WO2005010427A1 - ガス供給装置 - Google Patents

ガス供給装置 Download PDF

Info

Publication number
WO2005010427A1
WO2005010427A1 PCT/JP2004/010579 JP2004010579W WO2005010427A1 WO 2005010427 A1 WO2005010427 A1 WO 2005010427A1 JP 2004010579 W JP2004010579 W JP 2004010579W WO 2005010427 A1 WO2005010427 A1 WO 2005010427A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
temperature
gas
supply
hydrogen
Prior art date
Application number
PCT/JP2004/010579
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Miki
Kazunari Shirai
Atsufumi Kimura
Naohiro Yoshida
Osamu Yumita
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP04747942.3A priority Critical patent/EP1653148B1/en
Priority to JP2005512041A priority patent/JP4622857B2/ja
Publication of WO2005010427A1 publication Critical patent/WO2005010427A1/ja
Priority to US11/337,579 priority patent/US7575012B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/026Special adaptations of indicating, measuring, or monitoring equipment having the temperature as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/002Automated filling apparatus
    • F17C5/007Automated filling apparatus for individual gas tanks or containers, e.g. in vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling
    • F17C2227/043Methods for emptying or filling by pressure cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0139Fuel stations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0176Buses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2559Self-controlled branched flow systems
    • Y10T137/2564Plural inflows
    • Y10T137/2567Alternate or successive inflows

