JPWO2004077562A1 - 電極層および誘電体層を含む積層体ユニット - Google Patents

電極層および誘電体層を含む積層体ユニット Download PDF

Info

Publication number
JPWO2004077562A1
JPWO2004077562A1 JP2005502846A JP2005502846A JPWO2004077562A1 JP WO2004077562 A1 JPWO2004077562 A1 JP WO2004077562A1 JP 2005502846 A JP2005502846 A JP 2005502846A JP 2005502846 A JP2005502846 A JP 2005502846A JP WO2004077562 A1 JPWO2004077562 A1 JP WO2004077562A1
Authority
JP
Japan
Prior art keywords
layered compound
symbol
bismuth
bismuth layered
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005502846A
Other languages
English (en)
Inventor
坂下 幸雄
幸雄 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Publication of JPWO2004077562A1 publication Critical patent/JPWO2004077562A1/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/01Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate comprising only passive thin-film or thick-film elements formed on a common insulating substrate
    • H01L27/016Thin-film circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/56Capacitors with a dielectric comprising a perovskite structure material the dielectric comprising two or more layers, e.g. comprising buffer layers, seed layers, gradient layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/65Electrodes comprising a noble metal or a noble metal oxide, e.g. platinum (Pt), ruthenium (Ru), ruthenium dioxide (RuO2), iridium (Ir), iridium dioxide (IrO2)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Insulating Materials (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明にかかる積層体ユニットは、シリコン単結晶によって形成された支持基板と、支持基板上に形成され、酸化シリコンよりなるバリア層と、バリア層上に形成され、白金よりなる電極層と、Bi4Ti3O12で表わされる組成を有する配向性に優れたビスマス層状化合物を含む誘電体材料によって、電極層上に形成され、c軸方向に配向されたビスマス層状化合物を含むバッファ層と、Bi4Ti3O12で表わされる組成を有するコンデンサ特性に優れたビスマス層状化合物を含む誘電体材料によって、バッファ層上に形成され、c軸方向に配向されたビスマス層状化合物を含む誘電体層を備えている。

