JPWO2005010427A1 - ガス供給装置 - Google Patents

ガス供給装置 Download PDF

Info

Publication number
JPWO2005010427A1
JPWO2005010427A1 JP2005512041A JP2005512041A JPWO2005010427A1 JP WO2005010427 A1 JPWO2005010427 A1 JP WO2005010427A1 JP 2005512041 A JP2005512041 A JP 2005512041A JP 2005512041 A JP2005512041 A JP 2005512041A JP WO2005010427 A1 JPWO2005010427 A1 JP WO2005010427A1
Authority
JP
Japan
Prior art keywords
tank
temperature
gas
supply
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005512041A
Other languages
English (en)
Other versions
JP4622857B2 (ja
Inventor
義之 三木
義之 三木
白井 和成
白井  和成
篤史 木村
篤史 木村
尚弘 吉田
尚弘 吉田
修 弓田
修 弓田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPWO2005010427A1 publication Critical patent/JPWO2005010427A1/ja
Application granted granted Critical
Publication of JP4622857B2 publication Critical patent/JP4622857B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/026Special adaptations of indicating, measuring, or monitoring equipment having the temperature as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/002Automated filling apparatus
    • F17C5/007Automated filling apparatus for individual gas tanks or containers, e.g. in vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling
    • F17C2227/043Methods for emptying or filling by pressure cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0139Fuel stations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0176Buses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2559Self-controlled branched flow systems
    • Y10T137/2564Plural inflows
    • Y10T137/2567Alternate or successive inflows

Abstract

ガス供給に伴う温度低下に起因する弊害を抑制(あるいは低減等)することができるガス供給装置を提供する。 燃料電池システム10は、4つの水素タンク51,52,53,54を有する水素供給装置50と、該タンクからの水素ガスの供給を制御する制御部80とを備え、制御部80は、水素タンク51〜54の温度を検出すると共に、供給源となっているタンクの温度と、該タンクの性能を保証する保証温度領域との関係に基づいて、該供給源となっているタンクからの水素ガスの供給を制限する。