Definitions

  • the present invention relates to a gas supply device for supplying a gas stored in a tank to the outside.
  • Japanese Patent Application Laid-Open Nos. 2001-29595 and Hei 8-15731 disclose a gas for supplying hydrogen gas stored in a plurality of tanks using a hydrogen storage alloy. A supply device is disclosed.
  • Japanese Patent Laid-Open Publication No. 2002-2182-195 discloses a gas supply device for supplying hydrogen in a tank for storing high-pressure hydrogen.
  • An object of the present invention is to provide a gas supply device that can suppress (or reduce, for example) the adverse effects caused by a decrease in temperature accompanying gas supply, based on the above-described problems.
  • a gas supply device of the present invention has a storage unit for storing gas and a release mechanism for releasing the stored gas to the outside of the storage unit under reduced pressure. And a temperature detecting unit for detecting the temperature of the tank, and a supply restricting unit for adjusting the supply of gas from the tank according to the detected temperature of the tank. ADVANTAGE OF THE INVENTION According to the gas supply apparatus of this invention, by adjusting gas supply according to tank temperature, the bad effect resulting from the temperature fall accompanying gas supply can be suppressed.
  • the gas supply device of the present invention having the above configuration can also adopt the following modes.
  • a plurality of the tanks are provided, the temperature detection unit detects a temperature of the plurality of tanks, and the supply limiting unit reduces a temperature difference between the plurality of tanks according to the detected temperature of the tanks.
  • the supply of gas may be limited to the above. This makes it possible to equalize the temperature between the plurality of tanks and suppress the adverse effects caused by the temperature decrease accompanying the gas supply.
  • the supply restriction unit when the temperature of the tank that is the gas supply source drops by a predetermined temperature from the temperature at the time when the ink is switched to the supply source, the supply restriction unit is different from the oil tank.
  • the supply of gas By switching another tank to a supply source, the supply of gas may be restricted so that the temperature difference between the plurality of inks is reduced.
  • the supply restricting unit supplies the other tank when the temperature of the tank serving as the gas supply source and the temperature of another tank different from the tank have a predetermined temperature difference.
  • the gas supply By switching to the source, the gas supply may be limited so that the temperature difference between the plurality of inks is reduced.
  • the tank that the supply restricting unit switches to the supply source may be the hottest tank among the plurality of tanks.
  • the apparatus further includes a pressure detection unit that detects a pressure of the plurality of tanks, and the supply restriction unit reduces a temperature difference and a pressure difference between the plurality of tanks according to the detected temperature and pressure of the plurality of tanks.
  • the supply of gas may be restricted so as to be as follows. Thus, it is possible to suppress a decrease in the frequency of use of the tank, which tends to be low in temperature due to the installation environment between the plurality of tanks.
  • the supply restricting unit may adjust the supply of gas from the tank based on a relationship between the detected temperature of the tank and a guaranteed temperature range that guarantees the performance of the tank. As a result, by adjusting the gas supply based on the relationship between the tank temperature and the guaranteed temperature range of the tank, it is possible to reduce the gas supply amount and suppress the temperature drop of the ink tank caused by the gas supply. it can.
  • the supply limiting unit may adjust the supply of gas from the tank so that the detected temperature of the tank does not deviate from the guaranteed temperature range that guarantees the performance of the tank. As a result, the tank temperature can be prevented from dropping too much.
  • a plurality of the tanks are provided, and the temperature detection unit detects at least a temperature of a tank serving as a supply source of the gas among the plurality of tanks.
  • the supply of gas from the tank serving as the supply source may be restricted based on the relationship between the temperature of the tank and the guaranteed temperature range that guarantees the performance of the tank.
  • “restricting the gas supply” includes not only the case where the gas supply is cut off, but also the case where the gas supply amount is reduced.
  • the supply restricting unit is configured to control the gas from the tank serving as the supply source so that the detected temperature of the tank serving as the supply source does not deviate from the guaranteed temperature range that guarantees the performance of the tank. May be limited. Thereby, even when a plurality of tanks are provided, it is possible to suppress the tank temperature from dropping too much.
  • the supply limiting unit is configured such that, when the temperature of the tank serving as the detected supply source decreases by a predetermined temperature within the guaranteed temperature range after the tank becomes the supply source, The supply of gas from the tank may be limited, the temperature detection unit may detect the temperature of the plurality of tanks, and the supply restriction unit may be a tank serving as the detected supply source.
  • the supply of gas from the tank serving as the supply source may be limited. This makes it possible to equalize the temperature between the tanks.
  • a pressure detecting unit for detecting the pressure of the plurality of tanks is provided, and the supply restricting unit is configured to: when the predetermined temperature difference is reached, or when the pressure of the tank serving as the detected supply source is detected, When the pressure of another tank becomes a predetermined pressure difference, the supply of gas from the tank serving as the supply source may be restricted. This makes it possible to equalize the temperature and pressure between the tanks.
  • the supply restricting unit includes a tank selecting unit that selects the supply source tank from other tanks different from the supply source tank when restricting the supply of the gas. It may be provided. This allows the gas to be supplied continuously.
  • the present invention includes control for intermittently using each tank in the following various modes. For example, if n tanks are provided, the present invention includes “ ⁇ th tank ⁇ second tank... ⁇ ⁇ th tank ⁇ first tank ⁇ second tank...” However, control for repeatedly using a plurality of inks in a predetermined sequence is included. The order in which the tanks are used does not need to be fixed, and when it is determined that the supply source needs to be switched, the next tank to be used may be selected. That is, the control of the present invention also includes a mode in which the tanks are used in an irregular or indefinite order, such as “the second tank ⁇ the second tank ⁇ the first tank, the third tank ⁇ —”. In this case, the criteria for selecting the next tank to be used can be set based on, for example, the temperature of the tank, the remaining amount of gas in the tank, a predetermined sequence, and the like.
  • the tank selection means may be a means for selecting any one of the plurality of tanks as the supply source at each time.
  • the supply pressure after decompression usually varies between tanks.
  • the side with the higher supply pressure is used preferentially, and the gas supply amount from each tank and the temperature decrease due to expansion may be biased .
  • the control process for switching the tanks can be simplified, and the gas supply can be stabilized.
  • adjust the gas supply amount from each tank so that the supply pressures of both tanks are uniform to the extent that the above-mentioned supply amount deviation does not occur. Is preferred.
  • the supply restricting unit may be a means for selecting a tank serving as the supply source based on a use history of the plurality of tanks as the supply source. This makes it possible to equalize the frequency of use among a plurality of tanks.
  • the temperature detecting section detects the temperature of the plurality of tanks, and the selecting means is a means for selecting the tank serving as the supply source based on the detected temperatures of the plurality of tanks. It is good. In this way, a tank suitable for the next supply source can be selected based on the temperature state of the tank.
  • the supply restriction unit includes: a failure determination unit configured to determine whether supply of gas from the tank serving as the supply source is hindered; and determines that the supply source tank has a hindrance.
  • a trouble selection means for selecting the tank serving as the supply source from other tanks different from the tank may be provided. This will ensure a stable supply of gas. Obstacles in gas supply can be determined, for example, based on the behavior of the pressure in the supply pipe.
  • a supply pipe for supplying the gas is commonly connected to each of the discharge mechanisms of the plurality of tanks, and a supply pipe detection unit for detecting a pressure of the supply pipe;
  • the apparatus may further include a supply pipe inspection unit that checks whether there is an abnormality in at least one of the discharge mechanisms based on the detected behavior of the pressure of the supply pipe. example For example, if the supply pipe pressure does not decrease even when the tank discharge mechanism is completely closed, it can be determined that there is an abnormality in the function of closing the discharge mechanism. Conversely, if the supply pipe pressure does not increase even when the tank discharge mechanism is open, it can be determined that there is an abnormality in the function of opening the discharge mechanism.
  • the temperature detector may detect a temperature of the tank based on a physical quantity related to a gas supplied from the tank. This makes it possible to detect the temperature of the tank from changes in gas volume and pressure.
  • the physical quantity related to the gas supplied from the tank may be the physical quantity related to the gas released from the tank, or the gas stored in the tank before the gas is released from the tank. May be a physical quantity related to.
  • the temperature detector may detect the temperature of the tank based on the degree of adiabatic expansion of the gas supplied from the tank. As a result, it is possible to estimate a decrease in the tank temperature and detect the tank temperature in advance.
  • the temperature detection unit may detect the temperature of the tank based on the amount of heat taken by the gas supplied from the tank from the tank. This makes it possible to detect the temperature of the tank from the amount of heat taken by the gas.
  • the temperature of at least a part of the storage unit and the release mechanism may be detected as the temperature of the tank. This makes it possible to directly detect the temperature of the tank.
  • the temperature detector may detect the temperature of the tank based on a supply amount of gas supplied from the tank.
  • the temperature of the tank can be detected from the supply amount of gas having a correlation with the temperature of the tank.
  • the amount of heat deprived of gas from the tank and the change in temperature of the tank are each correlated with the amount of gas supplied from the sunset. Since the gas supply is correlated with the pressure in the tank, pressure can also be used as a parameter. If the pressure is set to be constant, there is an advantage that the temperature sensor can be omitted.
  • a notification unit for notifying the abnormality may be provided.
  • the notification of the abnormality can take various forms. For example, the total amount of gas remaining may be calculated excluding the tank where the abnormality exists, and the display of the fuel gauge may be modified. As a result, the remaining amount of gas sharply decreases, so that the manager can know the abnormality.
  • a low-gas warning light may be lit or flashed regardless of the total remaining charge.
  • a warning display for notifying the presence or absence of an abnormality for each tank may be provided. The notification of the abnormality is not limited to the display, and may be performed by voice.
  • the present invention is applicable to various gas supply devices.
  • the gas is a fuel gas for a fuel cell containing hydrogen
  • the supply destination of the gas can be configured as a gas supply device that is a fuel cell using hydrogen as a fuel.
  • the various features described above do not necessarily need to have all of them, and some may be omitted or combined as appropriate.
  • the present invention may be configured as a stationary device, or may be configured as a device mounted on a vehicle or other moving object.
  • the present invention is not limited to the above-described embodiment of the gas supply device, and can be configured in various embodiments such as a control method of the gas supply device.
  • FIG. 1 is an explanatory diagram showing a fuel cell system 10 according to the first embodiment.
  • FIG. 2 is a flowchart showing a control process of the control unit 80.
  • FIG. 3 is a flowchart showing a control process of the control unit 80.
  • FIG. 4 is a flowchart showing a control process of the control unit 80.
  • FIG. 5 is a flowchart showing a control process of the control unit 80.
  • FIG. 6 is a flowchart showing a control process of the control unit 80.
  • FIG. 7 is an explanatory diagram illustrating a schematic configuration of a vehicle 310 in the second embodiment.
  • FIG. 8 is an explanatory diagram showing a configuration of a gas supply system to the fuel cell 320.
  • FIG. 9 is a flowchart showing the check processing at the time of startup of the control unit 340.
  • FIG. 10 is a flowchart showing the gas supply control of the control unit 340.
  • FIG. 11 is a flowchart showing the gas supply source specifying process of the control unit 340.
  • FIG. 12 is an explanatory diagram showing an example of selecting a supply source tank.
  • FIG. 13 is a flowchart showing the abnormality notification processing of the control unit 340.
  • FIG. 14 is a flowchart showing the heater heating process of the control unit 340.
  • FIG. 15 is a flowchart showing a first modification of the gas supply source specifying process.
  • FIG. 6 is a flowchart showing a second modification of the gas supply source specifying process.
  • FIG. 17 is a flowchart showing a third modification of the gas supply source specifying process.
  • FIG. 1 is an explanatory diagram showing a fuel cell system 10 according to the first embodiment.
  • the fuel cell system 10 is shown focusing on the hydrogen supply system.
  • the fuel cell system 10 is configured as an on-board power generator that generates electric power by being mounted on a fuel cell electric vehicle (FCEV).
  • FCEV fuel cell electric vehicle
  • the fuel cell system generates electric power by receiving a supply of reactive gas (fuel gas and oxidizing gas). It has 20.
  • the fuel cell 20 screens the anode electrode 22 on one surface of the polymer electrolyte membrane 21 made of a proton conductive ion exchange membrane or the like formed of a fluorine resin, and the force source electrode 23 on the other surface.
  • a membrane-electrode assembly (MEA) 24 formed by printing or the like is provided.
  • MEA membrane-electrode assembly
  • Both sides of the membrane-electrode assembly 24 are sandwiched by ribbed separators (not shown), and a groove-like anode gas channel 25 and a force source gas are formed between the separator and the anode 22 and the cathode 23, respectively. It forms a channel 26.
  • the electric power generated by the fuel cell 20 is supplied to the load 70.
  • it is composed of a membrane electrode assembly 24, an anode gas channel 25 and a force gas channel 26.
  • the hydrogen supply device 50 is equipped with four hydrogen tanks 51, 52, 53, and 54 for supplying hydrogen (fuel gas) to the fuel cell 20.
  • the hydrogen supply device 50 supplies hydrogen by using any one of the hydrogen tanks 51 to 54 selected as a hydrogen supply source.
  • the hydrogen tanks 51 to 54 are filled with hydrogen gas compressed to a high pressure (for example, 300 to 700 atm).
  • a filling pipe 55 for filling each hydrogen tank 51 to 54 with hydrogen from a hydrogen supply facility such as a hydrogen station is divided into four branch pipes 55 a to 55 d. It communicates with 1 to 54.
  • Each of the branch pipes 55a to 55d has a check valve D1 to D4 for preventing backflow of hydrogen during hydrogen filling, pressure sensors P1 to P4 for detecting tank internal pressure, and a tank temperature.
  • Temperature sensors T1 to D4 to be detected are installed.
  • the hydrogen supply pipe 31 for supplying hydrogen from the hydrogen supply device 50 to the fuel cell 20 is branched into four branches into four branch pipes 31a to 31d and communicates with the hydrogen tanks 51 to 54. ing.
  • a primary regulator (pressure regulating valve) A1 to A4 for reducing the hydrogen pressure in the branch pipes 31a to 31d, and a tank valve that shuts off hydrogen release from the hydrogen tanks 5 to 54 (Electromagnetic shutoff valve) VT 1-VT 4 is installed.
  • the hydrogen supply system of the fuel cell system 10 is provided with a hydrogen supply pipe 31 and the anode off gas (hydrogen off gas) exhausted from the anode gas channel 25 to return to the anode gas channel 25.
  • the circulation flow path 32 is provided.
  • the hydrogen supply pipe 31 and the circulation channel 32 constitute a hydrogen circulation system.
  • the hydrogen supply pipe 31 is provided with a secondary regulator (pressure regulating valve) A5 for reducing the hydrogen pressure, and between the primary regulator A1 to A4 and the secondary regulator A5 described above.
  • a pressure sensor P5 that detects the pressure of hydrogen flowing through the air
  • an electromagnetic shutoff valve B1 that shuts off the supply of hydrogen to the anode inlet
  • a pressure sensor P6 that detects the gas pressure at the anode inlet are installed. .
  • Anode off-gas exhausted from the anode outlet is An electromagnetic shut-off valve B2 for shutting off, a circulation pump C1 for recirculating the anode off-gas to the hydrogen supply pipe 31 and pressure sensors P7 and P8 for detecting the upstream pressure and the downstream pressure of the circulation pump C1 are provided. is set up.
  • the anode off-gas which has received a pressure loss when passing through the anode gas channel 25, is pressurized to an appropriate gas pressure by a circulation pump C 1 driven by a motor M 1 and guided to a hydrogen supply path 31.
  • the circulation passage 32 is provided with an anode off-gas passage 3 for purging a part of the anode gas from the circulation passage 32 outside the system when the concentration of components other than hydrogen contained in the circulation hydrogen becomes high.
  • 3 is a branch pipe.
  • the anode off-gas purging process can be adjusted by opening and closing the electromagnetic shut-off valve (purge valve) B3 installed in the anode fuel gas passage 33.
  • the oxygen supply system of the fuel cell system 10 includes an oxygen supply path 4 for supplying oxygen (oxidizing gas) to the power source gas channel 26, and a power source off gas exhausted from the power source gas channel 26 ( A power node off-gas flow path 42 for introducing oxygen off-gas) out of the system is provided.
  • the air taken in from the atmosphere via the air filter 61 is pressurized by an air compressor C 2 driven by a motor M 2, and then moderately super-humidified by a humidifier 62, and It flows into the gas gas channel 26 via 1.
  • the humidifier 62 water exchange is performed between the power sword gas that has become highly humidified by the water generated by the cell reaction of the fuel cell 20 and the oxygen that has been taken in from the atmosphere in a low humid state.
  • the power source off-gas flow path 42 is provided with a branch flow path 43 for branching and communicating with a diluter 63 for diluting the anode off-gas, and further re-joining the cathode off-gas flow path 42.
  • the anode off-gas (to-be-diluted) is introduced into the diluter 63 via the anode off-gas passage 33, and the bypass passage It is mixed and diluted by the force sword-off gas (diluent gas) flowing through 43.
  • the air filter 61 is provided with a temperature sensor T5 for detecting the outside air temperature.
  • the control unit (control means) 80 includes a CPU for performing system control, a drive circuit for controlling the opening and closing of various solenoid valves (VT1 to VT4, ⁇ 1 to ⁇ 3), and various sensors ( ⁇ Input of sensor signals output from ⁇ to ⁇ 5, ⁇ 1 to ⁇ 5) and various solenoid valves (VT1 to VT4, B1 to B3) and auxiliary equipment (M1 to M2) ) Is configured as a system controller that includes an input / output interface for outputting control signals.
  • the control unit 80 obtains the required power of the load 70 from the accelerator opening detected by the accelerator sensor 82 and the vehicle speed detected by the vehicle speed sensor 83, and drives and controls the motors M1, M2 and the electromagnetic shutoff valve B3.
  • the amount of hydrogen and the amount of oxygen supplied to the fuel cell 20 are adjusted, and the system is controlled so that a desired power generation amount is obtained.
  • the load 70 is configured to be able to supply power from a secondary battery (not shown) in addition to the fuel cell 20.
  • the load 70 includes a traction motor for running the vehicle, and the auxiliary equipment of the fuel cell 20 (motors M1, M2, etc.).
  • the control unit 80 monitors the temperature states of the hydrogen tanks 5 to 54 based on the sensor signals output from the pressure sensors P1 to P5 and the temperature sensors T1 to T5, and controls the respective tank valves VT1 to VT. 4 is individually controlled to open and close to control switching of the hydrogen tanks 51 to 54.
  • the storage unit 81 stores the usage history of each of the hydrogen tanks 51 to 54.
  • the usage history refers to a value obtained by quantitatively evaluating the usage status of the hydrogen tanks 51 to 54. For example, the usage frequency of the hydrogen tanks 51 to 54 (the number of times the tank valves VT1 to VT4 were opened), It is possible to use the cumulative use time of the tanks 51 to 54 (the integrated value of the time during which the evening valves VT1 to VT4 are closed), or the product of the cumulative use time and the tank internal pressure.
  • the usage history is sequentially updated to the latest value each time any of the hydrogen tanks 51 to 54 is used as a hydrogen supply source.
  • the control unit 80 selects any one of the hydrogen tanks serving as a hydrogen supply source by, for example, combining one or both of the usage history and the temperature state of the hydrogen tanks 51 to 54.
  • step S1 it is checked whether or not the start switch for instructing the system to be activated is in the ON state.
  • the start switch corresponds to an ignition key of a vehicle equipped with an internal combustion engine. If the start switch is in the 0 N state (step S1; YES), the control unit 80 reads the hydrogen tank usage frequency stored in the storage unit 81 (step S2).
  • the use frequency is exemplified as the use history of the hydrogen tank, but the present invention is not limited to this.For example, the accumulated use time described above, or the multiplied value of the accumulated use time and the tank internal pressure may be used. Good.
  • step S3 it is checked whether or not the system has been started.
  • Step S 3 When the system is started (Step S 3; YE S), it is necessary to supply hydrogen to the hydrogen supply pipe 31 and the fuel cell 20 and pressurize them.
  • all the tank valves VT1 to VT4 are opened (step S4), and when the detected pressure of the pressure sensors P6 to P8 exceeds the threshold pressure Pk1 (step S5; YES), all the tank valves VT1 to VT4 are closed (step S6), and the hydrogen leak is determined (step S7).
  • the threshold pressure P k 1 it is desirable to select a pressure value that is necessary and sufficient for performing the hydrogen leak determination of the hydrogen supply pipe 31 and the circulation flow path 32.
  • step S7 the solenoid valves B1 to B3 are all closed, the hydrogen supply pipe 31 and the circulation flow path 32 are sealed, and the pressure sensors P5 to P8 are closed. Hydrogen leakage is determined based on whether the detected pressure drop exceeds a predetermined threshold. The If a hydrogen leak has occurred (Step S8; YES), the system is stopped abnormally (Step S9). On the other hand, when the system is not started (step S3; N0) or when there is no hydrogen leak (step S8; NO), the process jumps to step S10.
  • step 10 it is checked whether the vehicle can run. If it is not possible to run (step S10; NO), the process jumps to step S38. If the vehicle can run (Step S10; YES), the hydrogen tank with the least frequency of use is selected from the hydrogen tanks 51 to 54 as the hydrogen supply source (Step S11). If there is more than one hydrogen ink that is used least, it is preferable to select the hottest hydrogen ink among them. Next, it is checked whether the temperature TN of the hydrogen tank selected as the hydrogen supply source is equal to or lower than the threshold temperature Tc1 (step S12). Temperature TN is a tank temperature detected by temperature sensors T1 to T4 of hydrogen tanks 51 to 54 selected as a hydrogen supply source.
  • the threshold temperature Tc 1 is a temperature used as a reference for switching the ink tank in order to suppress the deterioration of the hydrogen ink tank due to a decrease in the tank temperature, and is preferably set near the lower limit temperature T 0 of the temperature guarantee region of the hydrogen tank.
  • the temperature assurance region is preferably set to a temperature range in which, for example, the tank valves VT1 to VT4 of the hydrogen tanks 51 to 54 and the O-ring can be used. If the temperature TN exceeds the threshold temperature Tc1 (step S12; NO), the usage frequency of the selected hydrogen tank is incremented by ⁇ (step SI7a), and the selected hydrogen tank is increased.
  • the tank valve is opened (step S17b), and hydrogen is supplied to the fuel cell 20 to start power generation (step S18).
  • step S13 it is checked whether or not all hydrogen tanks have been selected (step S14). If there is a hydrogen tank that has not been selected yet (step S14; NO), step S1 is executed. Recursive to 2. In this way, by preferentially selecting a hydrogen tank that is used less frequently, the usage frequency of each hydrogen tank 51 to 54 can be equalized.
  • step S14 If the temperature TN of the hydrogen tank selected based on the frequency of use is lower than the threshold temperature Tc1, reselecting another hydrogen tank as the hydrogen supply source will reduce the temperature of the hydrogen tank. Such deterioration can be suppressed.
  • step S15 if the temperatures of all the hydrogen tanks 51 to 54 are equal to or lower than the threshold temperature Tc1 (step S14; YES), all the tank valves VT1 to VT4 are opened ( In step S15), hydrogen is supplied from all the hydrogen tanks 51 to 54 to the fuel cell 20. As a result, the hydrogen supply amount per hydrogen tank is reduced, so that the temperature drop of the hydrogen tank can be reduced, and 7) the deterioration of the hydrogen tank can be suppressed.
  • the output of the fuel cell 20 is limited based on the hydrogen tank at the lowest temperature, and power generation is started (step S16). If there is a certain margin between the threshold temperature Tc1 and the lower limit temperature T0 of the temperature assurance area, the vehicle stops by limiting the output (power generation) of the fuel cell 20 in this manner. The minimum power required for driving can be secured without any problems. However, when the threshold temperature Tc1 is close to the lower limit temperature T0 of the temperature assurance area, the tank valves VT1 to VT4 are all closed to avoid deterioration of the hydrogen tanks 51 to 54. It may be configured to stop.
  • the required power of the load 70 is calculated based on the accelerator opening detected by the accelerator sensor 82 and the vehicle speed detected by the vehicle speed sensor 83 (step S1). 9)
  • the output ratio between the fuel cell 20 and the secondary battery (not shown) is obtained (step S20).
  • the amount of hydrogen consumed by the fuel cell 20 is determined based on the amount of power generated by the fuel cell 20 and the amount of anode off-gas exhausted from the electromagnetic shut-off valve B3. (Step S21) o
  • the internal pressure (tank remaining) of the supply tank selected as the hydrogen supply source among the hydrogen tanks 51, 52, 53, and 54 is calculated.
  • step S22 Pressure and the outlet pressure ratio to determine the adiabatic expansion of hydrogen (temperature reduction allowance) (step S22).
  • the degree of adiabatic expansion of hydrogen is determined by the primary pressure of the primary regulator A1 to A4 (depending on the pressure sensors P1 to P4). It can be obtained from the detected pressure) and the secondary pressure (pressure detected by the pressure sensor P5).
  • [temperature drop] X [flow rate] is calculated from the hydrogen consumption and the adiabatic expansion degree, and the heat absorption Q1 of the supply tank is estimated and calculated (step S23).
  • the heat absorption Q2 obtained by the supply tank from the outside air is calculated (step S24), and the total heat absorption Q absorbed by the supply tank is calculated as the heat absorption Q1.
  • the temperature drop T of the supply tank is determined from the heat capacity of the supply tank, the tank temperature, and the total heat absorption Q (step S26).
  • the threshold temperature Tc2 is preferably lower than the threshold temperature Tc1 and higher than the lower limit temperature TO in the guaranteed temperature region (T0 ⁇ Tc2 ⁇ Tc1). If the temperature TN 'is higher than the threshold temperature Tc2 (step S28; NO), the process jumps to step S38.
  • step S28 when the temperature TN 'is equal to or lower than the threshold temperature Tc2 (step S28; YE S), in order to avoid deterioration of the hydrogen tank, the hydrogen tank which has not yet been selected as the hydrogen supply source is selected. The least used one is selected as the hydrogen source (step S29). Next, it is checked whether or not the temperature TN of the selected hydrogen tank is equal to or lower than the threshold temperature Tc1 (step S30). If it is not more than 1 ⁇ ⁇ (c1 (step S30; YES), a hydrogen tank that is used next least frequently is selected as a hydrogen supply source (step S31). Next, it is checked whether all the hydrogen tanks have been selected (step S32).
  • step S32 If there is a hydrogen tank that has not been selected yet (step S32; NO), the flow returns to step S30. I do.
  • the temperatures of all the hydrogen tanks 51 to 54 are equal to or lower than the threshold temperature Tc ⁇ (Step S32; YES)
  • all the tank valves VT1 to VT4 are opened.
  • Step S33 hydrogen is supplied to the fuel cell 20 from all the hydrogen tanks 51 to 54.
  • the output limit of the fuel cell 20 is set based on the lowest temperature hydrogen tank. And power generation is started (step S34).
  • step S32 if the temperature of all the hydrogen tanks 5 "to 54 is equal to or lower than the threshold temperature Tc1 (step S32; YES), all the tank valves VT1 to VT4 are closed and the vehicle is stopped. On the other hand, if the temperature TN of the selected hydrogen tank exceeds Tc1 (step S30; NO), the frequency of use of the selected hydrogen tank is incremented by one. (Step S35), the tank valve is opened (Step S36), and power generation of the fuel cell 20 is started (Step S37).
  • step 38 it is checked whether the intermittent operation start condition is satisfied.
  • Intermittent operation means that the fuel cell 20 is operated when the vehicle is running at a low load, such as when driving at low speed or idling, with power supplied from a power storage device such as a secondary battery. This refers to an operation mode in which the vehicle is stopped and operation is performed using the power supplied from the power storage device. If the intermittent operation start condition is not satisfied (step S38; NO), the process jumps to step S10. When the intermittent operation start condition is satisfied (Step S38; YES), all the tank valves VT ⁇ to VT4 and the solenoid shutoff valves B1 to B3 are closed (Step S39), and the power generation is stopped (Step S40). .
  • a hydrogen leak determination may be performed to confirm the safety of the system.
  • the determination of hydrogen leak may be performed in the same procedure as in step S7.
  • step S43 it is checked whether there is a system stop request (step S43). If there is no system stop request (step S43; NO), the process jumps to step S19. If there is a system stop request (step S43; YES), the tank valves VT 1 to VT 4, all the solenoid shutoff valves B1 to B3 are closed (Step S44), and the system is stopped (Step S45).
  • the hydrogen tank serving as a hydrogen supply source is selected and switched based on the temperature state of the hydrogen tanks 51 to 54, so the hydrogen tank 51 to 54 deteriorates due to a decrease in the temperature of the nozzle. Can be suppressed.
  • the hydrogen tank 51 to 54 deteriorates due to a decrease in the temperature of the nozzle.
  • the hydrogen tank 51 to 54 deteriorates due to a decrease in the temperature of the nozzle.
  • each hydrogen tank 5 ⁇ ! Such inconveniences can be eliminated by making the use frequency of 554 uniform.
  • the frequency of use was exemplified as a criterion for selecting a hydrogen tank as a hydrogen supply source.However, the present invention is not limited to this.
  • the cumulative use time of the hydrogen tanks 51 to 54 or the cumulative use time and the tank internal pressure A value that can quantitatively evaluate the use state of the hydrogen tanks 51 to 54, such as a multiplication value of, can be used as a selection criterion.
  • the selection criterion may be determined by combining one or both of the usage history and the tank temperature of the hydrogen tanks 51 to 54.
  • the selection criterion may be determined by setting one of the priorities to be higher. For example, in the above example (steps S11 to S14, steps S29 to S32), the selection criteria were determined by setting the priority of the use frequency higher than the tank temperature, The selection criteria may be determined by raising the priority of the tank temperature.
  • the tank temperature is estimated from the degree of adiabatic expansion of hydrogen, which is a physical quantity related to the gas supplied from the tank, and the estimated temperature is switched was used as a criterion for determining
  • the tank temperature may be estimated and calculated from the physical quantity other than the degree of thermal expansion), and the estimated temperature may be used as a criterion for tank switching.
  • the temperature sensors T1 to T5 and the pressure sensors ⁇ 1 to ⁇ 5 described above function as detection means for detecting physical quantities related to the temperature of the hydrogen tanks 5 to 54, but other physical sensors are used.
  • a physical quantity related to the tank temperature may be detected.
  • the tank temperature detected by the temperature sensors # 1 to # 4 may be used as a criterion for tank switching.
  • step S29 the tank was switched when it was determined that the tank temperature was lower than the guaranteed temperature range. However, it is not necessary to switch the tank, and it is not necessary to switch the tank.
  • the supply of hydrogen may be continued after limiting the supply of hydrogen from the selected hydrogen tank to the fuel cell 20.
  • When restricting the amount of hydrogen supplied from the hydrogen tank take countermeasures such as limiting the amount of power generated by the fuel cell 20 or increasing the amount of power supplied to the load 70 from a power storage device such as a secondary battery. Just take it.
  • the hydrogen tanks 51 to 54 filled with high-pressure hydrogen gas are exemplified as the hydrogen supply source, but the present invention is not limited to this.For example, hydrogen can be reversibly stored and released.
  • a hydrogen storage tank filled with a hydrogen storage alloy in an ink container may be used.
  • a hydrogen storage alloy is an alloy that reacts with hydrogen to form a metal hydride, and has reversibility such that the hydrogenation and dehydrogenation reactions proceed at a favorable reaction rate under practical conditions. For example, when the gas pressure of hydrogen is increased or the gas temperature is decreased, hydrogen is absorbed and heat is generated, while when the gas pressure of hydrogen is decreased or the gas temperature is increased, hydrogen is released and heat is absorbed.
