JPS6156448A - Manufacture of complementary semiconductor device - Google Patents

Manufacture of complementary semiconductor device

Info

Publication number
JPS6156448A
JPS6156448A JP59178651A JP17865184A JPS6156448A JP S6156448 A JPS6156448 A JP S6156448A JP 59178651 A JP59178651 A JP 59178651A JP 17865184 A JP17865184 A JP 17865184A JP S6156448 A JPS6156448 A JP S6156448A
Authority
JP
Japan
Prior art keywords
film
conductivity type
impurity
selectively
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59178651A
Other languages
Japanese (ja)
Other versions
JPH0584064B2 (en
Inventor
Satoru Maeda
哲 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59178651A priority Critical patent/JPS6156448A/en
Priority to EP85110792A priority patent/EP0173953B1/en
Priority to US06/770,179 priority patent/US4642878A/en
Priority to DE8585110792T priority patent/DE3583472D1/en
Publication of JPS6156448A publication Critical patent/JPS6156448A/en
Publication of JPH0584064B2 publication Critical patent/JPH0584064B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components

Abstract

PURPOSE:To prevent the decrease in withstand voltage of an n-channel transistor and the variation or decrease in threshold voltage of a p-channel transistor by a method wherein a film to be oxidized is formed under a film or by another method at the time of forming the wall by leaving a film on the side surface of a gate electrode. CONSTITUTION:A semiconductor layer 102 of the second conductivity type is selectively formed in a semiconductor substrate 101 of the first conductivity type, and element- isolating regions 103 are formed. Insulation films 10 are formed on the surfaces of element regions, and the gate electrodes 106 and 107 are selectively formed thereon, respectively. Next, after an impurity of the first conductivity type is doped to each element region with the mask of each of the gate electrodes 106 and 107 and the element-isolating regions 103, a film 111 to be oxidized and a film 112 are successively deposited over the whole surface, and the film 112 is selectively left on the side surfaces of the gate electrodes 106 and 107. Then, the impurity of the first conductivity type is doped to each element region with the mask of the gate electrodes 106 and 107 and the element-isolating regions 103. Thereafter, the remaining film 114 is removed, and the film 111 to be oxidized is changed into an oxide film 118; then, an impurity of the second conductivity type is selectively doped to the element regions of the first conductivity type.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、相補型半導体装置の製造方法に関し、特にn
チャンネル、pチャンネルトランジスタのソース、ドレ
イン領域の形成工程を改良した相補型半導体装置の製造
方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a complementary semiconductor device, and in particular to a method for manufacturing a complementary semiconductor device.
The present invention relates to a method of manufacturing a complementary semiconductor device that improves the process of forming channel, source and drain regions of a p-channel transistor.

〔発明の技術的背景〕[Technical background of the invention]

周知の如く、相補型MO8半導体装置(以下CMO8と
略す)は同一基板上にnチャンネルトランジスタとnチ
ャンネルトランジスタが形成されたものである。最近の
0MO8は、急速に微細化技術が確立され、これに伴っ
て高性能化、高集積化が達成されている。具体的には、
チャンネル長が1μm以下の0MO8が開発されつつあ
る。
As is well known, a complementary MO8 semiconductor device (hereinafter abbreviated as CMO8) has an n-channel transistor and an n-channel transistor formed on the same substrate. In recent years, miniaturization technology has been rapidly established for OMO8, and along with this, higher performance and higher integration have been achieved. in particular,
0MO8 with a channel length of 1 μm or less is being developed.

こうした1mな0MO8では、ソース、ドレイン領域間
の電界(特にnチャンネルトランジスタにおけるソース
、ドレイン領域間の電界)が非常に大きくなり、この高
電界中で生成される電子・正孔に起因する問題が発生す
る。例えば、ゲート酸化膜中に注入された電子による閾
値電圧の変動(上昇)と、半導体基板中に注入される正
孔による基板電流の異常な増加が挙げられる。
In such a 1m MO8, the electric field between the source and drain regions (especially the electric field between the source and drain regions in an n-channel transistor) becomes extremely large, and problems arise due to electrons and holes generated in this high electric field. Occur. For example, there is a fluctuation (increase) in the threshold voltage due to electrons injected into the gate oxide film, and an abnormal increase in substrate current due to holes injected into the semiconductor substrate.

このようなことから、従来、ソース、ドレイン背 領域間の高電界を緩和した構造の0MO8の製造方法が
提案されている。これを第2図(a)〜(Q)を参照し
て以下に説明する。
For this reason, a method for manufacturing an OMO8 having a structure in which the high electric field between the source and drain back regions is relaxed has been proposed. This will be explained below with reference to FIGS. 2(a) to (Q).