Description

本発明は、タンクに貯蔵されたガスを外部に供給するガス供給装置に関する。
従来、タンクに貯蔵されたガスを外部に供給するガス供給装置としては、水素を燃料とする燃料電池に対して水素ガスを供給するものなどが知られている。
特開2001−295996号公報および特開平8−115731号公報には、水素吸蔵合金を用いた複数のタンクに貯蔵された水素ガスを供給するガス供給装置が開示されている。
特開2002−181295号公報には、高圧の水素を貯蔵するタンク内の水素を供給するガス供給装置が開示されている。
タンクに貯蔵されたガスを供給する際には、タンクから供給されるガスの断熱膨張によって、タンク本体を含めたレギュレータ,バルブなどのタンク関連部品の温度が低下する。タンク関連部品の温度が各部品の常用温度から過度に低下すると、タンク関連部品の劣化を早めてしまうという問題があった。
本発明は、上記した課題を踏まえ、ガス供給に伴う温度低下に起因する弊害を抑制(あるいは低減等)することができるガス供給装置を提供することを目的とする。
上記した課題を解決するため、本発明のガス供給装置は、ガスを貯蔵する貯蔵部と、該貯蔵されたガスを該貯蔵部の外部に減圧して放出する放出機構とを有するタンクと、前記タンクの温度を検出する温度検出部と、該検出したタンクの温度に応じて、該タンクからのガスの供給を調整する供給制限部とを備えたことを特徴とする。本発明のガス供給装置によれば、タンク温度に応じてガス供給を調節することによって、ガス供給に伴う温度低下に起因する弊害を抑制することができる。
上記の構成を有する本発明のガス供給装置は、以下の態様を採ることもできる。前記タンクを複数備え、前記温度検出部は、前記複数のタンクの温度を検出し、前記供給制限部は、前記検出したタンクの温度に応じて、前記複数のタンク間の温度差が小さくなるようにガスの供給を制限することとしても良い。これによって、複数のタンク間の温度の平準化を図り、ガス供給に伴う温度低下に起因する弊害を抑制することができる。
この場合に、前記供給制限部は、前記ガスの供給源となっているタンクの温度が、該タンクを供給源に切り換えた時点の温度から所定温度だけ低下した場合に、該タンクとは異なる他のタンクを供給源に切り換えることによって、前記複数のタンク間の温度差が小さくなるようにガスの供給を制限することとしても良い。また、前記供給制限部は、前記ガスの供給源となっているタンクの温度と、該タンクとは異なる他のタンクの温度とが所定温度差になった場合に、該他のタンクを供給源に切り換えることによって、前記複数のタンク間の温度差が小さくなるようにガスの供給を制限することとしても良い。更に、前記供給制限部が前記供給源に切り換えるタンクは、前記複数のタンクのうち最も高温なタンクであるとしても良い。
また、前記複数のタンクの圧力を検出する圧力検出部を備え、前記供給制限部は、前記検出した複数のタンクの温度および圧力に応じて、該複数のタンク間の温度差および圧力差が小さくなるようにガスの供給を制限することとしても良い。これによって、複数のタンク間の設置環境に起因して低温に成りがちなタンクの使用頻度の低下を抑制することができる。
また、前記供給制限部は、前記検出したタンクの温度と、該タンクの性能を保証する保証温度領域との関係に基づいて、該タンクからのガスの供給を調整することとしても良い。これによって、タンクの温度と、タンクの保証温度領域との関係に基づいてガス供給を調整することによって、ガス供給量を減少させ、ガス供給に伴うタンクの温度低下を抑制することができる。
この場合に、前記供給制限部は、前記検出したタンクの温度が、該タンクの性能を保証する保証温度領域を外れないように、該タンクからのガスの供給を調整することとしても良い。これによって、タンク温度の下がり過ぎを抑制することができる。
また、前記タンクを複数備え、前記温度検出部は、前記複数のタンクのうち、少なくとも前記ガスの供給源となっているタンクの温度を検出し、前記供給制限部は、前記検出した供給源となっているタンクの温度と、該タンクの性能を保証する保証温度領域との関係に基づいて、該供給源となっているタンクからのガスの供給を制限することとしても良い。これによって、複数のタンクを備える場合でも、ガス供給に伴う温度低下に起因する弊害を抑制(あるいは低減等)することができる。ここで、「ガス供給を制限する」とは、ガス供給を遮断する場合だけでなく、ガス供給量を減少させる場合を含む。
ここで、前記供給制限部は、前記検出した供給源となっているタンクの温度が、該タンクの性能を保証する保証温度領域を外れないように、該供給源となっているタンクからのガスの供給を制限することとしても良い。これによって、複数のタンクを備える場合でも、タンク温度の下がり過ぎを抑制することができる。
また、前記供給制限部は、前記検出した供給源となっているタンクの温度が、該タンクが前記供給源になってから前記保証温度領域内で所定温度だけ低下する際に、該供給源となっているタンクからのガスの供給を制限することとしても良いし、前記温度検出部は、前記複数のタンクの温度を検出し、前記供給制限部は、前記検出した供給源となっているタンクの温度と、該タンクとは異なる他のタンクの温度とが、前記保証温度領域内で所定温度差となる際に、該供給源となっているタンクからのガスの供給を制限することとしても良い。これによって、各タンク間における温度の平準化を図ることができる。さらに、前記複数のタンクの圧力を検出する圧力検出部を備え、前記供給制限部は、前記所定温度差となる際、または、前記検出した供給源となっているタンクの圧力と、該タンクとは異なる他のタンクの圧力とが所定圧力差となる際に、該供給源となっているタンクからのガスの供給を制限することとしても良い。これによって、各タンク間における温度および圧力の平準化を図ることができる。
また、前記供給制限部は、前記ガスの供給を制限する際に、前記供給源となっているタンクとは異なる他のタンクの中から、前記供給源となるタンクを選択するタンク選択手段を備えたとしても良い。これによって、ガスの供給を継続して行うことができる。
本発明には、次に示す種々の態様で、各タンクを間欠的に使用する制御が含まれる。例えば、n本のタンクが備えられている場合、本発明には、「1番目のタンク→2番目のタンク…→n番目のタンク→1番目のタンク→2番目のタンク…」というように、複数のタンクを所定のシーケンスで繰り返し使用する制御が含まれる。タンクの使用順序は固定されている必要はなく、供給源の切り換えが必要と判断された時点で、次に使用すべきタンクを選択するようにしてもよい。つまり、本発明の制御は、「1番目のタンク→2番目のタンク→1番目のタンク→3番目のタンク→…」など変則的または不定の順序でタンクを使用する態様も含んでいる。この場合、次に使用すべきタンクの選択基準としては、例えば、タンクの温度、タンクのガスの残量、既定のシーケンスなどに基づいて設定することができる。
また、前記タンク選択手段は、各時点で前記複数のタンクのうちのいずれか一つのタンクを前記供給源として選択する手段であるとしても良い。本発明において、2本ずつ、3本ずつなど、複数のタンクをまとめて供給源として選択してもよいが、複数のタンクが設けられている場合、減圧後の供給圧力は、タンク間でばらつくのが通常である。このばらつきに基づき、複数のタンクから同時にガスの供給を行う場合には、供給圧力の高い側が優先的に使用され、各タンクからのガスの供給量、膨張による温度低下に偏りが生じることがある。いずれか一つのタンクを供給源として選択することにより、かかる偏りによる影響を回避することができ、タンクを切り換えるための制御処理の簡略化、ガスの供給の安定化を図ることができる。複数のタンクをまとめて供給源として選択する場合には、上述した供給量の偏りが生じない程度に、両者の供給圧力が均一化するように、各タンクからのガス供給量を調整することが好ましい。
また、前記供給制限部は、前記複数のタンクの前記供給源としての使用履歴に基づいて、前記供給源となるタンクを選択する手段であるとしても良い。これによって、複数のタンク間における使用頻度の均等化を図ることができる。また、前記温度検出部は、前記複数のタンクの温度を検出し、前記選択手段は、前記検出された複数のタンクの温度に基づいて、前記供給源となるタンクを選択する手段であるとしても良い。これによって、タンクの温度状態から、次の供給源に相応しいタンクを選択することができる。
また、前記供給制限部は、前記供給源となっているタンクからのガスの供給に支障があるか否かを判断する支障判断手段と、前記供給源となっているタンクに支障があると判断する場合に、該タンクとは異なる他のタンクの中から、前記供給源となるタンクを選択する支障選択手段とを備えても良い。これによって、ガスの安定した供給を確保することができる。ガスの供給における支障は、例えば、供給管の圧力の挙動に基づいて判断することが可能である。
また、前記ガスを供給するための供給管を、前記複数のタンクの各放出機構に共通して連結し、前記供給管の圧力を検出する供給管検出部と、前記ガスの供給を開始する際に、前記検出された供給管の圧力の挙動に基づいて、少なくとも一つの前記放出機構の異常の有無を点検する供給管点検部とを備えても良い。例えば、タンクの放出機構を全て閉じた状態でも、供給管の圧力が低下しないようであれば、放出機構を閉じる機能に異常があると判定することができる。逆に、タンクの放出機構を開いた状態でも、供給管の圧力が上昇しないようであれば、放出機構を開ける機能に異常があると判定することができる。
また、前記温度検出部は、前記タンクから供給されるガスに関連する物理量に基づいて、該タンクの温度を検出しても良い。これによって、ガスの体積変化や圧力変化などからタンクの温度を検出することができる。なお、タンクから供給されるガスに関連する物理量は、タンク内部から放出された後のガスに関連する物理量であっても良いし、タンク内部から放出される前のタンク内部に貯蔵されているガスに関連する物理量であっても良い。
また、前記温度検出部は、前記タンクから供給されるガスの断熱膨張度合に基づいて、該タンクの温度を検出しても良い。これによって、タンク温度の低下代を推定し、事前にタンクの温度を検出することができる。
また、前記温度検出部は、前記タンクから供給されるガスが該タンクから奪う熱量に基づいて、該タンクの温度を検出しても良い。これによって、ガスの奪う熱量からタンクの温度を検出することができる。
また、前記貯蔵部および前記放出機構の少なくとも一部における温度を、該タンクの温度として検出しても良い。これによって、タンクの温度を直接的に検出することができる。
また、前記温度検出部は、前記タンクから供給されるガスの供給量に基づいて、該タンクの温度を検出しても良い。これによって、タンクの温度と相関があるガスの供給量からタンクの温度を検出することができる。タンクからガスが奪う熱量およびタンクの温度変化は、それぞれタンクから供給されるガス量と相関がある。ガス供給量は、タンク内の圧力と相関があるため、圧力をパラメータとすることもできる。圧力をパラメータとする場合には、温度センサを省略できる利点がある。
また、前記貯蔵部を加熱する加熱部を備えても良い。これによって、ガスの供給中におけるタンクの温度低下速度を低下させることができ、タンクの切り換え頻度を低減することができる。また、ガスの供給を停止したタンクの温度の回復を促進することができる。ガスの供給を停止したタンクについては、温度が十分に回復するまで、次の供給源として選択することはできないが、温度回復を促進することにより、供給源となる得るタンクを安定的に確保することができ、ガスを安定して供給することができる。
また、前記タンクからのガスの供給に異常が存在する場合に、該異常を報知する報知部を備えても良い。異常の報知は、種々の態様を採ることができる。例えば、異常が存在するタンクを除外してガスの総残量を算出し、残量計の表示を修正してもよい。これによって、ガスの残量が急激に減少するため、管理者は異常を知ることができる。別の態様として、総残量に関わらず、ガス欠の警告灯を点灯または点滅させてもよい。更に別の態様として、タンク毎の異常の有無を報知するための警告表示を設けても良い。異常の報知は、表示に限らず、音声で行ってもよい。
本発明は、種々のガスの供給装置に適用可能である。一例として、前記ガスは、水素を含む燃料電池用の燃料ガスであり、該ガスの供給先は、水素を燃料とする燃料電池であるガス供給装置として構成することができる。上述した種々の特徴は、必ずしも全てを備えている必要はなく、適宜、一部を省略したり、組み合わせたりしてもよい。本発明は、定置型の装置として構成してもよいし、車両その他の移動体への搭載型の装置として構成しても良い。本発明は、上述のガス供給装置としての態様に限らず、ガス供給装置の制御方法など、種々の態様で構成可能である。
図1は、第1の実施例における燃料電池システム10を示す説明図である。
図2は、制御部80の制御処理を示すフローチャートである。
図3は、制御部80の制御処理を示すフローチャートである。
図4は、制御部80の制御処理を示すフローチャートである。
図5は、制御部80の制御処理を示すフローチャートである。
図6は、制御部80の制御処理を示すフローチャートである。
図7は、第2の実施例における車両310の概略構成を示す説明図である。
図8は、燃料電池320へのガス供給系統の構成を示す説明図である。
図9は、制御ユニット340の起動時点検処理を示すフローチャートである。
図10は、制御ユニット340のガス供給制御を示すフローチャートである。
図11は、制御ユニット340のガス供給源特定処理を示すフローチャートである。
図12は、供給源タンクの選択例を示す説明図である。
図13は、制御ユニット340の異常報知処理を示すフローチャートである。
図14は、制御ユニット340のヒータ加熱処理を示すフローチャートである。
図15は、ガス供給源特定処理の第1変形例を示すフローチャートである。
図16は、ガス供給源特定処理の第2変形例を示すフローチャートである。
図17は、ガス供給源特定処理の第3変形例を示すフローチャートである。
以上説明した本発明の構成および作用を一層明らかにするために、以下本発明を適用したガス供給装置について、次の順序で説明する。
A.第1の実施例
A−(1).燃料電池システム10の構成
A−(2).燃料電池システム10の動作
A−(3).その他の実施形態
B.第2の実施例
B−(1).システム構成
B−(2).起動時点検処理
B−(3).ガス供給制御
B−(3−1).ガス供給源特定処理
B−(3−2).異常報知処理
B−(3−3).ヒータ加熱処理
B−(4).効果
B−(5).ガス供給源特定処理の変形例
B−(6).その他の実施形態
A.第1の実施例:
A−(1).燃料電池システム10の構成:
図1は、第1の実施例における燃料電池システム10を示す説明図である。図1には、燃料電池システム10が、水素供給系統を中心として示されている。燃料電池システム10は燃料電池電気自動車(FCEV)に搭載されて電力発電を行うオンボード発電装置として構成されており、反応ガス(燃料ガス、酸化ガス)の供給を受けて発電する燃料電池20を備えている。燃料電池20はフッ素系樹脂により形成されたプロトン伝導性のイオン交換膜等から成る高分子電解質膜21の一方の面にアノード極22を、他方の面にカソード極23をスクリーン印刷等で形成した膜・電極接合体(MEA)24を備えている。膜・電極接合体24の両面はリブ付セパレータ(図示せず)によってサンドイッチされ、このセパレータとアノード極22及びカソード極23との間にそれぞれ溝状のアノードガスチャンネル25及びカソードガスチャンネル26を形成している。燃料電池20が発電した電力は負荷70に供給される。ここでは、説明の便宜上、膜・電極接合体24、アノードガスチャンネル25及びカソードガスチャンネル26から成る単セルの構造を模式的に図示しているが、実際には上述したリブ付セパレータを介して複数の単セルが直列に接続したスタック構造を備えている。
水素供給装置50は燃料電池20に水素(燃料ガス)を供給するための4つの水素タンク51,52,53,54を搭載している。水素供給装置50は複数の水素タンク51〜54の中から水素供給源として選択された何れか一つの水素タンクによって水素供給を行う。水素タンク51〜54には高圧(例えば、300〜700気圧)に圧縮された水素ガスが充填されている。水素ステーション等の水素供給設備から各々の水素タンク51〜54に水素を充填するための充填管55は4本の分岐管55a〜55dに四股分岐して水素タンク51〜54に連通している。各々の分岐管55a〜55dには水素充填の際の水素逆流を防止する逆止弁D1〜D4と、タンク内圧を検出する圧力センサP1〜P4と、タンク温度を検出する温度センサT1〜T4が設置されている。水素供給装置50から燃料電池20に水素を供給するための水素供給管31は4本の分岐管31a〜31dに四股分岐して水素タンク51〜54に連通している。分岐管31a〜31dには水素圧を減圧するための一次レギュレータ(調圧弁)A1〜A4と、水素タンク51〜54からの水素放出を遮断するタンクバルブ(電磁遮断弁)VT1〜VT4が設置されている。
燃料電池システム10の水素供給系統には、上述した水素供給管31と、アノードガスチャンネル25から排気されたアノードオフガス(水素オフガス)をアノードガスチャンネル25に還流させるための循環流路32が配管されている。この水素供給管31と循環流路32とによって水素循環系統が構成されている。水素供給管31には、水素圧を減圧するための二次レギュレータ(調圧弁)A5と、上述した一次レギュレータA1〜A4と二次レギュレータA5との間を流れる水素の圧力を検出する圧力センサP5と、アノード入口への水素供給を遮断する電磁遮断弁B1と、アノード入口のガス圧を検出する圧力センサP6が設置されている。循環流路32には、アノード出口から排気されるアノードオフガスを遮断する電磁遮断弁B2と、アノードオフガスを水素供給管31に還流させるための循環ポンプC1と、循環ポンプC1の上流圧と下流圧を検出する圧力センサP7,P8が設置されている。アノードガスチャンネル25を通過する際に圧力損失を受けたアノードオフガスはモータM1によって駆動される循環ポンプC1によって適度なガス圧に昇圧され、水素供給路31に導かれる。循環流路32には、循環水素に含まれる水素以外の成分濃度が高くなった時点でアノードオフガスの一部を循環流路32からシステム外にパージするためのアノードオフガス流路33が分岐配管されている。アノードオフガスのパージ処理はアノードオフガス流路33に設置された電磁遮断弁(パージバルブ)B3を開閉することで調整できるように構成されている。
燃料電池システム10の酸素供給系統には、カソードガスチャンネル26に酸素(酸化ガス)を供給するための酸素供給路41と、カソードガスチャンネル26から排気されたカソードオフガス(酸素オフガス)をシステム外に導くためのカソードオフガス流路42が配管されている。エアフィルタ61を介して大気から取り込まれたエアはモータM2によって駆動されるエアコンプレッサC2にて加圧された後、加湿器62にて適度に過湿され、酸素供給路41を経由してカソードガスチャンネル26に流れ込む。加湿器62では燃料電池20の電池反応で生じた生成水によって高湿潤状態となったカソードオフガスと大気より取り込んだ低湿潤状態の酸素との間で水分交換が行われる。カソードオフガスはレギュレータA6によって調圧された後、加湿器62を経由し、カソードオフガス流路42を流れてマフラ64,65に導かれる。マフラで消音されたカソードオフガスはシステム外に排気される。カソードオフガス流路42には、アノードオフガスを希釈するための希釈器63に分岐連通し、更にカソードオフガス流路42に再合流するバイパス流路43が配管されている。希釈器63にはアノードオフガス流路33を経由してアノードオフガス(被希釈ガス)が導入され、バイパス流路43を流れるカソードオフガス(希釈ガス)によって混合希釈される。尚、エアフィルタ61には外気温度を検出するための温度センサT5が設置されている。
制御部(制御手段)80はシステム制御を行うためのCPUと、各種の電磁弁(VT1〜VT4,B1〜B3)を開閉制御するための駆動回路と、各種のセンサ(P1〜P5,T1〜T5)から出力されるセンサ信号の入力を受け付けるとともに、各種の電磁弁(VT1〜VT4,B1〜B3)や補機類(M1〜M2)に制御信号を出力するための入出力インターフェース等を含むシステムコントローラとして構成されている。制御部80はアクセルセンサ82が検出したアクセル開度と、車速センサ83が検出した車速から負荷70の要求電力を求め、モータM1,M2及び電磁遮断弁B3を駆動制御して燃料電池20に供給される水素量と酸素量を調整し、所望の発電量が得られるようにシステムを制御する。負荷70には、燃料電池20の他に二次電池(図示せず)からも電力供給できるように構成されている。負荷70としては、車両走行用のトラクションモータや、燃料電池20の補機類(モータM1,M2など)が含まれる。更に、制御部80は圧力センサP1〜P5と温度センサT1〜T5から出力されるセンサ信号を基に水素タンク51〜54の温度状態を監視しつつ、各々のタンクバルブVT1〜VT4を個別に開閉制御して水素タンク51〜54の切り替え制御を行う。記憶部81には各々の水素タンク51〜54の使用履歴が記憶されている。使用履歴とは、水素タンク51〜54の使用状態を定量的に評価した値をいい、例えば、水素タンク51〜54の使用頻度(タンクバルブVT1〜VT4を開弁した回数)、水素タンク51〜54の累積使用時間(タンクバルブVT1〜VT4が閉弁している時間の積算値)、又はこの累積使用時間とタンク内圧との乗算値などを用いることができる。使用履歴は何れかの水素タンク51〜54が水素供給源として使用される都度に最新の値に逐次更新される。制御部80は、水素タンク51〜54の使用履歴と温度状態のうち何れか一方又は両者を組み合わせる等して、水素供給源となる何れか一つの水素タンクを選択する。また、間欠運転モードでは電磁遮断弁B1,B2を閉弁して燃料電池20への水素供給を遮断するとともに、圧力センサP6〜P8から出力されるセンサ信号に基づいて水素漏洩判定を行い、システムの安全をチェックする。
A−(2).燃料電池システム10の動作:
次に、図2〜図6を参照して水素供給源となる水素タンクの選択及び切り替え処理について説明する。これらの図に示す制御ルーチンは制御部80によって実行される。まず、システム起動を指令するスタートスイッチがON状態であるか否かがチェックされる(ステップS1)。このスタートスイッチは内燃機関を搭載した車両のイグニッションキーに相当するものである。スタートスイッチがON状態である場合には(ステップS1;YES)、制御部80は記憶部81に記憶されている水素タンクの使用頻度を読み出す(ステップS2)。ここでは、水素タンクの使用履歴として使用頻度を例示するが、これに限られるものではなく、例えば、上述した累積使用時間、又はこの累積使用時間とタンク内圧との乗算値等を用いてもよい。次に、システム起動時であるか否かがチェックされる(ステップS3)。
システム起動時である場合には(ステップS3;YES)、水素供給管31及び燃料電池20に水素を供給し、加圧する必要がある。起動時間をできるだけ短縮するため、全てのタンクバルブVT1〜VT4を開き(ステップS4)、圧力センサP6〜P8の検出圧力が閾値圧力Pk1を超えると(ステップS5;YES)、全てのタンクバルブVT1〜VT4を閉じて(ステップS6)、水素漏洩判定を行う(ステップS7)。閾値圧力Pk1としては、水素供給管31及び循環流路32の水素漏洩判定を行うために必要かつ十分な圧力値に選定するのが望ましい。水素漏洩判定(ステップS7)においては、電磁遮断弁B1〜B3を全て閉弁し、水素供給管31及び循環流路32を密閉した上で、圧力センサP5〜P8が検出した圧力低下代が所定の閾値を超えているか否かで水素漏れを判定する。水素漏れが生じているならば(ステップS8;YES)、システム異常停止を行う(ステップS9)。一方、システム起動時でない場合(ステップS3;NO)、又は水素漏れがない場合には(ステップS8;NO)、ステップS10にジャンプする。
ステップ10では、走行可能であるか否かがチェックされる。走行可能でない場合には(ステップS10;NO)、ステップS38にジャンプする。走行可能である場合には(ステップS10;YES)、水素タンク51〜54の中から使用頻度が最小の水素タンクが水素供給源として選択される(ステップS11)。使用頻度が最小の水素タンクが複数ある場合には、その中で最も高温の水素タンクを選択するのが好ましい。次に、水素供給源として選択された水素タンクの温度TNが閾値温度Tc1以下であるか否かがチェックされる(ステップS12)。温度TNは水素供給源として選択された水素タンク51〜54の温度センサT1〜T4が検出したタンク温度である。閾値温度Tc1はタンク温度低下による水素タンクの劣化を抑制するためにタンク切り替えの目安となる温度であり、水素タンクの温度保証領域の下限温度T0近傍に設定するのがよい。この温度保証領域としては、例えば、水素タンク51〜54のタンクバルブVT1〜VT4やOリング等が使用に耐え得る温度範囲に設定するのが好ましい。温度TNが閾値温度Tc1を超えている場合には(ステップS12;NO)、選択された水素タンクの使用頻度を1だけインクリメントし(ステップS17a)、選択された水素タンクのタンクバルブを開弁し(ステップS17b)、燃料電池20に水素を供給して発電を開始する(ステップS18)。
一方、温度TNが閾値温度Tc1以下である場合には(ステップS12;YES)、水素タンクの劣化を抑制するため、使用頻度が次に少ない水素タンクを水素供給源として選択する(ステップS13)。次に、全ての水素タンクを選択したか否かがチェックされ(ステップS14)、未だ選択されていない水素タンクが存在している場合には(ステップS14;NO)、ステップS12に再帰する。このように、使用頻度が少ない水素タンクを優先的に選択することで、各々の水素タンク51〜54の使用頻度を均等化することができる。また、使用頻度を基準に選択された水素タンクの温度TNが閾値温度Tc1よりも低い場合には、他の水素タンクを水素供給源として選択し直すことで、水素タンクの温度低下による劣化を抑制できる。ここで、全ての水素タンク51〜54の温度が閾値温度Tc1以下である場合には(ステップS14;YES)、タンクバルブVT1〜VT4を全て開弁することにより(ステップS15)、全ての水素タンク51〜54から燃料電池20に水素供給を行う。これにより、水素タンク一つあたりの水素供給量を減らすことで、水素タンクの温度低下代を小さくし、水素タンクの劣化を抑制できる。次に、最低温度の水素タンクを基準として燃料電池20の出力制限を行い、発電を開始する(ステップS16)。閾値温度Tc1と温度保証領域の下限温度T0との間にある程度の余裕がある場合には、このように燃料電池20の出力(発電量)を制限することで、車両停止することなく、走行に必要な最低限の電力を確保できる。但し、閾値温度Tc1が温度保証領域の下限温度T0に近接する場合は、水素タンク51〜54の劣化を回避するため、タンクバルブVT1〜VT4を全て閉弁して車両停止するように構成してもよい。
さて、燃料電池20の発電制御を行うには、アクセルセンサ82によって検出したアクセル開度と、車速センサ83によって検出した車速に基づいて負荷70の要求電力を算出し(ステップS19)、燃料電池20と二次電池(図示せず)の出力割合を求める(ステップS20)。次に、燃料電池20の発電量と、電磁遮断弁B3から排気されたアノードオフガスの排気量とを基に燃料電池20で消費された水素量(水素タンクから燃料電池20に供給された水素量)を演算する(ステップS21)。次に、水素タンク51,52,53,54のうち水素供給源として選択された供給源タンクの内部圧力(タンク残圧)と出口圧力の比から水素の断熱膨張度合(温度低下代)を求める(ステップS22)。水素の断熱膨張度合は1次レギュレータA1〜A4の1次圧(圧力センサP1〜P4によって検出される圧力)と、2次圧(圧力センサP5によって検出される圧力)によって求めることができる。次に、消費水素量と断熱膨張度合より[温度低下代]×[流量]を演算し、供給源タンクの吸熱量Q1を推定演算する(ステップS23)。次に、温度センサT5が検出した外気温度を基に供給源タンクが外気から得る吸熱量Q2を演算し(ステップS24)、供給源タンクが吸収する総吸熱量Qを吸熱量Q1−吸熱量Q2より求める(ステップS25)。次に、供給源タンクの熱容量、タンク温度、総吸熱量Qより供給源タンクの温度低下代ΔTを求める(ステップS26)。次に、TN′=TN−ΔTより供給源タンクの温度TN′を推定演算し(ステップS27)、温度TN′が閾値温度Tc2以下であるか否かをチェックする(ステップS28)。閾値温度Tc2としては、例えば、閾値温度Tc1よりも低温で、保証温度領域の下限温度T0よりも高温であることが望ましい(T0<Tc2<Tc1)。温度TN′が閾値温度Tc2よりも高い場合には(ステップS28;NO)、ステップS38にジャンプする。