  • the hydrogen storage alloy for example, an Mg- ⁇ -based alloy, a La-Ni-based alloy, a Ti-Mn-based alloy, and the like are suitable. In the above example, the case where a plurality of hydrogen tanks 51 to 54 are provided has been described, but the number of hydrogen tanks mounted on the hydrogen supply device 50 may be one.
  • FIG. 7 is an explanatory diagram illustrating a schematic configuration of a vehicle 310 in the second embodiment.
  • the vehicle 310 is driven by the power of a motor 330 using a fuel cell 320 mounted in a rear fuel cell chamber 310 as a power source.
  • a synchronous motor is used.
  • the DC output from the fuel cell 320 is converted into a three-layer AC by the inverter 331.
  • the motor 330 is driven by this three-layer alternating current.
  • the power of the motor 330 is transmitted to the wheels 3333 via the rotating shaft 3332 to drive the vehicle 310.
  • the fuel cell 320 generates power by an electrochemical reaction between hydrogen and oxygen.
  • Various types can be applied to the fuel cell 320, but in this example, a solid polymer type was used.
  • Air is supplied to the oxygen electrode from the outside via the supply pipe 324.
  • Hydrogen is supplied from a plurality of hydrogen tanks 350 installed in the hydrogen tank room 311 on the roof, and is supplied sequentially via a supply pipe 3222.
  • the hydrogen and air supplied to the hydrogen electrode are discharged to the outside through the discharge pipe 323 after being generated for power generation.
  • the configuration of the hydrogen and air supply system will be described later.
  • the operation of each device mounted on the vehicle 310, such as the Invera 331, is controlled by the control unit 340.
  • the control unit 340 is configured as a microcomputer having a CPU, ROM, RAM, etc. therein, and controls the operation of each unit according to a control program stored in the ROM.
  • FIG. 7 shows the function block of the control unit 340.
  • these functional blocks are configured in the control unit 340 as software. It is also possible to configure each function block in a hardware manner.
  • the sensor input unit 341 accepts input of signals from various sensors provided in the vehicle 310.
  • the sensor include a temperature sensor and a pressure sensor provided in a supply system that supplies hydrogen and air to the fuel cell 320.
  • the detection signal from the sensor includes traveling The accelerator opening corresponding to the required power at the time is also included.
  • the power generation control unit 344 controls the power generation of the fuel cell 320 according to the required power.
  • the supply control section 345 supplies hydrogen to the fuel cell 320 by using the hydrogen tank 350 selectively according to the amount of power generated by the fuel cell 320.
  • the motor control unit 346 controls the driving of the motor 330 so as to output the required power by using the electric power of the fuel cell 320.
  • the instrument control section 343 controls display on an instrument panel 360 provided in a driver seat 314 of the vehicle 310. Such indications include speed, motor 330 rpm, fuel cell 320 temperature, shift position, and the like. It also includes information on the remaining amount of hydrogen and abnormalities in the supply system of the hydrogen tank 350.
  • FIG. 8 is an explanatory diagram showing a configuration of a gas supply system to the fuel cell 320.
  • compressed air as a gas containing oxygen is supplied to the power source, and hydrogen is supplied to the anode.
  • the air is sucked from the filter 325, compressed by the compressor 326, humidified by the humidifier 327, and supplied through the supply pipe 324.
  • the supply pipe 324 is provided with a pressure sensor 328 for detecting the supply pressure of air.
  • Hydrogen is supplied from four hydrogen tanks 350 to the anode via supply pipes 322.
  • tank numbers [1] to [4] are assigned to each tank for convenience of explanation.
  • each hydrogen tank 350 may be referred to as the first to fourth tanks.
  • hydrogen flows from the hydrogen tank 350 to the fuel cell 320, so for convenience of explanation, the side near the hydrogen tank 350 is upstream, and the side near the fuel cell 350 is downstream for convenience. It is sometimes called the side.
  • Each hydrogen tank 350 stores hydrogen at a high pressure of about 350 atm.
  • the hydrogen tank 350 is provided with a regulator 350 for reducing the pressure of hydrogen and an on-off valve 351 that opens and closes electromagnetically according to a control signal from the control unit 340.
  • the pressure of hydrogen is further increased in the middle of the supply pipe 322 before it is supplied to the fuel cell 320. Although the pressure is reduced stepwise, illustration of this pressure reducing mechanism is omitted.
  • a temperature sensor 353 is provided downstream of the regulator 355.
  • the temperature sensor 355 is provided at a portion capable of detecting the temperature of hydrogen after the pressure is reduced by the regulator 355.
  • the installation site of the temperature sensor 353 is not limited to the illustrated site, and various sites that can directly or indirectly measure the operating temperature of the regulator 355 and the on-off valve 351 can be selected.
  • the temperature of the gas supplied from the 7K element tank 350 drops due to adiabatic expansion when the pressure is reduced.
  • the hydrogen tank 350 is provided with a heater 352 to suppress the temperature drop and to promote the recovery of the temperature of the hydrogen tank 350 whose temperature has dropped.
  • a pressure sensor 354 for measuring the storage pressure in the tank is provided on the upstream side of the reservoir 355. Aside from these pressure sensors 354, the supply pipe 322 also has a pressure sensor 3-29 for detecting the supply pressure of hydrogen.
  • FIG. 9 is a flowchart showing the start-up inspection processing executed by the control unit 340.
  • the control unit 340 executes a start-up inspection process when the operation of the fuel cell 320 is instructed, for example, when the driver operates the starter switch.
  • the control Yuni' Bok 3 4 0 opens the opening and closing valve 35 1 in order to fill the hydrogen gas supply pipe 3 2 2 (Step S 3 1 0 a) 0 hydrogen gas supply pipe
  • Step S 3 10 b the on-off valves 3 5 1 of all hydrogen tanks 3 50 are closed
  • the supply pressure P of the supply pipe 3 2 2 is detected by the pressure sensor 3 2 9.
  • Detect a Step S311a
  • the supply pressure P a In order to enable the change to be detected in a short time, the fuel cell 320 is temporarily operated, and pressure reduction processing is performed by consuming hydrogen inside the supply pipe 322 (step S311b). Thereafter, the supply pressure Pa of the supply pipe 322 is detected again (step S311c), and it is determined whether the supply pressure Pa has decreased before and after the pressure reduction process (step S312). If the supply pressure Pa does not decrease (step S312), the control unit 340 determines that the on-off valve 351 of one of the hydrogen tanks 350 is leaking or is stuck in an open state, An abnormality determination process is performed (step S3 18).
  • An example of the abnormality determination process is a process of setting an abnormality determination flag indicating the presence of an abnormality.
  • the control unit 340 When the supply pressure Pa is reduced (step S312), the control unit 340 performs the following procedure to individually control the on-off valves 35 1 [1] to 351 for the hydrogen tanks 350 [1] to 350 [4]. Check if [4] opens normally. The control unit 340 selects one of the hydrogen tanks 350 as the inspection target tank, opens the on-off valve 351 of the inspection target tank (step S313), and detects the supply pressure Pa (step S314). ). When the on-off valve 351 is normally opened, the supply pressure Pa should increase because hydrogen is supplied from the inspection target tank.
  • step S315 If the supply pressure Pa does not increase (step S315), the control unit 340 determines that there is an abnormality in the opening operation of the on-off valve 351 and performs an abnormality determination process (step S318). ). When the supply pressure Pa increases (step S315), the control unit 340 determines that the on-off valve 351 is normal, and closes the on-off valve 351 of the inspection target tank (step S3116). . The control unit 340 executes the inspection process of steps S311a to S316 for all of the hydrogen tanks 350 [1] to 350 [4] while changing the inspection target tank one by one.
  • step S312 for example, when the supply pressure Pa falls below a predetermined threshold, the supply pressure becomes low. It may be determined that it has been reduced. Further, when the absolute value of the temporal reduction rate of the supply pressure Pa becomes equal to or greater than a predetermined threshold, it may be determined that the supply pressure Pa has decreased. Similarly, in step S315, either a judgment based on the magnitude relationship between the supply pressure Pa and the threshold or a judgment based on the rate of change of the supply pressure Pa may be applied.
  • FIG. 10 is a flowchart showing the gas supply control executed by the control unit 340.
  • the control unit 340 repeatedly executes the gas supply control to supply the required amount of hydrogen for power generation by properly using the hydrogen tank 350 while the fuel cell 320 is operating.
  • control unit 340 inputs the required power based on the accelerator opening (step S320), and sets the gas supply amount (step S322).
  • the gas supply amount can be determined based on, for example, a map that gives the gas supply amount to the required power, an H number, or the like.
  • the control unit 340 specifies a gas supply source (step S330).
  • the hydrogen tank 350 serving as a supply source is sequentially switched to supply hydrogen for the following reason.
  • the temperature of the hydrogen drops extremely due to adiabatic expansion.
  • Such a decrease in temperature may cause adverse effects such as poor opening / closing operation, shortened service life, and reduced performance due to the hardening of the resin components in the regulator 355 and the on-off valve 351. Therefore, in the present embodiment, the supply source is sequentially switched in order to avoid continuously supplying hydrogen from one hydrogen tank 350 so as to cause such an adverse effect.
  • the gas supply source identification process is a process of selecting a hydrogen tank 350 as a supply source based on the above concept. Detailed contents of gas supply source identification processing This will be described later.
  • the control unit 340 controls the open / close valve 351 of the selected hydrogen tank 350 to supply gas (step S340). If the gas cannot be supplied due to an error in the regiré night 355 or the on-off valve 351 (step S3341), the gas supply source identification process is executed again (step S3). 30), try to supply from another hydrogen tank 350.
  • the control unit 340 can determine that there is an abnormality in the gas supply if, for example, the supply pressure Pa of the supply pipe 322 decreases. If it is determined that there is an abnormality in the supply, it is preferable to set the abnormality determination flag as described in the start-up inspection process (Fig. 9).
  • the control unit 340 is used for the start-up inspection process (Fig. 9) and the above-described processes from steps S320 to S341. Is notified to the driver of the abnormality (step S3422) (step S350). This processing will be described later. If there is no abnormality, the control unit 340 sets the abnormality The notification processing (step S350) is skipped.
  • the control unit 340 heats with the heater together with the supply of hydrogen so that the temperature of the on-off valve 351 of each hydrogen tank 350 is not too low (step S360).
  • the energization control to the heater will be described later.
  • the control unit 340 supplies hydrogen so that power generation corresponding to the required power can be performed by repeatedly executing the above processing.
  • the gas supply control process shown in FIG. 10 is merely an example, and the respective processes in the gas supply control process may be performed by appropriately changing the processing order or executing the processes in parallel.
  • FIG. 11 is a flowchart showing a gas supply source specifying process executed by the control unit 340.
  • the gas supply source identification processing is performed by the gas supply control (FIG. 0) described earlier.
  • This is a process corresponding to step S330, and is a process for selecting the hydrogen tank 350 serving as a supply source so as to avoid the adverse effects caused by the temperature drop due to the adiabatic expansion of hydrogen.
  • the supply source is selected based on the detection values of the temperature sensor 353 and the pressure sensor 354 of each hydrogen tank 350.
  • the control unit 34 When the control unit 34 starts the gas supply source specifying process, the control unit 34 detects the temperature T and the pressure P of the hydrogen tank 350 currently supplied (hereinafter, referred to as “working tank”) (step S 3). 3 1). When this process is performed for the first time, that is, when there is no working tank, the process is performed with the temperature and pressure P both set to 0. Further, the control unit 340 stores the temperature T at the time when the use of the current tank is started as the initial temperature T O.
  • the control unit 340 switches the current tank when the condition of “Temperature T ⁇ threshold value T aj (step S 3 32) is satisfied. When this condition is not satisfied, the current tank is continuously used. As a result, the gas supply source identification processing ends.
  • the condition of “temperature T ⁇ threshold T a” is a condition for avoiding that the temperature of the working tank is too low.
  • 110 ° C. is used as the threshold temperature Ta.
  • the threshold value Ta may be set to a lower limit temperature at which normal operation can be ensured for each component such as the last minute of the last minute and the on-off valve 351, or a temperature higher than the lower limit temperature by a predetermined amount. it can.
  • the threshold value Ta can be set to a temperature lower than the sunset temperature when the current tank is switched by a predetermined temperature within the lower limit temperature, for example, a temperature 5 ° C lower than the tank temperature when the current tank is switched. .
  • the threshold value Ta is determined when the difference between the tank temperature of another hydrogen tank 350 other than the current tank (for example, the difference of the average tank temperature of the other hydrogen tank 350) reaches a predetermined temperature. It is also possible to set so as to satisfy the condition of temperature T ⁇ threshold value T aj When it is determined in step S3332 that the current tank should be switched, the control unit 340 sets the open / close valve of the current tank. Close 3 51 (Step S 3 3 3) Then, from among the hydrogen tanks 350 except the working tank, the tank temperature is set to the threshold T a.
  • the tanks described above are extracted as candidate tanks (step S334). More than one candidate tank may be extracted.
  • the control unit 340 selects a tank to be a supply source from the extracted candidate tanks (step S335).
  • the tank to be used as the supply source can be selected based on various criteria. In this embodiment, the following three criteria are used. a) In order of tank temperature is higher;
  • the above criteria apply in the order of a) to c). That is, first, the tank with the highest temperature is selected from a plurality of candidate tanks according to criterion a). If there are a plurality of candidate tanks selected in this way, then, according to criterion b), the largest tank having a larger remaining amount, that is, the tank having the largest pressure P is selected. In addition, if there are multiple candidate tanks, select them in a predetermined sequence, such as tank No. ⁇ tank No. 2 ⁇ tank No. 3 and tank No. 4 according to criterion c). These criteria can be set in various ways.For example, only one of the criteria a) to c) may be used, or the criteria a) to c) may be set in a different priority from the above. May be applied.
  • FIG. 12 is an explanatory diagram showing an example of selecting a supply source tank. The changes over time in pressure and temperature in tanks # 1 to # 4 were shown. In this example, description will be made assuming that the sequence of “No. tank ⁇ No. 2 tank ⁇ No. 3 tank ⁇ No. 4 tank” is set.
  • the first tank is selected as the supply tank by the sequence of the standard c) instead of the standard a) based on the temperature and the standard b) based on the remaining amount.
  • the pressure P1 of the first tank decreases, and the temperature T1 also decreases accordingly.
  • the temperature of tank 1 reaches threshold Ta. Therefore, the supply source is switched.
  • the candidate tanks are No. 2 to No. 4 tanks.
  • the pressures P2 to P4 and the temperatures T2 to T4 of these tanks are all equal. Therefore, the tank following the first tank, that is, the second tank, is selected as the supply tank according to the sequence of the standard C).
  • the pressure P 2 of the second tank decreases, and accordingly, the temperature T 2 also decreases. Since the supply of hydrogen is stopped in tank No. 1, the pressure P 1 does not change. The temperature T 1 gradually rises because the cooling effect by the hydrogen discharge is lost and the heating is performed by the heater.
  • the supply source is switched because the temperature of the second tank has reached the threshold value Ta.
  • the candidate tanks are tank 1, tank 3 and tank 4.
  • the pressures P1, P3, P4 and the temperatures T1, ⁇ 3, ⁇ 4 of these tanks have the following relationship.
  • the tank with the lowest temperature is excluded from the candidates for the source tank, and the candidate tanks are tanks 3 and 4.
  • the next tank after tank # 2, ie tank # 3 is selected as the source tank.
  • the supply source is switched because the temperature of the third tank has reached the threshold value Ta.
  • the candidate tanks are Tank 1, Tank 2 and Tank 4.
  • the pressures P1, P2, P4 and the temperatures T1, ⁇ 2, ⁇ 4 of these tanks have the following relationship.
  • the tank with the highest temperature is selected as the source tank.
  • Source tank selection can be made
  • FIG. 13 is a flowchart showing the abnormality notification processing executed by the control unit 340.
  • the abnormality notification process is a process corresponding to step S350 of the gas supply control process (FIG. 10), and is a process for notifying the driver that one of the four hydrogen tanks 350 has an abnormality. It is.
  • the control unit 340 inputs an abnormality determination result (step S351).
  • an abnormality determination flag set in the start-up inspection process (step S318 in FIG. 9) or the gas supply control process (step S341 in FIG. 10) can be used.
  • a tank having an abnormality among tanks 1 to 4 can be individually identified based on the abnormality determination flag.
  • the control unit 340 calculates the remaining amount of gas except for the tank in which an abnormality exists (step S352).
  • Fig. 13 shows how to calculate the remaining amount, taking as an example the case where an abnormality is detected in the No. 4 tank.
  • the remaining gas amounts of the first to fourth tanks are R1 to R4, respectively.
  • the total remaining amount R old is calculated as “R 1 + R 2 + R 3 + R 4J.
  • the control unit 340 detects an abnormality in the fourth tank, Neglects the remaining amount R 4 in the No. 4 tank. Therefore, the total remaining amount R new is calculated as “R 1 + R 2 + R 3J.
  • the control unit 340 corrects the remaining amount display based on the calculation result of the remaining amount and displays a warning to the driver (step S353).
  • FIG. 13 shows an example of the instrument panel 360 of the vehicle 30.
  • a gas remaining amount gauge 361, a remaining amount curve warning light 362, and an abnormality warning light 363 for each tank are provided on the left side of the instrument panel 360.
  • the remaining amount is rapidly reduced.
  • the indicated value also drops rapidly from R Id to R new as shown.
  • the control unit 340 flashes the remaining amount warning light 362 for a predetermined period regardless of the value of the remaining amount R new to make the driver aware that the display of the remaining amount meter 361 has been corrected. Let it.
  • the pointer of the remaining amount meter 361 may be vibrated for a predetermined period.
  • the control unit 340 turns on or blinks the abnormality warning lamp 365 for the hydrogen tank 350 in which the abnormality is found, in addition to these displays.
  • the state where an abnormality was found in the No. 4 tank was illustrated. It is not always necessary to perform all of these displays, and some of them may be omitted depending on the configuration of the instrument panel 360.
  • FIG. 14 is a flowchart showing the heater heating process executed by the control unit 340. This is a process corresponding to step S360 of the gas supply control process (FIG. 10), and is a process for controlling whether or not the heater 352 of each hydrogen tank 350 can be energized and the amount of energization. .
  • the control unit 340 performs a heater heating process on each hydrogen tank 50.
  • the hydrogen tank 350 to be controlled by the heater heating process is referred to as a target tank.
  • the control unit 340 accepts an input of the temperature of the target tank (step S361). If the temperature T is higher than the preset target temperature Th, the control unit 340 determines that heating by the heater 352 is not necessary and turns off the power to the heater 352. (Step S3663).
  • the target temperature Th can be set, for example, based on the temperature at which the operation of each component of the hydrogen tank 350 such as the regulator 350, the on-off valve 351, and the like is guaranteed. In the present embodiment, the target temperature Th was set to 0 ° C.
  • the control unit 340 calculates a difference dT between the target temperature T and the temperature T of the target tank (step S366). This difference The minute dT corresponds to the amount of temperature rise required for the target tank.
  • control unit 340 calculates the required time until switching, that is, the required time Tc until the target tank to be controlled is used again by the following equation (step S365).
  • Nt is the interval divided by the number of tanks
  • Tav is the average continuous usable time
  • the average continuous usable time Tav is the average time during which hydrogen can be continuously supplied from one hydrogen tank 350 without the temperature dropping too much.
  • Average continuous usable time Tav may be a fixed value, for example, when hydrogen is supplied at the maximum supply amount, it is set to a time that can be continuously supplied without excessively lowering the temperature. May be.
  • the control unit 340 calculates the required amount of heat Qr per unit time by the following equation based on the values calculated in steps S364 and S365 (step S366).
  • the required heat quantity Qr represents the heat quantity to be supplied per unit time in order to raise the temperature of the target tank to the target temperature Th after the required time Tc.
  • control unit 340 sets the heating amount Hr per unit time by the heater 352 according to the following equation, and controls the energization of the heater 352 based on this (step S367).
  • H r max (Q r -Q n, Hmin) ⁇ ⁇ ⁇ (3)
  • Qn is the amount of heat by natural heating
  • Hmin is the minimum amount of heating
  • max (A, B) is an operator that selects the larger of A and B.
  • the amount of heat Qn by natural heating can be set in advance by experiment or analysis.
  • the minimum heating amount Hmin is a heating amount to be unconditionally provided by the heater 352. For example, when the target tank is used as a hydrogen supply source, or when the temperature of the target tank is close to the target temperature Th, the heating with the minimum heating amount H min is performed.
  • the minimum heating amount Hmin is set to a large value, it is possible to suppress a decrease in temperature when the target tank is used as a hydrogen supply source. Therefore, there is an advantage that the continuous supply time can be extended, and the switching frequency of the hydrogen tank 350 can be suppressed. If the minimum heating amount Hmin is set to a small value, there is an advantage that the energy consumed for energizing the heater 352 can be suppressed and the energy efficiency of the fuel cell system can be improved.
  • the minimum heating amount Hmin can be arbitrarily set in consideration of the requirement of suppressing the temperature drop and the requirement of improving energy efficiency.
  • the above-described steps S364 to S366 may be omitted. That is, when the target tank temperature T is equal to or lower than the target temperature Th, the control unit 340 performs heating so that heating at the preset minimum heating amount Hmin is unconditionally performed. The electricity may be supplied in the evening 352.
  • the plurality of hydrogen tanks 350 are switched and used according to the temperature on the downstream side of the regulators 365. Therefore, it is possible to prevent the temperature of each part such as the regulator 350 and the on-off valve 351 from dropping too much. The adverse effects of the above can be avoided.
  • FIG. 15 is a flowchart showing a first modification of the gas supply source specifying process.
  • the gas supply source specifying process shown in FIG. 15 is a process corresponding to step S330 of the gas supply control (FIG. 10) described above.
  • the supply source is selected based on the detection value of the pressure sensor 354 in a configuration in which the temperature sensor 353 of each hydrogen tank 350 is omitted.
  • the control unit 340 detects a pressure change d P of the working tank, which is the hydrogen tank 350 currently being supplied (step S 331). A).
  • the control unit 340 switches the current tank when the condition of “pressure change d P> threshold value X” (step S 332 A) is satisfied. If neither condition is satisfied, the current tank is assumed to be used continuously and the gas supply source identification process is terminated.
  • step S 3 3 2 A This is a condition for preventing the temperature of the working ink tank from dropping too low on the basis of the estimated temperature change.
  • a method for setting the threshold X will be described. It is generally known that when a high-pressure gas is supplied under reduced pressure, the temperature of the gas is reduced by adiabatic expansion according to the following equation.
  • T 1 T s (P 1 / P s) (T ⁇ 1) / r
  • T 1 is the temperature (K) after the adiabatic expansion
  • T s is the initial temperature (K) before the adiabatic expansion
  • P1 is the pressure after adiabatic expansion
  • the temperature of hydrogen in the depressurized state depends on the pressure Ps of the hydrogen tank 350, but when setting the threshold value X, the discharge is treated as a constant regardless of the pressure Ps.
  • the temperature of the hydrogen is treated as constant.
  • This constant value can be set, for example, based on adiabatic expansion from maximum pressure, to provide a safe setting in terms of avoiding over-temperature. Since the temperature drop of the hydrogen tank 350 due to the discharge of hydrogen depends on the flow rate, it is assumed that the discharge is performed at the maximum flow rate when setting the threshold value X. Under these conditions, the amount of hydrogen emission ⁇ [P a / ° C.] required to lower the temperature of the hydrogen tank 350 by 1 ° C. is determined experimentally or analytically. The reason why the pressure is used as the unit of the discharge amount Y is that the discharge amount of hydrogen is proportional to the pressure change of the hydrogen tank 350.
  • the discharge amount [P a] of hydrogen required for decreasing the temperature of the hydrogen tank 350 from the initial temperature, that is, the target temperature Th for the heating control by the heater, to the threshold value Ta is obtained.
  • This value is set assuming that the initial target temperature T h described in the heater heating process (Fig. 14) has been realized when starting use as a supply source. Temperature sensor provided If so, the actual measured value of the initial temperature may be used.
  • the threshold value X is formally expressed as a condition based on a change in the pressure of the hydrogen tank 350, it can be said that the threshold value X is substantially based on the amount of hydrogen discharged from the hydrogen tank 350. Further, the threshold value X is set assuming a condition that the temperature drop is most severe, so that the temperature of the hydrogen tank 350 can be more reliably prevented from dropping too much.
  • the discharge amount of hydrogen required to lower the temperature of the hydrogen tank 350 by 1 ° C Y [ P a / ° C] also depends on the pressure P.
  • the above-described value of the discharge amount Y may be set based on a map or a function prepared in advance according to the initial pressure P ini of the working tank.
  • step S333A the control unit 340 closes the open / close valve 351 of the current tank (step S333A). From among the two criteria, select the hydrogen tank 350 to be the supply source based on two criteria: “a) in the order of the amount remaining; b) the default sequence”. In the modified example, since the temperature sensor is omitted, the standard regarding the temperature is not applied.
  • the temperature sensor is omitted, and the structure is simplified, and the temperature of the hydrogen tank 350 can be prevented from excessively lowering as in the embodiment.
  • the first modified example can also be applied to a system in which both the temperature sensor and the heater are omitted.
  • the hydrogen tank 350 whose temperature has decreased by discharging hydrogen equivalent to the threshold X [Pa], reduces the supply of hydrogen while hydrogen is being supplied from another hydrogen tank 350.
  • control is performed on the assumption that the temperature returns to the initial temperature TO by natural heating.
  • FIG. 16 is a flowchart showing a second modification of the gas supply source specifying process.
  • the gas supply source specifying process shown in FIG. 16 is a process corresponding to step S330 of the gas supply control (FIG. 10) described above.
  • a supply source tank is selected according to the temperature of each hydrogen tank 350 such that the temperature difference between each hydrogen tank 350 becomes small.
  • the working tank temperature T e which is the temperature of the working tank that is the hydrogen tank 350 currently being supplied, decreases from the time when the working tank is switched to the supply tank T d c.
  • the lowered temperature T dc is a predetermined temperature set to reduce the temperature difference between the hydrogen nozzles 350, and is set to 5 ° C. in advance in the present embodiment.
  • step S420 If the current tank temperature Te p has not dropped by the drop temperature Tdc (step S420), the supply of hydrogen from the current tank is continued (step S460), and the gas supply source identification processing ends.
  • step S420 if the working tank temperature Te p decreases by the drop temperature Tdc (step S420), the supply of hydrogen from the working tank is stopped (step S430), and the hydrogen tank 350 [1] -350 Supply the hottest hydrogen tank 350 of [4] Then, the supply source tank is switched (step S440), and the gas supply source identification process ends.
  • the temperature between the plurality of hydrogen tanks 350 can be leveled, and the adverse effect caused by the temperature drop due to the gas supply can be suppressed.
  • the temperature drop Tdc is not limited to 5 ° C, but can be set to a predetermined temperature according to the characteristics of the system, the operating environment, the amount of hydrogen supply, and the like. Further, the temperature drop Tdc may not be fixed to a predetermined temperature, but may be appropriately changed during the operation of the system according to the state of the system. For example, the value of the decrease temperature Tdc may be increased as the tank temperature increases. This makes it possible to reduce the frequency of tank switching at high temperatures where the possibility of deterioration of tank-related parts is relatively low. When the temperature of the current tank is switched to the supply tank by a predetermined temperature, the supply tank is not switched but the temperature difference between the average temperature of the current tank and the other hydrogen tank 350 is changed.
  • FIG. 17 is a flowchart showing a third modification of the gas supply source specifying process.
  • the gas supply source specifying process shown in FIG. 17 is a process corresponding to step S330 of the gas supply control (FIG. 10) described above.
  • the supply source tank is selected according to the temperature and the pressure of each hydrogen tank 350 so that the temperature difference and the pressure difference between the hydrogen tanks 350 are reduced.
  • is a gain with respect to the hydrogen tank temperature T [ ⁇ ]
  • is a gain with respect to the hydrogen tank pressure ⁇ [ ⁇ ]
  • Tave is all hydrogen tanks
  • Pave is the average pressure of all hydrogen reservoirs 350.
  • the frequency of use of the hydrogen tank 350 which tends to be low due to the installation environment between the plurality of hydrogen tanks 350 (for example, the sunshine condition and the positional relationship with the heat-generating equipment). Can be suppressed.
  • the capacity of each hydrogen tank 350 is the same, the gas density in each hydrogen tank 350 can be equalized.
  • equation (5) representing the supply source specific value F, if “
  • ⁇ C (C is a predetermined threshold)”, “A 0” and ⁇ IT [N ] — T a V e ⁇ D (D is a predetermined threshold value)
  • the hydrogen supply may be performed within the temperature guaranteed range of the hydrogen tank 350 along with the leveling of the temperature and the pressure of the hydrogen tank 35.0.
  • the gas supply amount that can supply gas so as not to exceed the lower limit temperature is determined by the outside air temperature of the hydrogen tank 350 and the outside air temperature of the hydrogen tank 350.
  • the gas supply may be calculated in consideration of the temperature of the hydrogen tank 350, and the gas supply may be limited after releasing the calculated gas supply amount.
  • a process in which the gas supply source specifying process (FIGS. 11 and 15) of the second embodiment and its modification are combined may be performed.
  • the judgment based on the temperature T of the hydrogen tank (step S3332 in FIG. 11) and the judgment based on the pressure change dP (step S3332A in FIG. 15) You may use together. In this case, for example, when either one of the conditions is satisfied, a method of determining that the current tank should be switched can be adopted. By doing so, the possibility of erroneous determination regarding switching can be suppressed.
  • the present invention is not limited to these embodiments, and it goes without saying that various configurations can be adopted without departing from the spirit of the present invention.
  • the present invention can be configured as a system for supplying gas not only to a fuel cell mounted on a vehicle but also to a stationary fuel cell.
  • the present invention is not limited to hydrogen, and is applicable to a gas supply device that supplies various gases from a plurality of high-pressure tanks under reduced pressure.
  • the hydrogen tanks 350 are selected one by one as the supply source is exemplified.
  • a plurality of hydrogen tanks 350 may be selected.
  • the hydrogen tank 350 is heated by the heater 52, but the hydrogen tank 350 is heated by utilizing waste heat of a heating element such as the fuel cell 20 or the invar 31. May be heated. Further, heat may be exchanged between each hydrogen tank 350 and the heating element by circulating cooling water between the surface of each hydrogen tank 350 and the heating element. Further, for example, heat exchange may be performed between the hydrogen tanks 350 by circulating cooling water between the hydrogen tanks 350.
  • the present invention is applicable to a gas supply device that supplies gas stored in evening water to the outside. Not only is it used for gas supply equipment that handles hydrogen, It can also be used in gas supply equipment that handles various gases such as nitrogen, air, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

