JPH0621373A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0621373A
JPH0621373A JP4176312A JP17631292A JPH0621373A JP H0621373 A JPH0621373 A JP H0621373A JP 4176312 A JP4176312 A JP 4176312A JP 17631292 A JP17631292 A JP 17631292A JP H0621373 A JPH0621373 A JP H0621373A
Authority
JP
Japan
Prior art keywords
type
conductive layer
film
region
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4176312A
Other languages
Japanese (ja)
Inventor
Noboru Sato
昇 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4176312A priority Critical patent/JPH0621373A/en
Publication of JPH0621373A publication Critical patent/JPH0621373A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a change in the surface concentration of an LDD layer which occurs in the course of a manufacturing process, in CMOS having an LDD structure. CONSTITUTION:After a gate electrode 6 is formed, a silicon oxide film 7a and then N<->type conducting layers 9a and 9b and P<->type conducting layers 10a and 10b are formed and a silicon nitride film 8 is deposited on the whole surface. Thereafter deposition and reflow of a BPSG film 11 are executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特にLDD構造のCMOSトランジスタの製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a CMOS transistor having an LDD structure.

【0002】[0002]

【従来の技術】半導体装置の製造方法を説明する工程順
の断面図である図3を参照すると、従来のLDD構造の
CMOSトランジスタは、まず、P型のシリコン基板1
にPウェル2,Nウェル3を形成した後、LOCOS法
によるシリコン酸化膜4の形成による素子分離領域を形
成し、Nチャネル,およびPチャネルMOSトタンジス
タの形成予定領域を含むシリコン基板1の表面にゲート
酸化膜5を形成し、N型の多結晶シリコン膜からなるゲ
ート電極6を選択的に形成する。次に、熱酸化によりゲ
ート電極6の表面を含めたNチャネル,およびPチャネ
ルMOSトタンジスタの形成予定領域の表面に、熱酸化
により再度膜厚30nm程度のシリコン酸化膜7aを形
成し、Nウェル3,NチャネルMOSトタンジスタの形
成予定領域に選択的にN- 型導電層9a,N- 型導電層
9bを形成するとともにPウェル2,PチャネルMOS
トタンジスタの形成予定領域に選択的にP- 型導電層1
0a,P- 型導電層10bを順次形成する〔図3
(a)〕。
2. Description of the Related Art Referring to FIG. 3 which is a sectional view in the order of steps illustrating a method for manufacturing a semiconductor device, a conventional CMOS transistor having an LDD structure is first manufactured by a P-type silicon substrate 1.
After forming the P-well 2 and the N-well 3 on the substrate, an element isolation region is formed by forming the silicon oxide film 4 by the LOCOS method, and is formed on the surface of the silicon substrate 1 including the N-channel and P-channel MOS transistor formation planned regions. A gate oxide film 5 is formed, and a gate electrode 6 made of an N-type polycrystalline silicon film is selectively formed. Next, a silicon oxide film 7a having a film thickness of about 30 nm is formed again by thermal oxidation on the surfaces of the regions where the N-channel and P-channel MOS transistors are to be formed including the surface of the gate electrode 6 by thermal oxidation. , N-channel MOS Totanjisuta selectively N in forming region of the - type conductive layer 9a, N - P-well 2 to form a conductive layer 9b, P-channel MOS
P -type conductive layer 1 is selectively formed in the area where the transistor is to be formed.
0a, P − type conductive layer 10b is sequentially formed [FIG.
(A)].

【0003】次に、BPSG膜11を堆積し、熱処理を
施し、N- 型導電層9a,9b,P- 型導電層10a,
10bに達する開口部を形成し、これら開口部の表面に
熱酸化によるシリコン酸化膜17を形成する。次に、ア
ルミニウム膜23aを形成した後、これをマスクにした
イオン注入により、N- 型導電層9a,9bの開口部に
+ 型導電層19を形成する〔図3(b)〕。アルミニ
ウム膜23aを除去してアルミニウム膜23bを形成し
た後、これをマスクにしたイオン注入により、P- 型導
電層10a,10bの開口部にP+ 型導電層20を形成
する〔図3(c)〕。
Next, a BPSG film 11 is deposited and heat-treated to form N --type conductive layers 9a, 9b, P --type conductive layer 10a,
Openings reaching 10b are formed, and a silicon oxide film 17 is formed by thermal oxidation on the surfaces of these openings. Next, after the aluminum film 23a is formed, the N + type conductive layer 19 is formed in the openings of the N − type conductive layers 9a and 9b by ion implantation using this as a mask [FIG. 3 (b)]. After the aluminum film 23a is removed to form the aluminum film 23b, the P + -type conductive layer 20 is formed in the openings of the P -type conductive layers 10a and 10b by ion implantation using this as a mask [FIG. )].