まず、結晶方位(100)のn型シリコン基板1にp型
半導体層(p−ウェル)2を選択的に形成する。つづい
て、前記基板1及びp−ウェル2に素子分離領域として
のフィールド酸化膜3を形成した後、該フィールド酸化
膜3で分離された基板1及びpウェル2の島状の素子f
iji域に酸化膜を形成する。ひきつづき、全面に例え
ばリンドープ多結晶シリコン膜を堆積し、これをパター
ニングして前記各素子領域の酸化膜上にゲート電極4.
5を夫々形成し、該ゲート電極4.5をマスクとして酸
化膜を選択的のエツチング除去してゲート酸化膜6.7
を形成する(第1図(a)図示)。
First, a p-type semiconductor layer (p-well) 2 is selectively formed on an n-type silicon substrate 1 with crystal orientation (100). Subsequently, after forming a field oxide film 3 as an element isolation region on the substrate 1 and the p-well 2, an island-like element f of the substrate 1 and the p-well 2 separated by the field oxide film 3 is formed.
An oxide film is formed in the iji region. Subsequently, a phosphorus-doped polycrystalline silicon film, for example, is deposited on the entire surface and patterned to form gate electrodes 4 on the oxide film in each element region.
5 is formed, and the oxide film is selectively etched and removed using the gate electrode 4.5 as a mask to form a gate oxide film 6.7.
(as shown in FIG. 1(a)).

次いで、写真蝕刻法により基板1の素子領域側を覆うレ
ジストパターン8を形成した後、該レジストパターン8
、ゲート電極4及びフィールド酸化膜3をマスクとして
n型不純物、例えばリンを加速電圧20keV、ドーズ
量1×1013 cm 4、、、あい−、、イオンよい
、工。ゆ。1.ツィオッよい  (層91.92を形成
する(同図(b)図示)。つづいて、前記レジストパタ
ーン8を除去し、再度、写真蝕刻法によりp−ウェル2
側を覆うレジストパターン10を形成した後、該レジス
トパターン10、ゲート電極5及びフィールド酸化膜3
をマスクとしてn型不純物、例えばボロンを加速電圧4
0keV、ドーズ量1X101SCa+’の条件でイオ
ン注入してボロンイオン注入W  111.112を形
成する(同図(c)図示)。
Next, after forming a resist pattern 8 covering the element region side of the substrate 1 by photolithography, the resist pattern 8 is
Using the gate electrode 4 and the field oxide film 3 as a mask, an n-type impurity, for example phosphorus, is applied at an acceleration voltage of 20 keV and a dose of 1 x 1013 cm4. hot water. 1. (Layers 91 and 92 are formed (as shown in FIG. 3B).Then, the resist pattern 8 is removed and the p-well 2 is formed again by photolithography.
After forming the resist pattern 10 covering the side, the resist pattern 10, the gate electrode 5 and the field oxide film 3 are formed.
Using as a mask, an n-type impurity, for example boron, is
Boron ion implantations W 111 and 112 are formed by ion implantation under the conditions of 0 keV and a dose of 1×10 1 SCa+' (as shown in FIG. 3(c)).

次いで、レジストパターン10を除去した後、全面に例
えば厚さ4ooO人(7)CVD−8i 02膜12を
堆積した後、例えば900℃の窒素雰囲気中で30分間
熱処理する。これにより、同図(d)に示すように前記
リンイオン注入層91.92が活性化されて低濃度のn
−型拡散層131.132が形成され、かつ前記ボロン
イオン注入層111.112が活性化されてp+型のソ
ース、ドレイン領域14.15が形成される。つづいて
、CVD−8i○2膜12をリアクティブイオンエツチ
ング法 (RTE法)により該 CVD−8i 02膜
12の膜厚程度エツチング除去してゲート電極4及びゲ
ート酸化膜6の側面と、ゲート電極5及びゲート酸化膜
7の側面に夫々S i 02膜12を残存させて壁体1
6を形成する(同図(e)図示)。
Next, after removing the resist pattern 10, a CVD-8i 02 film 12 is deposited on the entire surface to a thickness of, for example, 400 cm, and then heat treated for 30 minutes in a nitrogen atmosphere at, for example, 900°C. As a result, the phosphorus ion implantation layers 91 and 92 are activated and the low concentration n
− type diffusion layers 131 and 132 are formed, and the boron ion implantation layers 111 and 112 are activated to form p+ type source and drain regions 14 and 15. Subsequently, the CVD-8i○2 film 12 is removed by reactive ion etching (RTE) to a thickness similar to that of the CVD-8i○2 film 12, and the side surfaces of the gate electrode 4 and the gate oxide film 6 and the gate electrode are removed. 5 and the side surfaces of the gate oxide film 7, the SiO2 film 12 is left on the side surfaces of the wall body 1.
6 (as shown in FIG. 6(e)).

次いで、写真蝕刻法により再度、基板1の素子領域側を
覆うレジストパターン(図示せず)を形成した後、該レ
ジストパターン、ゲート電極4、壁体16及びフィール
ド酸化pli3をマスクとしてn型不純物、例えば砒素
を加速電圧40keV。
Next, a resist pattern (not shown) covering the element region side of the substrate 1 is again formed by photolithography, and then an n-type impurity, For example, arsenic is accelerated at a voltage of 40 keV.