 ガス供給に伴う温度低下に起因する弊害を抑制(あるいは低減等)することができるガス供給装置を提供する。 燃料電池システム10は、4つの水素タンク51,52,53,54を有する水素供給装置50と、該タンクからの水素ガスの供給を制御する制御部80とを備え、制御部80は、水素タンク51~54の温度を検出すると共に、供給源となっているタンクの温度と、該タンクの性能を保証する保証温度領域との関係に基づいて、該供給源となっているタンクからの水素ガスの供給を制限する。

Description

明細書 ガス供給装置 技術分野
本発明は、 タンクに貯蔵されたガスを外部に供給するガス供給装置に関する。 背景技術
従来、 タンクに貯蔵されたガスを外部に供給するガス供給装置としては、 水素 を燃料とする燃料電池に対して水素ガスを供給するものなどが知られている。 特開 2 0 0 1— 2 9 5 9 9 6号公報および特開平 8— Ί 1 5 7 3 1号公報には 、 水素吸蔵合金を用いた複数のタンクに貯蔵された水素ガスを供給するガス供給 装置が開示されている。
4寺開 2 0 0 2 - 1 8 1 2 9 5号公報には、 高圧の水素を貯蔵するタンク内の水 素を供給するガス供給装置が開示されている。
タンクに貯蔵されたガスを供給する際には、 タンクから供給されるガスの断熱 膨張によって、 タンク本体を含めたレギユレ一夕, バルブなどのタンク関連部品 の温度が低下する。 タンク関連部品の温度が各部品の常用温度から過度に低下す ると、 夕ンク関連部品の劣化を早めてしまうという問題があつた。 発明の開示
本発明は、 上記した課題を踏まえ、 ガス供給に伴う温度低下に起因する弊害を 抑制 (あるいは低減等) することができるガス供給装置を提供することを目的と する。
上記した課題を解決するため、 本発明のガス供給装置は、 ガスを貯蔵する貯蔵 部と、 該貯蔵されたガスを該貯蔵部の外部に減圧して放出する放出機構とを有す るタンクと、 前記タンクの温度を検出する温度検出部と、 該検出したタンクの温 度に応じて、 該タンクからのガスの供給を調整する供給制限部とを備えたことを 特徴とする。 本発明のガス供給装置によれば、 タンク温度に応じてガス供給を調 節することによつて、 ガス供給に伴う温度低下に起因する弊害を抑制することが できる。
上記の構成を有する本発明のガス供給装置は、 以下の態様を採ることもできる 。 前記タンクを複数備え、 前記温度検出部は、 前記複数のタンクの温度を検出し 、 前記供給制限部は、 前記検出したタンクの温度に応じて、 前記複数のタンク間 の温度差が小さくなるようにガスの供給を制限することとしても良い。 これによ つて、 複数のタンク間の温度の平準化を図り、 ガス供給に伴う温度低下に起因す る弊害を抑制することができる。
この場合に、 前記供給制限部は、 前記ガスの供給源となっているタンクの温度 が、 該夕ンクを供給源に切り換えた時点の温度から所定温度だけ低下した場合に 、 亥タンクとは異なる他のタンクを供給源に切り換えることによって、 前記複数 の夕ンク間の温度差が小さくなるようにガスの供給を制限することとしても良い 。 また、 前記供給制限部は、 前記ガスの供給源となっているタンクの温度と、 該 タンクとは異なる他のタンクの温度とが所定温度差になった場合に、 該他のタン クを供給源に切リ換えることによつて、 前記複数の夕ンク間の温度差が小さくな るようにガスの供給を制限することとしても良い。 更に、 前記供給制限部が前記 供給源に切り換えるタンクは、 前記複数のタンクのうち最も高温なタンクである としても良い。
また、 前記複数のタンクの圧力を検出する圧力検出部を備え、 前記供給制限部 は、 前記検出した複数のタンクの温度および圧力に応じて、 該複数のタンク間の 温度差および圧力差が小さくなるようにガスの供給を制限することとしても良い 。 これによつて、 複数のタンク間の設置環境に起因して低温に成りがちなタンク の使用頻度の低下を抑制することができる。 また、 前記供給制限部は、 前記検出したタンクの温度と、 該タンクの性能を保 証する保証温度領域との関係に基づいて、 該タンクからのガスの供給を調整する こととしても良い。 これによつて、 タンクの温度と、 タンクの保証温度領域との 関係に基づいてガス供給を調整することによって、 ガス供給量を減少させ、 ガス 供給に伴う夕ンクの温度低下を抑制することができる。
この場合に、 前記供給制限部は、 前記検出したタンクの温度が、 該タンクの性 能を保証する保証温度領域を外れないように、 該タンクからのガスの供給を調整 することとしても良い。 これによつて、 タンク温度の下がり過ぎを抑制すること ができる。
また、 前記タンクを複数備え、 前記温度検出部は、 前記複数のタンクのうち、 少なくとも前記ガスの供給源となっているタンクの温度を検出し、 前記供給制限 部は、 前記検出した供給源となっているタンクの温度と、 該タンクの性能を保証 する保証温度領域との関係に基づいて、 該供給源となっているタンクからのガス の供給を制限することとしても良い。 これによつて、 複数のタンクを備える場合 でも、 ガス供給に伴う温度低下に起因する弊害を抑制 (あるいは低減等) するこ とができる。 ここで、 「ガス供給を制限する」とは、ガス供給を遮断する場合だけ でなく、 ガス供給量を減少させる場合を含む。
ここで、 前記供給制限部は、 前記検出した供給源となっているタンクの温度が 、 該タンクの性能を保証する保証温度領域を外れないように、 該供給源となって いるタンクからのガスの供給を制限することとしても良い。 これによつて、 複数 のタンクを備える場合でも、 タンク温度の下がり過ぎを抑制することができる。 また、 前記供給制限部は、 前記検出した供給源となっているタンクの温度が、 該タンクが前記供給源になってから前記保証温度領域内で所定温度だけ低下する 際に、 該供給源となっているタンクからのガスの供給を制限することとしても良 いし、 前記温度検出部は、 前記複数のタンクの温度を検出し、 前記供給制限部は 、 前記検出した供給源となっているタンクの温度と、 該タンクとは異なる他の夕 ンクの温度とが、 前記保証温度領域内で所定温度差となる際に、 該供給源となつ ているタンクからのガスの供給を制限することとしても良い。 これによつて、 各 タンク間における温度の平準化を図ることができる。 さらに、 前記複数のタンク の圧力を検出する圧力検出部を備え、 前記供給制限部は、 前記所定温度差となる 際、 または、 前記検出した供給源となっているタンクの圧力と、 該タンクとは異 なる他のタンクの圧力とが所定圧力差となる際に、 該供給源となっているタンク からのガスの供給を制限することとしても良い。 これによつて、 各タンク間にお ける温度および圧力の平準化を図ることができる。
また、 前記供給制限部は、 前記ガスの供給を制限する際に、 前記供給源となつ ているタンクとは異なる他のタンクの中から、 前記供給源となるタンクを選択す るタンク選択手段を備えたとしても良い。 これによつて、 ガスの供給を継続して 行うことができる。
本発明には、 次に示す種々の態様で、 各タンクを間欠的に使用する制御が含ま れる。例えば、 n本のタンクが備えられている場合、本発明には、 「〗番目のタン ク→2番目のタンク…→η番目のタンク→1番目のタンク→2番目のタンク…」 というように、 複数の夕ンクを所定のシーケンスで繰り返し使用する制御が含ま れる。 タンクの使用順序は固定されている必要はなく、 供給源の切り換えが必要 と判断された時点で、 次に使用すべきタンクを選択するようにしてもよい。 つま り、本発明の制御は、 Π番目のタンク→2番目のタンク→1番目のタンク 3番 目のタンク→ー」 など変則的または不定の順序でタンクを使用する態様も含んで いる。 この場合、 次に使用すべきタンクの選択基準としては、 例えば、 タンクの 温度、 タンクのガスの残量、 既定のシーケンスなどに基づいて設定することがで さる。
また、 前記タンク選択手段は、 各時点で前記複数のタンクのうちのいずれか一 つのタンクを前記供給源として選択する手段であるとしても良い。 本発明におい て、 2本ずつ、 3本ずつなど、 複数のタンクをまとめて供給源として選択しても よいが、 複数のタンクが設けられている場合、 減圧後の供給圧力は、 タンク間で ばらつくのが通常である。 このばらつきに基づき、 複数のタンクから同時にガス の供給を行う場合には、 供給圧力の高い側が優先的に使用され、 各タンクからの ガスの供給量、 膨張による温度低下に偏りが生じることがある。 いずれか一つの タンクを供給源として選択することにより、 かかる偏りによる影響を回避するこ とができ、 タンクを切り換えるための制御処理の簡略化、 ガスの供給の安定化を 図ることができる。 複数のタンクをまとめて供給源として選択する場合には、 上 述した供給量の偏りが生じない程度に、 両者の供給圧力が均一化するように、 各 タンクからのガス供給量を調整することが好ましい。
また、 前記供給制限部は、 前記複数のタンクの前記供給源としての使用履歴に 基づいて、 前記供給源となるタンクを選択する手段であるとしても良い。 これに よって、 複数のタンク間における使用頻度の均等化を図ることができる。 また、 前記温度検出部は、 前記複数のタンクの温度を検出し、 前記選択手段は、 前記検 出された複数のタンクの温度に基づいて、 前記供給源となるタンクを選択する手 段であるとしても良い。 これによつて、 タンクの温度状態から、 次の供給源に相 応しいタンクを選択することができる。
また、 前記供給制限部は、 前記供給源となっているタンクからのガスの供給に 支障があるか否かを判断する支障判断手段と、 前記供給源となっているタンクに 支障があると判断する場合に、 該タンクとは異なる他のタンクの中から、 前記供 給源となるタンクを選択する支障選択手段とを備えても良い。 これによつて、 ガ スの安定した供給を確保することができる。 ガスの供給における支障は、 例えば 、 供給管の圧力の挙動に基づいて判断することが可能である。
また、 前記ガスを供給するための供給管を、 前記複数のタンクの各放出機構に 共通して連結し、 前記供給管の圧力を検出する供給管検出部と、 前記ガスの供給 を開始する際に、 前記検出された供給管の圧力の挙動に基づいて、 少なくとも一 つの前記放出機構の異常の有無を点検する供給管点検部とを備えても良い。 例え ば、 タンクの放出機構を全て閉じた状態でも、 供給管の圧力が低下しないようで あれば、 放出機構を閉じる機能に異常があると判定することができる。 逆に、 タ ンクの放出機構を開いた状態でも、 供給管の圧力が上昇しないようであれば、 放 出機構を開ける機能に異常があると判定することができる。
また、 前記温度検出部は、 前記タンクから供給されるガスに関連する物理量に 基づいて、 該タンクの温度を検出しても良い。 これによつて、 ガスの体積変化や 圧力変化などからタンクの温度を検出することができる。 なお、 タンクから供給 されるガスに関連する物理量は、 タンク内部から放出された後のガスに関連する 物理量であっても良いし、 タンク内部から放出される前のタンク内部に貯蔵され ているガスに関連する物理量であっても良い。
また、 前記温度検出部は、 前記タンクから供給されるガスの断熱膨張度合に基 づいて、 該タンクの温度を検出しても良い。 これによつて、 タンク温度の低下代 を推定し、 事前にタンクの温度を検出することができる。
た、 前記温度検出部は、 前記タンクから供給されるガスが該タンクから奪う 熱量に基づいて、 該タンクの温度を検出しても良い。 これによつて、 ガスの奪う 熱量からタンクの温度を検出することができる。
また、 前記貯蔵部および前記放出機構の少なくとも一部における温度を、 該タ ンクの温度として検出しても良い。 これによつて、 タンクの温度を直接的に検出 することができる。
また、 前記温度検出部は、 前記タンクから供給されるガスの供給量に基づいて 、 該タンクの温度を検出しても良い。 これによつて、 タンクの温度と相関がある ガスの供給量からタンクの温度を検出することができる。 タンクからガスが奪う 熱量およびタンクの温度変化は、 それぞれ夕ンクから供給されるガス量と相関が ある。 ガス供給量は、 タンク内の圧力と相関があるため、 圧力をパラメータとす ることもできる。 圧力をパラメ一夕とする場合には、 温度センサを省略できる利 点がある。 また、 前記貯蔵部を加熱する加熱部を備えても良い。 これによつて、 ガスの供 給中におけるタンクの温度低下速度を低下させることができ、 タンクの切り換え 頻度を低減することができる。 また、 ガスの供給を停止したタンクの温度の回復 を促進することができる。 ガスの供給を停止したタンクについては、 温度が十分 に回復するまで、 次の供給源として選択することはできないが、 温度回復を促進 することにより、 供給源となる得るタンクを安定的に確保することができ、 ガス を安定して供給することができる。
また、 前記タンクからのガスの供給に異常が存在する場合に、 該異常を報知す る報知部を備えても良い。 異常の報知は、 種々の態様を採ることができる。 例え 【ま、 異常が存在するタンクを除外してガスの総残量を算出し、 残量計の表示を修 正してもよい。 これによつて、 ガスの残量が急激に減少するため、 管理者は異常 を知ることができる。 別の態様として、 総残量に関わらず、 ガス欠の警告灯を点 灯または点滅させてもよい。 更に別の態様として、 タンク毎の異常の有無を報知 するための警告表示を設けても良い。 異常の報知は、 表示に限らず、 音声で行つ てもよい。
本発明は、 種々のガスの供給装置に適用可能である。 一例として、 前記ガスは 、 水素を含む燃料電池用の燃料ガスであり、 該ガスの供給先は、 水素を燃料とす る燃料電池であるガス供給装置として構成することができる。 上述した種々の特 徴は、 必ずしも全てを備えている必要はなく、 適宜、 一部を省略したり、 組み合 わせたりしてもよい。 本発明は、 定置型の装置として構成してもよいし、 車両そ の他の移動体への搭載型の装置として構成しても良い。 本発明は、 上述のガス供 給装置としての態様に限らず、 ガス供給装置の制御方法など、 種々の態様で構成 可能である。 図面の簡単な説明
図 1は、 第 1の実施例における燃料電池システム 1 0を示す説明図である 図 2は、 制御部 8 0の制御処理を示すフローチャートである。
図 3は、 制御部 8 0の制御処理を示すフローチャートである。
図 4は、 制御部 8 0の制御処理を示すフローチャートである。
図 5は、 制御部 8 0の制御処理を示すフローチャートである。
図 6は、 制御部 8 0の制御処理を示すフローチヤ一卜である。
図 7は、 第 2の実施例における車両 3 1 0の概略構成を示す説明図である。 図 8は、 燃料電池 3 2 0へのガス供給系統の構成を示す説明図である。
図 9は、制御ユニット 3 4 0の起動時点検処理を示すフローチャートである。 図 1 0は、 制御ュニッ卜 3 4 0のガス供給制御を示すフローチヤ一卜である。 図 1 1は、 制御ュニッ卜 3 4 0のガス供給源特定処理を示すフローチヤ一卜で ある。
図 1 2は、 供給源タンクの選択例を示す説明図である。
図 1 3は、 制御ユニット 3 4 0の異常報知処理を示すフローチャートである。 -図 1 4は、制御ユニット 3 4 0のヒータ加熱処理を示すフローチャートである。 図 1 5は、 ガス供給源特定処理の第 1変形例を示すフローチャートである。 図 Ί 6は、 ガス供給源特定処理の第 2変形例を示すフローチャートである。 図 1 7は、 ガス供給源特定処理の第 3変形例を示すフローチヤ一卜である。 発明を実施するための最良の形態
以上説明した本発明の構成および作用を一層明らかにするために、 以下本発明 を適用したガス供給装置について、 次の順序で説明する。
A . 第 1の実施例
A— (1 ) · 燃料電池システム 1 0の構成
A— ( 2 ) . 燃料電池システム 1 0の動作
A— (3 ) . その他の実施形態
B . 第 2の実施例 B- (1 ). システム構成
B— (2). 起動時点検処理
B— (3). ガス供給制御
B— (3-1 ). ガス供給源特定処理
B— (3-2). 異常報知処理
B— (3-3). ヒータ加熱処理
B- (4). 効果
B— (5). ガス供給源特定処理の変形例
B— (6). その他の実施形態
A. 第 1の実施例:
A- (1 ) . 燃料電池システム 1 0の構成:
図 1は、 第 1の実施例における燃料電池システム 1 0を示す説明図である。 図 には、 燃料電池システム 1 0が、 水素供給系統を中心として示されている。 燃 料電池システム 1 0は燃料電池電気自動車 ( F C E V) に搭載されて電力発電を 行うオンボード発電装置として構成されており、反応ガス(燃料ガス、酸化ガス) の供給を受けて発電する燃料電池 20を備えている。 燃料電池 20はフッ素系樹 脂により形成されたプロ卜ン伝導性のイオン交換膜等から成る高分子電解質膜 2 1の一方の面にアノード極 22を、 他方の面に力ソード極 23をスクリーン印刷 等で形成した膜 ·電極接合体 (MEA) 24を備えている。 膜■電極接合体 24 の両面はリブ付セパレー夕 (図示せず) によってサンドイッチされ、 このセパレ 一夕とアノード極 22及びカソード極 23との間にそれぞれ溝状のアノードガス チャンネル 25及び力ソードガスチヤンネル 26を形成している。 燃料電池 20 が発電した電力は負荷 70に供給される。 ここでは、 説明の便宜上、 膜 ·電極接 合体 24、 アノードガスチャンネル 25及び力ソードガスチャンネル 26から成 る単セルの構造を模式的に図示しているが、 実際には上述したリブ付セパレー夕 を介して複数の単セルが直列に接続したスタック構造を備えている。
水素供給装置 5 0は燃料電池 2 0に水素 (燃料ガス) を供給するための 4つの 水素タンク 5 1, 5 2, 5 3, 5 4を搭載している。 水素供給装置 5 0は複数の 水素夕ンク 5 1〜 5 4の中から水素供給源として選択された何れか一つの水素夕 ンクによって水素供給を行う。 水素タンク 5 1〜5 4には高圧 (例えば、 3 0 0 〜7 0 0気圧) に圧縮された水素ガスが充填されている。 水素ステーション等の 水素供給設備から各々の水素タンク 5 1 ~ 5 4に水素を充填するための充填管 5 5は 4本の分岐管 5 5 a ~ 5 5 dに四股分岐して水素夕ンク 5 1〜 5 4に連通し ている。 各々の分岐管 5 5 a〜 5 5 dには水素充填の際の水素逆流を防止する逆 止弁 D 1〜D 4と、 タンク内圧を検出する圧力センサ P 1〜P 4と、 タンク温度 を検出する温度センサ T 1〜丁 4が設置されている。 水素供給装置 5 0から燃料 電池 2 0に水素を供給するための水素供給管 3 1は 4本の分岐管 3 1 a〜3 1 d に四股分岐して水素タンク 5 1〜5 4に連通している。 分岐管 3 1 a〜3 1 dに は水素圧を減圧するための一次レギユレ一夕 (調圧弁) A 1〜A 4と、 水素タン ク 5〗〜5 4からの水素放出を遮断するタンクバルブ (電磁遮断弁) V T 1 - V T 4が設置されている。
燃料電池システム 1 0の水素供給系統には、 上述した水素供給管 3 1と、 ァノ 一ドガスチャンネル 2 5から排気されたアノードオフガス (水素オフガス) をァ ノードガスチャンネル 2 5に還流させるための循環流路 3 2が配管されている。 この水素供給管 3 1と循環流路 3 2とによって水素循環系統が構成されている。 水素供給管 3 1には、 水素圧を減圧するための二次レギユレ一夕 (調圧弁) A 5 と、 上述した一次レギユレ一夕 A 1〜A 4と二次レギユレ一夕 A 5との間を流れ る水素の圧力を検出する圧力センサ P 5と、 アノード入口への水素供給を遮断す る電磁遮断弁 B 1と、 アノード入口のガス圧を検出する圧力センサ P 6が設置さ れている。 循環流路 3 2には、 アノード出口から排気されるアノードオフガスを 遮断する電磁遮断弁 B 2と、 アノードオフガスを水素供給管 3 1に還流させるた めの循環ポンプ C 1と、 循環ポンプ C 1の上流圧と下流圧を検出する圧力センサ P 7 , P 8が設置されている。 アノードガスチャンネル 2 5を通過する際に圧力 損失を受けたアノードオフガスはモータ M 1によって駆動される循環ポンプ C 1 によって適度なガス圧に昇圧され、 水素供給路 3 1に導かれる。 循環流路 3 2に は、 循環水素に含まれる水素以外の成分濃度が高くなつた時点でアノード才フガ スの一部を循環流路 3 2からシステム外にパージするためのアノードオフガス流 路 3 3が分岐配管されている。 アノードオフガスのパージ処理はアノード才フガ ス流路 3 3に設置された電磁遮断弁 (パージバルブ) B 3を開閉することで調整 できるように構成されている。
燃料電池システム 1 0の酸素供給系統には、 力ソードガスチャンネル 2 6に酸 素 (酸化ガス) を供給するための酸素供給路 4 と、 力ソードガスチャンネル 2 6から排気された力ソードオフガス (酸素オフガス) をシステム外に導くための 力ノードオフガス流路 4 2が配管されている。 エアフィルタ 6 1を介して大気か ら取り込まれたエアはモータ M 2によって駆動されるエアコンプレッサ C 2にて 加圧された後、 加湿器 6 2にて適度に過湿され、 酸素供給路 4 1を経由してカソ 一ドガスチャンネル 2 6に流れ込む。 加湿器 6 2では燃料電池 2 0の電池反応で 生じた生成水によつて高湿潤状態となった力ソード才フガスと大気より取り込ん だ低湿潤状態の酸素との間で水分交換が行われる。 力ソ一ド才フガスはレギュレ —夕 A 6によって調圧された後、 加湿器 6 2を経由し、 力ソードオフガス流路 4 2を流れてマフラ 6 4, 6 5に導かれる。 マフラで消音された力ソ一ド才フガス はシステム外に排気される。 力ソードオフガス流路 4 2には、 アノードオフガス を希釈するための希釈器 6 3に分岐連通し、 更にカソードオフガス流路 4 2に再 合流するバイパス流路 4 3が配管されている。 希釈器 6 3にはアノードオフガス 流路 3 3を経由してアノードオフガス (被希釈ガス) が導入され、 バイパス流路 43を流れる力ソードオフガス (希釈ガス) によって混合希釈される。 尚、 エア フィルタ 6 1には外気温度を検出するための温度センサ T 5が設置されている。 制御部 (制御手段) 80はシステム制御を行うための C PUと、 各種の電磁弁 (VT 1〜VT4, Β 1〜Β 3) を開閉制御するための駆動回路と、 各種のセン サ (Ρ Ί〜Ρ 5, Τ 1 ~Τ 5) から出力されるセンサ信号の入力を受け付けると ともに、 各種の電磁弁 (VT 1〜VT4, B 1〜B 3) や補機類 (M 1〜M 2) に制御信号を出力するための入出力インターフェース等を含むシステムコント口 ーラとして構成されている。 制御部 80はアクセルセンサ 82が検出したァクセ ル開度と、 車速センサ 83が検出した車速から負荷 70の要求電力を求め、 モー 夕 M 1, M 2及び電磁遮断弁 B 3を駆動制御して燃料電池 20に供給される水素 量と酸素量を調整し、 所望の発電量が得られるようにシステムを制御する。 負荷 70には、 燃料電池 20の他に二次電池 (図示せず) からも電力供給できるよう に構成されている。 負荷 70としては、 車両走行用のトラクシヨンモータや、 燃 料電池 20の補機類 (モータ M l, M2など) が含まれる。 更に、 制御部 80は 圧力センサ P 1〜P5と温度センサ T 1〜丁 5から出力されるセンサ信号を基に 水素タンク 5 〜 54の温度状態を監視しつつ、 各々のタンクバルブ VT 1〜V T 4を個別に開閉制御して水素タンク 51〜54の切り替え制御を行う。 記憶部 81には各々の水素タンク 51〜54の使用履歴が記憶されている。 使用履歴と は、 水素タンク 51 ~54の使用状態を定量的に評価した値をいい、 例えば、 水 素タンク 51 ~54の使用頻度(タンクバルブ VT 1〜VT4を開弁した回数)、 水素夕ンク 51 ~ 54の累積使用時間 (夕ンクバルブ V T 1〜 V T 4が閉弁して いる時間の積算値) 、 又はこの累積使用時間とタンク内圧との乗算値などを用い ることができる。 使用履歴は何れかの水素タンク 5 1〜54が水素供給源として 使用される都度に最新の値に逐次更新される。 制御部 80は、 水素タンク 51〜 54の使用履歴と温度状態のうち何れか一方又は両者を組み合わせる等して、 水 素供給源となる何れか一つの水素タンクを選択する。 また、 間欠運転モードでは 電磁遮断弁 B 1, B 2を閉弁して燃料電池 20への水素供給を遮断するとともに、 圧力センサ P 6〜P 8から出力されるセンサ信号に基づいて水素漏洩判定を行い、 システムの安全をチェックする。 A- (2) . 燃料電池システム 1 0の動作:
次に、 図 2〜図 6を参照して水素供給源となる水素夕ンクの選択及び切リ替え 処理について説明する。 これらの図に示す制御ルーチンは制御部 80によって実 行される。 まず、 システム起動を指令するスター卜スィッチが ON状態であるか 否かがチェックされる (ステップ S 1 ) 。 このスター卜スィッチは内燃機関を搭 載した車両のイグニッションキーに相当するものである。 スタートスィッチが 0 N状態である場合には (ステップ S 1 ; YES) 、 制御部 80は記憶部 81に記 憶されている水素タンクの使用頻度を読み出す (ステップ S 2) 。 ここでは、 水 素タンクの使用履歴として使用頻度を例示するが、これに限られるものではなく、 例えば、 上述した累積使用時間、 又はこの累積使用時間とタンク内圧との乗算値 等を用いてもよい。 次に、 システム起動時であるか否かがチェックされる (ステ ップ S 3) 。
システム起動時である場合には (ステップ S 3 ; YE S) 、 水素供給管 3 1及 び燃料電池 20に水素を供給し、 加圧する必要がある。 起動時間をできるだけ短 縮するため、 全てのタンクバルブ VT 1〜VT 4を開き (ステップ S 4) 、 圧力 センサ P 6〜 P 8の検出圧力が閾値圧力 P k 1を超えると (ステップ S 5 ; Y E S) 、 全てのタンクバルブ VT 1 ~VT4を閉じて (ステップ S 6) 、 水素漏洩 判定を行う (ステップ S 7) 。 閾値圧力 P k 1としては、 水素供給管 31及び循 環流路 32の水素漏洩判定を行うために必要かつ十分な圧力値に選定するのが望 ましい。 水素漏洩判定 (ステップ S 7) においては、 電磁遮断弁 B 1〜B 3を全 て閉弁し、 水素供給管 3 1及び循環流路 32を密閉した上で、 圧力センサ P 5〜 P 8が検出した圧力低下代が所定の閾値を超えているか否かで水素漏れを判定す る。 水素漏れが生じているならば (ステップ S 8 ; YES) 、 システム異常停止 を行う (ステップ S 9) 。 一方、 システム起動時でない場合 (ステップ S 3 ; N 0) 、 又は水素漏れがない場合には (ステップ S 8 ; NO) 、 ステップ S 1 0に ジャンプする。
ステップ 1 0では、 走行可能であるか否かがチェックされる。 走行可能でない 場合には (ステップ S 1 0 ; NO) 、 ステップ S 38にジャンプする。 走行可能 である場合には (ステップ S 1 0 ; YES) 、 水素タンク 51〜54の中から使 用頻度が最小の水素タンクが水素供給源として選択される (ステップ S 1 1 ) 。 使用頻度が最小の水素夕ンクが複数ある場合には、 その中で最も高温の水素夕ン クを選択するのが好ましい。 次に、 水素供給源として選択された水素タンクの温 度 TNが閾値温度 Tc 1以下であるか否かがチェックされる(ステップ S 1 2)。 温度 TNは水素供給源として選択された水素タンク 51〜54の温度センサ T 1 ~T 4が検出したタンク温度である。 閾値温度 Tc 1はタンク温度低下による水 素夕ンクの劣化を抑制するために夕ンク切り替えの目安となる温度であり、 水素 タンクの温度保証領域の下限温度 T 0近傍に設定するのがよい。 この温度保証領 域としては、 例えば、 水素タンク 51〜54のタンクバルブ VT 1〜VT 4や 0 リング等が使用に耐え得る温度範囲に設定するのが好ましい。 温度 T Nが閾値温 度 Tc 1を超えている場合には (ステップ S 1 2 ; NO) 、 選択された水素タン クの使用頻度を〗だけインクリメントし (ステップ S I 7 a) 、 選択された水素 タンクのタンクバルブを開弁し (ステップ S 1 7 b) , 燃料電池 20に水素を供 給して発電を開始する (ステップ S 1 8) 。