一方、温度TN′が閾値温度Tc2以下である場合には(ステップS28;YES)、水素タンクの劣化を回避するため、水素供給源として未だ選択されていない水素タンクのうち使用頻度が最小のものを水素供給源として選択する(ステップS29)。次に、この選択された水素タンクの温度TNが閾値温度Tc1以下であるか否かをチェックする(ステップS30)。TNがTc1以下である場合には(ステップS30;YES)、使用頻度が次に少ない水素タンクを水素供給源として選択する(ステップS31)。次に、全ての水素タンクを選択したか否かがチェックされ(ステップS32)、未だ選択されていない水素タンクが存在している場合には(ステップS32;NO)、ステップS30に再帰する。ここで、全ての水素タンク51〜54の温度が閾値温度Tc1以下である場合には(ステップS32;YES)、タンクバルブVT1〜VT4を全て開弁することにより(ステップS33)、全ての水素タンク51〜54から燃料電池20に水素供給を行う。次に、最低温度の水素タンクを基準として燃料電池20の出力制限を行い、発電を開始する(ステップS34)。もとより、全ての水素タンク51〜54の温度が閾値温度Tc1以下である場合には(ステップS32;YES)、タンクバルブVT1〜VT4を全て閉弁して車両停止するように構成してもよい。一方、選択された水素タンクの温度TNがTc1を超えている場合には(ステップS30;NO)、選択された水素タンクの使用頻度を1だけインクリメントし(ステップS35)、タンクバルブを開き(ステップS36)、燃料電池20の発電を開始する(ステップS37)。
ステップ38においては、間欠運転開始条件が成立しているか否かがチェックされる。間欠運転とは、低速で走行している場合やアイドリングしている場合などのように、二次電池等の蓄電装置から供給される電力で車両走行できる程度の低負荷のときに燃料電池20の運転を休止して蓄電装置から供給される電力で車両走行する運転モードをいう。間欠運転開始条件が成立してない場合には(ステップS38;NO)、ステップS10にジャンプする。間欠運転開始条件が成立すると(ステップS38;YES)、タンクバルブVT1〜VT4、電磁遮断弁B1〜B3を全て閉弁し(ステップS39)、発電を停止する(ステップS40)。このとき、システムの安全性を確認するため水素漏洩判定を行ってもよい。水素漏洩判定はステップS7と同じ手順で実施すればよい。次に、間欠運転解除条件が成立したか否かをチェックする(ステップS41)。間欠運転解除条件が成立してない場合には(ステップS41;NO)、ステップS38にジャンプする。一方、間欠解除条件が成立した場合には(ステップS41;YES)、水素供給管31及び燃料電池20に早急に水素供給を行って起動時間を短縮するため、タンクバルブVT1〜VT4、電磁遮断弁B1〜B2を全て開弁する(ステップS42)。燃料電池20は通常運転に移行し、電力発電を行う。次に、システム停止要求があるか否かがチェックされ(ステップS43)、システム停止要求がない場合には(ステップS43;NO)、ステップS19にジャンプする。システム停止要求がある場合には(ステップS43;YES)、タンクバルブVT1〜VT4、電磁遮断弁B1〜B3を全て閉弁し(ステップS44)、システム停止を行う(ステップS45)。
本実施形態によれば、水素タンク51〜54の温度状態に基づいて水素供給源となる水素タンクを選択して切り替えるので、タンク温度低下による水素タンク51〜54の劣化を抑制できる。また、使用頻度の少ない水素タンクの内部では高圧力が長時間加わっているため、機械部品等に永久歪みが生じ、水素タンクの気密性を損ねる虞があるが、使用頻度を選択基準として水素タンクを選択することにより、各々の水素タンク51〜54の使用頻度を均一化し、このような不都合を解消できる。
A−(3).その他の実施形態:
尚、水素供給源となる水素タンクの選択基準として、使用頻度を例示したが、これに限られるものではなく、水素タンク51〜54の累積使用時間、又はこの累積使用時間とタンク内圧との乗算値など、水素タンク51〜54の使用状態を定量的に評価できる値を選択基準として用いることができる。また、水素タンク51〜54の使用頻度をできるだけ均等化するには、水素タンクを水素充填しても使用頻度をリセット(ゼロクリア)しない方が望ましい。また、水素タンク51〜54の使用履歴とタンク温度の何れか一方又は両者を組み合わせて選択基準を定めてもよい。両者を組み合わせる場合には何れか一方の優先度を高くして選択基準を定めてもよい。例えば、上述の例(ステップS11〜S14,ステップS29〜S32)ではタンク温度よりも使用頻度の優先順位を高くして選択基準を定めていたが、使用頻度よりもタンク温度の優先順位を高くして選択基準を定めてもよい。
また、上述の例(ステップS21〜S27)では、タンクから供給されるガスに関連する物理量である水素の断熱膨張度合からタンク温度を推定し、この推定温度をタンク切り替えの判断基準としていたが、タンク温度に関連する物理量(断熱膨張度合以外の物理量)からタンク温度を推定演算し、この推定温度をタンク切り替えの判断基準としてもよい。例えば、上述した温度センサT1〜T5及び圧力センサP1〜P5は水素タンク51〜54の温度に関連する物理量を検出する検出手段として機能するが、これ以外の物理センサを用いてタンク温度に関連する物理量を検出してもよい。但し、必ずしもタンク温度を推定演算する必要はなく、温度センサT1〜T4が検出したタンク温度をタンク切り替えの判断基準としてもよい。
また、上述の例(ステップS29)ではタンク温度が保証温度領域を下回ると判定された場合にタンク切り替えを行っていたが、必ずしもタンク切り替えを行う必要はなく、水素供給源として選択された水素タンクから燃料電池20への水素供給量を制限した上で水素供給を継続してもよい。水素タンクからの水素供給量を制限する場合、燃料電池20の発電量を制限するか、又は二次電池等の蓄電装置から負荷70への電力供給量を増大する等の対応措置を講じればよい。
また、上述の例では水素供給源として高圧水素ガスを充填した水素タンク51〜54を例示したが、これに限られるものではなく、例えば、水素を可逆的に吸蔵及び放出可能な水素吸蔵合金をタンク容器内に充填した水素吸蔵タンクを用いてもよい。水素吸蔵合金は水素と反応して金属水素化物となる合金であり、水素化及び脱水素化の反応が実用的な条件下で好ましい反応速度で進行する可逆性を備えている。例えば、水素のガス圧を昇圧させるか又はガス温度を下げると水素を吸蔵して発熱する一方で、水素のガス圧を降圧させるか又はガス温度を上げると水素を放出して吸熱する性質がある。水素吸蔵合金として、例えば、Mg−Ni系、La−Ni系、Ti−Mn系等が好適である。また、上述の例では複数の水素タンク51〜54を備えている場合を説明したが、水素供給装置50に搭載される水素タンクの個数は単一であってもよい。
B.第2の実施例:
B−(1).システム構成:
図7は、第2の実施例における車両310の概略構成を示す説明図である。車両310は、後部の燃料電池室312に搭載された燃料電池320を電源とし、モータ330の動力によって駆動する。モータ330は種々のタイプを適用可能であるが、本実施例では、同期電動機を用いるものとした。燃料電池320から出力される直流は、インバータ331によって三層交流に変換される。モータ330は、この三層交流によって駆動される。モータ330の動力は、回転軸332を介して車輪333に伝達され、車両310を駆動する。
燃料電池320は、水素と酸素の電気化学反応によって発電する。燃料電池320には、種々のタイプを適用可能であるが、本実施例では、固体高分子型を用いた。酸素極には、供給管324を介して外部から空気が供給される。水素は、屋根上の水素タンク室311に設置された複数の水素タンク350から供給管322を介して順次、供給される。水素極に供給された水素および空気は、発電に利用された後、排出管323から外部に排出される。水素、空気の供給系統の構成については、後で説明する。
インバータ331など、車両310に搭載された各機器の動作は、制御ユニット340によって制御される。制御ユニット340は、内部にCPU、ROM、RAMなどを備えたマイクロコンピュータとして構成されており、ROMに記憶された制御プログラムに従って、各ユニットの動作を制御する。
図7中に、制御ユニット340の機能ブロックを示した。本実施例では、これらの機能ブロックは、制御ユニット340においてソフトウェア的に構成されている。各機能ブロックをハードウェア的に構成することも可能である。
各機能ブロックは、主制御部342の制御下で連携して動作する。センサ入力部341は、車両310に設けられた各種センサからの信号の入力を受け付ける。センサとしては、例えば、燃料電池320に水素や空気を供給する供給系統に設けられた温度センサ、圧力センサが含まれる。センサからの検出信号には、走行時の要求動力に相当するアクセル開度も含まれる。
発電制御部344は、要求動力に応じて燃料電池320の発電を制御する。供給制御部345は、燃料電池320での発電量に応じて、水素タンク350を使い分けて、燃料電池320に水素を供給する。モータ制御部346は、燃料電池320の電力を利用して、要求された動力を出力するようモータ330を駆動制御する。
計器制御部343は、車両310の運転席314に設けられた計器板360への表示を制御する。かかる表示としては、速度、モータ330の回転数、燃料電池320の温度、シフトポジションなどが含まれる。また、水素の残量、水素タンク350の供給系統についての異常表示なども含まれる。
図8は、燃料電池320へのガス供給系統の構成を示す説明図である。先に説明した通り、燃料電池320において、カソードには酸素を含有したガスとしての圧縮空気が供給され、アノードには水素が供給される。空気は、フィルタ325から吸入され、コンプレッサ326で圧縮された後、加湿器327で加湿され、供給管324を介して供給される。供給管324には、空気の供給圧を検出するための圧力センサ328が設けられている。
水素は、4本の水素タンク350から供給管322を介してアノードに供給される。図8の中では、説明の便宜上、各タンクに[1]〜[4]のタンク番号を付した。以下、このタンク番号に従い、各水素タンク350を、1番タンク〜4番タンクと区別して称することもある。ガス供給系統では、水素は、水素タンク350から燃料電池320に流れるため、説明の便宜上、水素タンク350に近い側を上流側、燃料電池320に近い側を下流側と称することもある。
各水素タンク350は、水素を約350気圧という高圧で貯蔵している。水素タンク350には、水素を減圧するためのレギュレータ355、制御ユニット340からの制御信号によって電磁的に開閉する開閉弁351を備えている。水素の圧力は、燃料電池320に供給するまでの間に、供給管322の途中で更に段階的に減圧されるが、この減圧機構については図示を省略した。
水素タンク350には、レギュレータ355の下流側に、温度センサ353が設けられている。温度センサ353は、レギュレータ355で減圧された後の水素の温度を検出可能な部位に設けられる。温度センサ353の設置部位は、図示した部位に限らず、レギュレータ355、開閉弁351の動作温度を直接または間接的に計測な種々の部位を選択可能である。
水素タンク350から供給されるガスは、減圧時に断熱膨張によって温度が低下する。水素タンク350には、この温度低下を抑制するとともに、温度が下がった水素タンク350の温度の回復を促進するため、ヒータ352が設けられている。
水素タンク350には、レギュレータ355よりも上流側に、タンク内の貯蔵圧力を計測するための圧力センサ354が設けられている。これらの圧力センサ354とは別に、供給管322には、水素の供給圧を検出するための圧力センサ329も設けられている。
B−(2).起動時点検処理:
図9は、制御ユニット340が実行する起動時点検処理を示すフローチャートである。制御ユニット340は、運転者によるスタータスイッチの操作など、燃料電池320の運転が指示された時点で、起動時点検処理を実行する。
この処理が開始されると、制御ユニット340は、供給管322に水素ガスを充填させるために開閉弁351を開く(ステップS310a)。水素ガスが供給管322に充填された後、全ての水素タンク350の開閉弁351を閉じ(ステップS310b)、圧力センサ329によって、供給管322の供給圧Paを検出する(ステップS311a)。開閉弁351を閉じることにより、水素の供給は停止されているため、供給管322の水素が燃料電池320に抜けることによって、正常時であれば供給圧Paは低減するはずである。本実施例では、供給圧Paの変化を短時間で検出可能とするため、燃料電池320を一時的に運転し、供給管322の内部の水素を消費することによる減圧処理を行う(ステップS311b)。その後、供給管322の供給圧Paを再び検出し(ステップS311c)、減圧処理の前後で供給圧Paが低減したか否かを判断する(ステップS312)。供給圧Paが低減しない場合(ステップS312)は、制御ユニット340は、いずれかの水素タンク350の開閉弁351に漏れがある、または開き状態で固着しているものと判断し、異常判定処理を行う(ステップS318)。異常判定処理としては、例えば、異常の存在を示す異常判定フラグを立てる処理が挙げられる。
供給圧Paが低減した場合(ステップS312)、制御ユニット340は、以下の手順で、水素タンク350[1]〜350[4]について、個別に開閉弁351[1]〜351[4]が正常に開くか否かの点検を行う。制御ユニット340は、いずれか一つの水素タンク350を点検対象タンクとして選択し、その点検対象タンクの開閉弁351を開き(ステップS313)、供給圧Paを検出する(ステップS314)。開閉弁351が正常に開いた場合には、点検対象タンクから水素が供給されるため、供給圧Paは増大するはずである。供給圧Paが増大しない場合には(ステップS315)、制御ユニット340は、開閉弁351の開動作に異常があるものと判断し、異常判定処理を行う(ステップS318)。供給圧Paが増大した場合には(ステップS315)、制御ユニット340は、開閉弁351は正常と判断して、点検対象タンクの開閉弁351を閉じる(ステップS316)。制御ユニット340は、一つずつ点検対象タンクを変更しながら、水素タンク350[1]〜350[4]の全てについて、ステップS311a〜S316の点検処理を実行する。
上述の起動時点検処理を実施することにより、本実施例では、供給源となる水素タンク350の切り換え時の開閉弁351の作動信頼性を高めることができ、切り換え時の支障を抑制することができる。上述の処理において、ステップS312においては、例えば、供給圧Paが所定の閾値を下回った時に、供給圧が低減したと判断してもよい。また、供給圧Paの時間的な低減率の絶対値が所定の閾値以上となった時に、供給圧Paが低減したと判断してもよい。同様に、ステップS315においても、供給圧Paと閾値の大小関係に基づく判断、供給圧Paの変化率に基づく判断のいずれを適用してもよい。