Description

本発明は、電極層および誘電体層を含む積層体ユニットに関するものであり、さらに詳細には、電界効果型トランジスタ(FET)やCPU(Central Processing Unit)などの他のデバイスとともに、半導体ウェハに組み込むのに適した小型で、かつ、大容量の誘電特性に優れた薄膜コンデンサを構成することができる電極層および誘電体層を含む積層体ユニットに関するものである。
電界効果型トランジスタ(FET)やCPU(Central Processing Unit)などの他のデバイスとともに、コンデンサを、半導体ウェハに組み込んで、形成された半導体デバイスが知られている。
このような半導体デバイスにあっては、コンデンサを、他のデバイスとともに、半導体プロセスを用いて、形成することが、工程上、有利であるため、従来は、半導体プロセスによって形成することができるシリコン系材料などよりなるコンデンサが、半導体デバイスに形成されていた。
しかしながら、半導体プロセスによって形成することができるシリコン系材料などは、誘電率が低いため、容量の大きいコンデンサを形成しようとすると、その面積が必然的に大きくなり、半導体デバイスが大型化するという問題があった。
かかる問題を解決するために、小型で、容量の大きい薄膜コンデンサを半導体ウエハに組み込んで、半導体デバイスを作製することが考えられる。
日本国公開特許公報第2001−15382号は、誘電体の材料として、PZT、PLZT、(Ba,Sr)TiO(BST)、Taなどを用いた小型で、容量の大きい薄膜コンデンサを開示している。
しかしながら、これらの材料によって、形成された誘電体薄膜は、その厚みが薄くなると、誘電率が低下するだけでなく、たとえば、100kV/cmの電界を加えた場合に、静電容量が大きく低下するという問題があり、これらの材料を、薄膜コンデンサの誘電体材料として、用いた場合には、小型で、かつ、大容量の薄膜コンデンサを得ることは困難である。さらに、これらの材料によって、形成された誘電体薄膜は、表面平滑性が低いため、その厚みを薄くすると、絶縁不良などが生じやすくなるという問題もある。
このような問題を解決するためには、薄膜コンデンサの誘電体として、ビスマス層状化合物を用いることが考えられる。ビスマス層状化合物については、竹中正著「ビスマス層状構造強誘電体セラミックスの粒子配向とその圧電・焦電材料への応用」、京都大学工学博士論文(1984)の第3章の第23〜36頁に記載されている。
ビスマス層状化合物は結晶構造に異方性を有しており、基本的に、強誘電体としての性質を示すが、ある配向軸方向については、強誘電体としての性質が小さく、常誘電体としての性質を示すことが知られている。
ビスマス層状化合物が持つ強誘電体としての性質は、ビスマス層状化合物を、薄膜コンデンサの誘電体として利用する場合には、誘電率の変動をもたらすため、好ましくなく、ビスマス層状化合物の常誘電体としての性質が十分に発揮されることが好ましい。
よって、ビスマス層状化合物の強誘電体としての性質が小さく、常誘電体としての性質を示す配向軸方向に、ビスマス層状化合物が配向され、電界効果型トランジスタ(FET)やCPU(Central Processing Unit)などの他のデバイスとともに、半導体ウェハに組み込むのに適した大容量の誘電特性に優れた薄膜コンデンサの開発が望まれている。
したがって、本発明は、電界効果型トランジスタ(FET)やCPU(Central Processing Unit)などの他のデバイスとともに、半導体ウェハに組み込むのに適した小型で、かつ、大容量の誘電特性に優れた薄膜コンデンサを構成することができる電極層および誘電体層を含む積層体ユニットを提供することを目的とするものである。
本発明のかかる目的およびその他の目的は、半導体ウェハ上に、バリア層と、導電性材料によって形成された電極層と、[001]方位に配向されたビスマス層状化合物を含むバッファ層と、エピタキシャル成長によって形成され、[001]方位に配向されたビスマス層状化合物を含む誘電体材料よりなる誘電体層とが、この順に、形成され、前記バッファ層に含まれるビスマス層状化合物として、配向性に優れたビスマス層状化合物が選択され、前記誘電体層に含まれるビスマス層状化合物として、コンデンサ材料としての特性に優れたビスマス層状化合物が選択され、前記バッファ層と前記誘電体層との間に、界面が形成された積層体ユニットによって達成される。
ここに、[001]方位とは、立方晶、正方晶、単斜晶および斜方晶における[001]方位のことをいう。
本発明によれば、半導体ウェハ上に、バリア層が形成されているから、半導体ウェハを構成する材料が、電極層内に溶け込み、電極層を侵すことを効果的に防止することができ、同時に、電極層を構成する材料が、半導体ウェハ内に拡散し、半導体ウェハを侵すことを効果的に防止することができる。
また、本発明によれば、電極層上に、配向性に優れ、[001]方位に配向されたビスマス層状化合物を含むバッファ層が形成されているから、バッファ層上で、コンデンサ特性に優れたビスマス層状化合物を含む誘電体材料をエピタキシャル成長させて、所望のように、[001]方位に配向されたビスマス層状化合物を含む誘電体材料よりなる誘電体層を形成することができる。
したがって、本発明によれば、誘電体層に含まれるコンデンサ特性に優れたビスマス層状化合物のc軸を、電極層に対して、垂直に配向させることが可能になるから、たとえば、誘電体層上に、上部電極を設け、電極層と上部電極との間に電圧を印加した場合に、電界の方向が、誘電体層に含まれるビスマス層状化合物のc軸とほぼ一致するため、誘電体層に含まれるビスマス層状化合物の強誘電体としての性質を抑制して、常誘電体としての性質を十分に発揮させることができ、したがって、小型で、かつ、大容量の薄膜コンデンサを、他のデバイスとともに、半導体ウェハに組み込むことが可能になる。
さらに、c軸配向性が向上されたビスマス層状化合物を含む誘電体材料よりなる誘電体層は高い絶縁性を有しているから、誘電体層を薄膜化することができ、したがって、本発明によれば、薄膜コンデンサを、より一層小型化することが可能になり、薄膜コンデンサが組み込まれた半導体デバイスを、より一層小型化することが可能になる。
また、本発明によれば、誘電体層上に、上部電極を形成して、作製された薄膜コンデンサ上に、CPU(Central Processing Unit)などの他の半導体デバイスを実装する場合に、他の半導体デバイスは、半導体ウェハ上に形成されているのが一般であるから、他の半導体デバイスの半導体ウェハが、積層体ユニットの半導体ウェハと同じ材料を形成されていれば、薄膜コンデンサの熱膨張率と、その上に実装された他の半導体デバイスの熱膨張率とが合致し、実装されたデバイス間の熱膨張率の相違に起因して、両デバイスの接合部が破損されることを効果的に防止することが可能になる。
本発明において、ビスマス層状化合物を含む誘電体材料は、不可避的な不純物を含んでいてもよい。
本発明の好ましい実施態様においては、前記バッファ層に含まれるビスマス層状化合物と、前記誘電体層に含まれるビスマス層状化合物が、異なる組成を有しており、それによって、前記バッファ層と前記誘電体層との間に、界面が形成されている。
本発明の別の好ましい実施態様においては、前記バッファ層と前記誘電体層とが、異なる薄膜形成法によって形成されており、それによって、前記バッファ層と前記誘電体層との間に、界面が形成されている。この場合には、前記バッファ層に含まれるビスマス層状化合物と、前記誘電体層に含まれるビスマス層状化合物とが、同じ組成を有していてもよい。
本発明において、半導体ウェハを形成するための材料としては、種々のデバイスを組み込んだ半導体デバイスを作製するのに用いられる材料であれば、とくに限定されるものではなく、たとえば、シリコン単結晶、砒化ガリウム結晶などを用いることができる。