一方、 温度 TNが閾値温度 Tc 1以下である場合には (ステップ S〗 2 ; YE S) 、 水素タンクの劣化を抑制するため、 使用頻度が次に少ない水素タンクを水 素供給源として選択する (ステップ S 1 3) 。 次に、 全ての水素タンクを選択し たか否かがチェックされ (ステップ S 1 4) 、 未だ選択されていない水素タンク が存在している場合には(ステップ S 1 4; NO)、ステップ S 1 2に再帰する。 このように、 使用頻度が少ない水素タンクを優先的に選択することで、 各々の水 素タンク 5 1〜5 4の使用頻度を均等化することができる。 また、 使用頻度を基 準に選択された水素タンクの温度 T Nが閾値温度 T c 1よりも低い場合には、 他 の水素タンクを水素供給源として選択し直すことで、 水素タンクの温度低下によ る劣化を抑制できる。 ここで、 全ての水素タンク 5 1〜5 4の温度が閾値温度 T c 1以下である場合には (ステップ S 1 4 ; Y E S ) 、 タンクバルブ V T 1 ~ V T 4を全て開弁することにより (ステップ S 1 5 ) 、 全ての水素タンク 5 1 ~ 5 4から燃料電池 2 0に水素供給を行う。 これにより、 水素タンク一つあたりの水 素供給量を減らすことで、 水素タンクの温度低下代を小さくし、 7]素タンクの劣 ィ匕を抑制できる。 次に、 最低温度の水素タンクを基準として燃料電池 2 0の出力 制限を行い、 発電を開始する (ステップ S 1 6 ) 。 閾値温度 T c 1と温度保証領 域の下限温度 T 0との間にある程度の余裕がある場合には、 このように燃料電池 2 0の出力 (発電量) を制限することで、 車両停止することなく、 走行に必要な 最低限の電力を確保できる。 但し、 閾値温度 T c 1が温度保証領域の下限温度 T 0に近接する場合は、 水素タンク 5 1〜5 4の劣化を回避するため、 タンクバル ブ V T 1〜V T 4を全て閉弁して車両停止するように構成してもよい。
さて、 燃料電池 2 0の発電制御を行うには、 アクセルセンサ 8 2によって検出 したアクセル開度と、 車速センサ 8 3によって検出した車速に基づいて負荷 7 0 の要求電力を算出し (ステップ S 1 9 ) 、 燃料電池 2 0と二次電池 (図示せず) の出力割合を求める (ステップ S 2 0 ) 。 次に、 燃料電池 2 0の発電量と、 電磁 遮断弁 B 3から排気されたアノードオフガスの排気量とを基に燃料電池 2 0で消 費された水素量 (水素タンクから燃料電池 2 0に供給された水素量) を演算する (ステップ S 2 1 ) o 次に、 水素タンク 5 1, 5 2 , 5 3 , 5 4のうち水素供給 源として選択された供給源タンクの内部圧力 (タンク残圧) と出口圧力の比から 水素の断熱膨張度合 (温度低下代) を求める (ステップ S 2 2 ) 。 水素の断熱膨 張度合は 1次レギユレ一夕 A 1 ~ A 4の 1次圧 (圧力センサ P 1〜P 4によって 検出される圧力) と、 2次圧 (圧力センサ P 5によって検出される圧力) によつ て求めることができる。 次に、 消費水素量と断熱膨張度合より [温度低下代] X [流量]を演算し、供給源タンクの吸熱量 Q 1を推定演算する(ステップ S 23)。 次に、 温度センサ T 5が検出した外気温度を基に供給源タンクが外気から得る吸 熱量 Q 2を演算し (ステップ S 24) 、 供給源タンクが吸収する総吸熱量 Qを吸 熱量 Q 1—吸熱量 Q2より求める (ステップ S 25) 。 次に、 供給源タンクの熱 容量、 タンク温度、 総吸熱量 Qより供給源タンクの温度低下代厶 Tを求める (ス テツプ S 26) 。 次に、 ΤΝ'=ΤΝ— ΔΤより供給源タンクの温度 TN'を推定 演算し(ステップ S 27)、温度 TN'が閾値温度 T c 2以下であるか否かをチェ ックする (ステップ S 28) 。 閾値温度 Tc 2としては、 例えば、 閾値温度 Tc 1よりも低温で、 保証温度領域の下限温度 TOよりも高温であることが望ましい (T0<Tc 2<Tc 1 )。温度 TN'が閾値温度 Tc 2よりも高い場合には(ス テツプ S 28 ; NO) 、 ステップ S 38にジャンプする。
-一方、温度 TN'が閾値温度 T c 2以下である場合には(ステップ S 28; YE S) 、 水素タンクの劣化を回避するため、 水素供給源として未だ選択されていな い水素タンクのうち使用頻度が最小のものを水素供給源として選択する (ステツ プ S 29) 。 次に、 この選択された水素タンクの温度 TNが閾値温度 Tc 1以下 であるか否かをチェックする (ステップ S 30) 。 ΤΓν^ Τ c 1以下である場合 には (ステップ S 30 ; YES) 、 使用頻度が次に少ない水素タンクを水素供給 源として選択する (ステップ S 3 1 ) 。 次に、 全ての水素タンクを選択したか否 かがチェックされ (ステップ S 32) 、 未だ選択されていない水素タンクが存在 している場合には (ステップ S 32 ; NO) 、 ステップ S 30に再帰する。 ここ で、全ての水素タンク 5 1〜54の温度が閾値温度 T c〗以下である場合には (ス テツプ S 32 ; YES) 、 タンクバルブ VT 1〜VT 4を全て開弁することによ り (ステップ S 33 ) 、 全ての水素夕ンク 51 ~ 54から燃料電池 20に水素供 給を行う。 次に、 最低温度の水素タンクを基準として燃料電池 20の出力制限を 行い、 発電を開始する (ステップ S 34) 。 もとより、 全ての水素タンク 5 "!〜 54の温度が閾値温度 T c 1以下である場合には (ステップ S 32 ; Y E S) 、 タンクバルブ VT 1 ~VT 4を全て閉弁して車両停止するように構成してもよい。 一方、 選択された水素タンクの温度 TNが T c 1を超えている場合には (ステツ プ S 30 ; NO) 、 選択された水素タンクの使用頻度を 1だけインクリメントし (ステップ S 35) 、 タンクバルブを開き (ステップ S 36) 、 燃料電池 20の 発電を開始する (ステップ S 37) 。
ステップ 38においては、 間欠運転開始条件が成立しているか否かがチェック される。 間欠運転とは、 低速で走行している場合やアイドリングしている場合な どのように、 二次電池等の蓄電装置から供給される電力で車両走行できる程度の 低負荷のときに燃料電池 20の運転を休止して蓄電装置から供給される電力で車 両走行する運転モードをいう。 間欠運転開始条件が成立してない場合には (ステ ップ S 38 ; NO) 、 ステップ S 1 0にジャンプする。 間欠運転開始条件が成立 すると (ステップ S 38 ; Y E S) 、 タンクバルブ VT Ί〜VT4、 電磁遮断弁 B 1〜B 3を全て閉弁し(ステップ S 39)、発電を停止する(ステップ S 40)。 このとき、 システムの安全性を確認するため水素漏洩判定を行ってもよい。 水素 漏洩判定はステップ S 7と同じ手順で実施すればよい。 次に、 間欠運転解除条件 が成立したか否かをチェックする (ステップ S 41 ) 。 間欠運転解除条件が成立 してない場合には (ステップ S 41 ; NO) 、 ステップ S 38にジャンプする。 一方、 間欠解除条件が成立した場合には (ステップ S 41 ; YES) 、 水素供給 管 3 1及び燃料電池 20に早急に水素供給を行って起動時間を短縮するため、 夕 ンクバルブ VT 1〜VT4、 電磁遮断弁 B 1〜B 2を全て開弁する (ステップ S 42) 。 燃料電池 20は通常運転に移行し、 電力発電を行う。 次に、 システム停 止要求があるか否かがチェックされ (ステップ S 43) 、 システム停止要求がな い場合には (ステップ S 43 ; NO) 、 ステップ S 1 9にジャンプする。 システ 厶停止要求がある場合には (ステップ S 43 ; Y E S) 、 タンクバルブ VT 1〜 V T 4、 電磁遮断弁 B 1〜B 3を全て閉弁し (ステップ S 4 4 ) 、 システム停止 を行う (ステップ S 4 5 ) 。
本実施形態によれば、 水素タンク 5 1〜5 4の温度状態に基づいて水素供給源 となる水素夕ンクを選択して切り替えるので、 夕ンク温度低下による水素夕ンク 5 1〜5 4の劣化を抑制できる。 また、 使用頻度の少ない水素タンクの内部では 高圧力が長時間加わっているため、 機械部品等に永久歪みが生じ、 水素タンクの 気密性を損ねる虞があるが、 使用頻度を選択基準として水素夕ンクを選択するこ とにより、 各々の水素タンク 5■!〜 5 4の使用頻度を均一化し、 このような不都 合を解消できる。
A— (3 ) . その他の実施形態:
尚、 水素供給源となる水素タンクの選択基準として、 使用頻度を例示したが、 これに限られるものではなく、 水素タンク 5 1〜5 4の累積使用時間、 又はこの 累積使用時間とタンク内圧との乗算値など、 水素タンク 5 1 ~ 5 4の使用状態を 定量的に評価できる値を選択基準として用いることができる。 また、 水素タンク 5 1〜5 4の使用頻度をできるだけ均等化するには、 水素タンクを水素充填して も使用頻度をリセット (ゼロクリア) しない方が望ましい。 また、 水素タンク 5 1〜5 4の使用履歴とタンク温度の何れか一方又は両者を組み合わせて選択基準 を定めてもよい。 両者を組み合わせる場合には何れか一方の優先度を高くして選 択基準を定めてもよい。 例えば、 上述の例 (ステップ S 1 1〜S 1 4, ステップ S 2 9〜S 3 2 ) ではタンク温度よりも使用頻度の優先順位を高くして選択基準 を定めていたが、 使用頻度よりもタンク温度の優先順位を高くして選択基準を定 めてもよい。
また、 上述の例 (ステップ S 2 1〜S 2 7 ) では、 タンクから供給されるガス に関連する物理量である水素の断熱膨張度合からタンク温度を推定し、 この推定 温度を夕ンク切リ替えの判断基準としていたが、夕ンク温度に関連する物理量 (断 熱膨張度合以外の物理量) からタンク温度を推定演算し、 この推定温度をタンク 切り替えの判断基準としてもよい。 例えば、 上述した温度センサ T 1〜T 5及び 圧力センサ Ρ 1〜Ρ 5は水素タンク 5 〜 5 4の温度に関連する物理量を検出す る検出手段として機能するが、 これ以外の物理センサを用いてタンク温度に関連 する物理量を検出してもよい。 但し、 必ずしもタンク温度を推定演算する必要は なく、 温度センサ Τ 1〜丁 4が検出したタンク温度をタンク切り替えの判断基準 としてもよい。
また、 上述の例 (ステップ S 2 9 ) ではタンク温度が保証温度領域を下回ると 判定された場合にタンク切り替えを行っていたが、 必ずしもタンク切リ替えを行 う必要はなく、 水素供給源として選択された水素タンクから燃料電池 2 0への水 素供給量を制限した上で水素供給を継続してもよい。 水素夕ンクからの水素供給 量を制限する場合、 燃料電池 2 0の発電量を制限するか、 又は二次電池等の蓄電 装置から負荷 7 0への電力供給量を増大する等の対応措置を講じればよい。 -また、 上述の例では水素供給源として高圧水素ガスを充填した水素タンク 5 1 ~ 5 4を例示したが、 これに限られるものではなく、 例えば、 水素を可逆的に吸 蔵及び放出可能な水素吸蔵合金を夕ンク容器内に充填した水素吸蔵夕ンクを用い てもよい。 水素吸蔵合金は水素と反応して金属水素化物となる合金であり、 水素 化及び脱水素化の反応が実用的な条件下で好ましい反応速度で進行する可逆性を 備えている。 例えば、 水素のガス圧を昇圧させるか又はガス温度を下げると水素 を吸蔵して発熱する一方で、 水素のガス圧を降圧させるか又はガス温度を上げる と水素を放出して吸熱する性質がある。 水素吸蔵合金として、 例えば、 M g— Ν ί系、 L a— N i系、 T i— M n系等が好適である。 また、 上述の例では複数の 水素夕ンク 5 1〜 5 4を備えている場合を説明したが、 水素供給装置 5 0に搭載 される水素タンクの個数は単一であってもよい。
B . 第 2の実施例: B— ( 1 ) . システム構成:
図 7は、 第 2の実施例における車両 3 1 0の概略構成を示す説明図である。 車 両 3 1 0は、 後部の燃料電池室 3 1 2に搭載された燃料電池 3 2 0を電源とし、 モータ 3 3 0の動力によって駆動する。 モータ 3 3 0は種々のタイプを適用可能 であるが、 本実施例では、 同期電動機を用いるものとした。 燃料電池 3 2 0から 出力される直流は、 インバー夕 3 3 1によって三層交流に変換される。 モータ 3 3 0は、 この三層交流によって駆動される。 モータ 3 3 0の動力は、 回転軸 3 3 2を介して車輪 3 3 3に伝達され、 車両 3 1 0を駆動する。
燃料電池 3 2 0は、 水素と酸素の電気化学反応によって発電する。 燃料電池 3 2 0には、 種々のタイプを適用可能であるが、 本実施例では、 固体高分子型を用 いた。 酸素極には、 供給管 3 2 4を介して外部から空気が供給される。 水素は、 屋根上の水素タンク室 3 1 1に設置された複数の水素タンク 3 5 0から供、給管 3 2 2を介して順次、 供給される。 水素極に供給された水素および空気は、 発電に 禾 I湘された後、 排出管 3 2 3から外部に排出される。 水素、 空気の供給系統の構 成については、 後で説明する。
インバー夕 3 3 1など、 車両 3 1 0に搭載された各機器の動作は、 制御ュニッ 卜 3 4 0によって制御される。 制御ユニット 3 4 0は、 内部に C P U、 R O M , R A Mなどを備えたマイクロコンピュー夕として構成されておリ、 R O Mに記憶 された制御プログラムに従って、 各ュニッ卜の動作を制御する。
図 7中に、 制御ュニッ卜 3 4 0の機能プロックを示した。 本実施例では、 これ らの機能ブロックは、 制御ュニッ卜 3 4 0においてソフ卜ウェア的に構成されて いる。 各機能プロックをハ一ドゥエア的に構成することも可能である。
各機能ブロックは、 主制御部 3 4 2の制御下で連携して動作する。 センサ入力 部 3 4 1は、車両 3 1 0に設けられた各種センサからの信号の入力を受け付ける。 センサとしては、 例えば、 燃料電池 3 2 0に水素や空気を供給する供給系統に設 けられた温度センサ、 圧力センサが含まれる。 センサからの検出信号には、 走行 時の要求動力に相当するアクセル開度も含まれる。
発電制御部 3 4 4は、 要求動力に応じて燃料電池 3 2 0の発電を制御する。 供 給制御部 3 4 5は、 燃料電池 3 2 0での発電量に応じて、 水素タンク 3 5 0を使 い分けて、 燃料電池 3 2 0に水素を供給する。 モータ制御部 3 4 6は、 燃料電池 3 2 0の電力を利用して、 要求された動力を出力するようモータ 3 3 0を駆動制 御する。
計器制御部 3 4 3は、 車両 3 1 0の運転席 3 1 4に設けられた計器板 3 6 0へ の表示を制御する。 かかる表示としては、 速度、 モー夕 3 3 0の回転数、 燃料電 池 3 2 0の温度、 シフトポジションなどが含まれる。 また、 水素の残量、 水素夕 ンク 3 5 0の供給系統についての異常表示なども含まれる。
図 8は、 燃料電池 3 2 0へのガス供給系統の構成を示す説明図である。 先に説 明した通り、 燃料電池 3 2 0において、 力ソードには酸素を含有したガスとして の圧縮空気が供給され、 アノードには水素が供給される。 空気は、 フィルタ 3 2 5から吸入され、コンプレッサ 3 2 6で圧縮された後、加湿器 3 2 7で加湿され、 供給管 3 2 4を介して供給される。 供給管 3 2 4には、 空気の供給圧を検出する ための圧力センサ 3 2 8が設けられている。
水素は、 4本の水素タンク 3 5 0から供給管 3 2 2を介してアノードに供給さ れる。 図 8の中では、 説明の便宜上、 各タンクに [ 1 ] 〜 [ 4 ] のタンク番号を 付した。 以下、 このタンク番号に従い、 各水素タンク 3 5 0を、 1番タンク〜 4 番タンクと区別して称することもある。 ガス供給系統では、 水素は、 水素タンク 3 5 0から燃料電池 3 2 0に流れるため、 説明の便宜上、 水素タンク 3 5 0に近 い側を上流側、 燃料電池 3 2 0に近い側を下流側と称することもある。
各水素タンク 3 5 0は、 水素を約 3 5 0気圧という高圧で貯蔵している。 水素 タンク 3 5 0には、 水素を減圧するためのレギュレー夕 3 5 5、 制御ュニッ卜 3 4 0からの制御信号によって電磁的に開閉する開閉弁 3 5 1を備えている。 水素 の圧力は、 燃料電池 3 2 0に供給するまでの間に、 供給管 3 2 2の途中で更に段 階的に減圧されるが、 この減圧機構については図示を省略した。
水素タンク 3 5 0には、 レギュレ一タ 3 5 5の下流側に、 温度センサ 3 5 3が 設けられている。 温度センサ 3 5 3は、 レギユレ一夕 3 5 5で減圧された後の水 素の温度を検出可能な部位に設けられる。 温度センサ 3 5 3の設置部位は、 図示 した部位に限らず、 レギユレ一夕 3 5 5、 開閉弁 3 5 1の動作温度を直接または 間接的に計測な種々の部位を選択可能である。
7K素タンク 3 5 0から供給されるガスは、 減圧時に断熱膨張によって温度が低 下する。 水素タンク 3 5 0には、 この温度低下を抑制するとともに、 温度が下が つた水素タンク 3 5 0の温度の回復を促進するため、 ヒータ 3 5 2が設けられて いる。
水素タンク 3 5 0には、 レギユレ一夕 3 5 5よりも上流側に、 タンク内の貯蔵 圧力を計測するための圧力センサ 3 5 4が設けられている。 これらの圧力センサ 3 5 4とは別に、 供給管 3 2 2には、 水素の供給圧を検出するための圧力センサ 3- 2 9も設けられている。
Β— ( 2 ) . 起動時点検処理:
図 9は、 制御ュニット 3 4 0が実行する起動時点検処理を示すフローチヤ一卜 である。 制御ユニット 3 4 0は、 運転者によるスタータスイッチの操作など、 燃 料電池 3 2 0の運転が指示された時点で、 起動時点検処理を実行する。
この処理が開始されると、 制御ュニッ卜 3 4 0は、 供給管 3 2 2に水素ガスを 充填させるために開閉弁 3 5 1を開く (ステップ S 3 1 0 a ) 0水素ガスが供給管 3 2 2に充填された後、 全ての水素タンク 3 5 0の開閉弁 3 5 1を閉じ (ステツ プ S 3 1 0 b )、圧力センサ 3 2 9によって、供給管 3 2 2の供給圧 P aを検出す る (ステップ S 3 1 1 a ) 0開閉弁 3 5 1を閉じることにより、水素の供給は停止 されているため、 供給管 3 2 2の水素が燃料電池 3 2 0に抜けることによつて、 正常時であれば供給圧 P aは低減するはずである。 本実施例では、 供給圧 P aの 変化を短時間で検出可能とするため、 燃料電池 320を一時的に運転し、 供給管 322の内部の水素を消費することによる減圧処理を行う(ステップ S 3 1 1 b)。 その後、供給管 322の供給圧 P aを再び検出し(ステップ S 31 1 c)、減圧処 理の前後で供給圧 P aが低減したか否かを判断する(ステップ S 31 2)。供給圧 P aが低減しない場合 (ステップ S 31 2) は、 制御ュニッ卜 340は、 いずれ かの水素タンク 350の開閉弁 351に漏れがある、 または開き状態で固着して いるものと判断し、異常判定処理を行う (ステップ S 3 1 8)。異常判定処理とし ては、 例えば、 異常の存在を示す異常判定フラグを立てる処理が挙げられる。 供給圧 P aが低減した場合(ステップ S 3 1 2)、制御ユニット 340は、以下 の手順で、 水素タンク 350 [1 ] ~350 [4] について、 個別に開閉弁 35 1 [1 ] ~351 [4] が正常に開くか否かの点検を行う。 制御ユニット 340 は、 いずれか一つの水素タンク 350を点検対象タンクとして選択し、 その点検 対象タンクの開閉弁 35 1を開き(ステップ S 31 3)、供給圧 Paを検出する(ス テツプ S 31 4)。開閉弁 35 1が正常に開いた場合には、点検対象タンクから水 素が供給されるため、 供給圧 P aは増大するはずである。 供給圧 Paが増大しな い場合には(ステップ S 31 5)、制御ュニッ卜 340は、 開閉弁 351の開動作 に異常があるものと判断し、異常判定処理を行う (ステップ S 3 1 8)。供給圧 P aが増大した場合には(ステップ S 31 5)、制御ュニッ卜 340は、開閉弁 35 1は正常と判断して、 点検対象タンクの開閉弁 351を閉じる (ステップ S 3 1 6)。制御ュニッ卜 340は、一つずつ点検対象タンクを変更しながら、水素タン ク 350 [1」 ~350 [4] の全てについて、 ステップ S 3 1 1 a〜S 31 6 の点検処理を実行する。
上述の起動時点検処理を実施することにより、 本実施例では、 供給源となる水 素タンク 350の切り換え時の開閉弁 351の作動信頼性を高めることができ、 切り換え時の支障を抑制することができる。 上述の処理において、 ステップ S 3 1 2においては、 例えば、 供給圧 Paが所定の閾値を下回った時に、 供給圧が低 減したと判断してもよい。 また、 供給圧 P aの時間的な低減率の絶対値が所定の 閾値以上となった時に、 供給圧 P aが低減したと判断してもよい。 同様に、 ステ ップ S 3 1 5においても、 供給圧 P aと閾値の大小関係に基づく判断、 供給圧 P aの変化率に基づく判断のいずれを適用してもよい。
B— ( 3 ) . ガス供給制御:
図 1 0は、 制御ユニット 3 4 0が実行するガス供給制御を示すフローチャート である。 制御ュニッ卜 3 4 0は、 燃料電池 3 2 0の運転中に、 水素タンク 3 5 0 を使い分けて発電に要求される量の水素を供給するために、 ガス供給制御を繰り 返し実行する。
この処理が開始されると、 制御ユニット 3 4 0は、 アクセル開度に基づいて要 求動力を入力し(ステップ S 3 2 0 )、ガスの供給量を設定する (ステップ S 3 2 1 )。 ガスの供給量は、 例えば、 要求動力に対してガスの供給量を与えるマップ、 H数などに基づいて求めることができる。
次に、 制御ュニッ卜 3 4 0は、 ガスの供給源を特定する (ステップ S 3 3 0 )。 本実施例では、 次の理由から、 供給源となる水素タンク 3 5 0を、 順次切り換え て水素の供給を行うものとした。 高圧で水素を貯蔵する水素タンク 3 5 0から、 水素を供給する際には、 断熱膨張によって水素の温度が極端に低下する。 かかる 温度低下は、 レギユレ一夕 3 5 5、 開閉弁 3 5 1における樹脂部品の硬化に起因 する開閉動作の不良、 寿命低下、 性能低下などの弊害を招く可能性がある。 そこ で、 本実施例では、 かかる弊害を招くほど一つの水素タンク 3 5 0から連続的に 水素を供給することを回避するため、 供給源を順次切り換える。 つまり、 一つの 水素タンク 3 5 0が空になってから次の水素夕ンク 3 5 0への切り換えを行うの ではなく、 4つの水素タンク 3 5 0を順次、 間欠的に供給源として使用する。 ガ ス供給源特定処理 (ステップ S 3 3 0 ) は、 かかる考え方に基づき、 供給源とな る水素タンク 3 5 0を選択する処理である。 ガス供給源特定処理の詳細な内容に ついては、 後述する。
制御ュニッ卜 3 4 0は、 選択された水素タンク 3 5 0の開閉弁 3 5 1を制御し て、ガスの供給を行う (ステップ S 3 4 0 )。 レギユレ一夕 3 5 5や開閉弁 3 5 1 の異常などの理由により、 ガスを供給することができない場合には (ステップ S 3 4 1 )、 再びガス供給源特定処理を実行し (ステップ S 3 3 0 )、 別の水素タン ク 3 5 0からの供給を試みる。 ステップ S 3 4 1において、 制御ュニッ卜 3 4 0 は、 例えば、 供給管 3 2 2の供給圧 P aが低下した場合にはガスの供給に異常が あると判断することができる。 供給に異常があると判断された場合には、 先に起 動時点検処理 (図 9 ) で説明した通り、 異常判定フラグを立てておくことが好ま しい。
制御ュニッ卜 3 4 0は、 起動時点検処理 (図 9 ) および上述のステップ S 3 2 0 ~ S 3 4 1までの処理で、 異常が存在する水素タンク 3 5 0が発見されている 場合には(ステップ S 3 4 2 )、運転者に対して異常を報知する (ステップ S 3 5 0 。 この処理については、後述する。異常が存在しない場合には、制御ュニッ卜 3 4 0は、 異常報知処理 (ステップ S 3 5 0 ) をスキップする。
制御ュニッ卜 3 4 0は、 水素の供給と併せて、 各水素タンク 3 5 0の開閉弁 3 5 1の温度が下がりすぎないよう、 ヒータで加熱する(ステップ S 3 6 0 )。 ヒー 夕への通電制御については、 後述する。
制御ユニット 3 4 0は、 以上の処理を繰り返し実行することにより、 要求動力 に見合う発電を行うことができるよう水素を供給する。 図 1 0に示したガス供給 制御処理は一例に過ぎず、 このガス供給制御処理における各処理は、 適宜、 処理 順序を入れ替えたり、 並行して実行したりしても構わない。
B— ( 3 - 1 ) . ガス供給源特定処理:
図 1 1は、 制御ユニット 3 4 0が実行するガス供給源特定処理を示すフローチ ヤー卜である。 ガス供給源特定処理は、 先に説明したガス供給制御 (図〗 0 ) の ステップ S 3 3 0に相当する処理であり、 水素の断熱膨張による温度低下に伴う 弊害を回避するよう、 供給源となる水素タンク 3 5 0を選択するための処理であ る。 本実施例では、 各水素タンク 3 5 0の温度センサ 3 5 3、 圧力センサ 3 5 4 の検出値に基づいて、 供給源の選択を行う。
制御ュニッ卜 3 4ひは、 ガス供給源特定処理を開始すると、 現在供給中の水素 タンク 3 5 0 (以下、 「現用タンク」 と称する) について、温度 Tおよび圧力 Pを 検出する (ステップ S 3 3 1 )。初めて、 この処理を実施する場合、即ち現用タン クが存在しない場合には、 温度丁、 圧力 Pともに 0として処理を行う。 また、 制 御ュニッ卜 3 4 0は、 現用タンクの使用が開始された時点での温度 Tを初期温度 T Oとして記憶しておく。
制御ユニット 3 4 0は、 「温度 T <閾値 T a j という条件 (ステップ S 3 3 2 ) が満たされる時、 現用タンクの切り換えを行う。 この条件が満たされない時は、 現用タンクを継続的に使用するものとして、 ガス供給源特定処理を終了する。