ドーズi3X 101San’の条件でイオン注入する
。この後、レジストパターンを除去し、900℃の窒素
雰囲気中で熱処理を施して前記砒素イオン注入層を活性
化して高濃度のn+型抵拡散層171172を形成する
。これにより、n−型拡散層131及びn+型抵拡散層
171らなるソース領域18が形成されると共に、前記
n−型拡散層132及びn+型型数散層172らなるド
レイン領域19が形成される。つづいて、全面にS i
 02膜20を堆積し、コンタクトホール21を開孔し
、該SiO2膜20上20上膜を蒸着し、これをバター
ニングして前記n型のソース領域18とコンタクトホー
ル21を通して接続するへ2配線22、前記ドレイン類
[15,19とコンタクトホール21.21を通して共
通に接続されたAλ配線23及び前記p++ソース領域
14とコンタクトホールを通して接続されたA℃配線2
4を夫々形成して0MO8を製造する(同図(Q)図示
)。
Ion implantation is performed at a dose of i3X 101San'. Thereafter, the resist pattern is removed and heat treatment is performed in a nitrogen atmosphere at 900° C. to activate the arsenic ion implantation layer and form a high concentration n+ type resistive diffusion layer 171172. As a result, a source region 18 consisting of the n- type diffusion layer 131 and the n+ type resistive diffusion layer 171 is formed, and a drain region 19 consisting of the n- type diffusion layer 132 and the n+ type dispersion layer 172 is formed. Ru. Next, Si
02 film 20 is deposited, a contact hole 21 is opened, an upper film 20 is evaporated on the SiO2 film 20, and this is patterned to form a 2 wiring to be connected to the n-type source region 18 through the contact hole 21. 22. Aλ wiring 23 commonly connected to the drains [15, 19 through contact holes 21 and 21, and A°C wiring 2 connected to the p++ source region 14 through the contact hole.
4 to produce 0MO8 (as shown in FIG. 4(Q)).

上述した従来の方法によれば、nチャンネルトランジス
タにはゲート電極4近傍に位置する低濃度のn−型拡散
層131と同電極4がら遠ざがる部分に高濃度のn+型
型数散層171からなるソース領域18、並びにゲート
電極4近傍に位置する低濃度のn−型拡散層132と同
電極4から遠ざかる部分に高濃度のn+型型数散層17
2からなるドレイン領域19が形成されているため、い
わゆるLDD構造をなし、前述したソース、ドレイン領
域間への高電界の発生を抑制できる。
According to the conventional method described above, an n-channel transistor has a lightly doped n-type diffusion layer 131 located near the gate electrode 4 and a highly doped n+ type diffused layer 131 located away from the gate electrode 4. 171, a low concentration n-type diffusion layer 132 located near the gate electrode 4, and a high concentration n+ type scattering layer 17 in a portion far from the gate electrode 4.
Since the drain region 19 consisting of 2 is formed, a so-called LDD structure is formed, and the generation of the high electric field between the source and drain regions described above can be suppressed.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、上述した従来法にあっては以下に列挙す
る種々の問題があった。
However, the conventional method described above has various problems listed below.

(イ)前記第2図(d)の工程において、CVD−8i
O2膜12をRIE法によりその膜厚程度エツチングし
てゲート電極4.5の側面に壁体16を形成する際、フ
ールド酸化膜3がオーバーエツチングされて膜減りを生
じる。その結果、第3図に示すように0M08間を分離
するフィールド酸化膜3の幅が減少し、これに伴ってn
+層25−n+層25間の距離がRIE法の処理前の長
さLから長さ1eに減少し、耐圧低下を招く。
(a) In the process of FIG. 2(d) above, CVD-8i
When the O2 film 12 is etched to the same thickness using the RIE method to form the wall body 16 on the side surface of the gate electrode 4.5, the field oxide film 3 is overetched and thinned. As a result, as shown in FIG.
The distance between the + layer 25 and the n+ layer 25 is reduced from the length L before the RIE process to the length 1e, resulting in a decrease in breakdown voltage.

(ロ)壁体16の形成をRIE法により行なうため、そ
の形成時にソース、ドレイン領域が作られるシリコン基
板1やpウェル2の表面がイオンにより損傷を受け、素
子特性を著しく低下させる。
(b) Since the wall body 16 is formed by the RIE method, the surfaces of the silicon substrate 1 and the p-well 2 where the source and drain regions are formed are damaged by ions during the formation, significantly deteriorating the device characteristics.

(ハ)ゲート電極4.5をマスクとして酸化膜を選択的
にエツチングしてゲート酸化膜6.7を形成する際、ゲ
ート酸化膜にアンダーカットが生じ、ゲート電極とソー
ス、ドレイン領域間の耐圧が低下し、信頼性上、問題と
なる。             f(ニ)上記方法で
は、nチャンネルトランジスタのソース、ドレインfa
[14,15のオフセット化を回避するため、該ソース
、ドレイン領域14.15をゲート電極4.5の側面に
壁体16を形成する前に形成している。このため、p+
型のソース、ドレイン領域14.15を形成した後にお
いても、n2型拡散層171.172を形成するための
高温熱処理を受けるので、該ソース、ドレイン領域が再
拡散して接合深さが深くなり、nチャンネルトランジス
タのショートチャンネル効果が顕著となり、閾値電圧の
変動等を招く。なお、前記p+型のソース、ドレイン領
域14.15の再拡散を防止するために、cvo−s 
+02かならる壁体16を除去した後、p型不純物をイ
オン注入してp+型のソース、ドレイン領域を形成する
方法も考えられる。しかしながら、かがる方法ではCV
D−8i02の壁体16を除去する際にフィールド酸化
膜3がエツチングされて膜減りを生じ、前記(イ)と同
様な問題が起こる。
(c) When forming the gate oxide film 6.7 by selectively etching the oxide film using the gate electrode 4.5 as a mask, an undercut occurs in the gate oxide film, resulting in a breakdown voltage between the gate electrode and the source and drain regions. decreases, causing problems in terms of reliability. f (d) In the above method, the source and drain fa of the n-channel transistor
[In order to avoid offset of 14 and 15, the source and drain regions 14.15 are formed before forming the wall 16 on the side surface of the gate electrode 4.5. For this reason, p+
Even after forming the type source and drain regions 14.15, high temperature heat treatment is performed to form the n2 type diffusion layers 171 and 172, so the source and drain regions are re-diffused and the junction depth increases. , the short channel effect of the n-channel transistor becomes significant, leading to fluctuations in threshold voltage, etc. Note that in order to prevent re-diffusion of the p+ type source and drain regions 14 and 15, cvo-s
Another possible method is to remove the +02 wall body 16 and then ion-implant p-type impurities to form p+-type source and drain regions. However, with the darning method, the CV
When removing the wall 16 of D-8i02, the field oxide film 3 is etched and thinned, causing the same problem as in (a) above.