B−(3).ガス供給制御:
図10は、制御ユニット340が実行するガス供給制御を示すフローチャートである。制御ユニット340は、燃料電池320の運転中に、水素タンク350を使い分けて発電に要求される量の水素を供給するために、ガス供給制御を繰り返し実行する。
この処理が開始されると、制御ユニット340は、アクセル開度に基づいて要求動力を入力し(ステップS320)、ガスの供給量を設定する(ステップS321)。ガスの供給量は、例えば、要求動力に対してガスの供給量を与えるマップ、関数などに基づいて求めることができる。
次に、制御ユニット340は、ガスの供給源を特定する(ステップS330)。本実施例では、次の理由から、供給源となる水素タンク350を、順次切り換えて水素の供給を行うものとした。高圧で水素を貯蔵する水素タンク350から、水素を供給する際には、断熱膨張によって水素の温度が極端に低下する。かかる温度低下は、レギュレータ355、開閉弁351における樹脂部品の硬化に起因する開閉動作の不良、寿命低下、性能低下などの弊害を招く可能性がある。そこで、本実施例では、かかる弊害を招くほど一つの水素タンク350から連続的に水素を供給することを回避するため、供給源を順次切り換える。つまり、一つの水素タンク350が空になってから次の水素タンク350への切り換えを行うのではなく、4つの水素タンク350を順次、間欠的に供給源として使用する。ガス供給源特定処理(ステップS330)は、かかる考え方に基づき、供給源となる水素タンク350を選択する処理である。ガス供給源特定処理の詳細な内容については、後述する。
制御ユニット340は、選択された水素タンク350の開閉弁351を制御して、ガスの供給を行う(ステップS340)。レギュレータ355や開閉弁351の異常などの理由により、ガスを供給することができない場合には(ステップS341)、再びガス供給源特定処理を実行し(ステップS330)、別の水素タンク350からの供給を試みる。ステップS341において、制御ユニット340は、例えば、供給管322の供給圧Paが低下した場合にはガスの供給に異常があると判断することができる。供給に異常があると判断された場合には、先に起動時点検処理(図9)で説明した通り、異常判定フラグを立てておくことが好ましい。
制御ユニット340は、起動時点検処理(図9)および上述のステップS320〜S341までの処理で、異常が存在する水素タンク350が発見されている場合には(ステップS342)、運転者に対して異常を報知する(ステップS350)。この処理については、後述する。異常が存在しない場合には、制御ユニット340は、異常報知処理(ステップS350)をスキップする。
制御ユニット340は、水素の供給と併せて、各水素タンク350の開閉弁351の温度が下がりすぎないよう、ヒータで加熱する(ステップS360)。ヒータへの通電制御については、後述する。
制御ユニット340は、以上の処理を繰り返し実行することにより、要求動力に見合う発電を行うことができるよう水素を供給する。図10に示したガス供給制御処理は一例に過ぎず、このガス供給制御処理における各処理は、適宜、処理順序を入れ替えたり、並行して実行したりしても構わない。
B−(3−1).ガス供給源特定処理:
図11は、制御ユニット340が実行するガス供給源特定処理を示すフローチャートである。ガス供給源特定処理は、先に説明したガス供給制御(図10)のステップS330に相当する処理であり、水素の断熱膨張による温度低下に伴う弊害を回避するよう、供給源となる水素タンク350を選択するための処理である。本実施例では、各水素タンク350の温度センサ353、圧力センサ354の検出値に基づいて、供給源の選択を行う。
制御ユニット340は、ガス供給源特定処理を開始すると、現在供給中の水素タンク350(以下、「現用タンク」と称する)について、温度Tおよび圧力Pを検出する(ステップS331)。初めて、この処理を実施する場合、即ち現用タンクが存在しない場合には、温度T、圧力Pともに0として処理を行う。また、制御ユニット340は、現用タンクの使用が開始された時点での温度Tを初期温度T0として記憶しておく。
制御ユニット340は、「温度T<閾値Ta」という条件(ステップS332)が満たされる時、現用タンクの切り換えを行う。この条件が満たされない時は、現用タンクを継続的に使用するものとして、ガス供給源特定処理を終了する。
「温度T<閾値Ta」という条件(ステップS332)は、現用タンクの温度が下がりすぎることを回避するための条件である。本実施例では、−10℃を閾値温度Taとして用いるものとした。閾値Taは、例えば、レギュレータ355、開閉弁351などの各部品について正常な動作を確保し得る下限温度、またはこの下限温度よりも所定量高い温度に設定することができる。また、閾値Taは、現用タンクを切り換えた際のタンク温度から下限温度内で所定温度だけ低い温度、例えば、切り換えた際のタンク温度から5℃だけ低い温度に設定することもできる。また、閾値Taは、現用タンク以外の他の水素タンク350とのタンク温度の差(例えば、他の水素タンク350の平均タンク温度の差)が所定温度に達した場合に「温度T<閾値Ta」という条件を満たすように設定することもできる。
ステップS332において、現用タンクの切り換えを行うべきと判断した場合、制御ユニット340は、現用タンクの開閉弁351を閉じる(ステップS333)。そして、現用タンクを除く水素タンク350の中から、タンクの温度が閾値Ta以上となっているタンクを候補タンクとして抽出する(ステップS334)。候補タンクは、複数抽出される可能性がある。
制御ユニット340は、抽出された候補タンクから、供給源とすべきタンクを選択する(ステップS335)。供給源とすべきタンクは、種々の基準で選択することが可能であるが、本実施例では、以下の3つの基準を用いるものとした。
a)タンク温度が高い順;
b)残量が多い順;
c)既定のシーケンス;
上述の基準は、a)〜c)の優先順位で適用する。つまり、まず、基準a)により、複数の候補タンクの中から、最も温度が高いタンクを選択する。こうして選択された候補タンクが複数存在する場合には、次に、基準b)により、残量が多い最大のタンク、即ち圧力Pが最大のタンクを選択する。更に、複数の候補タンクが存在する場合には、基準c)により、「1番タンク→2番タンク→3番タンク→4番タンク」など、既定のシーケンスで選択をする。これらの基準は、種々の設定が可能であり、例えば、基準a)〜c)のいずれか一つのみを用いてもよいし、基準a)〜c)を上述の内容とは異なる優先順位で適用してもよい。
図12は供給源タンクの選択例を示す説明図である。1番タンク(#1)〜4番タンク(#4)の圧力および温度の時間変化を示した。この例では、「1番タンク→2番タンク→3番タンク→4番タンク」というシーケンスが設定されているものとして説明する。
時刻0では、全ての水素タンク350[1]〜350[4]が同一の圧力P0、温度T0の初期状態である。従って、温度に基づく基準a)、残量に基づく基準b)ではなく、基準c)のシーケンスにより、1番タンクが供給源タンクとして選択される。
この結果、時間0〜t1の区間では、1番タンクの圧力P1が低下し、それに伴って温度T1も低下する。時刻t1では、1番タンクの温度が閾値Taに達したため、供給源の切り換えが行われる。この時点で候補タンクは、2番タンク〜4番タンクである。これらの各タンクの圧力P2〜P4、温度T2〜T4は、全て等しい。従って、基準c)のシーケンスにより、1番タンクの次のタンク、即ち2番タンクが供給源タンクとして選択される。
この結果、時間t1〜t2の区間では、2番タンクの圧力P2が低下し、それに伴って温度T2も低下する。1番タンクは、水素の供給を停止しているため、圧力P1は変化しない。温度T1は、水素排出による冷却効果がなくなること、およびヒータによる加熱が行われるため、徐々に上昇する。
時刻t2では、2番タンクの温度が閾値Taに達したため、供給源の切り換えが行われる。この時点で候補タンクは、1番タンク、3番タンク、4番タンクである。これらの各タンクの圧力P1、P3、P4、温度T1、T3、T4は、次の関係にある。
圧力…P3=P4>P1;
温度…T3=T4>T1;
従って、基準a)により、温度が最低の1番タンクは、供給源タンクの候補から外され、候補タンクは、3番タンクと4番タンクとなる。結局、基準c)のシーケンスにより、2番タンクの次のタンク、即ち3番タンクが供給源タンクとして選択される。
時刻t3では、3番タンクの温度が閾値Taに達したため、供給源の切り換えが行われる。この時点で候補タンクは、1番タンク、2番タンク、4番タンクである。これらの各タンクの圧力P1、P2、P4、温度T1、T2、T4は、次の関係にある。
圧力…P4>P1=P2;
温度…T4>T1>T2;
従って、基準a)により、温度が最高の4番タンクが供給源タンクとして選択される。以下、同様にして、基準a)〜c)を適用することにより、適宜、供給源タンクの選択を行うことができる。
B−(3−2).異常報知処理:
図13は、制御ユニット340が実行する異常報知処理を示すフローチャートである。異常報知処理は、ガス供給制御処理(図10)のステップS350に相当する処理であり、4本の水素タンク350のいずれかに異常が存在することを運転者に報知するための処理である。
異常報知処理が開始されると、制御ユニット340は、異常判定結果を入力する(ステップS351)。異常判定結果としては、例えば、起動時点検処理(図9のステップS318)やガス供給制御処理(図10のステップS341)などで設定された異常判定フラグを用いることができる。本実施例では、異常判定フラグに基づき、1番タンク〜4番タンクのうち、異常が存在するタンクを個別に特定可能であるものとする。
制御ユニット340は、異常が存在するタンクを除き、ガスの残量を算出する(ステップS352)。図13中に、4番タンクに異常が検出された場合を例にとって、残量の算出方法を示した。図示する通り、異常が検出される前の時点で、1番タンク〜4番タンクのガス残量は、それぞれR1〜R4であったとする。異常が検出される前の時点では、合計の残量Roldは、「R1+R2+R3+R4」と求められる。制御ユニット340は、4番タンクに異常が検出された場合には、4番タンクの残量R4を無視する。従って、合計の残量Rnewは、「R1+R2+R3」と求められる。
制御ユニット340は、残量の算出結果に基づき、残量表示を修正するとともに、運転者に警告表示を行う(ステップS353)。図13中には、車両310の計器板360を例示した。本実施例では、計器板360の左側に、ガスの残量計361、残量警告灯362、各タンクについての異常警告灯363が設けられている。ステップS352の計算により、残量は急激に減るため、残量計361の指示値も図示する通り急激にRoldからRnewに低下する。制御ユニット340は、残量計361の表示が修正されたことを運転者に意識させるため、残量Rnewの値に関わらず、残量警告灯362を所定期間、点滅させる。残量警告灯362の点滅に代えて、所定期間、残量計361の指針を振動させてもよい。
制御ユニット340は、これらの表示と併せて、異常が発見された水素タンク350について異常警告灯363を点灯または点滅させる。図13の例では、4番タンクに異常が発見された状態を例示した。これらの表示は、必ずしも全てを行う必要はなく、計器板360の構成に応じて、一部を省略しても構わない。
B−(3−3).ヒータ加熱処理:
図14は、制御ユニット340が実行するヒータ加熱処理を示すフローチャートである。ガス供給制御処理(図10)のステップS360に相当する処理であり、各水素タンク350のヒータ352への通電可否および通電量を制御するための処理である。制御ユニット340は、各水素タンク50に対してヒータ加熱処理を実施する。以下、説明の便宜上、ヒータ加熱処理の制御対象となっている水素タンク350を、対象タンクと称する。
ヒータ加熱処理が開始されると、制御ユニット340は対象タンクの温度Tの入力を受け付ける(ステップS361)。制御ユニット340は、この温度Tが予め設定された目標温度Thよりも大きい場合には、ヒータ352による加熱は不要と判断し、ヒータ352への通電をオフにする(ステップS363)。目標温度Thは、例えば、レギュレータ355、開閉弁351など水素タンク350の各部品の動作が保証されている温度に基づいて設定することができる。本実施例では、目標温度Thを、0℃に設定した。
対象タンクの温度Tが目標温度Th以下である場合には、以下の処理によってヒータ352への通電量を設定する。まず、制御ユニット340は、目標温度Thと、対象タンクの温度Tとの差分dTを算出する(ステップS364)。この差分dTは、対象タンクに要求される温度上昇量に相当する。
制御ユニット340は、次に、切り換えまでの所要時間、即ち、制御対象となっている対象タンクが再び使用されるまでの所要時間Tcを次式により、算出する(ステップS365)。
Tc=Nt×Tav ・・・(1)
ここで、Ntは、インターバル・タンク数であり、Tavは、平均連続使用可能時間である。
インターバル・タンク数Ntは、対象タンクが次に水素の供給源として使用されるまでに、使用される水素タンク350の数である。例えば、4本の水素タンク350が全て使用可能である場合を考える。対象タンクが水素の供給を終えた直後であれば、通常は、他の3つの水素タンク350が使用された後、再び供給源として選択されることになるから、「Nt=3」となる。対象タンクが水素の供給を終えた後、既に他の一つの水素タンク350が水素の供給を終えている場合には、「Nt=2」となる。対象タンクが現に水素の供給源として使用されている場合には、「Nt=0」と扱うものとする。また、いずれか一つの水素タンク350に異常が発見されており対象タンクも含めて3つの水素タンク350が使用可能な場合は、対象タンクが水素の供給を終えた直後であれば、「Nt=2」となる。
平均連続使用可能時間Tavは、温度が下がりすぎることなく、一つの水素タンク350から連続して水素を供給可能な平均時間であり、例えば、従前の供給履歴から求めることができる。平均連続使用可能時間Tavは、固定値としてもよく、例えば、最大供給量で水素を供給した場合に、温度が下がりすぎることなく連続して供給可能な時間に設定してもよい。
制御ユニット340は、ステップS364、S365で算出した値に基づいて、単位時間当たりの必要熱量Qrを次式により算出する(ステップS366)。
Qr=dT×Ct/Tc ・・・(2)
ここで、Ctは、タンクの熱容量である。
必要熱量Qrは、所要時間Tc後に、対象タンクの温度を目標温度Thまで上昇させるために、単位時間当たりに供給すべき熱量を表している。このように必要熱量Qrを設定することにより、水素タンク350の温度を安定して目標温度Thに回復させることが可能となる。