「温度 T<閾値 T a」 という条件 (ステップ S 3 3 2 ) は、 現用タンクの温度 が下がりすぎることを回避するための条件である。 本実施例では、 一 1 0 °Cを閾 値温度 T aとして用いるものとした。閾値 T aは、例えば、レギユレ一夕 3 5 5、 開閉弁 3 5 1などの各部品について正常な動作を確保し得る下限温度、 またはこ の下限温度よりも所定量高い温度に設定することができる。 また、 閾値 T aは、 現用タンクを切り換えた際の夕ンク温度から下限温度内で所定温度だけ低い温度、 例えば、 切り換えた際のタンク温度から 5 °Cだけ低い温度に設定することもでき る。 また、 閾値 T aは、 現用タンク以外の他の水素タンク 3 5 0とのタンク温度 の差 (例えば、 他の水素タンク 3 5 0の平均タンク温度の差) が所定温度に達し た場合に「温度 T<閾値 T a jという条件を満たすように設定することもできる。 ステップ S 3 3 2において、現用タンクの切り換えを行うべきと判断した場合、 制御ュニッ卜 3 4 0は、現用タンクの開閉弁 3 5 1を閉じる(ステップ S 3 3 3 )。 そして、 現用タンクを除く水素タンク 3 5 0の中から、 タンクの温度が閾値 T a 以上となっているタンクを候補タンクとして抽出する(ステップ S 334)。候補 タンクは、 複数抽出される可能性がある。
制御ユニット 340は、 抽出された候補タンクから、 供給源とすべきタンクを 選択する(ステップ S 335)。供給源とすべきタンクは、種々の基準で選択する ことが可能であるが、 本実施例では、 以下の 3つの基準を用いるものとした。 a) タンク温度が高い順;
b) 残量が多い順;
c) 既定のシーケンス;
上述の基準は、 a) 〜c) の優先順位で適用する。 つまり、 まず、 基準 a) に より、 複数の候補タンクの中から、 最も温度が高いタンクを選択する。 こうして 選択された候補タンクが複数存在する場合には、 次に、 基準 b) により、 残量が 多い最大のタンク、 即ち圧力 Pが最大のタンクを選択する。 更に、 複数の候補夕 ンクが存在する場合には、基準 c )により、 Π番タンク→ 2番タンク→ 3番タン ク 4番タンク」 など、 既定のシーケンスで選択をする。 これらの基準は、 種々 の設定が可能であり、 例えば、 基準 a) 〜c) のいずれか一つのみを用いてもよ いし、 基準 a) 〜c) を上述の内容とは異なる優先順位で適用してもよい。
図 1 2は供給源タンクの選択例を示す説明図である。 1番タンク (# 1 ) ~4 番タンク (#4)の圧力および温度の時間変化を示した。 この例では、 Π番タン ク→2番タンク→3番タンク→4番タンク」 というシーケンスが設定されている ものとして説明する。
時刻 0では、全ての水素夕ンク 350 [1 ] ~350 [4]が同一の圧力 P 0、 温度 T 0の初期状態である。従つて、温度に基づく基準 a )、残量に基づく基準 b ) ではなく、 基準 c) のシーケンスにより、 1番タンクが供給源タンクとして選択 される。
この結果、 時間 0〜t 1の区間では、 1番タンクの圧力 P 1が低下し、 それに 伴って温度 T 1も低下する。 時刻 t 1では、 1番タンクの温度が閾値 T aに達し たため、 供給源の切り換えが行われる。 この時点で候補タンクは、 2番タンク〜 4番タンクである。 これらの各タンクの圧力 P 2〜P 4、 温度 T2〜T4は、 全 て等しい。 従って、 基準 C) のシーケンスにより、 1番タンクの次のタンク、 即 ち 2番タンクが供給源タンクとして選択される。
この結果、 時間 t卜〜 t 2の区間では、 2番タンクの圧力 P 2が低下し、 それ に伴って温度 T 2も低下する。 1番タンクは、 水素の供給を停止しているため、 圧力 P 1は変化しない。 温度 T 1は、 水素排出による冷却効果がなくなること、 およびヒータによる加熱が行われるため、 徐々に上昇する。
時刻 t 2では、 2番タンクの温度が閾値 T aに達したため、 供給源の切り換え が行われる。 この時点で候補タンクは、 1番タンク、 3番タンク、 4番タンクで ある。 これらの各タンクの圧力 P 1、 P3、 P4、 温度 T 1、 Τ3、 Τ4は、 次 の関係にある。
圧力… Ρ 3 = Ρ 4>Ρ Ί ;
- 温度… Τ 3 = Τ4>Τ 1 ;
従って、 基準 a) により、 温度が最低の 1番タンクは、 供給源タンクの候補か ら外され、 候補タンクは、 3番タンクと 4番タンクとなる。 結局、 基準 c) のシ 一ケンスにより、 2番タンクの次のタンク、 即ち 3番タンクが供給源タンクとし て選択される。
時刻 t 3では、 3番タンクの温度が閾値 T aに達したため、 供給源の切り換え が行われる。 この時点で候補タンクは、 1番タンク、 2番タンク、 4番タンクで ある。 これらの各タンクの圧力 P 1、 P2、 P4、 温度 T 1、 Τ2、 Τ4は、 次 の関係にある。
圧力… Ρ 4>Ρ 1 = Ρ 2 ;
温度… T4>T 1 >Τ2 ;
従って、 基準 a) により、 温度が最高の 4番タンクが供給源タンクとして選択 される。 以下、 同様にして、 基準 a) 〜c) を適用することにより、 適宜、 供給 源タンクの選択を行うことができる
B— (3-2). 異常報知処理:
図 1 3は、 制御ュニッ卜 340が実行する異常報知処理を示すフローチヤ一卜 である。 異常報知処理は、 ガス供給制御処理 (図 1 0) のステップ S 350に相 当する処理であり、 4本の水素タンク 350のいずれかに異常が存在することを 運転者に報知するための処理である。
異常報知処理が開始されると、 制御ュニッ卜 340は、 異常判定結果を入力す る (ステップ S 351 )。異常判定結果としては、 例えば、起動時点検処理(図 9 のステップ S 31 8) やガス供給制御処理 (図 1 0のステップ S 341 ) などで 設定された異常判定フラグを用いることができる。 本実施例では、 異常判定フラ グに基づき、 1番タンク〜 4番タンクのうち、 異常が存在するタンクを個別に特 定可能であるものとする。
~制御ユニット 340は、 異常が存在するタンクを除き、 ガスの残量を算出する (ステップ S 352)。図 1 3中に、 4番タンクに異常が検出された場合を例にと つて、 残量の算出方法を示した。 図示する通り、 異常が検出される前の時点で、 1番タンク〜 4番タンクのガス残量は、 それぞれ R 1〜R 4であったとする。 異 常が検出される前の時点では、 合計の残量 R o l dは、 「R 1 +R 2 + R 3 + R 4J と求められる。 制御ユニット 340は、 4番タンクに異常が検出された場合 には、 4番タンクの残量 R 4を無視する。従って、合計の残量 R n e wは、 「R 1 + R 2 + R 3J と求められる。
制御ユニット 340は、 残量の算出結果に基づき、 残量表示を修正するととも に、運転者に警告表示を行う (ステップ S 353)。 図 1 3中には、 車両 3〗 0の 計器板 360を例示した。 本実施例では、 計器板 360の左側に、 ガスの残量計 36 1、 残量彎告灯 362、 各タンクについての異常警告灯 363が設けられて いる。 ステップ S 352の計算により、 残量は急激に減るため、 残量計 361の 指示値も図示する通り急激に R o I dから R n e wに低下する。 制御ユニット 3 4 0は、 残量計 3 6 1の表示が修正されたことを運転者に意識させるため、 残量 R n e wの値に関わらず、 残量警告灯 3 6 2を所定期間、 点滅させる。 残量警告 灯 3 6 2の点滅に代えて、 所定期間、 残量計 3 6 1の指針を振動させてもよい。 制御ュニッ卜 3 4 0は、 これらの表示と併せて、 異常が発見された水素タンク 3 5 0について異常警告灯 3 6 3を点灯または点滅させる。 図 1 3の例では、 4 番タンクに異常が発見された状態を例示した。 これらの表示は、 必ずしも全てを 行う必要はなく、 計器板 3 6 0の構成に応じて、 一部を省略しても構わない。 B - ( 3— 3 ) . ヒータ加熱処理:
図 1 4は、 制御ユニット 3 4 0が実行するヒータ加熱処理を示すフローチヤ一 卜である。 ガス供給制御処理 (図 1 0 ) のステップ S 3 6 0に相当する処理であ り、 各水素タンク 3 5 0のヒータ 3 5 2への通電可否および通電量を制御するた めの処理である。 制御ュニッ卜 3 4 0は、 各水素タンク 5 0に対してヒータ加熱 処理を実施する。 以下、 説明の便宜上、 ヒータ加熱処理の制御対象となっている 水素タンク 3 5 0を、 対象タンクと称する。
ヒータ加熱処理が開始されると、 制御ユニット 3 4 0は対象タンクの温度丁の 入力を受け付ける (ステップ S 3 6 1 )。制御ュニッ卜 3 4 0は、 この温度 Tが予 め設定された目標温度 T hよりも大きい場合には、 ヒータ 3 5 2による加熱は不 要と判断し、 ヒータ 3 5 2への通電をオフにする (ステップ S 3 6 3 )。 目標温度 T hは、 例えば、 レギュレー夕 3 5 5、 開閉弁 3 5 1など水素夕ンク 3 5 0の各 部品の動作が保証されている温度に基づいて設定することができる。 本実施例で は、 目標温度 T hを、 0 °Cに設定した。
対象タンクの温度 Tが目標温度 T h以下である場合には、 以下の処理によって ヒータ 3 5 2への通電量を設定する。 まず、 制御ュニッ卜 3 4 0は、 目標温度 T と、対象タンクの温度 Tとの差分 d Tを算出する(ステップ S 3 6 4 )。 この差 分 d Tは、 対象タンクに要求される温度上昇量に相当する。
制御ユニット 340は、 次に、 切り換えまでの所要時間、 即ち、 制御対象とな つている対象タンクが再び使用されるまでの所要時間 Tcを次式により、 算出す る (ステップ S 365)。
Tc = N t XT a V · · , (1 )
ここで、 N tは、 インターバル■タンク数であり、 Tavは、 平均連続使用可 能時間である。
インターバル■タンク数 N tは、 対象タンクが次に水素の供給源として使用さ れるまでに、 使用される水素タンク 350の数である。 例えば、 4本の水素タン ク 350が全て使用可能である場合を考える。 対象タンクが水素の供給を終えた 直後であれば、 通常は、 他の 3つの水素タンク 350が使用された後、 再び供給 源として選択されることになるから、 「N t = 3」となる。対象タンクが水素の供 給を終えた後、 既に他の一つの水素タンク 350が水素の供給を終えている場合 に-は、 ΓΝ t = 2 Jとなる。対象タンクが現に水素の供給源として使用されている 場合には、 「N t==0」と扱うものとする。 また、 いずれか一つの水素タンク 35 0に異常が発見されておリ対象夕ンクも含めて 3つの水素夕ンク 350が使用可 能な場合は、対象タンクが水素の供給を終えた直後であれば、 「N t=2jとなる。 平均連続使用可能時間 Tavは、 温度が下がりすぎることなく、 一つの水素夕 ンク 350から連続して水素を供給可能な平均時間であり、 例えば、 従前の供給 履歴から求めることができる。 平均連続使用可能時間 Tavは、 固定値としても よく、 例えば、 最大供給量で水素を供給した場合に、 温度が下がりすぎることな く連続して供給可能な時間に設定してもよい。
制御ュニッ卜 340は、ステップ S 364、S 365で算出した値に基づいて、 単位時間当たりの必要熱量 Q rを次式により算出する (ステップ S 366)。
Q r = dTXC t/Tc ■ ■ ■ (2)
ここで、 C tは、 タンクの熱容量である。 必要熱量 Q rは、 所要時間 Tc後に、 対象タンクの温度を目標温度 Thまで上 昇させるために、 単位時間当たりに供給すべき熱量を表している。 このように必 要熱量 Q rを設定することにより、 水素タンク 350の温度を安定して目標温度 T hに回復させることが可能となる。
最後に、 制御ユニット 340は、 次式により、 ヒータ 352による単位時間当 たりの加熱量 H rを設定し、これに基づいてヒータ 352への通電制御を行う(ス テツプ S 367)。
H r =m a x (Q r -Q n, Hm i n) ■ ■ ■ (3)
ここで、 Qnは、 自然加熱による熱量であり、 Hm i nは、最低加熱量である。 max (A, B) は、 A, Bのうち大きい方を選択する演算子である。
自然加熱による熱量 Qnは、実験または解析により予め設定することができる。 最低加熱量 Hm i nは、ヒータ 352によって無条件に与えるべき加熱量である。 例えば、 対象タンクが水素の供給源として使用されている場合や、 対象タンクの 温度が目標温度 Thに近い場合などに、 この最低加熱量 H m i nによる加熱が行 われることになる。
最低加熱量 H m i nを大きい値に設定すれば、 対象タンクが水素の供給源とし て利用されている場合の温度低下を抑制することができる。 従って、 連続して供 給可能な時間を延ばすことができ、 水素タンク 350の切り換え頻度を抑えるこ とができる利点がある。 最低加熱量 Hm i nを小さい値に設定すれば、 ヒータ 3 52への通電に消費されるエネルギを抑制し、 燃料電池システムのエネルギ効率 を向上することができる利点がある。 最低加熱量 Hm i nは、 このように温度低 下の抑制という要求と、 エネルギ効率の向上という要求を勘案して、 任意に設定 することが可能である。
ヒータ加熱処理は、 変形例として、 上述のステップ S 364〜S 366を省略 してもよい。 即ち、 対象タンク温度 Tが目標温度 Th以下の場合、 制御ユニット 340は、 予め設定された最低加熱量 Hm i nでの加熱を無条件に行うようヒー 夕 3 5 2に通電するようにしてもよい。 B— (4 ) . 効果:
以上説明した第 2の実施例によれば、 複数の水素タンク 3 5 0を、 レギユレ一 夕 3 5 5の下流側の温度に応じて切り換えて使用する。 従って、 レギュレー夕 3 5 5、 開閉弁 3 5 1などの各部品の温度が下がりすぎることを回避することがで き、 開閉動作の異常、 部品の寿命低下、 性能低下など温度低下に起因する種々の 弊害を回避することができる。 B - ( 5 ) . ガス供給源特定処理の変形例:
図 1 5は、 ガス供給源特定処理の第 1変形例を示すフローチャートである。 図 1 5に示すガス供給源特定処理は、 先に説明したガス供給制御 (図 1 0 ) のステ ップ S 3 3 0に相当する処理である。 第 1変形例では、 各水素タンク 3 5 0の温 度センサ 3 5 3を省略した構成で、 圧力センサ 3 5 4の検出値に基づいて、 供給 源の選択を行う。
制御ュニッ卜 3 4 0は、 図 1 5に示すガス供給源特定処理を開始すると、 現在 供給中の水素タンク 3 5 0である現用タンクについて、 圧力変化 d Pを検出する (ステップ S 3 3 1 A)。圧力変化 d Pとは、現用タンクからの水素供給を開始し た初期圧力 P i n iと、現時点の圧力 Pとの差分( d P = P i n i— P )である。 初めて、 この処理を実施する場合、 即ち現用タンクが存在しない場合には、 圧力 変化 d Pを 0として処理を行う。
制御ユニット 3 4 0は、 「圧力変化 d P >閾値 X」という条件(ステップ S 3 3 2 A) が満たされる時、 現用タンクの切り換えを行う。 いずれの条件も満たされ ない時は、 現用タンクを継続的に使用するものとして、 ガス供給源特定処理を終 了する。
「圧力変化 d P >閾値 X」 という条件 (ステップ S 3 3 2 A) は、 圧力変化に よつて推測される温度変化に基づいて、 現用夕ンクの温度が下がりすぎることを 回避するための条件である。 閾直 Xの設定方法について説明する。 一般に高圧ガ スを減圧して供給する場合、 ガスは、 断熱膨張によって次式に従い温度が低下す ることが知られている。
T 1 =T s (P 1 /P s) (T~1)/r ■ ■ · (4)
ここで、 T 1は、 断熱膨張後の温度 (K) であり、 T sは、 断熱膨張前の初期 温度 (K) である。 P 1は、 断熱膨張後の圧力であり、 P sは、 断熱膨張前の初 期圧力である。 ァは、 比熱比 ( 1. 4) である。 例えば、 T s = 300 K、 Ρ 1 = 1気圧、 P s = 350気圧の場合、 Τ Ίは理論的には、約 56 Κ (—21 7 °C) にまで低下する。
上式によれば、 減圧された状態での水素の温度は、 水素タンク 350の圧力 P sに依存するが、 閾値 Xの設定に際しては、 圧力 P sに依らず一定として扱うこ とにより、 排出される水素の温度は一定として扱う。 この一定値は、 温度の下が すぎを回避するという観点で安全側の設定とするために、 例えば、 最大圧力か らの断熱膨張に基づいて設定することができる。 水素の排出による水素タンク 3 50の温度低下は流量に依存するため、 閾値 Xの設定に際しては、 最大流量で排 出されるものと仮定する。 この条件下で、 水素タンク 350の温度を 1 °C低下さ せるのに必要となる水素の排出量丫 [P a/°C] が実験的または解析的に求めら れる。 排出量 Yの単位に圧力を用いているのは、 水素の排出量は水素タンク 35 0の圧力変化に比例するからである。
上述の排出量 Yを用いれば、 水素タンク 350の温度が初期温度、 即ちヒータ による加熱制御の目標温度 T h、 から閾値 T aまで低下するのに要する水素の排 出量 [P a]が求まる。本実施例では、 この排出量を閾値 Xとして用いた。即ち、 ΓΧ [Pa] = (Th-Ta) [°C] XY [Ρ a/°C]j で設定した。 この値は、 供給源としての使用開始時には、 ヒータ加熱処理 (図 1 4) で説明した初期の目 標温度 T hが実現されていると想定して設定した値である。 温度センサが設けら れている場合には、 初期温度の実測値を用いても良い。 閾値 Xは、 形式上は水素 タンク 350の圧力変化に基づく条件として表されているが、 実質的には水素夕 ンク 350からの水素排出量に基づく条件と言うこともできる。 また閾値 Xは、 最も温度低下が激しくなる条件を仮定して設定されているため、 水素タンク 35 0の温度が下がりすぎることを、 より確実に回避することができる。
先に説明した通り、 排出される水素の温度は、 水素タンク 350の圧力 Pによ つて変化するため、 水素タンク 350の温度を 1 °C低下させるのに必要となる水 素の排出量 Y [P a/°C] も圧力 Pに依存する。 かかる影響を考慮し、 上述の排 出量 Yの値を、現用タンクの初期圧力 P i n iに応じて、予め用意されたマップ、 関数に基づいて設定するようにしてもよい。
ステップ S 332 Aにおいて、 現用タンクの切り換えを行うべきと判断した場 合、 制御ユニット 340は、 現用タンクの開閉弁 351を閉じる (ステップ S 3 33 A)o そして、 現用タンクを除く水素タンク 350の中から、 「a) 残量が多 い順; b) 既定のシーケンス」 という 2つの基準で、 供給源となる水素タンク 3 50を選択する。 変形例では、 温度センサを省略しているので、 温度に関する基 準は適用しない。
以上で説明した通り、 変形例では、 温度センサを省略し、 構造の簡素化を図り つつ、 実施例と同様、 水素タンク 350の温度の下がりすぎを回避することがで ぎる。
第 1変形例は、 温度センサおよびヒータの加熱を共に省略したシステムに適用 することも可能である。 この場合には、 閾値 X [P a] 相当の水素を排出して温 度が低下した水素タンク 350は、 他の水素タンク 350から水素が供給されて いる間、 水素の供給を低下することにより、 自然加熱によって初期温度 TOに戻 るという前提で制御を行う。 閾値 Xは、 先に説明した通り、 「X [Pa] = (TO -Ta) [°C] XY [P a/°C]j で設定することができる。 このシステム構成で は、 水素タンク 350について、 断熱膨張による温度低下 d T (=T0— Ta) よりも、 温度 T aから自然加熱による温度上昇 dT rが大きくなること、 即ち d T r>dTが要求される。 従って、 かかる条件を満足するインターバル期間、 即 ち各水素タンク 350からの水素供給が停止される期間を確保するよう水素タン ク 350の本数を設定することが好ましい。 温度上昇 d T rを達成するための所 要時間を短縮するために、 例えば、 水素タンク 350に設けられたレギユレ一夕 355に対して、 P及熱性を向上する材質、 構造を適用してもよい。 図 1 6は、 ガス供給源特定処理の第 2変形例を示すフローチャートである。 図 1 6に示すガス供給源特定処理は、 先に説明したガス供給制御 (図 1 0) のステ ップ S 330に相当する処理である。 第 2変形例では、 各水素夕ンク 350の温 度に応じて、 各水素タンク 350間の温度差が小さくなるように供給源タンクの 選択を行う。
制御ュニッ卜 340は、 図 1 6に示すガス供給源特定処理を開始すると、 水素 タンク 350 [1 ]〜350 [4] についての各水素タンク温度 T [N] (N= 1 〜4) を検出する (ステップ S 41 0)。 その後、 水素タンク温度 T [N] のうち 現在供給中の水素タンク 350である現用タンクの温度である現用タンク温度 T e が、 この現用タンクが供給源タンクとして切り換えられた時点から低下温度 Td cだけ低下したか否かを判断する (ステップ S 420)。 ここで、低下温度 T d cは、 各水素夕ンク 350間の温度差を小さくするために設定された所定の温 度であり、 本実施例では、 予め 5 °Cに設定されている。
現用タンク温度 Te pが低下温度 Td cだけ低下していない場合には (ステツ プ S 420)、 現用タンクからの水素供給を継続して (ステップ S 460)、 ガス 供給源特定処理を終了する。
—方、 現用タンク温度 Te pが低下温度 Td cだけ低下した場合には (ステツ プ S 420)、 現用タンクからの水素供給を停止し (ステップ S 430)、 水素夕 ンク 350 [1 ] -350 [4] の中で最も高温な水素タンク 350を供給源夕 ンクとして特定して、供給源タンクの切り換えを行い(ステップ S 440)、ガス 供給源特定処理を終了する。
第 2変形例によれば、 複数の水素タンク 350間の温度の平準化を図り、 ガス 供給に伴う温度低下に起因する弊害を抑制することができる。
なお、 低下温度 Td cは、 5°Cに限るものではなく、 システムの特性や使用環 境, 水素供給量などに応じた所定の温度に設定することができる。 また、 低下温 度 Td cを所定温度に固; するのではなく、 システムの状態に応じて、 システム の稼働中に適宜変更することとしても良い。 例えば、 タンク温度が高くなるほど 低下温度 Td cの値を大きくしても良い。 これにより、 タンク関連部品の劣化の 可能性が比較的低い高温時におけるタンクの切り替え頻度を減らすことができる。 また、 現用タンクが供給源タンクとして切り換えられた時点から所定温度だけ低 下した場合に、 供給源タンクの切り換えを行うのではなく、 現用タンクと他の水 素タンク 350の平均温度との温度差が所定温度となった場合や、 供給源タンク を切リ換えてから所定時間だけ経過した場合に、 供給源夕ンクの切り換えを行う ことによって、 各水素タンク 350間の温度差が小さくなるようにしても良い。 また、 水素タンク 350の温度の平準化と共に、 水素タンク 350の温度保証領 域の範囲内で水素供給を行うこととしても良い。 図 1 7は、 ガス供給源特定処理の第 3変形例を示すフローチャートである。 図 1 7に示すガス供給源特定処理は、 先に説明したガス供給制御 (図 1 0) のステ ップ S 330に相当する処理である。 第 3変形例では、 各水素タンク 350の温 度および圧力に応じて、 各水素タンク 350間の温度差および圧力差が小さくな るように供給源夕ンクの選択を行う。
制御ュニッ卜 340は、 図 1 7に示すガス供給源特定処理を開始すると、 水素 タンク 350 [1 ] 〜350 [4] についての各水素タンク温度 T [N] (N= 1 ~4) および各水素タンク圧力 P [N] (N=1〜4) を検出する (ステップ S 5 1 0)。その後、次式で表される供給源特定値 Fを最小値とする水素タンク 350 を供給源タンクとして特定して、 供給源タンクの切り換えを行い (ステップ S 5
20)、 ガス供給源特定処理を終了する。
F =∑ A■ (T [Ν] — Τ a ν e) 2 +
∑ Β ■ (Ρ [Ν] -Pav e) 2 · · ■ (5)
ここで、 Αは、 水素タンク温度 T [Ν] に対するゲインであり、 Βは水素タン ク圧力 Ρ [Ν] に対するゲインであり、 各水素タンク 350間の温度差および圧 力差の縮小に適した所定の値に設定されている。 Tav eは、 全ての水素タンク
350の平均温度であり、 Pav eは、 全ての水素夕ンク 350の平均圧力であ る。
第 3変形例によれば、 複数の水素タンク 350間の設置環境 (例えば、 日当た り具合や、 発熱機器との位置関係) に起因して低温に成りがちな水素タンク 35 0の使用頻度の低下を抑制することができる。 また、 各水素タンク 350の容積 が同じ場合には、各水素タンク 350内のガス密度の平準化を図ることができる。 なお、 供給源特定値 Fを表す式(5) において、 「 | T [N] — Tav e | <C (Cは所定の閾値)」の場合には「A=0」とし、 Γ I T [N]— T a V e<D (D は所定の閾値) Iの場合には 「B = 0J とすることによって、 水素タンク 350 の切り換えが過剰に行われることを抑制することとしても良い。
また、 水素タンク 35.0の温度および圧力の平準化と共に、 水素タンク 350 の温度保証領域の範囲内で水素供給を行うこととしても良い。 この場合には、 温 度保証領域の下限温度直前の温度で供給源夕ンクを切り換えた際に、 下限温度を 超えない程度にガスを供給可能なガス供給量を、水素タンク 350の外気温度と、 水素タンク 350の温度とを考慮して算出し、 この算出されたガス供給量を放出 した後にガス供給を制限することとしても良い。
B- (6). その他の実施形態: 第 2の実施例と、 その変形例のガス供給源特定処理 (図 1 1および図 1 5 ) を 組み合わせた処理を行っても良い。 つまり、 現用タンクの切り換えに、 水素タン クの温度 Tによる判断 (図 1 1のステップ S 3 3 2 ) と、 圧力変化 d Pによる判 断 (図 1 5のステップ S 3 3 2 A) とを併用してもよい。 この場合、 例えば、 い ずれか一方の条件が満足された場合に、 現用タンクの切り換えを行うべきと判断 する方法を採ることができる。 こうすることにより、 切り換えに関する誤判断の 可能性を抑制することができる。
以上、 本発明の第 2の実施例について説明したが、 本発明はこれらの実施例に 限定されず、 その趣旨を逸脱しない範囲で種々の構成を採ることができることは いうまでもない。 例えば、 本発明は、 車両に搭載した燃料電池のみならず、 定置 型の燃料電池にガスを供給するシステムとして構成することも可能である。また、 本発明は、 水素に限らず、 複数の高圧タンクから種々のガスを減圧して供給する ガス供給装置に適用可能である。 実施例および変形例では、 水素タンク 3 5 0を 一つずつ供給源として選択する場合を例示したが、 複数の水素タンク 3 5 0を選 択することを許容してもよい。
また、 本実施例では、 ヒータ 5 2によって水素タンク 3 5 0を加熱することと したが、 燃料電池 2 0やインバー夕 3 1などの発熱体の廃熱を利用して水素タン ク 3 5 0を加熱することとしても良い。 さらに、 各水素タンク 3 5 0の表面と、 発熱体との間で冷却水を循環させることによって、 各水素タンク 3 5 0と発熱体 との間で熱交換を行うことしても良い。 また、 例えば、 各水素タンク 3 5 0の間 で冷却水を循環させることによって、 各水素夕ンク 3 5 0の間で熱交換を行うこ ととしても良い。 産業上の利用可能性
この発明は、 夕ンクに貯蔵されたガスを外部に供給するガス供給装置に適用可 能である。 また、 水素を取り扱うガス供給装置に利用するばかりではなく、 酸素 や窒素, 空気など種々のガスを取り扱うガス供給装置においても利用可能である