〔発明の目的〕[Purpose of the invention]

、本発明は、nチャンネルトランジスタがLDD構造を
なすと共に、n”−n+型実高濃度不純物層間耐圧低下
、ゲート電極とソース、ドレイン領域間の耐圧低下、及
び半導体基板表面のイオンによる損傷を解消し、更にn
チャンネルトランジスタの閾値電圧の変動乃至低下を防
止した高性能、高信頼性の相補型半導体装置の製造方法
を提供しようとするものである。
, the present invention eliminates the drop in breakdown voltage between n''-n+ type high concentration impurity layers, the drop in breakdown voltage between the gate electrode and the source and drain regions, and the damage caused by ions on the surface of the semiconductor substrate, while the n-channel transistor has an LDD structure. And then n
It is an object of the present invention to provide a method for manufacturing a high-performance, highly reliable complementary semiconductor device that prevents variations or decreases in the threshold voltage of a channel transistor.

〔発明の概要〕[Summary of the invention]

本発明は、一導電型の半導体基板に、該基板と反対導電
型の半導体層を選択的に形成する工程と、前記半導体基
板と半導体層とに素子分離領域を形成する工程と、この
素子弁ll1i領域で分離された前記半導体基板及び半
導体層の島状の素子領域表面に絶縁膜を形成する工程と
、前記各素子領域表面の第1の絶縁膜上にゲート電極を
夫々選択的に形成する工程と、前記各ゲートWN!及び
素子分離領域をマスクとして第1導電型の不純物を前記
各素子領域にドーピングする工程と、全面に被酸化性膜
及び被膜を順次堆積する工程と、前記被膜を前記各ゲー
ト電極側面に選択的に残存させる工程と、前記残存被膜
、各ゲート電極及び素子分離領域をマスクとして第1導
電型の不純物を前記各素子領域にドーピングする工程と
、前記残存被膜を除去する工程と、前記被酸化性膜を酸
化膜に変換する工程と、第2導電型の不純物を少なくと
もゲート電極及び素子分離領域をマスクとして該不純物
と反対導電型の素子領域に選択的にドーピングする工程
とを具備したことを特徴とするものである。
The present invention includes a step of selectively forming a semiconductor layer of a conductivity type opposite to that of the substrate on a semiconductor substrate of one conductivity type, a step of forming an element isolation region between the semiconductor substrate and the semiconductor layer, and a step of forming an element isolation region between the semiconductor substrate and the semiconductor layer. forming an insulating film on the surfaces of the island-shaped element regions of the semiconductor substrate and the semiconductor layer separated by the ll1i region; and selectively forming gate electrodes on the first insulating films on the surfaces of each of the element regions. The process and each gate WN! a step of doping impurities of a first conductivity type into each of the device regions using the device isolation region as a mask; a step of sequentially depositing an oxidizable film and a coating on the entire surface; and a step of selectively applying the coating to the side surface of each of the gate electrodes. a step of doping impurities of a first conductivity type into each element region using the remaining film, each gate electrode, and an element isolation region as a mask; a step of removing the remaining film; It is characterized by comprising a step of converting the film into an oxide film, and a step of selectively doping an impurity of a second conductivity type into an element region of a conductivity type opposite to that of the impurity using at least a gate electrode and an element isolation region as a mask. That is.

かかる本発明方法によれば、既述の如<rl−ヤンネル
トランジスタがLDD構造をなすと共に、n”−n+型
型温濃度不純物層間耐圧低下、ゲート電極とソース、ド
レイン領域間の耐圧低下、及び半導体基板表面のイオン
による損傷を解消し、更にpチャンネルトランジスタの
閾値電圧の変動乃至低下を防止した高性能、高信頼性の
相補型半導体装置を得ることができるものである。
According to the method of the present invention, the <rl-Yannel transistor has an LDD structure as described above, and also reduces the breakdown voltage between the n''-n+ type temperature concentration impurity layers, the breakdown voltage between the gate electrode and the source and drain regions, and Furthermore, it is possible to obtain a high-performance, highly reliable complementary semiconductor device in which damage caused by ions on the surface of a semiconductor substrate is eliminated, and variation or decrease in the threshold voltage of a p-channel transistor is prevented.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1(a)〜(h)を11  
  参照して詳細に説明する。
Hereinafter, Examples 1 (a) to (h) of the present invention will be described as 11.
This will be explained in detail with reference to the following.