最後に、制御ユニット340は、次式により、ヒータ352による単位時間当たりの加熱量Hrを設定し、これに基づいてヒータ352への通電制御を行う(ステップS367)。
Hr=max(Qr−Qn,Hmin) ・・・(3)
ここで、Qnは、自然加熱による熱量であり、Hminは、最低加熱量である。max(A,B)は、A,Bのうち大きい方を選択する演算子である。
自然加熱による熱量Qnは、実験または解析により予め設定することができる。最低加熱量Hminは、ヒータ352によって無条件に与えるべき加熱量である。例えば、対象タンクが水素の供給源として使用されている場合や、対象タンクの温度が目標温度Thに近い場合などに、この最低加熱量Hminによる加熱が行われることになる。
最低加熱量Hminを大きい値に設定すれば、対象タンクが水素の供給源として利用されている場合の温度低下を抑制することができる。従って、連続して供給可能な時間を延ばすことができ、水素タンク350の切り換え頻度を抑えることができる利点がある。最低加熱量Hminを小さい値に設定すれば、ヒータ352への通電に消費されるエネルギを抑制し、燃料電池システムのエネルギ効率を向上することができる利点がある。最低加熱量Hminは、このように温度低下の抑制という要求と、エネルギ効率の向上という要求を勘案して、任意に設定することが可能である。
ヒータ加熱処理は、変形例として、上述のステップS364〜S366を省略してもよい。即ち、対象タンク温度Tが目標温度Th以下の場合、制御ユニット340は、予め設定された最低加熱量Hminでの加熱を無条件に行うようヒータ352に通電するようにしてもよい。
B−(4).効果:
以上説明した第2の実施例によれば、複数の水素タンク350を、レギュレータ355の下流側の温度に応じて切り換えて使用する。従って、レギュレータ355、開閉弁351などの各部品の温度が下がりすぎることを回避することができ、開閉動作の異常、部品の寿命低下、性能低下など温度低下に起因する種々の弊害を回避することができる。
B−(5).ガス供給源特定処理の変形例:
図15は、ガス供給源特定処理の第1変形例を示すフローチャートである。図15に示すガス供給源特定処理は、先に説明したガス供給制御(図10)のステップS330に相当する処理である。第1変形例では、各水素タンク350の温度センサ353を省略した構成で、圧力センサ354の検出値に基づいて、供給源の選択を行う。
制御ユニット340は、図15に示すガス供給源特定処理を開始すると、現在供給中の水素タンク350である現用タンクについて、圧力変化dPを検出する(ステップS331A)。圧力変化dPとは、現用タンクからの水素供給を開始した初期圧力Piniと、現時点の圧力Pとの差分(dP=Pini−P)である。初めて、この処理を実施する場合、即ち現用タンクが存在しない場合には、圧力変化dPを0として処理を行う。
制御ユニット340は、「圧力変化dP>閾値X」という条件(ステップS332A)が満たされる時、現用タンクの切り換えを行う。いずれの条件も満たされない時は、現用タンクを継続的に使用するものとして、ガス供給源特定処理を終了する。
「圧力変化dP>閾値X」という条件(ステップS332A)は、圧力変化によって推測される温度変化に基づいて、現用タンクの温度が下がりすぎることを回避するための条件である。閾値Xの設定方法について説明する。一般に高圧ガスを減圧して供給する場合、ガスは、断熱膨張によって次式に従い温度が低下することが知られている。
T1=Ts(P1/Ps)(γ−1)/γ ・・・(4)
ここで、T1は、断熱膨張後の温度(K)であり、Tsは、断熱膨張前の初期温度(K)である。P1は、断熱膨張後の圧力であり、Psは、断熱膨張前の初期圧力である。γは、比熱比(1.4)である。例えば、Ts=300K、P1=1気圧、Ps=350気圧の場合、T1は理論的には、約56K(−217℃)にまで低下する。
上式によれば、減圧された状態での水素の温度は、水素タンク350の圧力Psに依存するが、閾値Xの設定に際しては、圧力Psに依らず一定として扱うことにより、排出される水素の温度は一定として扱う。この一定値は、温度の下がりすぎを回避するという観点で安全側の設定とするために、例えば、最大圧力からの断熱膨張に基づいて設定することができる。水素の排出による水素タンク350の温度低下は流量に依存するため、閾値Xの設定に際しては、最大流量で排出されるものと仮定する。この条件下で、水素タンク350の温度を1℃低下させるのに必要となる水素の排出量Y[Pa/℃]が実験的または解析的に求められる。排出量Yの単位に圧力を用いているのは、水素の排出量は水素タンク350の圧力変化に比例するからである。
上述の排出量Yを用いれば、水素タンク350の温度が初期温度、即ちヒータによる加熱制御の目標温度Th、から閾値Taまで低下するのに要する水素の排出量[Pa]が求まる。本実施例では、この排出量を閾値Xとして用いた。即ち、「X[Pa]=(Th−Ta)[℃]×Y[Pa/℃]」で設定した。この値は、供給源としての使用開始時には、ヒータ加熱処理(図14)で説明した初期の目標温度Thが実現されていると想定して設定した値である。温度センサが設けられている場合には、初期温度の実測値を用いても良い。閾値Xは、形式上は水素タンク350の圧力変化に基づく条件として表されているが、実質的には水素タンク350からの水素排出量に基づく条件と言うこともできる。また閾値Xは、最も温度低下が激しくなる条件を仮定して設定されているため、水素タンク350の温度が下がりすぎることを、より確実に回避することができる。
先に説明した通り、排出される水素の温度は、水素タンク350の圧力Pによって変化するため、水素タンク350の温度を1℃低下させるのに必要となる水素の排出量Y[Pa/℃]も圧力Pに依存する。かかる影響を考慮し、上述の排出量Yの値を、現用タンクの初期圧力Piniに応じて、予め用意されたマップ、関数に基づいて設定するようにしてもよい。
ステップS332Aにおいて、現用タンクの切り換えを行うべきと判断した場合、制御ユニット340は、現用タンクの開閉弁351を閉じる(ステップS333A)。そして、現用タンクを除く水素タンク350の中から、「a)残量が多い順;b)既定のシーケンス」という2つの基準で、供給源となる水素タンク350を選択する。変形例では、温度センサを省略しているので、温度に関する基準は適用しない。
以上で説明した通り、変形例では、温度センサを省略し、構造の簡素化を図りつつ、実施例と同様、水素タンク350の温度の下がりすぎを回避することができる。
第1変形例は、温度センサおよびヒータの加熱を共に省略したシステムに適用することも可能である。この場合には、閾値X[Pa]相当の水素を排出して温度が低下した水素タンク350は、他の水素タンク350から水素が供給されている間、水素の供給を低下することにより、自然加熱によって初期温度T0に戻るという前提で制御を行う。閾値Xは、先に説明した通り、「X[Pa]=(T0−Ta)[℃]×Y[Pa/℃]」で設定することができる。このシステム構成では、水素タンク350について、断熱膨張による温度低下dT(=T0−Ta)よりも、温度Taから自然加熱による温度上昇dTrが大きくなること、即ちdTr>dTが要求される。従って、かかる条件を満足するインターバル期間、即ち各水素タンク350からの水素供給が停止される期間を確保するよう水素タンク350の本数を設定することが好ましい。温度上昇dTrを達成するための所要時間を短縮するために、例えば、水素タンク350に設けられたレギュレータ355に対して、吸熱性を向上する材質、構造を適用してもよい。
図16は、ガス供給源特定処理の第2変形例を示すフローチャートである。図16に示すガス供給源特定処理は、先に説明したガス供給制御(図10)のステップS330に相当する処理である。第2変形例では、各水素タンク350の温度に応じて、各水素タンク350間の温度差が小さくなるように供給源タンクの選択を行う。
制御ユニット340は、図16に示すガス供給源特定処理を開始すると、水素タンク350[1]〜350[4]についての各水素タンク温度T[N](N=1〜4)を検出する(ステップS410)。その後、水素タンク温度T[N]のうち現在供給中の水素タンク350である現用タンクの温度である現用タンク温度Tepが、この現用タンクが供給源タンクとして切り換えられた時点から低下温度Tdcだけ低下したか否かを判断する(ステップS420)。ここで、低下温度Tdcは、各水素タンク350間の温度差を小さくするために設定された所定の温度であり、本実施例では、予め5℃に設定されている。
現用タンク温度Tepが低下温度Tdcだけ低下していない場合には(ステップS420)、現用タンクからの水素供給を継続して(ステップS460)、ガス供給源特定処理を終了する。
一方、現用タンク温度Tepが低下温度Tdcだけ低下した場合には(ステップS420)、現用タンクからの水素供給を停止し(ステップS430)、水素タンク350[1]〜350[4]の中で最も高温な水素タンク350を供給源タンクとして特定して、供給源タンクの切り換えを行い(ステップS440)、ガス供給源特定処理を終了する。
第2変形例によれば、複数の水素タンク350間の温度の平準化を図り、ガス供給に伴う温度低下に起因する弊害を抑制することができる。
なお、低下温度Tdcは、5℃に限るものではなく、システムの特性や使用環境,水素供給量などに応じた所定の温度に設定することができる。また、低下温度Tdcを所定温度に固定するのではなく、システムの状態に応じて、システムの稼働中に適宜変更することとしても良い。例えば、タンク温度が高くなるほど低下温度Tdcの値を大きくしても良い。これにより、タンク関連部品の劣化の可能性が比較的低い高温時におけるタンクの切り替え頻度を減らすことができる。また、現用タンクが供給源タンクとして切り換えられた時点から所定温度だけ低下した場合に、供給源タンクの切り換えを行うのではなく、現用タンクと他の水素タンク350の平均温度との温度差が所定温度となった場合や、供給源タンクを切り換えてから所定時間だけ経過した場合に、供給源タンクの切り換えを行うことによって、各水素タンク350間の温度差が小さくなるようにしても良い。また、水素タンク350の温度の平準化と共に、水素タンク350の温度保証領域の範囲内で水素供給を行うこととしても良い。
図17は、ガス供給源特定処理の第3変形例を示すフローチャートである。図17に示すガス供給源特定処理は、先に説明したガス供給制御(図10)のステップS330に相当する処理である。第3変形例では、各水素タンク350の温度および圧力に応じて、各水素タンク350間の温度差および圧力差が小さくなるように供給源タンクの選択を行う。
制御ユニット340は、図17に示すガス供給源特定処理を開始すると、水素タンク350[1]〜350[4]についての各水素タンク温度T[N](N=1〜4)および各水素タンク圧力P[N](N=1〜4)を検出する(ステップS510)。その後、次式で表される供給源特定値Fを最小値とする水素タンク350を供給源タンクとして特定して、供給源タンクの切り換えを行い(ステップS520)、ガス供給源特定処理を終了する。
F=ΣA・(T[N]−Tave)
ΣB・(P[N]−Pave) ・・・(5)
ここで、Aは、水素タンク温度T[N]に対するゲインであり、Bは水素タンク圧力P[N]に対するゲインであり、各水素タンク350間の温度差および圧力差の縮小に適した所定の値に設定されている。Taveは、全ての水素タンク350の平均温度であり、Paveは、全ての水素タンク350の平均圧力である。
第3変形例によれば、複数の水素タンク350間の設置環境(例えば、日当たり具合や、発熱機器との位置関係)に起因して低温に成りがちな水素タンク350の使用頻度の低下を抑制することができる。また、各水素タンク350の容積が同じ場合には、各水素タンク350内のガス密度の平準化を図ることができる。
なお、供給源特定値Fを表す式(5)において、「|T[N]−Tave|<C(Cは所定の閾値)」の場合には「A=0」とし、「|T[N]−Tave<D(Dは所定の閾値)|の場合には「B=0」とすることによって、水素タンク350の切り換えが過剰に行われることを抑制することとしても良い。
また、水素タンク350の温度および圧力の平準化と共に、水素タンク350の温度保証領域の範囲内で水素供給を行うこととしても良い。この場合には、温度保証領域の下限温度直前の温度で供給源タンクを切り換えた際に、下限温度を超えない程度にガスを供給可能なガス供給量を、水素タンク350の外気温度と、水素タンク350の温度とを考慮して算出し、この算出されたガス供給量を放出した後にガス供給を制限することとしても良い。
B−(6).その他の実施形態:
第2の実施例と、その変形例のガス供給源特定処理(図11および図15)を組み合わせた処理を行っても良い。つまり、現用タンクの切り換えに、水素タンクの温度Tによる判断(図11のステップS332)と、圧力変化dPによる判断(図15のステップS332A)とを併用してもよい。この場合、例えば、いずれか一方の条件が満足された場合に、現用タンクの切り換えを行うべきと判断する方法を採ることができる。こうすることにより、切り換えに関する誤判断の可能性を抑制することができる。
以上、本発明の第2の実施例について説明したが、本発明はこれらの実施例に限定されず、その趣旨を逸脱しない範囲で種々の構成を採ることができることはいうまでもない。例えば、本発明は、車両に搭載した燃料電池のみならず、定置型の燃料電池にガスを供給するシステムとして構成することも可能である。また、本発明は、水素に限らず、複数の高圧タンクから種々のガスを減圧して供給するガス供給装置に適用可能である。実施例および変形例では、水素タンク350を一つずつ供給源として選択する場合を例示したが、複数の水素タンク350を選択することを許容してもよい。
また、本実施例では、ヒータ52によって水素タンク350を加熱することとしたが、燃料電池20やインバータ31などの発熱体の廃熱を利用して水素タンク350を加熱することとしても良い。さらに、各水素タンク350の表面と、発熱体との間で冷却水を循環させることによって、各水素タンク350と発熱体との間で熱交換を行うことしても良い。また、例えば、各水素タンク350の間で冷却水を循環させることによって、各水素タンク350の間で熱交換を行うこととしても良い。
この発明は、タンクに貯蔵されたガスを外部に供給するガス供給装置に適用可能である。また、水素を取り扱うガス供給装置に利用するばかりではなく、酸素や窒素,空気など種々のガスを取り扱うガス供給装置においても利用可能である。