本発明において、積層体ユニットは、半導体ウェハ上に、バリア層を備えている。バリア層は、バリア層上に形成される電極層に、半導体ウェハを形成している材料が溶け込み、電極層を侵すことを防止する機能を有している。
本発明において、バリア層を形成するための材料は、電極層が、半導体ウェハの影響を受けることを防止することができる材料であれば、とくに限定されるものではない。半導体ウェハとして、シリコン単結晶が用いられる場合には、コスト面から、バリア層を形成するために、酸化シリコンが好ましく用いられ、半導体ウェハとして、砒化ガリウム結晶が用いられる場合には、安定性の観点から、バリア層を形成するために、酸化アルミニウム(Al)や、酸化マグネシウム(MgO)が好ましく用いられる。
バリア層は、その上に形成された金属層が、半導体ウェハの影響を受けない程度の厚さ以上に形成される。
本発明において、積層体ユニットは、バリア層上に、導電性材料によって形成された電極層を備えている。
本発明において、電極層を形成するための材料は、とくに限定されるものではなく、白金(Pt)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、イリジウム(Ir)、金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)などの金属およびこれらを主成分とする合金や、NdO、NbO、RhO、OsO、IrO、RuO、SrMoO、SrRuO、CaRuO、SrVO、SrCrO、SrCoO、LaNiO、NbドープSrTiOなどの導電性酸化物およびこれらの混合物、さらには、BiSrCuOなどの超伝導性ビスマス層状構造を有する超伝導体を用いることができる。
本発明において、電極層は、真空蒸着法、スパッタリング法、パルスレーザー蒸着法(PLD)、有機金属化学気相成長法(metal−organic chemical vapor deposition:MOCVD)、有機金属分解法(metal−organic decomposition:MOD)やゾル・ゲル法などの液相法(CSD法)などの各種薄膜形成法を用いて、形成することができる。
本発明において、積層体ユニットは、電極層上に、[001]方位に、すなわち、c軸方向に配向されたビスマス層状化合物を含むバッファ層を備えている。バッファ層は、その上で、コンデンサ特性に優れたビスマス層状化合物を含む誘電体材料をエピタキシャル成長させて、[001]方位に、すなわち、c軸方向に配向されたビスマス層状化合物を含む誘電体よりなる誘電体層を確実に形成することができるように保証する機能を有している。
したがって、バッファ層を形成するビスマス層状化合物としては、誘電体層を形成するビスマス層状化合物とは異なる配向性に優れたビスマス層状化合物が選ばれる。
ビスマス層状化合物は、化学量論的組成式:(Bi2+(Am− 3m+12−、あるいは、Bim−13m+3で表わされる組成を有している。ここに、化学量論的組成式中の記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。
第1図に示されるように、ビスマス層状化合物は、それぞれがABO1aで構成される(m−1)個のペロブスカイト格子が連なった層状ペロブスカイト層1と、(Bi2+層2とが、交互に積層された層状構造を有している。
層状ペロブスカイト層1と(Bi2+層2の積層数は、とくに限定されるものではなく、少なくとも一対の(Bi2+層2と、これらに挟まれた一つの層状ペロブスカイト層1を備えていれば十分である。
ビスマス層状化合物のc軸とは、一対の(Bi2+層2同士を結ぶ方向、すなわち、[001]方位を意味する。
これらのビスマス層状化合物のうち、配向性に優れたビスマス層状化合物が、バッファ層を形成するために用いられ、誘電体層を形成するビスマス層状化合物として、m=4の化学量論的組成式:(Bi2+(A132−、あるいは、Bi15表わされるビスマス層状化合物が用いられるときは、m=3の化学量論的組成式:(Bi2+(A102−、あるいは、Bi で表わされるビスマス層状化合物が、バッファ層を形成するために、好ましく用いられる。
本発明において、バッファ層に含まれているビスマス層状化合物の[001]方位の配向度、すなわち、c軸配向度Fが100%であることは必ずしも必要でなく、c軸配向度Fが80%以上であればよい。c軸配向度Fが90%であることが好ましく、c軸配向度Fが95%以上であると、より好ましい。
ビスマス層状化合物のc軸配向度Fは、次式(1)によって定義される。
F(%)=(P−P)/(1−P)×100 …(1)
式(1)において、Pは、完全にランダムな配向をしているビスマス層状化合物のc軸配向比、すなわち、完全にランダムな配向をしているビスマス層状化合物の(001)面からの反射強度I(001)の合計ΣI(001)と、そのビスマス層状化合物の各結晶面(hkl)からの反射強度I(hkl)の合計ΣI(hkl)との比({ΣI(001)/ΣI(hkl)})であり、Pは、X線回折強度を用いて算出されたビスマス層状化合物のc軸配向比、すなわち、ビスマス層状化合物の(001)面からの反射強度I(001)の合計ΣI(001)と、ビスマス層状化合物の各結晶面(hkl)からの反射強度I(hkl)の合計ΣI(hkl)との比({ΣI(001)/ΣI(hkl)})である。ここに、h、k、lは、それぞれ、0以上の任意の整数値を取ることができる。
ここに、Pは既知の定数であるから、(001)面からの反射強度I(001)の合計ΣI(001)と、各結晶面(hkl)からの反射強度I(hkl)の合計ΣI(hkl)が等しいとき、すなわち、P=1のときに、ビスマス層状化合物のc軸配向度Fは100%となる。
本発明において、バッファ層は、真空蒸着法、スパッタリング法、パルスレーザー蒸着法(PLD)、有機金属化学気相成長法(metal−organic chemical vapor deposition:MOCVD)、有機金属分解法(metal−organic decomposition:MOD)やゾル・ゲル法などの液相法(CSD法)などの各種薄膜形成法を用いて、形成することができる。とくに低温で、バッファ層を形成する必要がある場合には、プラズマCVD、光CVD、レーザーCVD、光CSD、レーザーCSD法を用いることが好ましい。
本発明において、積層体ユニットは、バッファ層上に、エピタキシャル成長によって形成され、[001]方位に、すなわち、c軸方向に配向されたビスマス層状化合物を含む誘電体材料よりなる誘電体層を備えている。
本発明において、誘電体層は、ビスマス層状化合物を含む誘電体材料を、バッファ層上で、エピタキシャル成長させることによって形成される。
誘電体層は、[001]方位に、すなわち、c軸方向に配向されたバッファ層上で、ビスマス層状化合物を含む誘電体材料をエピタキシャル成長させて、形成されるから、誘電体層に含まれているビスマス層状化合物を、確実に、[001]方位に、すなわち、c軸方向に配向させることができ、したがって、本発明にかかる積層体ユニットを用いて、薄膜コンデンサを構成したときに、誘電体層に含まれるビスマス層状化合物は、強誘電体としてではなく、常誘電体として機能するから、本発明にかかる積層体ユニットを用いて、小型で、かつ、大容量の誘電特性に優れた薄膜コンデンサを作製することが可能になる。
本発明において、誘電体層に含まれているビスマス層状化合物の[001]方位の配向度、すなわち、c軸配向度Fが100%であることは必ずしも必要でなく、c軸配向度Fが80%以上であればよい。c軸配向度Fが90%であることが好ましく、c軸配向度Fが95%以上であると、より好ましい。
ビスマス層状化合物のc軸配向度Fは、式(1)によって定義される。
このように、ビスマス層状化合物を、[001]方位に、すなわち、c軸方向に配向させることによって、誘電体層の誘電特性を大幅に向上させることが可能になる。
すなわち、本発明にかかる積層体ユニットの誘電体層上に、たとえば、上部電極を形成して、薄膜コンデンサを作製した場合、誘電体層の膜厚をたとえば100nm以下にしても、比較的高い誘電率と低い損失(tanδ)を有する薄膜コンデンサを得ることができ、リーク特性に優れ、耐圧が向上し、誘電率の温度特性に優れ、表面平滑性にも優れた薄膜コンデンサを得ることが可能になる。
本発明において、好ましくは、誘電体層を形成するためのビスマス層状化合物としては、上述したビスマス層状化合物のうち、コンデンサ材料としての特性に優れ、バッファ層に含まれるビスマス層状化合物とは異なるビスマス層状化合物が選ばれる。
m=3の化学量論的組成式:(Bi2+(A102−、あるいは、Bi12で表わされるビスマス層状化合物が、バッファ層を形成するために用いられているときは、m=4の化学量論的組成式:(Bi2+(A132−、あるいは、Bi15で表わされるビスマス層状化合物が、誘電体層を形成するために、好ましく用いられる。
本発明において、とくに好ましくは、誘電体層に含まれるビスマス層状化合物が、化学量論的組成式:CaSr(1−x)BiTi15で表わされる組成を有している。ここに、0≦x≦1である。このような組成を有するビスマス層状化合物を用いると、比較的大きな誘電率を有する誘電体層が得られるとともに、その温度特性がさらに向上する。
本発明において、誘電体層に含まれるビスマス層状化合物の化学量論的組成式中の記号AまたはBで表わされる元素の一部が、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)およびルテチウム(Lu)からなる群より選ばれる少なくとも1つの元素Re(イットリウム(Y)または希土類元素)によって置換されていることが好ましい。
元素Reによって、置換する場合には、好ましい置換量は、mの値により異なるが、たとえば、m=3のときは、化学量論的組成式:Bi2−xRe12において、好ましくは、0.4≦x≦1.8であり、より好ましくは、1.0≦x≦1.4である。元素Reによる置換量をこの範囲に設定すれば、誘電体層のキュリー温度(強誘電体から常誘電体への相転移温度)を、好ましくは、−100℃以上、100℃以下、より好ましくは、−50℃以上、50℃以下に収めることが可能となる。キュリー点が−100℃ないし+100℃であると、誘電体層の誘電率が向上する。キュリー温度は、DSC(示差走査熱量測定)などによって測定することができる。なお、キュリー点が室温(25℃)未満になると、tanδがさらに減少し、その結果、損失Q値がさらに上昇する。
また、m=4の場合には、化学量論的組成式:Bi3−xRe15において、好ましくは、0.01≦x≦2.0であり、より好ましくは、0.1≦x≦1.0である。
本発明にかかる積層体ユニットの誘電体層は、優れたリーク特性を有しているが、ビスマス層状化合物の化学量論的組成式中の記号AまたはBで表わされる元素の一部が、元素Reによって、置換されている場合には、誘電体層のリーク特性を一層向上させることができ、好ましい。
たとえば、ビスマス層状化合物の化学量論的組成式中の記号AまたはBで表わされる元素の一部が、元素Reによって、置換されていない場合においても、本発明にかかる積層体ユニットの誘電体層は、電界強度50kV/cmで測定したときのリーク電流を、好ましくは、1×10−7A/cm以下、より好ましくは、5×10−8A/cm以下に抑制することができ、しかも、ショート率を、好ましくは、10%以下、より好ましくは、5%以下にすることができるが、ビスマス層状化合物の化学量論的組成式中の記号AまたはBで表わされる元素の一部が、元素Reによって、置換されている場合には、同条件で測定したときのリーク電流を、好ましくは、5×10−8A/cm以下、より好ましくは、1×10−8A/cm以下にすることができ、ショート率を、好ましくは、5%以下、より好ましくは、3%以下にすることができる。
本発明において、誘電体層は、真空蒸着法、スパッタリング法、パルスレーザー蒸着法(PLD)、有機金属化学気相成長法(metal−organic chemical vapor deposition:MOCVD)、有機金属分解法(metal−organic decomposition:MOD)やゾル・ゲル法などの液相法(CSD法)などの各種薄膜形成法を用いて、形成することができる。とくに低温で、誘電体層を形成する必要がある場合には、プラズマCVD、光CVD、レーザーCVD、光CSD、レーザーCSD法を用いることが好ましい。
本発明にかかる電極層および誘電体層を含む積層体ユニットは、薄膜コンデンサの構成部品としてだけでなく、無機EL素子を発光させるための積層体ユニットとして用いることもできる。すなわち、無機EL素子を発光させるためには、電極層と、無機EL素子との間に、絶縁層が必要であるが、c軸配向性が向上されたビスマス層状化合物を含む誘電体材料よりなる誘電体層は高い絶縁性を有しており、したがって、誘電体層上に、無機EL素子を配置するとともに、無機EL素子上に、別の電極を配置し、電極層と別の電極との間に電圧を加えることによって、無機EL素子を、所望のように、発光させることが可能になる。
本発明の前記およびその他の目的や特徴は、添付図面に基づいた以下の説明から明らかになるであろう。
第1図は、ビスマス層状化合物の構造を模式的に示す図である。
第2図は、本発明の好ましい実施態様にかかる積層体ユニットの略一部断面図である。
発明の好ましい実施態様の説明
以下、添付図面に基づき、本発明の好ましい実施態様につき、詳細に説明を加える。
第2図は、本発明の好ましい実施態様にかかる積層体ユニットの略一部断面図である。
第2図に示されるように、本実施態様にかかる積層体ユニット1は、支持基板2上に、バリア層3、電極層4、バッファ層5および誘電体層6が、この順に、積層されて、形成されている。
本実施態様において、積層体ユニット1の支持基板2は、シリコン単結晶によって形成されている。
本実施態様にかかる積層体ユニット1は、支持基板2上に、酸化シリコンによって形成されたバリア層3を備えている。
酸化シリコンよりなるバリア層3は、たとえば、シリコンの熱酸化によって形成される。
第2図に示されるように、バリア層3上には、電極層4が形成されており、本実施態様においては、電極層4は、[111]方位に配向された白金によって形成されている。
シリコン単結晶によって形成された支持基板2上に、直接、白金よりなる電極層4を形成する場合には、シリコンが白金中に溶け込み、電極層4を侵し、本実施態様にかかる積層体ユニット1を薄膜コンデンサの構成部品として用いたときに、薄膜コンデンサの動作不良が生じるおそれがあるが、本実施態様においては、電極層4は、酸化シリコンによって形成されたバリア層3上に、形成されるから、本実施態様にかかる積層体ユニット1を薄膜コンデンサの構成部品として用いたときに、薄膜コンデンサが動作不良を起こすことを確実に防止することができる。
白金よりなる電極層4は、たとえば、スパッタリングガスとして、1パスカル(Pa)の圧力のアルゴンガスを用い、バッファ層4の温度を400℃、電力を100Wに設定して、スパッタリング法によって、バッファ層4上に、100nmの厚さに形成される。
白金は立方晶構造を有しているため、酸化シリコンよりなるバリア層3上に、白金よりなる電極層4を形成した場合には、白金は、最も安定な[111]方位に配向する。
第2図に示されるように、本実施態様にかかる積層体ユニット1は、電極層4上に、BiTi12で表わされる組成を有する配向性に優れたビスマス層状化合物を含む誘電体材料よりなるバッファ層5を備えている。
本実施態様において、BiTi12で表わされる組成を有するビスマス層状化合物を含む誘電体材料よりなるバッファ層5は、たとえば、有機金属化学気相成長法(metal−organic chemical vapor deposition:MOCVD)によって形成される。
有機金属化学気相成長法を用いて、BiTi12で表わされる組成を有するビスマス層状化合物を含む誘電体材料よりなるバッファ層5を形成する場合には、たとえば、原料として、Bi(CHおよびTi(O−i−Cを用い、酸化シリコンによって形成されたバリア層3の温度を550℃に保持して、10nmの厚さを有し、[001]方位に、すなわち、c軸方向に配向されたバッファ層5が形成される。
本実施態様において、バッファ層5は、その上で、ビスマス層状化合物を含む誘電体材料をエピタキシャル成長させて、確実に、[001]方位に、すなわち、c軸方向に配向されたビスマス層状化合物を含む誘電体材料よりなる誘電体層6を形成することができるように保証する機能を有している。
第2図に示されるように、本実施態様にかかる積層体ユニット1は、バッファ層5上に形成された誘電体層6を備えている。
本実施態様において、誘電体層6は、SrBiTi15で表わされる組成を有するコンデンサ特性に優れたビスマス層状化合物を含む誘電体材料によって形成されている。
本実施態様においては、誘電体層6は、有機金属分解法(metal−organic decomposition:MOD)によって、バッファ層5上に形成される。
具体的には、2−エチルヘキサン酸Srのトルエン溶液と、2−エチルヘキサン酸Biの2−エチルヘキサン酸溶液と、2−エチルヘキサン酸Tiのトルエン溶液を、2−エチルヘキサン酸Srが1モル、2−エチルヘキサン酸Biが4モル、2−エチルヘキサン酸Tiが4モルとなるように、化学量論比で混合し、トルエンで希釈して、得た原料溶液を、スピンコーティング法によって、バッファ層5上に塗布し、乾燥後、得られた誘電体層6を結晶化させない温度条件で、仮焼成する。
次いで、仮焼成した誘電体層6上に、スピンコーティング法によって、同じ原料溶液を塗布して、乾燥し、仮焼成し、この操作を繰り返す。
仮焼成が完了すると、誘電体層6が本焼成され、必要な厚さの誘電体層6、たとえば、100nmの厚さの誘電体層6が得られるまで、塗布、乾燥、仮焼成、塗布、乾燥、仮焼成および本焼成よりなる一連の操作が繰り返される。
この過程で、ビスマス層状化合物を含む誘電体材料はエピタキシャル成長し、[001]方位に、すなわち、c軸方向に配向された誘電体層6が形成される。
本実施態様によれば、積層体ユニット1は、シリコン単結晶よりなる支持基板2上に、バリア層3、電極層4、バッファ層5および誘電体層6が積層された構造を有しているから、たとえば、誘電体層6上に、上部電極を設けることによって、シリコン単結晶よりなる支持基板2に、電界効果型トランジスタやCPUなどの他のデバイスとともに、薄膜コンデンサを容易に組み込んで、半導体デバイスを作製することが可能になる。
また、本実施態様によれば、シリコン単結晶によって形成された支持基板2上に、酸化シリコンによって、バリア層3が形成されるから、シリコンが、電極層4中に溶け込んで、電極層を侵すことを確実に防止することができ、したがって、本実施態様にかかる積層体ユニット1を構成部品として、薄膜コンデンサを作製した場合に、薄膜コンデンサが動作不良を起こすことを確実に防止することが可能になる。
さらに、本実施態様によれば、電極層4上に、BiTi12で表わされる組成を有する配向性に優れたビスマス層状化合物を含む誘電体材料よりなるバッファ層5を、ビスマス層状化合物が、[001]方位に、すなわち、c軸方向に配向されるように形成し、バッファ層5上で、SrBiTi15で表わされる組成を有するコンデンサ特性に優れたビスマス層状化合物を含む誘電体材料をエピタキシャル成長させて、誘電体層6を形成しているから、誘電体層6に含まれているビスマス層状化合物を、確実に、[001]方位に、すなわち、c軸方向に配向させることが可能になる。
したがって、本実施態様によれば、積層体ユニット1は、[001]方位に、すなわち、c軸方向に配向されたビスマス層状化合物を含む誘電体材料によって形成された誘電体層6を有しているから、たとえば、本実施態様にかかる積層体ユニット1の誘電体層6上に、上部電極を設けて、薄膜コンデンサを作製し、電極層5と上部電極との間に電圧を印加したときに、電界の方向が誘電体層6に含まれているビスマス層状化合物のc軸とほぼ一致し、したがって、誘電体層6に含まれているビスマス層状化合物の強誘電体としての性質を抑制して、常誘電体としての性質を十分に発揮させることが可能になるから、小型で、かつ、大容量の誘電特性に優れた薄膜コンデンサを、電界効果型トランジスタやCPUなどの他のデバイスとともに、シリコン単結晶よりなる支持基板2に組み込んで、半導体デバイスを作製することが可能になる。
さらに、本実施態様によれば、積層体ユニット1は、[001]方位に、すなわち、c軸方向に配向されたビスマス層状化合物を含む誘電体材料によって形成された誘電体層6を有し、c軸配向性が向上されたビスマス層状化合物を含む誘電体層6は高い絶縁性を有しているから、誘電体層6を薄膜化することができ、したがって、薄膜コンデンサを、より一層小型化することが可能になり、薄膜コンデンサが組み込まれた半導体デバイスを、より一層小型化することが可能になる。
また、本実施態様によれば、10nmの厚さのバッファ層5は、その上で、コンデンサ特性に優れたビスマス層状化合物をエピタキシャル成長させて、[001]方位に、すなわち、c軸方向に確実に配向したビスマス層状化合物を含む誘電体層6を形成するために、有機金属化学気相成長法(metal−organic chemical vapor deposition:MOCVD)によって形成されるように構成されている一方で、その上で、何の層もエピタキシャル成長させる必要がなく、バッファ層5よりも厚さが大きい誘電体層6は、安価なプロセスである有機金属分解法(metal−organic decomposition:MOD)によって形成されるように構成されているから、積層体ユニット1の製造コストを低減させることが可能になる。
本発明は、以上の実施の形態に限定されることなく、特許請求の範囲に記載された発明の範囲内で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
たとえば、前記実施態様においては、積層体ユニット1は、支持基板2上に、バリア層3、電極層4、バッファ層5および誘電体層6が、この順に、積層されて、形成されているが、積層体ユニット1は、さらに、誘電体層6上に、それぞれが、電極層4、バッファ層5および誘電体層6を含む複数の単位積層体が、積層されて形成されていてもよく、最上の単位積層体の誘電体層6上に、上部電極を形成することによって、薄膜コンデンサを形成するようにしてもよい。ただし、積層体ユニット1が、誘電体層6上に、さらに、複数の単位積層体が積層されて形成されている場合に、単位積層体に含まれる電極層が、誘電体層6上で、導電性材料の結晶をエピタキシャル成長させて、形成されているときは、電極層を[001]方位に配向させることができ、したがって、電極層上で、ビスマス層状化合物を含む誘電体材料をエピタキシャル成長させて、[001]方位に配向されたビスマス層状化合物を含む誘電体材料よりなる誘電体層6を形成することが可能になるから、単位積層体がバッファ層5を備えていることは必要でなく、電極層および誘電体層6によって、単位積層体を構成することができる。さらに、電極層および誘電体層6によって構成された1または2以上の単位積層体と、電極層、電極層上に形成されたバッファ層5およびビスマス層状化合物を含む誘電体材料によって形成され、バッファ層5上に形成された誘電体層6によって構成された1または2以上の単位積層体を、誘電体層6上に、任意の順序で、積層し、最上の単位積層体の誘電体層6上に、上部電極を形成することによって、薄膜コンデンサを形成するようにしてもよい。
また、前記実施態様においては、積層体ユニット1の支持基板2は、シリコン単結晶によって形成されているが、シリコン単結晶によって形成された支持基板2を用いることは必ずしも必要でなく、支持基板2を形成するための材料としては、種々のデバイスを組み込んだ半導体デバイスを作製するのに用いられる材料であれば、とくに限定されるものではなく、たとえば、シリコン単結晶に代えて、砒化ガリウム結晶などによって、支持基板2を形成することもできる。
さらに、前記実施態様においては、支持基板2上に、酸化シリコンによって、バリア層3が形成されているが、支持基板2上に形成されるバリア層3を、酸化シリコンによって形成することは必ずしも必要でなく、その上に形成される電極層4が、支持基板2の影響を受けることを防止することができる材料であれば、いかなる材料で、バリア層3を形成してもよい。たとえば、支持基板2として、砒化ガリウム結晶が用いられる場合には、安定性の観点から、バリア層を形成するために、酸化アルミニウム(Al)や、酸化マグネシウム(MgO)が好ましく用いられる。
また、前記実施態様においては、積層体ユニット1は、バリア層3上に形成された白金よりなる電極層4を備えているが、白金によって、電極層4を形成することは必ずしも必要でなく、電極層4を形成する材料は、導電性を有する材料であれば、格別限定されるものではなく、白金(Pt)に代えて、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、イリジウム(Ir)、金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)などの金属およびこれらを主成分とする合金やNdO、NbO、RhO、OsO、IrO、RuO、SrMoO、SrRuO、CaRuO、SrVO、SrCrO、SrCoO、LaNiO、NbドープSrTiOなどの導電性酸化物およびびこれらの混合物、さらには、BiSrCuOなどの超伝導性ビスマス層状構造を有する超伝導体を用いて、電極層4を形成することもできる。
さらに、前記実施態様においては、電極層4は、スパッタリング法によって形成されているが、電極層4をスパッタリング法によって形成することは必ずしも必要でなく、スパッタリング法に代えて、真空蒸着法、パルスレーザー蒸着法(PLD)、有機金属化学気相成長法(metal−organic chemical vapor deposition:MOCVD)、有機金属分解法(metal−organic decomposition:MOD)やゾル・ゲル法などの液相法(CSD法)などの他の薄膜形成法によって、電極層4を形成することもできる。
また、前記実施態様においては、積層体ユニット1は、電極層4上に、化学量論組成式において、m=3のBiTi12によって表わされる組成を有する配向性に優れたビスマス層状化合物を含む誘電体材料によって形成されたバッファ層5を有しているが、バッファ層5を、化学量論組成式において、m=3のBiTi12によって表わされる組成を有するビスマス層状化合物を含む誘電体材料によって形成することは必ずしも必要でなく、配向性に優れたビスマス層状化合物であれば、mが3以外のビスマス層状化合物を含む誘電体材料によって、バッファ層5を形成することもでき、さらには、構成元素を異にする他のビスマス層状化合物を含む誘電体材料によって、バッファ層5を形成することもできる。
さらに、前記実施態様においては、バッファ層5は、有機金属化学気相成長法(metal−organic chemical vapor deposition:MOCVD)によって、形成されているが、バッファ層5を、有機金属化学気相成長法によって形成することは必ずしも必要でなく、真空蒸着法、スパッタリング法、パルスレーザー蒸着法(PLD)、有機金属分解法(metal−organic decomposition:MOD)やゾル・ゲル法などの液相法(CSD法)などの他の薄膜形成法を用いて、バッファ層5を形成することもできる。
また、前記実施態様においては、積層体ユニット1は、バッファ層5上に、化学量論組成式において、m=4のSrBiTi15で表わされる組成を有するビスマス層状化合物を含む誘電体材料によって形成された誘電体層6を備えているが、バッファ層5上に、化学量論組成式において、m=4のSrBiTi15で表わされる組成を有するビスマス層状化合物を含む誘電体材料によって、誘電体層6を形成することは必ずしも必要でなく、コンデンサ特性に優れたビスマス層状化合物であれば、mが4以外のビスマス層状化合物を含む誘電体材料によって、誘電体層6を形成することもでき、さらには、構成元素を異にする他のビスマス層状化合物を含む誘電体材料によって、誘電体層6を形成することもできる。
さらに、前記実施態様においては、積層体ユニット1の誘電体層6は、有機金属分解法(metal−organic decomposition:MOD)によって形成されているが、誘電体層6を、有機金属分解法によって形成することは必ずしも必要でなく、真空蒸着法、スパッタリング法、パルスレーザー蒸着法(PLD)、有機金属化学気相成長法(metal−organic chemical vapor deposition:MOCVD)、ゾル・ゲル法などの他の液相法(CSD法)などの他の薄膜形成法によって、誘電体層6を形成することもできる。
また、前記実施態様においては、積層体ユニット1は、電極層4上に、化学量論組成式において、m=3のBiTi12によって表わされる組成を有する配向性に優れたビスマス層状化合物を含む誘電体材料によって形成されたバッファ層5と、バッファ層5上に、化学量論組成式において、m=4のSrBiTi15で表わされる組成を有するビスマス層状化合物を含む誘電体材料によって形成された誘電体層6を備えており、バッファ層5と、誘電体層6が、異なる組成を有するビスマス層状化合物を含む誘電体材料によって形成されているが、バッファ層5と、誘電体層6とが、異なる薄膜形成法によって形成され、バッファ層5と誘電体層6との間に、界面が形成されていれば、バッファ層5と、誘電体層6とが、同じ組成を有するビスマス層状化合物を含んでいてもよい。
さらに、前記実施態様においては、積層体ユニット1は、薄膜コンデンサの構成部品として、用いられているが、積層体ユニット1は、薄膜コンデンサの構成部品としてだけでなく、無機EL素子を高輝度に発光させるための積層体ユニットとして用いることもできる。すなわち、無機EL素子を高輝度に発光させるためには、電極層4と、無機EL素子との間に、絶縁性の高い絶縁層が必要であるが、c軸配向性が向上されたビスマス層状化合物を含む誘電体材料よりなる誘電体層6は高い絶縁性を有しており、したがって、誘電体層6上に、無機EL素子を配置するとともに、無機EL素子上に、別の電極を配置し、電極層4と別の電極との間に、電圧を印加することによって、無機EL素子を、所望のように、発光させることが可能になる。
本発明によれば、電界効果型トランジスタ(FET)やCPU(Central Processing Unit)などの他のデバイスとともに、半導体ウェハに組み込むのに適した小型で、かつ、大容量の誘電特性に優れた薄膜コンデンサを構成することができる電極層および誘電体層を含む積層体ユニットを提供することが可能になる。

Claims (48)

  1. 半導体ウェハ上に、バリア層と、導電性材料によって形成された電極層と、[001]方位に配向されたビスマス層状化合物を含むバッファ層と、エピタキシャル成長によって形成され、[001]方位に配向されたビスマス層状化合物を含む誘電体材料よりなる誘電体層とが、この順に、形成され、前記バッファ層に含まれるビスマス層状化合物として、配向性に優れたビスマス層状化合物が選択され、前記誘電体層に含まれるビスマス層状化合物として、コンデンサ材料としての特性に優れたビスマス層状化合物が選択され、前記バッファ層と前記誘電体層との間に、界面が形成されたことを特徴とする積層体ユニット。
  2. 前記バッファ層に含まれるビスマス層状化合物と、前記誘電体層に含まれるビスマス層状化合物が、異なる組成を有していることを特徴とする請求の範囲第1項に記載の積層体ユニット。
  3. 前記支持基板が、シリコン単結晶によって形成され、前記バリア層が、酸化シリコンによって形成されたことを特徴とする請求の範囲第1項に記載の積層体ユニット。
  4. 前記支持基板が、シリコン単結晶によって形成され、前記バリア層が、酸化シリコンによって形成されたことを特徴とする請求の範囲第2項に記載の積層体ユニット。
  5. 前記電極層が、白金(Pt)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、イリジウム(Ir)、金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)からなる群より選ばれた少なくとも一つの金属を含んでいることを特徴とする請求の範囲第1項に記載の積層体ユニット。
  6. 前記電極層が、白金(Pt)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、イリジウム(Ir)、金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)からなる群より選ばれた少なくとも一つの金属を含んでいることを特徴とする請求の範囲第2項に記載の積層体ユニット。
  7. 前記電極層が、白金(Pt)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、イリジウム(Ir)、金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)からなる群より選ばれた少なくとも一つの金属を含んでいることを特徴とする請求の範囲第3項に記載の積層体ユニット。
  8. 前記電極層が、白金(Pt)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、イリジウム(Ir)、金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)からなる群より選ばれた少なくとも一つの金属を含んでいることを特徴とする請求の範囲第4項に記載の積層体ユニット。
  9. 前記バッファ層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第1項に記載の積層体ユニット。
  10. 前記バッファ層が、化学量論的組成式:(Bi2+(Am− 3m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第2項に記載の積層体ユニット。
  11. 前記バッファ層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第3項に記載の積層体ユニット。
  12. 前記バッファ層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第4項に記載の積層体ユニット。
  13. 前記バッファ層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第5項に記載の積層体ユニット。
  14. 前記バッファ層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第6項に記載の積層体ユニット。
  15. 前記バッファ層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第7項に記載の積層体ユニット。
  16. 前記バッファ層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第8項に記載の積層体ユニット。
  17. 前記誘電体層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第1項に記載の積層体ユニット。
  18. 前記誘電体層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第2項に記載の積層体ユニット。
  19. 前記誘電体層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第3項に記載の積層体ユニット。
  20. 前記誘電体層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第4項に記載の積層体ユニット。
  21. 前記誘電体層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第5項に記載の積層体ユニット。
  22. 前記誘電体層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第6項に記載の積層体ユニット。
  23. 前記誘電体層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第7項に記載の積層体ユニット。
  24. 前記誘電体層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第8項に記載の積層体ユニット。
  25. 前記誘電体層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第9項に記載の積層体ユニット。
  26. 前記誘電体層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第10項に記載の積層体ユニット。
  27. 前記誘電体層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第11項に記載の積層体ユニット。
  28. 前記誘電体層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第12項に記載の積層体ユニット。
  29. 前記誘電体層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第13項に記載の積層体ユニット。
  30. 前記誘電体層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第14項に記載の積層体ユニット。
  31. 前記誘電体層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第15項に記載の積層体ユニット。
  32. 前記誘電体層が、化学量論的組成式:(Bi2+(Am−13m+12−、あるいは、Bim−13m+3で表わされる組成を有するビスマス層状化合物(記号mは正の整数であり、記号Aは、ナトリウム(Na)、カリウム(K)、鉛(Pb)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)およびビスマス(Bi)からなる群より選ばれる少なくとも1つの元素であり、記号Bは、鉄(Fe)、コバルト(Co)、クロム(Cr)、ガリウム(Ga)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、アンチモン(Sb)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)およびタングステン(W)からなる群より選ばれる少なくとも1つの元素である。記号Aおよび/またはBを2つ以上の元素で構成する場合、それらの比率は任意である。)を含んでいることを特徴とする請求の範囲第16項に記載の積層体ユニット。
  33. 前記バッファ層が、m=3のビスマス層状化合物を含み、前記誘電体層が、m=4のビスマス層状化合物を含んでいることを特徴とする請求の範囲第17項に記載の積層体ユニット。
  34. 前記バッファ層が、m=3のビスマス層状化合物を含み、前記誘電体層が、m=4のビスマス層状化合物を含んでいることを特徴とする請求の範囲第18項に記載の積層体ユニット。
  35. 前記バッファ層が、m=3のビスマス層状化合物を含み、前記誘電体層が、m=4のビスマス層状化合物を含んでいることを特徴とする請求の範囲第19項に記載の積層体ユニット。
  36. 前記バッファ層が、m=3のビスマス層状化合物を含み、前記誘電体層が、m=4のビスマス層状化合物を含んでいることを特徴とする請求の範囲第20項に記載の積層体ユニット。
  37. 前記バッファ層が、m=3のビスマス層状化合物を含み、前記誘電体層が、m=4のビスマス層状化合物を含んでいることを特徴とする請求の範囲第21項に記載の積層体ユニット。
  38. 前記バッファ層が、m=3のビスマス層状化合物を含み、前記誘電体層が、m=4のビスマス層状化合物を含んでいることを特徴とする請求の範囲第22項に記載の積層体ユニット。
  39. 前記バッファ層が、m=3のビスマス層状化合物を含み、前記誘電体層が、m=4のビスマス層状化合物を含んでいることを特徴とする請求の範囲第23項に記載の積層体ユニット。
  40. 前記バッファ層が、m=3のビスマス層状化合物を含み、前記誘電体層が、m=4のビスマス層状化合物を含んでいることを特徴とする請求の範囲第24項に記載の積層体ユニット。
  41. 前記バッファ層が、m=3のビスマス層状化合物を含み、前記誘電体層が、m=4のビスマス層状化合物を含んでいることを特徴とする請求の範囲第25項に記載の積層体ユニット。
  42. 前記バッファ層が、m=3のビスマス層状化合物を含み、前記誘電体層が、m=4のビスマス層状化合物を含んでいることを特徴とする請求の範囲第26項に記載の積層体ユニット。
  43. 前記バッファ層が、m=3のビスマス層状化合物を含み、前記誘電体層が、m=4のビスマス層状化合物を含んでいることを特徴とする請求の範囲第27項に記載の積層体ユニット。
  44. 前記バッファ層が、m=3のビスマス層状化合物を含み、前記誘電体層が、m=4のビスマス層状化合物を含んでいることを特徴とする請求の範囲第28項に記載の積層体ユニット。
  45. 前記バッファ層が、m=3のビスマス層状化合物を含み、前記誘電体層が、m=4のビスマス層状化合物を含んでいることを特徴とする請求の範囲第29項に記載の積層体ユニット。
  46. 前記バッファ層が、m=3のビスマス層状化合物を含み、前記誘電体層が、m=4のビスマス層状化合物を含んでいることを特徴とする請求の範囲第30項に記載の積層体ユニット。
  47. 前記バッファ層が、m=3のビスマス層状化合物を含み、前記誘電体層が、m=4のビスマス層状化合物を含んでいることを特徴とする請求の範囲第31項に記載の積層体ユニット。
  48. 前記バッファ層が、m=3のビスマス層状化合物を含み、前記誘電体層が、m=4のビスマス層状化合物を含んでいることを特徴とする請求の範囲第32項に記載の積層体ユニット。
JP2005502846A 2003-02-26 2004-02-18 電極層および誘電体層を含む積層体ユニット Withdrawn JPWO2004077562A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/375,919 US6891714B2 (en) 2003-02-26 2003-02-26 Multi-layered unit including electrode and dielectric layer
US10/375,919 2003-02-26
PCT/JP2004/001841 WO2004077562A1 (ja) 2003-02-26 2004-02-18 電極層および誘電体層を含む積層体ユニット

Publications (1)

Publication Number Publication Date
JPWO2004077562A1 true JPWO2004077562A1 (ja) 2006-06-08

Family

ID=32869064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005502846A Withdrawn JPWO2004077562A1 (ja) 2003-02-26 2004-02-18 電極層および誘電体層を含む積層体ユニット

Country Status (3)

Country Link
US (1) US6891714B2 (ja)
JP (1) JPWO2004077562A1 (ja)
WO (1) WO2004077562A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9954155B2 (en) 2015-10-01 2018-04-24 Samsung Electronics Co., Ltd Thermoelectric structure, thermoelectric device and method of manufacturing the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1781190A (zh) * 2003-02-27 2006-05-31 Tdk株式会社 高介电常数绝缘膜、薄膜电容元件、薄膜叠层电容器及薄膜电容元件的制造方法
WO2004077565A1 (ja) * 2003-02-27 2004-09-10 Tdk Corporation 薄膜容量素子ならびにそれを含んだ電子回路および電子機器
KR100576849B1 (ko) * 2003-09-19 2006-05-10 삼성전기주식회사 발광소자 및 그 제조방법
JP2005108887A (ja) * 2003-09-26 2005-04-21 Kyocera Corp 可変コンデンサ
US7428137B2 (en) * 2004-12-03 2008-09-23 Dowgiallo Jr Edward J High performance capacitor with high dielectric constant material
JP2006196712A (ja) * 2005-01-13 2006-07-27 Toshiba Corp 薄膜素子の製造方法
JP2007095750A (ja) * 2005-09-27 2007-04-12 Canon Anelva Corp 磁気抵抗効果素子
US8643255B2 (en) * 2008-03-18 2014-02-04 Kyocera Corporation Piezoelectric ceramic and piezoelectric element using the same
JP5326699B2 (ja) * 2008-03-26 2013-10-30 Tdk株式会社 誘電体素子及びその製造方法
JP4524000B1 (ja) * 2009-01-20 2010-08-11 パナソニック株式会社 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
US8647737B2 (en) * 2011-09-30 2014-02-11 Uchicago Argonne, Llc Method for fabrication of crack-free ceramic dielectric films
DE102018206061A1 (de) * 2018-04-20 2019-10-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hochvolt-Kondensator zur Integration in elektrische Leistungsmodule sowie Verfahren zur Herstellung

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206788A (en) * 1991-12-12 1993-04-27 Ramtron Corporation Series ferroelectric capacitor structure for monolithic integrated circuits and method
US5248564A (en) 1992-12-09 1993-09-28 Bell Communications Research, Inc. C-axis perovskite thin films grown on silicon dioxide
US5426075A (en) * 1994-06-15 1995-06-20 Ramtron International Corporation Method of manufacturing ferroelectric bismuth layered oxides
JPH08335672A (ja) * 1995-06-05 1996-12-17 Sony Corp 強誘電体不揮発性メモリ
KR100199095B1 (ko) 1995-12-27 1999-06-15 구본준 반도체 메모리 셀의 캐패시터 구조 및 그 제조방법
JP3193302B2 (ja) 1996-06-26 2001-07-30 ティーディーケイ株式会社 膜構造体、電子デバイス、記録媒体および強誘電体薄膜の製造方法
JPH10200059A (ja) * 1997-01-10 1998-07-31 Sharp Corp 強誘電体薄膜素子及びその製造方法
JP3195265B2 (ja) * 1997-01-18 2001-08-06 東京応化工業株式会社 Bi系強誘電体薄膜形成用塗布液およびこれを用いて形成した強誘電体薄膜、強誘電体メモリ
JP3472087B2 (ja) 1997-06-30 2003-12-02 Tdk株式会社 膜構造体、電子デバイス、記録媒体および酸化物導電性薄膜の製造方法
US5994276A (en) 1997-09-08 1999-11-30 Mcmaster University Composite high Tc superconductor film
JP3549715B2 (ja) * 1997-10-15 2004-08-04 日本電気株式会社 Bi層状強誘電体薄膜の製造方法
US6096343A (en) 1997-10-27 2000-08-01 Gerhard Gergely Instant calcium/soybean granules, their use and process for their preparation
JP2001015382A (ja) 1999-06-29 2001-01-19 Kyocera Corp 薄膜コンデンサ
US6566698B2 (en) * 2000-05-26 2003-05-20 Sony Corporation Ferroelectric-type nonvolatile semiconductor memory and operation method thereof
JP2003209179A (ja) 2002-01-15 2003-07-25 Fujitsu Ltd 容量素子及びその製造方法
JP4036707B2 (ja) * 2002-08-12 2008-01-23 三洋電機株式会社 誘電体素子および誘電体素子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9954155B2 (en) 2015-10-01 2018-04-24 Samsung Electronics Co., Ltd Thermoelectric structure, thermoelectric device and method of manufacturing the same

Also Published As

Publication number Publication date
US6891714B2 (en) 2005-05-10
US20040166357A1 (en) 2004-08-26
WO2004077562A1 (ja) 2004-09-10

Similar Documents

Publication Publication Date Title
JP4561629B2 (ja) 薄膜積層コンデンサ
US6876536B2 (en) Thin film capacitor and method for fabricating the same
JP6859805B2 (ja) 積層体、熱電変換素子
JPWO2004077562A1 (ja) 電極層および誘電体層を含む積層体ユニット
JPWO2003021615A1 (ja) 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子および薄膜積層コンデンサ
JPWO2004112056A1 (ja) 積層体ユニット
JPWO2004077464A1 (ja) 電極層および誘電体層を含む積層体ユニット
TWI234174B (en) Thin film capacitive element, and electronic circuit and electronic device including the same
US6958900B2 (en) Multi-layered unit including electrode and dielectric layer
JPWO2004077561A1 (ja) 電極層および誘電体層を含む積層体ユニット
JPWO2004077563A1 (ja) 電極層および誘電体層を含む積層体ユニット
US6788522B1 (en) Multi-layered unit including electrode and dielectric layer
JPWO2004077462A1 (ja) 電極層および誘電体層を含む積層体ユニット
JPWO2004077564A1 (ja) 薄膜容量素子ならびにそれを含んだ電子回路および電子機器

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20060523

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501