まず、結晶方位(100)のn型シリコン基板101に
熱拡散等によりp−ウェル102を選択的に形成した後
、前記基板101及びp−ウェル102に選択酸化法等
により素子分離領域としてのフィールド酸化膜103を
形成した。つづいて、該フィールド酸化1i1103で
分離された基板101及びp−ウェル102の島状の素
子領域に酸化1104を形成した後、全面に例えばリン
ドープ多結晶シリコンll11o5を堆積した(第1図
(a)図示)。
First, a p-well 102 is selectively formed on an n-type silicon substrate 101 with crystal orientation (100) by thermal diffusion, and then a field as an element isolation region is formed on the substrate 101 and the p-well 102 by selective oxidation. An oxide film 103 was formed. Subsequently, after forming an oxide layer 1104 on the island-shaped element region of the substrate 101 and the p-well 102 separated by the field oxidation layer 1i1103, for example, phosphorus-doped polycrystalline silicon 1105 is deposited on the entire surface (see FIG. 1(a)). (Illustrated).

次いで、前記多結晶シリコン膜105をパターニングし
て前記各素子領域の酸化11104上にゲート電極10
6.107を夫々形成した後、前記各ゲート電極106
.107をマスクとして酸化[1104を選択的のエツ
チング除去してゲート酸化膜108.109を形成した
。つづいて、各ゲート電極106.107及びフィール
ド酸化膜103をマスクとしてn型不純物、例えばリン
を加速電圧20keV、ドーズ量1×1013αくの条
件でイオン注入して低濃度のリンイオン注入    1
層1101.1102.1103.1104を形成した
(同図(b)図示)。ひきつづき、全面に例えば厚さ3
00人の多結晶シリコン11111、及び例えば厚さ4
000人のCVD−8i02膜112を順次堆積した後
、例えば900℃の窒素雰囲気中で30分間熱処理する
。これにより、同図(C)に示すように前記リンイオン
注入層11o1〜1104が活性化されて低濃度のn−
型拡散層1131〜1134が形成された。この後、前
記cVD−8i 02膜112をリアクティブイオンエ
ツチング法(RIE法)により該CVD−8i02膜1
12の膜厚程度エツチング除去してゲート電極106及
びゲート酸化膜108の側面と、ゲート電極107及び
ゲート酸化膜109の側面に夫々S i 02膜を残存
させて壁体114を形成した(同図1)図示)。
Next, the polycrystalline silicon film 105 is patterned to form a gate electrode 10 on the oxide 11104 of each element region.
6. After forming each gate electrode 107, each gate electrode 106 is
.. Using 107 as a mask, oxidation film 1104 was selectively etched away to form gate oxide films 108 and 109. Next, using each gate electrode 106, 107 and field oxide film 103 as a mask, n-type impurities, such as phosphorus, are ion-implanted at an acceleration voltage of 20 keV and a dose of 1×10 13 α to perform low-concentration phosphorus ion implantation 1
Layers 1101, 1102, 1103, and 1104 were formed (as shown in the same figure (b)). Continue to coat the entire surface with a thickness of, for example, 3
00 polycrystalline silicon 11111, and a thickness of e.g. 4
After sequentially depositing the CVD-8i02 films 112 of 1,000 layers, heat treatment is performed in a nitrogen atmosphere at, for example, 900° C. for 30 minutes. As a result, the phosphorus ion implantation layers 11o1 to 1104 are activated and the low concentration n-
Type diffusion layers 1131 to 1134 were formed. After that, the cVD-8i02 film 112 is etched by a reactive ion etching method (RIE method).
A wall body 114 was formed by etching and removing the SiO2 film to a thickness of about 12 mm, leaving the SiO2 film on the side surfaces of the gate electrode 106 and gate oxide film 108, and on the side surfaces of the gate electrode 107 and gate oxide film 109, respectively. 1) As shown).

次いで、写真蝕刻法により基板101の素子領域側を覆
うレジストパターン(図示せず)を形成した後、該レジ
ストパターン、p−ウェル102側のゲート電極106
、壁体114及びフィールド酸化膜103をマスクとし
てn型不純物、例えば砒素を加速電圧40keV、ドー
ズffi  3x1Q1sαくの条件でイオン注入した
。この後、レジストパターンを除去し、900’Cの窒
素雰囲気中で熱処理を施して前記砒素イオン注入層を活
性化して高濃度のn+型型数散層115!、1152を
形成した。これにより、同図(e)に示すようにn−型
拡散11131及びn+型型数散層1151らなるソー
ス領域116が形成されると共に、前記n”型拡散層1
1’32及びn+型型数散層1152らなるドレイン領
域117が形成された。
Next, after forming a resist pattern (not shown) covering the element region side of the substrate 101 by photolithography, the resist pattern covers the gate electrode 106 on the p-well 102 side.
, using the wall body 114 and field oxide film 103 as masks, an n-type impurity, such as arsenic, was ion-implanted at an acceleration voltage of 40 keV and a dose of ffi 3×1Q1sα. Thereafter, the resist pattern is removed and heat treatment is performed in a nitrogen atmosphere at 900'C to activate the arsenic ion-implanted layer and form a highly concentrated n+ type scattered layer 115! , 1152 was formed. As a result, a source region 116 consisting of an n- type diffusion layer 11131 and an n+ type scattering layer 1151 is formed as shown in FIG.
A drain region 117 consisting of 1'32 and an n+ type scattering layer 1152 was formed.