Claims (29)

  1. ガスを貯蔵する貯蔵部と、該貯蔵されたガスを該貯蔵部の外部に減圧して放出する放出機構とを有するタンクと、
    前記タンクの温度を検出する温度検出部と、
    該検出したタンクの温度に応じて、該タンクからのガスの供給を調整する供給制限部と
    を備えたガス供給装置。
  2. 請求項1記載のガス供給装置であって、
    前記タンクを複数備え、
    前記温度検出部は、前記複数のタンクの温度を検出し、
    前記供給制限部は、前記検出したタンクの温度に応じて、前記複数のタンク間の温度差が小さくなるようにガスの供給を制限する
    ガス供給装置。
  3. 前記供給制限部は、前記ガスの供給源となっているタンクの温度が、該タンクを供給源に切り換えた時点の温度から所定温度だけ低下した場合に、該タンクとは異なる他のタンクを供給源に切り換えることによって、前記複数のタンク間の温度差が小さくなるようにガスの供給を制限する請求項2記載のガス供給装置。
  4. 前記供給制限部は、前記ガスの供給源となっているタンクの温度と、該タンクとは異なる他のタンクの温度とが所定温度差になった場合に、該他のタンクを供給源に切り換えることによって、前記複数のタンク間の温度差が小さくなるようにガスの供給を制限する請求項2記載のガス供給装置。
  5. 前記供給制限部が前記供給源に切り換えるタンクは、前記複数のタンクのうち最も高温なタンクである請求項3または4記載のガス供給装置。
  6. 請求項2記載のガス供給装置であって、
    前記複数のタンクの圧力を検出する圧力検出部を備え、
    前記供給制限部は、前記検出した複数のタンクの温度および圧力に応じて、該複数のタンク間の温度差および圧力差が小さくなるようにガスの供給を制限する
    ガス供給装置。
  7. 前記供給制限部は、前記検出したタンクの温度と、該タンクの性能を保証する保証温度領域との関係に基づいて、該タンクからのガスの供給を調整する請求項1記載のガス供給装置。
  8. 前記供給制限部は、前記検出したタンクの温度が、該タンクの性能を保証する保証温度領域を外れないように、該タンクからのガスの供給を調整する請求項7記載のガス供給装置。
  9. 請求項7記載のガス供給装置であって、
    前記タンクを複数備え、
    前記温度検出部は、前記複数のタンクのうち、少なくとも前記ガスの供給源となっているタンクの温度を検出し、
    前記供給制限部は、前記検出した供給源となっているタンクの温度と、該タンクの性能を保証する保証温度領域との関係に基づいて、該供給源となっているタンクからのガスの供給を制限する
    ガス供給装置。
  10. 前記供給制限部は、前記検出した供給源となっているタンクの温度が、該タンクの性能を保証する保証温度領域を外れないように、該供給源となっているタンクからのガスの供給を制限する請求項9記載のガス供給装置。
  11. 前記供給制限部は、前記検出した供給源となっているタンクの温度が、該タンクが前記供給源になってから前記保証温度領域内で所定温度だけ低下する際に、該供給源となっているタンクからのガスの供給を制限する請求項9または10記載のガス供給装置。
  12. 請求項9ないし11のいずれか記載のガス供給装置であって、
    前記温度検出部は、前記複数のタンクの温度を検出し、
    前記供給制限部は、前記検出した供給源となっているタンクの温度と、該タンクとは異なる他のタンクの温度とが、前記保証温度領域内で所定温度差となる際に、該供給源となっているタンクからのガスの供給を制限する
    ガス供給装置。
  13. 請求項12記載のガス供給装置であって、
    前記複数のタンクの圧力を検出する圧力検出部を備え、
    前記供給制限部は、前記所定温度差となる際、または、前記検出した供給源となっているタンクの圧力と、該タンクとは異なる他のタンクの圧力とが所定圧力差となる際に、該供給源となっているタンクからのガスの供給を制限する
    ガス供給装置。
  14. 前記供給制限部は、前記ガスの供給を制限する際に、前記供給源となっているタンクとは異なる他のタンクの中から、前記供給源となるタンクを選択するタンク選択手段を備えた請求項9ないし13のいずれか記載のガス供給装置。
  15. 前記タンク選択手段は、各時点で前記複数のタンクのうちのいずれか一つのタンクを前記供給源として選択する手段である請求項14記載のガス供給装置。
  16. 請求項14または15記載のガス供給装置であって、
    前記タンク選択手段は、前記複数のタンクの前記供給源としての使用履歴に基づいて、前記供給源となるタンクを選択する手段である
    ガス供給装置。
  17. 請求項14ないし16のいずれか記載のガス供給装置であって、
    前記温度検出部は、前記複数のタンクの温度を検出し、
    前記選択手段は、前記検出された複数のタンクの温度に基づいて、前記供給源となるタンクを選択する手段である
    ガス供給装置。
  18. 請求項9ないし17のいずれか記載のガス供給装置であって、
    前記供給制限部は、
    前記供給源となっているタンクからのガスの供給に支障があるか否かを判断する支障判断手段と、
    前記供給源となっているタンクに支障があると判断する場合に、該タンクとは異なる他のタンクの中から、前記供給源となるタンクを選択する支障選択手段と
    を備えた
    ガス供給装置。
  19. 請求項9ないし18のいずれか記載のガス供給装置であって、
    前記ガスを供給するための供給管を、前記複数のタンクの各放出機構に共通して連結し、
    前記供給管の圧力を検出する供給管検出部と、
    前記ガスの供給を開始する際に、前記検出された供給管の圧力の挙動に基づいて、少なくとも一つの前記放出機構の異常の有無を点検する供給管点検部と
    を備えたガス供給装置。
  20. 前記温度検出部は、前記タンクから供給されるガスに関連する物理量に基づいて、該タンクの温度を検出する請求項1ないし19のいずれか記載のガス供給装置。
  21. 前記温度検出部は、前記タンクから供給されるガスの断熱膨張度合に基づいて、該タンクの温度を検出する請求項1ないし20のいずれか記載のガス供給装置。
  22. 前記温度検出部は、前記タンクから供給されるガスが該タンクから奪う熱量に基づいて、該タンクの温度を検出する請求項1ないし21のいずれか記載のガス供給装置。
  23. 前記温度検出部は、前記貯蔵部および前記放出機構の少なくとも一部における温度を、該タンクの温度として検出する請求項1ないし22のいずれか記載のガス供給装置。
  24. 前記温度検出部は、前記タンクから供給されるガスの供給量に基づいて、該タンクの温度を検出する請求項1ないし23のいずれか記載のガス供給装置。
  25. 前記貯蔵部を加熱する加熱部を備えた請求項1ないし24のいずれか記載のガス供給装置。
  26. 前記タンクからのガスの供給に異常が存在する場合に、該異常を報知する報知部を備えた請求項1ないし25のいずれか記載のガス供給装置。
  27. 請求項1ないし26のいずれか記載のガス供給装置であって、
    前記ガスは、水素を含む燃料電池用の燃料ガスであり、
    該ガスの供給先は、水素を燃料とする燃料電池である
    ガス供給装置。
  28. ガスを貯蔵する貯蔵部と、該貯蔵するガスを減圧して放出する放出機構とを有するタンクを備え、該タンクに貯蔵されたガスを外部に供給するガス供給装置の制御方法であって、
    前記タンクの温度を検出し、
    該検出したタンクの温度と、該タンクの性能を保証する保証温度領域との関係に基づいて、該タンクからのガスの供給を制限する
    制御方法。
  29. ガスを貯蔵する貯蔵部と、該貯蔵するガスを減圧して放出する放出機構とを有するタンクを複数備え、該タンクに貯蔵されたガスを外部に供給するガス供給装置の制御方法であって、
    前記複数のタンクのうち、少なくとも前記ガスの供給源となっているタンクの温度を検出し、
    前記検出した供給源となっているタンクの温度と、該タンクの性能を保証する保証温度領域との関係に基づいて、該供給源となっているタンクからのガスの供給を制限する
    制御方法。
JP2005512041A 2003-07-25 2004-07-16 ガス供給装置 Expired - Fee Related JP4622857B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2003201509 2003-07-25
JP2003201509 2003-07-25
JP2004023985 2004-01-30
JP2004023985 2004-01-30
PCT/JP2004/010579 WO2005010427A1 (ja) 2003-07-25 2004-07-16 ガス供給装置