Claims

請求の範囲
1 . ガスを貯蔵する貯蔵部と、 該貯蔵されたガスを該貯蔵部の外部に減圧して放 出する放出機構とを有するタンクと、
前記タンクの温度を検出する温度検出部と、
該検出したタンクの温度に応じて、 該タンクからのガスの供給を調整する供給 制限部と
を備えたガス供給装置。
2 . 請求項 "I記載のガス供給装置であって、
前記タンクを複数備え、
前記温度検出部は、 前記複数のタンクの温度を検出し、
前記供給制限部は、 前記検出したタンクの温度に応じて、 前記複数のタンク間 の温度差が小さくなるようにガスの供給を制限する
ガス供給装置。
3 . 前記供給制限部は、 前記ガスの供給源となっているタンクの温度が、 該タン クを供給源に切り換えた時点の温度から所定温度だけ低下した場合に、 該夕ンク とは異なる他のタンクを供給源に切り換えることによって、 前記複数のタンク間 の温度差が小さくなるようにガスの供給を制限する請求項 2記載のガス供給装置
4 . 前記供給制限部は、 前記ガスの供給源となっているタンクの温度と、 該タン クとは異なる他の夕ンクの温度とが所定温度差になった場合に、 該他の夕ンクを 供給源に切り換えることによつて、 前記複数の夕ンク間の温度差が小さくなるよ うにガスの供給を制限する請求項 2記載のガス供給装置。
5 . 前記供給制限部が前記供給源に切り換えるタンクは、 前記複数のタンクのう ち最も高温な夕ンクである請求項 3または 4記載のガス供給装置。
6 . 請求項 2記載のガス供給装置であって、
前記複数のタンクの圧力を検出する圧力検出部を備え、
前記供給制限部は、 前記検出した複数のタンクの温度および圧力に応じて、 該 複数のタンク間の温度差および圧力差が小さくなるようにガスの供給を制限する ガス供給装置。
7 . 前記供給制限部は、 前記検出したタンクの温度と、 該タンクの性能を保証 する保証温度領域との関係に基づいて、 該タンクからのガスの供給を調整する請 求項 1記載のガス供給装置。
8 . 前記供給制限部は、 前記検出したタンクの温度が、 該タンクの性能を保証 する保証温度領域を外れないように、 該タンクからのガスの供給を調整する請求 項 7記載のガス供給装置。
9 . 請求項 7記載のガス供給装置であつて、
前記タンクを複数備え、
前記温度検出部は、 前記複数のタンクのうち、 少なくとも前記ガスの供給源と なっているタンクの温度を検出し、
前記供給制限部は、 前記検出した供給源となっているタンクの温度と、 該タン クの性能を保証する保証温度領域との関係に基づいて、 該供給源となっている夕 ンクからのガスの供給を制限する
ガス供給装置。
1 0 . 前記供給制限部は、 前記検出した供給源となっているタンクの温度が、 該タンクの性能を保証する保証温度領域を外れないように、 該供給源となってい るタンクからのガスの供給を制限する請求項 9記載のガス供給装置。
1 1 . 前記供給制限部は、 前記検出した供給源となっているタンクの温度が、 該タンクが前記供給源になってから前記保証温度領域内で所定温度だけ低下する 際に、 該供給源となっているタンクからのガスの供給を制限する請求項 9または 1 0記載のガス供給装置。
1 2 . 請求項 9ないし 1 1のいずれか記載のガス供給装置であって、 前記温度検出部は、 前記複数のタンクの温度を検出し、
前記供給制限部は、 前記検出した供給源となっているタンクの温度と、 該タン クとは異なる他の夕ンクの温度とが、 前記保証温度領域内で所定温度差となる際 に、 該供給源となっているタンクからのガスの供給を制限する
ガス供給装置。
1 3 . 請求項 1 2記載のガス供給装置であって、
前記複数のタンクの圧力を検出する圧力検出部を備え、
前記供給制限部は、 前記所定温度差となる際、 または、 前記検出した供給源と なっているタンクの圧力と、 該タンクとは異なる他のタンクの圧力とが所定圧力 差となる際に、 該供給源となっているタンクからのガスの供給を制限する ガス供給装置。
1 4 . 前記供給制限部は、 前記ガスの供給を制限する際に、 前記供給源となつ ているタンクとは異なる他のタンクの中から、 前記供給源となるタンクを選択す るタンク選択手段を備えた請求項 9ないし 1 3のいずれか記載のガス供給装置。
1 5 . 前記タンク選択手段は、 各時点で前記複数のタンクのうちのいずれか一 つの夕ンクを前記供給源として選択する手段である請求項 1 4記載のガス供給装 置。
1 6 . 請求項 1 4または 1 5記載のガス供給装置であって、
前記夕ンク選択手段は、 前記複数の夕ンクの前記供給源としての使用履歴に基 づいて、 前記供給源となるタンクを選択する手段である
ガス供給装置。
1 7 . 請求項 1 4ないし 1 6のいずれか記載のガス供給装置であって、 前記温度検出部は、 前記複数のタンクの温度を検出し、
-前記選択手段は、 前記検出された複数のタンクの温度に基づいて、 前記供給源 となるタンクを選択する手段である
ガス供給装置。
1 8 . 請求項 9ないし 1 7のいずれか記載のガス供給装置であって、 前記供給制限部は、
前記供給源となっているタンクからのガスの供給に支障があるか否かを判断 する支障判断手段と、
前記供給源となっているタンクに支障があると判断する場合に、 該タンクと は異なる他のタンクの中から、 前記供給源となるタンクを選択する支障選択手段 と
を備えた
ガス供給装置。
1 9 . 請求項 9ないし 1 8のいずれか記載のガス供給装置であって、 前記ガスを供給するための供給管を、 前記複数のタンクの各放出機構に共通し て連結し、
前記供給管の圧力を検出する供給管検出部と、
前記ガスの供給を開始する際に、 前記検出された供給管の圧力の挙動に基づい て、 少なくとも一つの前記放出機構の異常の有無を点検する供給管点検部と を備えたガス供給装置。
2 0 . 前記温度検出部は、 前記タンクから供給されるガスに関連する物理量に 基づいて、 該タンクの温度を検出する請求項 1ないし 1 9のいずれか記載のガス 供給装置。
-.
2 1 . 前記温度検出部は、 前記タンクから供給されるガスの断熱膨張度合に基 づいて、 該タンクの温度を検出する請求項 1ないし 2 0のいずれか記載のガス供 給装置。
2 2 . 前記温度検出部は、 前記タンクから供給されるガスが該タンクから奪う 熱量に基づいて、 該タンクの温度を検出する請求項 1ないし 2 1のいずれか記載 のガス供給装置。
2 3 . 前記温度検出部は、 前記貯蔵部および前記放出機構の少なくとも一部に おける温度を、 該タンクの温度として検出する請求項 1ないし 2 2のいずれか記 載のガス供給装置。
2 4 . 前記温度検出部は、 前記タンクから供給されるガスの供給量に基づいて 、 該夕ンクの温度を検出する請求項 1ないし 2 3のいずれか記載のガス供給装置
2 5 . 前記貯蔵部を加熱する加熱部を備えた請求項 1ないし 2 4のいずれか記 載のガス供給装置。
2 6 . 前記タンクからのガスの供給に異常が存在する場合に、 該異常を報知す る報知部を備えた請求項 1ないし 2 5のいずれか記載のガス供給装置。
2 7 . 請求項 1ないし 2 6のいずれか記載のガス供給装置であつて、 前記ガスは、 水素を含む燃料電池用の燃料ガスであり、
該ガスの供給先は、 水素を燃料とする燃料電池である
ガス供給装置。
2 8 . ガスを貯蔵する貯蔵部と、 該貯蔵するガスを減圧して放出する放出機構 とを有するタンクを備え、 該タンクに貯蔵されたガスを外部に供給するガス供給 装置の制御方法であって、
前記タンクの温度を検出し、
該検出した夕ンクの温度と、 該夕ンクの性能を保証する保証温度領域との関係 に基づいて、 該タンクからのガスの供給を制限する
制御方法。
2 9 . ガスを貯蔵する貯蔵部と、 該貯蔵するガスを減圧して放出する放出機構 とを有するタンクを複数備え、 該タンクに貯蔵されたガスを外部に供給するガス 供給装置の制御方法であつて、
前記複数のタンクのうち、 少なくとも前記ガスの供給源となっているタンクの 温度を検出し、
前記検出した供給源となっているタンクの温度と、 該タンクの性能を保証する 保証温度領域との関係に基づいて、 該供給源となっているタンクからのガスの供 給を制限する
制御方法。
PCT/JP2004/010579 2003-07-25 2004-07-16 ガス供給装置 WO2005010427A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04747942.3A EP1653148B1 (en) 2003-07-25 2004-07-16 Gas supply system
JP2005512041A JP4622857B2 (ja) 2003-07-25 2004-07-16 ガス供給装置
US11/337,579 US7575012B2 (en) 2003-07-25 2006-01-24 Gas supply apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-201509 2003-07-25
JP2003201509 2003-07-25
JP2004023985 2004-01-30
JP2004-023985 2004-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/337,579 Continuation US7575012B2 (en) 2003-07-25 2006-01-24 Gas supply apparatus

Publications (1)

Publication Number Publication Date
WO2005010427A1 true WO2005010427A1 (ja) 2005-02-03

Family

ID=34106840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010579 WO2005010427A1 (ja) 2003-07-25 2004-07-16 ガス供給装置

Country Status (5)

Country Link
US (1) US7575012B2 (ja)
EP (1) EP1653148B1 (ja)
JP (1) JP4622857B2 (ja)
KR (1) KR100672273B1 (ja)
WO (1) WO2005010427A1 (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269330A (ja) * 2005-03-25 2006-10-05 Suzuki Motor Corp 水素供給装置
JP2006278088A (ja) * 2005-03-29 2006-10-12 Toyota Motor Corp 燃料電池システムおよび水素漏れ検出方法
JP2006310236A (ja) * 2005-05-02 2006-11-09 Toyota Motor Corp 燃料ガス供給装置
JP2006344492A (ja) * 2005-06-09 2006-12-21 Honda Motor Co Ltd 燃料電池システム
JP2007043846A (ja) * 2005-08-04 2007-02-15 Toyota Motor Corp 移動体
WO2007029748A1 (ja) * 2005-09-07 2007-03-15 Toyota Jidosha Kabushki Kaisha 水素供給装置、燃料ガス供給装置
WO2007069645A1 (ja) * 2005-12-14 2007-06-21 Toyota Jidosha Kabushiki Kaisha 液体水素タンク残量検知システム
EP1800930A1 (en) * 2005-12-21 2007-06-27 Honda Motor Co., Ltd. Hydrogen vehicle gas utilization and refueling system
JP2007170443A (ja) * 2005-12-19 2007-07-05 Honda Motor Co Ltd 水素自動車のガスの使用及び補給システム
JP2007242606A (ja) * 2006-02-14 2007-09-20 Angstrom Power Inc 燃料電池デバイスおよびその方法
JP2007242122A (ja) * 2006-03-07 2007-09-20 Mitsubishi Electric Corp ディスク再生装置
WO2007108876A2 (en) 2006-03-20 2007-09-27 Tescom Corporation Apparatus and methods to dispense fluid from a bank of containers and to refill same
JP2007255666A (ja) * 2006-03-24 2007-10-04 Taiyo Nippon Sanso Corp ガス供給装置およびガス供給方法
US7325561B2 (en) 2004-12-02 2008-02-05 Honda Motor Co., Ltd. Hydrogen vehicle gas utilization and refueling system
JP2008223784A (ja) * 2007-03-08 2008-09-25 Toyota Motor Corp 燃料供給装置及び車両
JP2008275075A (ja) * 2007-04-27 2008-11-13 Toyota Motor Corp ガス供給システム
JP2008286303A (ja) * 2007-05-17 2008-11-27 Nec Electronics Corp 液化ガス供給システム及び供給方法
DE102006031875B4 (de) * 2005-07-12 2009-04-30 GM Global Technology Operations, Inc., Detroit Verfahren zum Öffnen von Tankabsperrventilen in Gaszufuhrsystemen mit verbundenen Tanks
JP2009108926A (ja) * 2007-10-30 2009-05-21 Toyota Motor Corp タンク内に貯蔵された圧縮ガスの残量の算出
JP2012197948A (ja) * 2012-07-23 2012-10-18 Renesas Electronics Corp 液化ガス供給方法及び液化ガス供給システムの制御装置
JP2012221637A (ja) * 2011-04-06 2012-11-12 Honda Motor Co Ltd 高圧ガス供給システム
US8669573B2 (en) 2007-02-12 2014-03-11 Cree, Inc. Packaged semiconductor light emitting devices having multiple optical elements
CN104204650A (zh) * 2012-04-26 2014-12-10 丰田自动车株式会社 气体填充系统及车辆
KR101547704B1 (ko) 2007-06-15 2015-08-26 테스콤 코포레이션 일련의 컨테이너로부터 유체를 분배하고, 이것을 재충전하기 위한 장치 및 방법
WO2016147459A1 (ja) * 2015-03-17 2016-09-22 ブラザー工業株式会社 電池、水素貯蔵容器の切り替え方法、及びコンピュータプログラム
JP2018129272A (ja) * 2017-02-10 2018-08-16 株式会社Subaru 電池システムの制御装置及び電池システム
EP3388757A4 (en) * 2015-12-15 2019-06-19 Clean Planet Inc. HEAT GENERATING SYSTEM
JP2020017440A (ja) * 2018-07-26 2020-01-30 トヨタ自動車株式会社 燃料電池システム
JP2021014869A (ja) * 2019-07-11 2021-02-12 本田技研工業株式会社 ガス制御装置およびガス制御方法
JP2021096968A (ja) * 2019-12-18 2021-06-24 本田技研工業株式会社 ガス制御装置及びガス制御方法

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9142844B2 (en) * 2005-05-18 2015-09-22 Sprint Communications Company L.P. Power system for a telecommunications network
TWM318100U (en) * 2006-11-23 2007-09-01 Grand Hall Entpr Co Ltd Gas storage detection and leakage alerting apparatus
JP4849332B2 (ja) * 2006-11-24 2012-01-11 トヨタ自動車株式会社 燃料供給装置
US9263751B2 (en) * 2007-02-26 2016-02-16 GM Global Technology Operations LLC Method to reduce pressure when injectors are stuck open under faulted conditions and remedial action to prevent walk-home incident
JP4905235B2 (ja) * 2007-04-19 2012-03-28 トヨタ自動車株式会社 付臭剤添加装置、燃料ガス供給システム
US7858666B2 (en) 2007-06-08 2010-12-28 Mannkind Corporation IRE-1α inhibitors
DE102007054291B4 (de) * 2007-10-02 2015-02-26 Diehl Aerospace Gmbh Verfahren zum Bereitstellen von Energie und Energieversorgungseinheit dafür
DE102007058671B4 (de) * 2007-12-06 2016-04-28 Basf Se Verfahren zur Regelung der Gasentnahme und Vorrichtung zur Speicherung mindestens eines Gases
JP4580994B2 (ja) * 2008-02-07 2010-11-17 本田技研工業株式会社 高圧タンク
DE102008019466A1 (de) * 2008-08-27 2010-03-04 Daimler Ag Verfahren und Vorrichtung zum Betreiben eines Gastankbehälters in einem Fahrzeug
US9966615B2 (en) * 2009-03-11 2018-05-08 Honeywell International Inc. Recharger for hydrogen fuel cells
US8443820B2 (en) * 2009-06-03 2013-05-21 Ford Global Technologies, Llc Fuel distribution in multi-fuel tank compressed gas fuel systems
JP5029855B2 (ja) * 2009-07-29 2012-09-19 トヨタ自動車株式会社 ガス充填システム
JP5285568B2 (ja) * 2009-10-19 2013-09-11 本田技研工業株式会社 ガス燃料供給装置
CA2770365C (en) * 2009-11-16 2013-10-22 Toyota Jidosha Kabushiki Kaisha Gas charging apparatus and gas charging method
JP5993307B2 (ja) * 2010-02-24 2016-09-14 ハイドレキシア ピーティーワイ リミテッド 水素放出システム
JP5508638B2 (ja) * 2010-10-28 2014-06-04 トヨタ自動車株式会社 燃料供給システム
US8950195B2 (en) * 2010-12-18 2015-02-10 The Boeing Company Continuous flow thermodynamic pump
JP5258912B2 (ja) * 2011-01-26 2013-08-07 本田技研工業株式会社 燃料電池システム及び燃料電池システムの運転方法
DE102011104711A1 (de) * 2011-06-06 2012-12-06 Zoz Gmbh Fahrzeug mit mehreren Vorratsbehältern für Wasserstoff und Verfahren zur Anzeige der verfügbaren Vorratsmenge und Steuerung zur Entnahme
US8720500B2 (en) * 2011-10-11 2014-05-13 GM Global Technology Operations LLC Electrical architecture for passive controller wake-up during refuel
US9238865B2 (en) 2012-02-06 2016-01-19 Asm Ip Holding B.V. Multiple vapor sources for vapor deposition
US8919325B2 (en) 2012-02-08 2014-12-30 Ford Global Technologies, Llc Method and system for engine control
US8903630B2 (en) 2012-02-08 2014-12-02 Ford Global Technologies, Llc Method and system for engine control
DE102012005689B3 (de) * 2012-03-21 2013-08-22 Audi Ag Verfahren zum Versorgen eines Antriebsaggregats
US9115653B2 (en) 2012-03-27 2015-08-25 Ford Global Technologies, Llc System and method for emptying a tank
US9422900B2 (en) 2012-03-27 2016-08-23 Ford Global Technologies, Llc System and method for closing a tank valve
DE102012018109A1 (de) * 2012-09-04 2014-03-27 Linde Aktiengesellschaft Verfahren zur Durchführung eines Drucktests an einem Tank und Betankungseinrichtung
EP2728242B1 (de) 2012-11-05 2021-08-25 Magna Steyr Fahrzeugtechnik AG & Co KG Druckspeichersystem und Verfahren zum Betreiben eines Druckspeichersystems
DE102012220292B4 (de) 2012-11-07 2024-08-14 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Bestimmen der in einem Drucktank oder Kryodrucktank eines Kraftfahrzeugs verfügbaren Kraftstoff-Restmenge
US9074730B2 (en) * 2013-03-14 2015-07-07 Air Products And Chemicals, Inc. Method for dispensing compressed gases
US9528472B2 (en) 2013-04-19 2016-12-27 Ford Global Technologies, Llc Enhanced fuel injection based on choke flow rate
US9279541B2 (en) * 2013-04-22 2016-03-08 Air Products And Chemicals, Inc. Method and system for temperature-controlled gas dispensing
JP6326754B2 (ja) * 2013-09-30 2018-05-23 日産自動車株式会社 燃料電池システム
KR101509971B1 (ko) 2013-11-15 2015-04-07 현대자동차주식회사 수소 탱크 온도 이상 대처 방법 및 이를 위한 안전강화장치
DE102014019419A1 (de) 2014-12-22 2016-06-23 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren und Diagnoseeinrichtung zur Überprüfung von Hochdrucktankventilen, Hochdrucktanksystem und Kraftfahrzeug mit einem Hochdrucktanksystem
JP6389440B2 (ja) * 2015-03-13 2018-09-12 株式会社神戸製鋼所 ガス供給システムおよびそれを備えた水素ステーション、蓄圧器の寿命判定方法、並びにガス供給システムの使用方法
CN107848027A (zh) 2015-07-23 2018-03-27 海德瑞克斯亚股份有限公司 用于储氢的Mg基合金
JP6313352B2 (ja) * 2016-03-09 2018-04-18 本田技研工業株式会社 燃料電池システムの検査方法及び燃料電池システム
JP6391625B2 (ja) * 2016-06-03 2018-09-19 本田技研工業株式会社 燃料電池システム及び燃料電池システムの故障判定方法
US10495257B2 (en) * 2017-05-08 2019-12-03 Honda Motor Co., Ltd. Heat load reduction on hydrogen filling station
EP3669063B1 (en) * 2017-08-18 2021-10-20 Carrier Corporation Natural gas tank pressure control for transport refrigeration unit
RU2703899C1 (ru) * 2018-08-13 2019-10-22 Акционерное общество "Государственный космический научно-производственный центр им. М.В. Хруничева" Способ наполнения емкостей сжатым газом до требуемого давления и устройство для его реализации
JP7091964B2 (ja) * 2018-09-14 2022-06-28 トヨタ自動車株式会社 ガス供給システム、ガス供給システムを備える燃料電池システム、ガス供給システムの制御方法
EP3663633B1 (en) * 2018-12-06 2022-09-07 Carrier Corporation Systems and methods for controlling gas flow in transportation refrigeration systems
IT201900000939A1 (it) * 2019-01-22 2020-07-22 Cnh Ind Italia Spa Sistema di distribuzione del gas per l'alimentazione del gas contenuto in serbatoi diversi a un motore di un veicolo alimentato da combustibile gassoso alternativo
US11411236B2 (en) 2019-02-21 2022-08-09 ZeroAvia, Inc. On-board oxygen booster for peak power in fuel cell systems
US11788190B2 (en) 2019-07-05 2023-10-17 Asm Ip Holding B.V. Liquid vaporizer
US11946136B2 (en) 2019-09-20 2024-04-02 Asm Ip Holding B.V. Semiconductor processing device
FR3106393B1 (fr) * 2020-01-20 2021-12-10 Air Liquide Station et un procédé de remplissage de réservoir(s).
DE102020001257A1 (de) 2020-02-26 2021-08-26 Man Truck & Bus Se Vorrichtung zur Kraftstoffversorgung und Fahrzeug mit einer derartigen Vorrichtung
DE102020112830A1 (de) * 2020-05-12 2021-11-18 Bayerische Motoren Werke Aktiengesellschaft Steuereinheit und Verfahren zum Betrieb eines Druckbehälter-Ventils eines Druckbehälters
KR102590123B1 (ko) * 2021-08-18 2023-10-18 일진하이솔루스 주식회사 고압가스 저장 및 공급장치
CN116357882A (zh) * 2021-12-28 2023-06-30 本田技研工业株式会社 气体填充方法
GB202207725D0 (en) * 2022-05-26 2022-07-13 Rolls Royce Plc Gas delivery system
CN115164095B (zh) * 2022-08-09 2024-05-07 浙江浙能航天氢能技术有限公司 一种自动选枪加氢机及其选枪系统
DE102022213430A1 (de) * 2022-12-12 2024-06-13 Robert Bosch Gesellschaft mit beschränkter Haftung Tanksystem und Verfahren zum Prüfen eines Trennventils in einem Tanksystem
DE102022213431A1 (de) * 2022-12-12 2024-06-13 Robert Bosch Gesellschaft mit beschränkter Haftung Tanksystem und Verfahren zum Prüfen eines Trennventils in einem Tanksystem
CN116221615B (zh) * 2023-03-06 2024-05-17 北京航天试验技术研究所 一种加氢安全运行的工艺控制系统及控制方法
CN116293423B (zh) * 2023-03-10 2024-07-23 深圳高发气体股份有限公司 一种储气罐供气控制方法、装置、设备及存储介质
DE102023202382A1 (de) 2023-03-16 2024-09-19 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben eines Brenngastanksystems, Steuergerät

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295996A (ja) * 2000-04-14 2001-10-26 Toyota Motor Corp 水素貯蔵供給装置
JP2003028394A (ja) * 2001-07-13 2003-01-29 Takata Corp 液化ガスボンベの加熱装置
JP2004084808A (ja) * 2002-08-27 2004-03-18 Nissan Motor Co Ltd 車両用水素ガス供給装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1766858A (en) * 1924-01-26 1930-06-24 Packard Motor Car Co Internal-combustion engine
US4527600A (en) * 1982-05-05 1985-07-09 Rockwell International Corporation Compressed natural gas dispensing system
US4606497A (en) * 1983-01-07 1986-08-19 The B. F. Goodrich Company Temperature compensator for pressure regulator
US5229222A (en) * 1990-11-14 1993-07-20 Sanyo Electric Co., Ltd. Fuel cell system
JP3229023B2 (ja) * 1992-07-29 2001-11-12 マツダ株式会社 水素エンジンに対する水素ガス供給装置
US5611316A (en) * 1993-12-28 1997-03-18 Honda Giken Kogyo Kabushiki Kaisha Gas fuel supply mechanism for gas combustion engine
JP3662957B2 (ja) 1994-10-14 2005-06-22 三洋電機株式会社 水素吸蔵合金容器
AUPQ413999A0 (en) * 1999-11-19 1999-12-09 Water Corporation, The A system and method for removing a gas from a plurality of vessels
FR2801370B1 (fr) * 1999-11-22 2002-02-01 Cryolor Installation de stockage d'un gaz liquefie sous pression
JP2001295994A (ja) * 2000-04-11 2001-10-26 Air Liquide Japan Ltd 圧縮ガスの移充填方法
JP4622038B2 (ja) * 2000-05-12 2011-02-02 トヨタ自動車株式会社 ガス供給装置
JP2002181295A (ja) 2000-12-14 2002-06-26 Honda Motor Co Ltd 高圧ガス貯蔵容器
JP4354122B2 (ja) * 2001-02-23 2009-10-28 本田技研工業株式会社 燃料電池用水素供給装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295996A (ja) * 2000-04-14 2001-10-26 Toyota Motor Corp 水素貯蔵供給装置
JP2003028394A (ja) * 2001-07-13 2003-01-29 Takata Corp 液化ガスボンベの加熱装置
JP2004084808A (ja) * 2002-08-27 2004-03-18 Nissan Motor Co Ltd 車両用水素ガス供給装置

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7325561B2 (en) 2004-12-02 2008-02-05 Honda Motor Co., Ltd. Hydrogen vehicle gas utilization and refueling system
JP2006269330A (ja) * 2005-03-25 2006-10-05 Suzuki Motor Corp 水素供給装置
JP2006278088A (ja) * 2005-03-29 2006-10-12 Toyota Motor Corp 燃料電池システムおよび水素漏れ検出方法
JP2006310236A (ja) * 2005-05-02 2006-11-09 Toyota Motor Corp 燃料ガス供給装置
JP2006344492A (ja) * 2005-06-09 2006-12-21 Honda Motor Co Ltd 燃料電池システム
CN100454643C (zh) * 2005-06-09 2009-01-21 本田技研工业株式会社 燃料电池系统
DE102006031875B4 (de) * 2005-07-12 2009-04-30 GM Global Technology Operations, Inc., Detroit Verfahren zum Öffnen von Tankabsperrventilen in Gaszufuhrsystemen mit verbundenen Tanks
JP2007043846A (ja) * 2005-08-04 2007-02-15 Toyota Motor Corp 移動体
US8091664B2 (en) 2005-08-04 2012-01-10 Toyota Jidosha Kabushiki Kaisha Fuel cell vehicle
US8746274B2 (en) 2005-09-07 2014-06-10 Toyota Jidosha Kabushiki Kaisha Hydrogen supply apparatus and fuel gas supply apparatus
EP1935844A4 (en) * 2005-09-07 2009-09-16 Toyota Motor Co Ltd HYDROGEN FEEDING DEVICE AND GAS FUEL FEEDING DEVICE
JP2007103347A (ja) * 2005-09-07 2007-04-19 Toyota Motor Corp 水素供給装置
EP1935844A1 (en) * 2005-09-07 2008-06-25 Toyota Jidosha Kabushiki Kaisha Hydrogen supply apparatus and fuel gas supply apparatus
WO2007029748A1 (ja) * 2005-09-07 2007-03-15 Toyota Jidosha Kabushki Kaisha 水素供給装置、燃料ガス供給装置
JP2007162849A (ja) * 2005-12-14 2007-06-28 Toyota Motor Corp 液体水素タンク残量検知システム
US8315824B2 (en) 2005-12-14 2012-11-20 Toyota Jidosha Kabushiki Kaisha System for detecting remaining quantity in liquid hydrogen tank
WO2007069645A1 (ja) * 2005-12-14 2007-06-21 Toyota Jidosha Kabushiki Kaisha 液体水素タンク残量検知システム
JP2007170443A (ja) * 2005-12-19 2007-07-05 Honda Motor Co Ltd 水素自動車のガスの使用及び補給システム
EP1800930A1 (en) * 2005-12-21 2007-06-27 Honda Motor Co., Ltd. Hydrogen vehicle gas utilization and refueling system
JP2007242606A (ja) * 2006-02-14 2007-09-20 Angstrom Power Inc 燃料電池デバイスおよびその方法
JP2007242122A (ja) * 2006-03-07 2007-09-20 Mitsubishi Electric Corp ディスク再生装置
US8636025B2 (en) 2006-03-20 2014-01-28 Tescom Corporation Apparatus and methods to dispense fluid from a bank of containers and to refill same
WO2007108876A2 (en) 2006-03-20 2007-09-27 Tescom Corporation Apparatus and methods to dispense fluid from a bank of containers and to refill same
US8707977B2 (en) 2006-03-20 2014-04-29 Tescom Corporation, A Minnesota Company Apparatus and methods to dispense fluid from a bank of containers and to refill same
JP2009530566A (ja) * 2006-03-20 2009-08-27 テスコム・コーポレーション 一連の容器からの流体の分配及びこれら一連の容器の再充填を行うための装置及び方法
WO2007108876A3 (en) * 2006-03-20 2008-01-10 Tescom Corp Apparatus and methods to dispense fluid from a bank of containers and to refill same
CN101405534B (zh) * 2006-03-20 2011-05-04 泰思康公司 分配来自一组容器的流体及再灌充该组容器的装置和方法
US8056577B2 (en) 2006-03-20 2011-11-15 Tescom Corporation Apparatus and methods to dispense fluid from a bank of containers and to refill same
KR101433551B1 (ko) * 2006-03-20 2014-08-27 테스콤 코포레이션 일련의 컨테이너로부터 유체를 분배하고, 이것을 재충전하기 위한 장치 및 방법
KR101433552B1 (ko) * 2006-03-20 2014-08-27 테스콤 코포레이션 일련의 컨테이너로부터 유체를 분배하고, 이것을 재충전하기 위한 장치 및 방법
JP2007255666A (ja) * 2006-03-24 2007-10-04 Taiyo Nippon Sanso Corp ガス供給装置およびガス供給方法
US8669573B2 (en) 2007-02-12 2014-03-11 Cree, Inc. Packaged semiconductor light emitting devices having multiple optical elements
JP2008223784A (ja) * 2007-03-08 2008-09-25 Toyota Motor Corp 燃料供給装置及び車両
JP2008275075A (ja) * 2007-04-27 2008-11-13 Toyota Motor Corp ガス供給システム
JP2008286303A (ja) * 2007-05-17 2008-11-27 Nec Electronics Corp 液化ガス供給システム及び供給方法
KR101547704B1 (ko) 2007-06-15 2015-08-26 테스콤 코포레이션 일련의 컨테이너로부터 유체를 분배하고, 이것을 재충전하기 위한 장치 및 방법
JP2009108926A (ja) * 2007-10-30 2009-05-21 Toyota Motor Corp タンク内に貯蔵された圧縮ガスの残量の算出
JP2012221637A (ja) * 2011-04-06 2012-11-12 Honda Motor Co Ltd 高圧ガス供給システム
CN104204650A (zh) * 2012-04-26 2014-12-10 丰田自动车株式会社 气体填充系统及车辆
JP2012197948A (ja) * 2012-07-23 2012-10-18 Renesas Electronics Corp 液化ガス供給方法及び液化ガス供給システムの制御装置
WO2016147459A1 (ja) * 2015-03-17 2016-09-22 ブラザー工業株式会社 電池、水素貯蔵容器の切り替え方法、及びコンピュータプログラム
EP3388757A4 (en) * 2015-12-15 2019-06-19 Clean Planet Inc. HEAT GENERATING SYSTEM
JP2018129272A (ja) * 2017-02-10 2018-08-16 株式会社Subaru 電池システムの制御装置及び電池システム
JP2020017440A (ja) * 2018-07-26 2020-01-30 トヨタ自動車株式会社 燃料電池システム
JP2021014869A (ja) * 2019-07-11 2021-02-12 本田技研工業株式会社 ガス制御装置およびガス制御方法
JP7134160B2 (ja) 2019-12-18 2022-09-09 本田技研工業株式会社 ガス制御装置及びガス制御方法
JP2021096968A (ja) * 2019-12-18 2021-06-24 本田技研工業株式会社 ガス制御装置及びガス制御方法

Also Published As

Publication number Publication date
US7575012B2 (en) 2009-08-18
JPWO2005010427A1 (ja) 2006-09-14
EP1653148B1 (en) 2018-05-02
EP1653148A4 (en) 2015-11-18
EP1653148A1 (en) 2006-05-03
JP4622857B2 (ja) 2011-02-02
KR20060037393A (ko) 2006-05-03
KR100672273B1 (ko) 2007-01-24
US20060246177A1 (en) 2006-11-02

Similar Documents

Publication Publication Date Title
WO2005010427A1 (ja) ガス供給装置
EP2357699B1 (en) Fuel cell system and method for controlling same
JP4882198B2 (ja) 燃料電池システム
KR101006219B1 (ko) 연료전지시스템
JP5744094B2 (ja) 燃料電池システムの制御方法
KR20190000229A (ko) 연료전지 차량의 응축수 배출장치 및 그 제어방법
WO2009016985A1 (ja) 燃料電池システム及びその制御方法
US20060141310A1 (en) Fuel cell system and method of controlling the same
US20050277005A1 (en) Fuel cell system and method of controlling thereof
US8951684B2 (en) Control detection method to enable gas composition observing during fuel cell system startup
KR20190134062A (ko) 연료전지의 공기 공급 제어방법 및 제어시스템
JP4982977B2 (ja) 燃料電池システム
EP1523782A2 (en) Fuel cell system
JP5303904B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2003331889A (ja) 燃料電池システム
KR102518714B1 (ko) 연료전지 시스템의 수소 분압 제어방법
JP2009076261A (ja) 燃料電池システム及びその起動方法
US10707506B2 (en) Hydrogen supply method for fuel cell system
JP5104612B2 (ja) ガス濃度推定装置及び燃料電池システム
JP4941641B2 (ja) 燃料電池システム
JP6155795B2 (ja) 燃料電池システム
US8980487B2 (en) Fuel cell system and activating completion degree displaying method of the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480021370.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005512041

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067001501

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11337579

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004747942

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067001501

Country of ref document: KR

Ref document number: 2004747942

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11337579

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1020067001501

Country of ref document: KR