次いで、同図(f、)に示すように壁体114を除去し
た後、熱酸化処理を施して前記多結晶シリコン膜111
を酸化1!1118に変換した。つづいて、写真蝕刻法
によりp−ウェル102側を覆うレジストパターン(図
示せず)を形成した後、該レジストパターン、ゲート電
極107及びフィールド酸化膜103をマスクとしてn
型不純物、例えばボロンを加速電圧40keV、ドーズ
旦1×10”car4の条件で該基板101のn−型拡
散lW1133.1134にイオン注入した。この後、
レジストパターンを除去し、例えば900”Cで熱処理
を施してボロンイオン注入層を活性化して基板101の
素子領域にp+型のソース、ドレイン領域 119.1
20を形成した(同図((J)図示)。
Next, after removing the wall 114 as shown in FIG.
was converted to oxidation 1!1118. Subsequently, after forming a resist pattern (not shown) covering the p-well 102 side by photolithography, using the resist pattern, gate electrode 107, and field oxide film 103 as a mask,
A type impurity, for example, boron, was ion-implanted into the n-type diffusion lW1133.1134 of the substrate 101 under the conditions of an acceleration voltage of 40 keV and a dose of 1×10"car4. After this,
The resist pattern is removed, heat treatment is performed at, for example, 900''C to activate the boron ion implantation layer, and p+ type source and drain regions 119.1 are formed in the element region of the substrate 101.
20 was formed (as shown in the same figure ((J))).

次いで、全面に5102膜121を堆積し、コンタクト
ホール122を開孔し、IS i 02膜121上にA
Q 膜を蒸着し、これをパターニングして前記n型のソ
ース領域116とコンタクトホール122を通して接続
するAQ、配線123、前記ドレイン領域117.12
0とコンタクトホール122.122を通して共通に接
続されたA2配線124及び前記p+型ソース領域11
9とコンタクトホール122を通して接続されたへ2配
線125を夫々形成して0MO8を製造する(同図(h
)図示)。
Next, a 5102 film 121 is deposited on the entire surface, a contact hole 122 is opened, and an A
A Q film is deposited and patterned to connect the n-type source region 116 through the contact hole 122, the wiring 123, and the drain region 117.12.
0 and the A2 wiring 124 commonly connected through contact holes 122 and 122 and the p + type source region 11
9 and 2 wirings 125 connected through contact holes 122 are respectively formed to manufacture 0MO8 (see (h) in the same figure).
).

しかして、本発明によればCVD−8i02膜112を
RIE法によりエツチングし、ゲート電極106.10
7の側面ニCVD−8i 02 ヲ残存させて壁体11
4を形成する際、 CVO−3i02膜112の下に多
結晶シリコン膜111を形成している。その結果、該多
結晶シリコン膜111がストッパとして作用するため、
フィールド酸化膜103の膜減りを防止できると共に、
RIE法でのイオンによる基板101及びp−ウェル1
02表面の損傷を防止でき、高信頼性のcmosを得る
ことができる。
According to the present invention, the CVD-8i02 film 112 is etched by the RIE method, and the gate electrode 106.10 is etched.
CVD-8i 02 left on the side of wall 11
4, a polycrystalline silicon film 111 is formed under the CVO-3i02 film 112. As a result, the polycrystalline silicon film 111 acts as a stopper, so
It is possible to prevent the reduction of the field oxide film 103, and
Substrate 101 and p-well 1 by ions in RIE method
Damage to the 02 surface can be prevented and highly reliable CMOS can be obtained.

また、ゲート電極106.107をマスクとして酸化1
1104をエツチングする際に生じたゲート酸化膜10
8.109のアンダーカットは、多結晶シリコン膜11
1を熱酸化して変換された酸化膜118によって埋めら
れる。その結果、ゲート電極106.107とソース、
ドレイン領域116.119.117.120との間の
耐圧低下を防止できる。
Also, using the gate electrodes 106 and 107 as a mask, oxidation 1
Gate oxide film 10 formed when etching 1104
8. The undercut at 109 is the polycrystalline silicon film 11
It is filled with an oxide film 118 that is converted by thermally oxidizing 1. As a result, the gate electrodes 106, 107 and the source,
A decrease in breakdown voltage between the drain region 116, 119, 117, and 120 can be prevented.

更に、第1図(e)、(f)に示すように壁体114に
除去に際し、フィールド酸化膜103上には多結晶シリ
コン膜111が被覆されているた     、1め、フ
ィールド酸化膜103の膜減りを防止できる。その結果
、第1図(0)に示すように該壁体114の除去工程後
、つまりnチャンネルトランジスタのソース、ドレイン
領域116.117の形成のための高温熱処理後に、オ
フセットのないnチャンネルトランジスタのp+型ソー
ス、ドレイン領域119.120を形成できる。従って
、p+型ソース、ドレイン領域119.120の再拡散
を解消して接合深さが深くなることによる閾値電圧の変
動を防止でき、高性能の0MO8を得ることができる。
Furthermore, as shown in FIGS. 1(e) and 1(f), when the wall 114 is removed, the field oxide film 103 is covered with the polycrystalline silicon film 111. Can prevent film loss. As a result, as shown in FIG. 1(0), after the removal process of the wall 114, that is, after high-temperature heat treatment for forming the source and drain regions 116 and 117 of the n-channel transistor, an n-channel transistor with no offset is formed. P+ type source and drain regions 119 and 120 can be formed. Therefore, it is possible to eliminate re-diffusion of the p+ type source and drain regions 119 and 120, prevent fluctuations in threshold voltage due to deepening of the junction depth, and obtain a high-performance 0MO8.