Publications (2)

Publication Number Publication Date
JPWO2005010427A1 true JPWO2005010427A1 (ja) 2006-09-14
JP4622857B2 JP4622857B2 (ja) 2011-02-02

Family

ID=34106840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005512041A Expired - Fee Related JP4622857B2 (ja) 2003-07-25 2004-07-16 ガス供給装置

Country Status (5)

Country Link
US (1) US7575012B2 (ja)
EP (1) EP1653148B1 (ja)
JP (1) JP4622857B2 (ja)
KR (1) KR100672273B1 (ja)
WO (1) WO2005010427A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015069910A (ja) * 2013-09-30 2015-04-13 日産自動車株式会社 燃料電池システム

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7325561B2 (en) 2004-12-02 2008-02-05 Honda Motor Co., Ltd. Hydrogen vehicle gas utilization and refueling system
JP2006269330A (ja) * 2005-03-25 2006-10-05 Suzuki Motor Corp 水素供給装置
JP4956906B2 (ja) * 2005-03-29 2012-06-20 トヨタ自動車株式会社 燃料電池システムおよび水素漏れ検出方法
JP4940573B2 (ja) * 2005-05-02 2012-05-30 トヨタ自動車株式会社 燃料ガス供給装置
US9142844B2 (en) * 2005-05-18 2015-09-22 Sprint Communications Company L.P. Power system for a telecommunications network
JP4863651B2 (ja) * 2005-06-09 2012-01-25 本田技研工業株式会社 燃料電池システム
US7367349B2 (en) * 2005-07-12 2008-05-06 Gm Global Technology Operations, Inc. Method for opening tank shut-off valves in gas feeding systems with connected tanks
JP2007043846A (ja) 2005-08-04 2007-02-15 Toyota Motor Corp 移動体
JP5055883B2 (ja) * 2005-09-07 2012-10-24 トヨタ自動車株式会社 水素供給装置
JP4760353B2 (ja) 2005-12-14 2011-08-31 トヨタ自動車株式会社 液体水素タンク残量検知システム
JP4744285B2 (ja) * 2005-12-19 2011-08-10 本田技研工業株式会社 水素自動車のガスの使用及び補給システム
ATE450401T1 (de) * 2005-12-21 2009-12-15 Honda Motor Co Ltd Wasserstoffgasversorgungs- und betankungssystem für fahrzeug
CA2577655C (en) * 2006-02-14 2011-04-05 Angstrom Power Incorporated Fuel cell devices and method therefor
JP2007242122A (ja) * 2006-03-07 2007-09-20 Mitsubishi Electric Corp ディスク再生装置
US8056577B2 (en) * 2006-03-20 2011-11-15 Tescom Corporation Apparatus and methods to dispense fluid from a bank of containers and to refill same
US7905252B2 (en) 2006-03-20 2011-03-15 Tescom Corporation Apparatus and methods to dispense fluid from a bank of containers and to refill same
JP4795825B2 (ja) * 2006-03-24 2011-10-19 大陽日酸株式会社 ガス供給装置およびガス供給方法
TWM318100U (en) * 2006-11-23 2007-09-01 Grand Hall Entpr Co Ltd Gas storage detection and leakage alerting apparatus
JP4849332B2 (ja) * 2006-11-24 2012-01-11 トヨタ自動車株式会社 燃料供給装置
US9061450B2 (en) 2007-02-12 2015-06-23 Cree, Inc. Methods of forming packaged semiconductor light emitting devices having front contacts by compression molding
US9263751B2 (en) * 2007-02-26 2016-02-16 GM Global Technology Operations LLC Method to reduce pressure when injectors are stuck open under faulted conditions and remedial action to prevent walk-home incident
JP4941730B2 (ja) * 2007-03-08 2012-05-30 トヨタ自動車株式会社 燃料供給装置及び車両
JP4905235B2 (ja) * 2007-04-19 2012-03-28 トヨタ自動車株式会社 付臭剤添加装置、燃料ガス供給システム
JP4962777B2 (ja) * 2007-04-27 2012-06-27 トヨタ自動車株式会社 ガス供給システム
JP5091539B2 (ja) * 2007-05-17 2012-12-05 ルネサスエレクトロニクス株式会社 液化ガス供給システム
JP4827986B2 (ja) 2007-06-08 2011-11-30 マンカインド コーポレ−ション IRE−1αインヒビター
DE102007054291B4 (de) * 2007-10-02 2015-02-26 Diehl Aerospace Gmbh Verfahren zum Bereitstellen von Energie und Energieversorgungseinheit dafür
JP5125412B2 (ja) * 2007-10-30 2013-01-23 トヨタ自動車株式会社 タンク内に貯蔵された圧縮ガスの残量の算出
DE102007058671B4 (de) * 2007-12-06 2016-04-28 Basf Se Verfahren zur Regelung der Gasentnahme und Vorrichtung zur Speicherung mindestens eines Gases
JP4580994B2 (ja) * 2008-02-07 2010-11-17 本田技研工業株式会社 高圧タンク
DE102008019466A1 (de) * 2008-08-27 2010-03-04 Daimler Ag Verfahren und Vorrichtung zum Betreiben eines Gastankbehälters in einem Fahrzeug
US9966615B2 (en) * 2009-03-11 2018-05-08 Honeywell International Inc. Recharger for hydrogen fuel cells
US8443820B2 (en) 2009-06-03 2013-05-21 Ford Global Technologies, Llc Fuel distribution in multi-fuel tank compressed gas fuel systems
DE112009005107B4 (de) * 2009-07-29 2017-10-19 Toyota Jidosha Kabushiki Kaisha Gasabfüllsystem
JP5285568B2 (ja) * 2009-10-19 2013-09-11 本田技研工業株式会社 ガス燃料供給装置
WO2011058782A1 (ja) * 2009-11-16 2011-05-19 トヨタ自動車株式会社 ガス充填装置及びガス充填方法
MY165875A (en) * 2010-02-24 2018-05-18 Hydrexia Pty Ltd Hydrogen release system
JP5508638B2 (ja) * 2010-10-28 2014-06-04 トヨタ自動車株式会社 燃料供給システム
US8950195B2 (en) * 2010-12-18 2015-02-10 The Boeing Company Continuous flow thermodynamic pump
JP5258912B2 (ja) * 2011-01-26 2013-08-07 本田技研工業株式会社 燃料電池システム及び燃料電池システムの運転方法
JP5804751B2 (ja) * 2011-04-06 2015-11-04 本田技研工業株式会社 高圧ガス供給システム
DE102011104711A1 (de) * 2011-06-06 2012-12-06 Zoz Gmbh Fahrzeug mit mehreren Vorratsbehältern für Wasserstoff und Verfahren zur Anzeige der verfügbaren Vorratsmenge und Steuerung zur Entnahme
US8720500B2 (en) * 2011-10-11 2014-05-13 GM Global Technology Operations LLC Electrical architecture for passive controller wake-up during refuel
US9238865B2 (en) 2012-02-06 2016-01-19 Asm Ip Holding B.V. Multiple vapor sources for vapor deposition
US8903630B2 (en) 2012-02-08 2014-12-02 Ford Global Technologies, Llc Method and system for engine control
US8919325B2 (en) 2012-02-08 2014-12-30 Ford Global Technologies, Llc Method and system for engine control
DE102012005689B3 (de) 2012-03-21 2013-08-22 Audi Ag Verfahren zum Versorgen eines Antriebsaggregats
US9115653B2 (en) 2012-03-27 2015-08-25 Ford Global Technologies, Llc System and method for emptying a tank
US9422900B2 (en) 2012-03-27 2016-08-23 Ford Global Technologies, Llc System and method for closing a tank valve
JP6001315B2 (ja) * 2012-04-26 2016-10-05 トヨタ自動車株式会社 ガス充填システム及び車両
JP5414849B2 (ja) * 2012-07-23 2014-02-12 ルネサスエレクトロニクス株式会社 液化ガス供給方法及び液化ガス供給システムの制御装置
DE102012018109A1 (de) * 2012-09-04 2014-03-27 Linde Aktiengesellschaft Verfahren zur Durchführung eines Drucktests an einem Tank und Betankungseinrichtung
EP2728242B1 (de) * 2012-11-05 2021-08-25 Magna Steyr Fahrzeugtechnik AG & Co KG Druckspeichersystem und Verfahren zum Betreiben eines Druckspeichersystems
US9074730B2 (en) * 2013-03-14 2015-07-07 Air Products And Chemicals, Inc. Method for dispensing compressed gases
US9528472B2 (en) 2013-04-19 2016-12-27 Ford Global Technologies, Llc Enhanced fuel injection based on choke flow rate
US9279541B2 (en) * 2013-04-22 2016-03-08 Air Products And Chemicals, Inc. Method and system for temperature-controlled gas dispensing
KR101509971B1 (ko) 2013-11-15 2015-04-07 현대자동차주식회사 수소 탱크 온도 이상 대처 방법 및 이를 위한 안전강화장치
DE102014019419A1 (de) * 2014-12-22 2016-06-23 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren und Diagnoseeinrichtung zur Überprüfung von Hochdrucktankventilen, Hochdrucktanksystem und Kraftfahrzeug mit einem Hochdrucktanksystem
JP6389440B2 (ja) * 2015-03-13 2018-09-12 株式会社神戸製鋼所 ガス供給システムおよびそれを備えた水素ステーション、蓄圧器の寿命判定方法、並びにガス供給システムの使用方法
WO2016147459A1 (ja) * 2015-03-17 2016-09-22 ブラザー工業株式会社 電池、水素貯蔵容器の切り替え方法、及びコンピュータプログラム
US11141784B2 (en) 2015-07-23 2021-10-12 Hydrexia Pty Ltd. Mg-based alloy for hydrogen storage
JP6066143B1 (ja) * 2015-12-15 2017-01-25 株式会社クリーンプラネット 発熱システム
JP6313352B2 (ja) * 2016-03-09 2018-04-18 本田技研工業株式会社 燃料電池システムの検査方法及び燃料電池システム
JP6391625B2 (ja) * 2016-06-03 2018-09-19 本田技研工業株式会社 燃料電池システム及び燃料電池システムの故障判定方法
JP6860371B2 (ja) * 2017-02-10 2021-04-14 株式会社Subaru 電池システムの制御装置及び電池システム
US10495257B2 (en) * 2017-05-08 2019-12-03 Honda Motor Co., Ltd. Heat load reduction on hydrogen filling station
EP3669063B1 (en) * 2017-08-18 2021-10-20 Carrier Corporation Natural gas tank pressure control for transport refrigeration unit
JP6973318B2 (ja) * 2018-07-26 2021-11-24 トヨタ自動車株式会社 燃料電池システム
RU2703899C1 (ru) * 2018-08-13 2019-10-22 Акционерное общество "Государственный космический научно-производственный центр им. М.В. Хруничева" Способ наполнения емкостей сжатым газом до требуемого давления и устройство для его реализации
JP7091964B2 (ja) * 2018-09-14 2022-06-28 トヨタ自動車株式会社 ガス供給システム、ガス供給システムを備える燃料電池システム、ガス供給システムの制御方法
EP3663633B1 (en) * 2018-12-06 2022-09-07 Carrier Corporation Systems and methods for controlling gas flow in transportation refrigeration systems
IT201900000939A1 (it) * 2019-01-22 2020-07-22 Cnh Ind Italia Spa Sistema di distribuzione del gas per l'alimentazione del gas contenuto in serbatoi diversi a un motore di un veicolo alimentato da combustibile gassoso alternativo
US11411236B2 (en) 2019-02-21 2022-08-09 ZeroAvia, Inc. On-board oxygen booster for peak power in fuel cell systems
US11788190B2 (en) 2019-07-05 2023-10-17 Asm Ip Holding B.V. Liquid vaporizer
JP6941644B2 (ja) * 2019-07-11 2021-09-29 本田技研工業株式会社 ガス制御装置およびガス制御方法
US11946136B2 (en) 2019-09-20 2024-04-02 Asm Ip Holding B.V. Semiconductor processing device
JP7134160B2 (ja) * 2019-12-18 2022-09-09 本田技研工業株式会社 ガス制御装置及びガス制御方法
FR3106393B1 (fr) * 2020-01-20 2021-12-10 Air Liquide Station et un procédé de remplissage de réservoir(s).
DE102020001257A1 (de) 2020-02-26 2021-08-26 Man Truck & Bus Se Vorrichtung zur Kraftstoffversorgung und Fahrzeug mit einer derartigen Vorrichtung
DE102020112830A1 (de) * 2020-05-12 2021-11-18 Bayerische Motoren Werke Aktiengesellschaft Steuereinheit und Verfahren zum Betrieb eines Druckbehälter-Ventils eines Druckbehälters
KR102590123B1 (ko) * 2021-08-18 2023-10-18 일진하이솔루스 주식회사 고압가스 저장 및 공급장치
CN115164095A (zh) * 2022-08-09 2022-10-11 浙江浙能航天氢能技术有限公司 一种自动选枪加氢机及其选枪系统
CN116293423A (zh) * 2023-03-10 2023-06-23 深圳高发气体股份有限公司 一种储气罐供气控制方法、装置、设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295996A (ja) * 2000-04-14 2001-10-26 Toyota Motor Corp 水素貯蔵供給装置
JP2003028394A (ja) * 2001-07-13 2003-01-29 Takata Corp 液化ガスボンベの加熱装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1766858A (en) * 1924-01-26 1930-06-24 Packard Motor Car Co Internal-combustion engine
US4527600A (en) * 1982-05-05 1985-07-09 Rockwell International Corporation Compressed natural gas dispensing system
US4606497A (en) * 1983-01-07 1986-08-19 The B. F. Goodrich Company Temperature compensator for pressure regulator
US5229222A (en) * 1990-11-14 1993-07-20 Sanyo Electric Co., Ltd. Fuel cell system
JP3229023B2 (ja) * 1992-07-29 2001-11-12 マツダ株式会社 水素エンジンに対する水素ガス供給装置
EP0661428B1 (en) * 1993-12-28 2000-03-22 Honda Giken Kogyo Kabushiki Kaisha Gas fuel supply mechanism for gas combustion engine
JP3662957B2 (ja) 1994-10-14 2005-06-22 三洋電機株式会社 水素吸蔵合金容器
AUPQ413999A0 (en) * 1999-11-19 1999-12-09 Water Corporation, The A system and method for removing a gas from a plurality of vessels
FR2801370B1 (fr) * 1999-11-22 2002-02-01 Cryolor Installation de stockage d'un gaz liquefie sous pression
JP2001295994A (ja) * 2000-04-11 2001-10-26 Air Liquide Japan Ltd 圧縮ガスの移充填方法
JP4622038B2 (ja) * 2000-05-12 2011-02-02 トヨタ自動車株式会社 ガス供給装置
JP2002181295A (ja) 2000-12-14 2002-06-26 Honda Motor Co Ltd 高圧ガス貯蔵容器
JP4354122B2 (ja) * 2001-02-23 2009-10-28 本田技研工業株式会社 燃料電池用水素供給装置
JP2004084808A (ja) * 2002-08-27 2004-03-18 Nissan Motor Co Ltd 車両用水素ガス供給装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295996A (ja) * 2000-04-14 2001-10-26 Toyota Motor Corp 水素貯蔵供給装置
JP2003028394A (ja) * 2001-07-13 2003-01-29 Takata Corp 液化ガスボンベの加熱装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015069910A (ja) * 2013-09-30 2015-04-13 日産自動車株式会社 燃料電池システム

Also Published As

Publication number Publication date
US20060246177A1 (en) 2006-11-02
EP1653148A4 (en) 2015-11-18
EP1653148B1 (en) 2018-05-02
KR20060037393A (ko) 2006-05-03
US7575012B2 (en) 2009-08-18
WO2005010427A1 (ja) 2005-02-03
EP1653148A1 (en) 2006-05-03
JP4622857B2 (ja) 2011-02-02
KR100672273B1 (ko) 2007-01-24

Similar Documents

Publication Publication Date Title
JP4622857B2 (ja) ガス供給装置
EP1749324B1 (en) Fuel cell system and control method therefor
CN100377407C (zh) 燃料电池系统的运转控制
JP4756465B2 (ja) 燃料電池システム及び移動体
US8211581B2 (en) Control apparatus and control method for fuel cell
WO2007013668A1 (ja) 燃料電池システム
KR101190170B1 (ko) 연료전지시스템
CN101488577B (zh) 气体供给装置
JP5957664B2 (ja) 燃料電池システム及びその運転方法
JP3572455B2 (ja) 燃料電池システム
JP2008218097A (ja) 燃料電池システム
JP6610904B2 (ja) 燃料電池システム及びその制御方法
US8338042B2 (en) Fuel cell system
JP2008140741A (ja) 燃料電池システム
JP4867199B2 (ja) 燃料電池システム
JP2003148252A (ja) 燃料供給装置
KR102518714B1 (ko) 연료전지 시스템의 수소 분압 제어방법
JP2009021025A (ja) 燃料電池システム及び移動体
JP4141796B2 (ja) 燃料供給弁の状態検知装置
JP4176453B2 (ja) 燃料電池システムの運転制御
JP6155795B2 (ja) 燃料電池システム
JP5561111B2 (ja) 燃料電池システムおよびその制御方法
JP2009094000A (ja) 燃料電池システム
JP2015201406A (ja) 燃料電池システム
JP2008171623A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R151 Written notification of patent or utility model registration

Ref document number: 4622857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees