-11-14 Intel Corp 金属膜をエッチングする方法
JP2002075972A (ja) * 2000-09-04 2002-03-15 Hitachi Ltd 半導体装置の製造方法
JP2003023155A (ja) * 2001-05-04 2003-01-24 Internatl Business Mach Corp <Ibm> Mosfetおよびその製造方法
US20030022432A1 (en) * 2001-07-26 2003-01-30 Hobbs Christopher C. Selective metal oxide removal
JP2003174009A (ja) * 2001-12-04 2003-06-20 Dainippon Screen Mfg Co Ltd エッチング方法およびエッチング装置
JP2003188374A (ja) * 2001-12-18 2003-07-04 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2003204058A (ja) * 2002-01-10 2003-07-18 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
WO2008139509A1 (ja) * 2007-05-14 2008-11-20 Fujitsu Microelectronics Limited 半導体装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010001303, "Method for Etching of Hafnium and Zirconium Oxide Metal Layers", RESEARCH DISCLOSURE, 198906, no.302, p.401 *

Also Published As

Publication number Publication date
US20060194450A1 (en) 2006-08-31
WO2005013374A1 (ja) 2005-02-10
US7732347B2 (en) 2010-06-08

Similar Documents

Publication Publication Date Title
US8703005B2 (en) Methods for removing dielectric materials
KR970011134B1 (ko) 반도체 소자 제조 공정
TWI704605B (zh) 半導體裝置與其形成方法
US20010053585A1 (en) Cleaning process for substrate surface
US6140024A (en) Remote plasma nitridation for contact etch stop
US6331492B2 (en) Nitridation for split gate multiple voltage devices
US4808259A (en) Plasma etching process for MOS circuit pregate etching utiliizing a multi-step power reduction recipe
JP2903884B2 (ja) 半導体装置の製法
KR100438772B1 (ko) 버블 디펙트를 방지할 수 있는 반도체 소자의 제조방법
US6268296B1 (en) Low temperature process for multiple voltage devices
US8557651B2 (en) Method of manufacturing a semiconductor device using an etchant
US7732347B2 (en) Semiconductor device and fabrication process of semiconductor device
JP3727299B2 (ja) 半導体装置の製造方法
US6579766B1 (en) Dual gate oxide process without critical resist and without N2 implant
WO2003012851A2 (en) Method of etching ferroelectric layers
US6077776A (en) Polysilicon residue free process by thermal treatment
JP3416320B2 (ja) 半導体装置の製造方法
US20040265750A1 (en) Selective surface exposure, cleans, and conditioning of the germanium film in a Ge photodetector
JP3570903B2 (ja) 半導体装置の製造方法
KR100340867B1 (ko) 반도체 소자의 게이트 전극 형성방법
JPH0786229A (ja) 酸化シリコンのエッチング方法
KR100264237B1 (ko) 홀 형성방법
TWI267914B (en) Method of manufacturing semiconductor device
KR0168208B1 (ko) 다중합체 제거방법
KR100312985B1 (ko) 반도체소자제조방법

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413