なお、上記実施例では被酸化性膜として、多結晶シリコ
ン膜を用いたが、この代わりに非晶質シリコン膜、金属
シリコン膜を使用してもよい。
In the above embodiment, a polycrystalline silicon film is used as the oxidizable film, but an amorphous silicon film or a metal silicon film may be used instead.

上記実施例では、被膜としてCVD−8i02膜を用い
たが、この代わりにリン珪化ガラス膜(PSG膜)、窒
化膜を使用してもよい。
In the above embodiment, a CVD-8i02 film was used as the film, but a phosphorus silicide glass film (PSG film) or a nitride film may be used instead.

上記実施例では、多結晶シリコン膜を酸化膜に変換後に
高濃度のp型拡散層を形成したが、酸化膜に変換前に該
高濃度のp型拡散層を形成してもよい。
In the above embodiments, the high concentration p-type diffusion layer was formed after converting the polycrystalline silicon film into an oxide film, but the high concentration p-type diffusion layer may be formed before converting the polycrystalline silicon film into an oxide film.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によればnチャンネルトラン
ジスタがLDD構造をなすと共に、nl−n“型高濃度
不純物層間の耐圧低下、ゲート電極とソース、ドレイン
領域間の耐圧低下、及び半導体基板表面のイオンによる
損傷を解消し、更にnチャンネルトランジスタの閾値電
圧の変動乃至低下を防止した高性能、高信頼性の相補型
半導体装置の製造方法を提供できる。
As detailed above, according to the present invention, an n-channel transistor has an LDD structure, and there is a reduction in breakdown voltage between the nl-n" type high concentration impurity layer, a reduction in breakdown voltage between the gate electrode and the source and drain regions, and a reduction in the breakdown voltage between the gate electrode and the source and drain regions. It is possible to provide a method for manufacturing a high-performance, highly reliable complementary semiconductor device that eliminates damage caused by ions and also prevents fluctuations or decreases in the threshold voltage of an n-channel transistor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(h)は本発明の実施例における0MO
8の製造工程を示す断面図、第2図(a)〜(Q)は従
来の0MO3の製造工程を示す断面図、第3図は従来法
により得られた0MO8の問題点を説明するための断面
図である。 101・・・n型シリコン基板、1o2・・・p−ウェ
ル、103・・・フィールド酸化膜(素子分離領Ja 
)、106.107・・・ゲート電極、108.109
・・・ゲート酸化膜、111・・・多結晶シリコン膜(
被酸化性、膜) 、112−CVD−8i 02膜(被
膜)、1131〜1134・・・n−型拡散層、114
・・・壁体、115工、1152・・・n+型型数散層
116・・・ソース領域、117・・・ドレイン領域、
118・・・酸化膜、119・・・p++ソース領域、
120・・・p+型型トレイ領領域121−3 i02
 Il!、123〜125・・・AΩ配線。 出願人代理人 弁理士  鈴江武彦 第1図 第2図
FIG. 1(a) to (h) are 0MO in the embodiment of the present invention.
2 (a) to (Q) are sectional views showing the manufacturing process of conventional 0MO3, and Figure 3 is a cross-sectional view showing the manufacturing process of 0MO8 obtained by the conventional method. FIG. 101...N-type silicon substrate, 1o2...P-well, 103...Field oxide film (element isolation region Ja
), 106.107...gate electrode, 108.109
... Gate oxide film, 111 ... Polycrystalline silicon film (
oxidizability, film), 112-CVD-8i 02 film (coating), 1131-1134...n-type diffusion layer, 114
...Wall body, 115, 1152...n+ type scattered layer 116...source region, 117...drain region,
118... Oxide film, 119... P++ source region,
120...p+ type tray area 121-3 i02
Il! , 123-125...AΩ wiring. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)一導電型の半導体基板に、該基板と反対導電型の
半導体層を選択的に形成する工程と、前記半導体基板と
半導体層とに素子分離領域を形成する工程と、この素子
分離領域で分離された前記半導体基板及び半導体層の島
状の素子領域表面に絶縁膜を形成する工程と、前記各素
子領域表面の第1の絶縁膜上にゲート電極を夫々選択的
に形成する工程と、前記各ゲート電極及び素子分離領域
をマスクとして第1導電型の不純物を前記各素子領域に
ドーピングする工程と、全面に被酸化性膜及び被膜を順
次堆積する工程と、前記被膜を前記各ゲート電極側面に
選択的に残存させる工程と、前記残存被膜、各ゲート電
極及び素子分離領域をマスクとして第1導電型の不純物
を前記各素子領域にドーピングする工程と、前記残存被
膜を除去する工程と、前記被酸化性膜を酸化膜に変換す
る工程と、第2導電型の不純物を少なくともゲート電極
及び素子分離領域をマスクとして該不純物と反対導電型
の素子領域に選択的にドーピングする工程とを具備した
ことを特徴とする相補型半導体装置の製造方法。
(1) A step of selectively forming a semiconductor layer of a conductivity type opposite to that of the substrate on a semiconductor substrate of one conductivity type, a step of forming an element isolation region between the semiconductor substrate and the semiconductor layer, and the element isolation region a step of forming an insulating film on the surfaces of the island-shaped element regions of the semiconductor substrate and the semiconductor layer separated from each other; and a step of selectively forming gate electrodes on the first insulating films on the surfaces of each of the element regions. , a step of doping impurities of a first conductivity type into each of the device regions using each of the gate electrodes and the device isolation region as a mask, a step of sequentially depositing an oxidizable film and a coating on the entire surface, and a step of depositing the coating on each of the gates. A step of selectively leaving the remaining film on the side surface of the electrode, a step of doping the impurity of the first conductivity type into each of the device regions using the remaining film, each gate electrode, and the device isolation region as a mask, and a step of removing the remaining film. , a step of converting the oxidizable film into an oxide film, and a step of selectively doping an impurity of a second conductivity type into a device region of a conductivity type opposite to that of the impurity using at least the gate electrode and the device isolation region as a mask. A method for manufacturing a complementary semiconductor device, comprising:
(2)被酸化性膜が多結晶シリコンからなることを特徴
とする特許請求の範囲第1項記載の相補型半導体装置の
製造方法。
(2) The method for manufacturing a complementary semiconductor device according to claim 1, wherein the oxidizable film is made of polycrystalline silicon.
(3)被酸化性膜の膜厚が、絶縁膜の膜厚の1/2より
厚いことを特徴とする特許請求の範囲第1項記載の相補
型半導体装置の製造方法。
(3) The method for manufacturing a complementary semiconductor device according to claim 1, wherein the thickness of the oxidizable film is thicker than 1/2 of the thickness of the insulating film.
(4)第2導電型の不純物を、残存被膜の除去後にドー
ピングすることを特徴とする特許請求の範囲第1項記載
の相補型半導体装置の製造方法。
(4) The method for manufacturing a complementary semiconductor device according to claim 1, wherein the second conductivity type impurity is doped after the remaining film is removed.
JP59178651A 1984-08-28 1984-08-28 Manufacture of complementary semiconductor device Granted JPS6156448A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59178651A JPS6156448A (en) 1984-08-28 1984-08-28 Manufacture of complementary semiconductor device
EP85110792A EP0173953B1 (en) 1984-08-28 1985-08-28 Method for manufacturing a semiconductor device having a gate electrode
US06/770,179 US4642878A (en) 1984-08-28 1985-08-28 Method of making MOS device by sequentially depositing an oxidizable layer and a masking second layer over gated device regions
DE8585110792T DE3583472D1 (en) 1984-08-28 1985-08-28 METHOD FOR PRODUCING A SEMICONDUCTOR ARRANGEMENT WITH A GATE ELECTRODE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59178651A JPS6156448A (en) 1984-08-28 1984-08-28 Manufacture of complementary semiconductor device

Publications (2)

Publication Number Publication Date
JPS6156448A true JPS6156448A (en) 1986-03-22
JPH0584064B2 JPH0584064B2 (en) 1993-11-30

Family

ID=16052187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59178651A Granted JPS6156448A (en) 1984-08-28 1984-08-28 Manufacture of complementary semiconductor device

Country Status (1)

Country Link
JP (1) JPS6156448A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252461A (en) * 1987-04-09 1988-10-19 Nec Corp Manufacture of cmos type semiconductor device
JPH023242A (en) * 1988-06-17 1990-01-08 Sanyo Electric Co Ltd Manufacture of semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4883077B2 (en) * 2008-12-17 2012-02-22 株式会社デンソー Semiconductor device and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252461A (en) * 1987-04-09 1988-10-19 Nec Corp Manufacture of cmos type semiconductor device
JPH023242A (en) * 1988-06-17 1990-01-08 Sanyo Electric Co Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH0584064B2 (en) 1993-11-30

Similar Documents

Publication Publication Date Title
US4642878A (en) Method of making MOS device by sequentially depositing an oxidizable layer and a masking second layer over gated device regions
EP0067206B1 (en) Method for fabricating complementary semiconductor devices
JPH1126597A (en) Fabrication of semiconductor device
JPH0426542B2 (en)
EP0369336A2 (en) Process for fabricating bipolar and CMOS transistors on a common substrate
US4939154A (en) Method of fabricating an insulated gate semiconductor device having a self-aligned gate
JPH0348459A (en) Semiconductor device and manufacture thereof
JPH098135A (en) Manufacture of semiconductor device
KR930005508B1 (en) Semiconductor device and manufacturing method of the same
JPS6251216A (en) Manufacture of semiconductor device
JPS6156448A (en) Manufacture of complementary semiconductor device
KR0170436B1 (en) Method of manufacturing mosfet
JPS61154172A (en) Manufacture of semiconductor device
JPH09139382A (en) Manufacture of semiconductor device
JPS62224077A (en) Semiconductor integrated circuit device
JPS63275181A (en) Manufacture of semiconductor device
JP3521921B2 (en) Method for manufacturing semiconductor device
JPS6039868A (en) Manufacture of semiconductor device
JPH0541516A (en) Semiconductor device and its manufacture
JPH1126756A (en) Manufacture of semiconductor device
JPH07122741A (en) Manufacture of semiconductor device
JPS63308963A (en) Semiconductor device and manufacture thereof
JPH0230145A (en) Manufacture of semiconductor device
JPS61125165A (en) Manufacture of semiconductor device
JPH0621373A (en) Manufacture of semiconductor device