【0004】次に、アルミニウム膜23bを除去し,熱
処理を施し,シリコン酸化膜17を除去した後、タング
ステンシリサイド膜12,およびアルミニウム膜13を
順次堆積し、この積層膜をパターニングして熱処理を施
すことにより従来のLDD構造のCMOSトランジスタ
が得られる〔図3(d)〕。
Next, the aluminum film 23b is removed and a heat treatment is performed, the silicon oxide film 17 is removed, and then a tungsten silicide film 12 and an aluminum film 13 are sequentially deposited, and this laminated film is patterned and heat treated. As a result, a conventional CMOS transistor having an LDD structure can be obtained [FIG. 3 (d)].

【0005】[0005]

【発明が解決しようとする課題】上述した従来の半導体
装置の製造方法では、ソース・ドレインの低濃度導電層
が形成された領域の表面は、膜厚30nm程度のシリコ
ン酸化膜7aを介して高濃度のリン,およびボロンを含
むBPSG膜11と接している。このため、このBPS
G膜11をリフローするための熱処理において、BPS
G膜11が有限拡散ソースとなり、不純物の熱拡散に対
するマスキング効果の小さなシリコン酸化膜7aを介し
て低濃度導電層にリン,またはボロンが拡散される。一
方、BPSG膜11の形成にはCVD法が用いられる
が、これのリン,およびボロンの濃度の制御が困難であ
る。
In the conventional method for manufacturing a semiconductor device described above, the surface of the region where the low-concentration conductive layer of the source / drain is formed is high with the silicon oxide film 7a having a thickness of about 30 nm interposed therebetween. It is in contact with the BPSG film 11 containing phosphorus and boron at a concentration. Therefore, this BPS
In the heat treatment for reflowing the G film 11, the BPS
The G film 11 serves as a finite diffusion source, and phosphorus or boron is diffused into the low-concentration conductive layer through the silicon oxide film 7a having a small masking effect against thermal diffusion of impurities. On the other hand, although the CVD method is used to form the BPSG film 11, it is difficult to control the phosphorus and boron concentrations thereof.

【0006】その結果、拡散される不純物と同じ導電型
の低濃度導電層においては、その表面の不純物濃度が増
加し、接合逆耐圧の低下が生じ、同じ導電型チャネルの
MOSトランジスタの特性上大きな欠陥となる。これと
同時に、逆導電型の低濃度導電層においては、その表面
の不純物濃度が減少し、ソース・ドレイン間の直列抵抗
が増加し、逆導電型チャネルのMOSトランジスタの特
性上大きな欠陥となる。
As a result, in the low-concentration conductive layer of the same conductivity type as the diffused impurities, the impurity concentration on the surface increases and the junction reverse breakdown voltage decreases, which is large in the characteristics of the MOS transistor of the same conductivity type channel. It becomes a defect. At the same time, in the reverse-conductivity-type low-concentration conductive layer, the impurity concentration on the surface decreases, the series resistance between the source and drain increases, and this is a major defect in the characteristics of the reverse-conductivity-type channel MOS transistor.

【0007】さらに近年、LSIの高集積化に伴ない半
導体素子の平面的な微細化は進展しているが、積層方
向,即ち縦方向の微細化の進展は遅れている。その結
果、半導体素子に対する開口部のアスペクト比が高くな
り、これの解消にBPSG膜のリフローが用いられてい
る。このため、BPSG膜の不純物濃度は増加の傾向に
あり、前述のBPSG膜中の不純物のソース・ドレイン
への拡散という問題は、一段と深刻な問題になりつつあ
る。
Further, in recent years, the planar miniaturization of semiconductor elements has been advanced with the high integration of LSIs, but the miniaturization in the stacking direction, that is, the vertical direction has been delayed. As a result, the aspect ratio of the opening with respect to the semiconductor element becomes high, and reflow of the BPSG film is used to solve this. Therefore, the impurity concentration of the BPSG film tends to increase, and the above-mentioned problem of diffusion of impurities in the BPSG film to the source / drain is becoming a more serious problem.

【0008】[0008]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、シリコン基板の表面に素子分離領域を形成す
る工程と、シリコン基板の第1導電型領域の表面の第2
チャネル型のトランジスタ形成予定領域,およびシリコ
ン基板の第2導電型領域の表面の第1チャネル型のトラ
ンジスタ形成予定領域に第1の絶縁膜を介してゲート電
極を形成する工程と、少なくともゲート電極の表面を含
む第1チャネル型のトランジスタ形成予定領域,および
第2チャネル型のトランジスタ形成予定領域の全面に第
2の絶縁膜を形成してこのゲート電極をマスクとした第
1導電型の不純物の導入により第1チャネル型のトラン
ジスタ形成予定領域にソース・ドレインとなる第1導電
型の第1導電層を形成し,このゲート電極をマスクとし
た第2導電型の不純物の導入により第2チャネル型のト
ランジスタ形成予定領域にソース・ドレインとなる第2
導電型の第1導電層を形成する工程と、第3の絶縁膜の
形成,全面に不純物を含んだ層間絶縁膜の形成,熱処理
を施す工程と、層間絶縁膜と第2,第3の絶縁膜とをパ
ターニングして第1導電型の第1導電層,第2導電型の
第1導電層に達する開口部を形成してこの開口部の底面
に第4の絶縁膜を形成し,熱処理を施す工程と、第1導
電型の不純物の導入により第1導電型の第1導電層の第
4の絶縁膜の直下の領域に第1導電型の第1導電層より
不純物濃度の高い第1導電型の第2導電層を形成し,第
2導電型の不純物の導入により第2導電型の第1導電層
の第4の絶縁膜の直下の領域に第2導電型の第1導電層
より不純物濃度の高い第2導電型の第2導電層を形成す
る工程と、を含んである。好ましくは、上記第3の絶縁
膜はシリコン窒化膜である。
A method of manufacturing a semiconductor device according to the present invention comprises a step of forming an element isolation region on a surface of a silicon substrate and a second step on a surface of a first conductivity type region of the silicon substrate.
A step of forming a gate electrode through a first insulating film in the channel type transistor formation planned region and the first channel type transistor formation planned region on the surface of the second conductivity type region of the silicon substrate; Introduction of impurities of the first conductivity type by forming a second insulating film over the entire surface of the first channel type transistor formation planned region including the surface and the second channel type transistor formation planned region and using the gate electrode as a mask To form a first conductive type first conductive layer serving as a source / drain in the first channel type transistor formation region, and by introducing an impurity of the second conductive type using the gate electrode as a mask, Second source / drain in the transistor formation area
A step of forming a conductive type first conductive layer, a step of forming a third insulating film, a step of forming an interlayer insulating film containing impurities on the entire surface, a step of performing heat treatment, an interlayer insulating film and a second and third insulating layer. The film is patterned to form an opening reaching the first conductive layer of the first conductivity type and the first conductive layer of the second conductivity type, a fourth insulating film is formed on the bottom surface of the opening, and heat treatment is performed. The step of applying and the introduction of impurities of the first conductivity type make the first conductivity having a higher impurity concentration than the first conductivity type first conductive layer in the region of the first conductivity type first conductive layer immediately below the fourth insulating film. Type second conductive layer is formed, and impurities of the second conductive type first conductive layer are formed in a region of the second conductive type first conductive layer immediately below the fourth insulating film by introducing impurity of the second conductive type. And a step of forming a second conductive layer of the second conductivity type having a high concentration. Preferably, the third insulating film is a silicon nitride film.

【0009】[0009]

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0010】半導体装置の製造方法を説明するための工
程順の断面図である図1を参照すると、本発明の第1の
実施例は、まず、P型のシリコン基板1の表面に、選択
的に表面不純物濃度が5×1015/cm3 程度のPウェ
ル2,Nウェル3を順次形成する。次に、LOCOS法
による膜厚1μm程度のシリコン酸化膜4を所定の領域
に形成して素子分離領域を形成する。次に、Nチャネ
ル,およびPチャネルMOSトランジスタ等の素子が形
成される領域に、ゲート酸化膜となる膜厚30nm程度
のシリコン酸化膜5を熱酸化法により形成し、各トラン
ジスタのしきい値を設定するためのイオン注入を順次行
なう。
Referring to FIG. 1, which is a sectional view in order of steps for explaining a method for manufacturing a semiconductor device, a first embodiment of the present invention is designed such that a surface of a P-type silicon substrate 1 is selectively formed. surface impurity concentration sequentially formed 5 × 10 15 / cm 3 of about P-well 2, N-well 3. Next, a silicon oxide film 4 having a thickness of about 1 μm is formed in a predetermined region by the LOCOS method to form an element isolation region. Next, in a region where elements such as N-channel and P-channel MOS transistors are formed, a silicon oxide film 5 having a film thickness of about 30 nm to be a gate oxide film is formed by a thermal oxidation method, and the threshold value of each transistor is set. Ion implantation for setting is sequentially performed.

【0011】次に、CVD法により膜厚600nm程度
の多結晶シリコン膜を堆積し、この多結晶シリコン膜を
リンの熱拡散を行なってシート抵抗が18Ω/□程度の
N型の多結晶シリコン膜にする。このN型の多結晶シリ
コン膜をドライエッチング法によりパターニングして、
ゲート電極6を形成する。次に、酸処理を施した後、1
000〜1100℃の熱酸化法により、ゲート電極6の
表面およびシリコン酸化膜4が形成されていないシリコ
ン基板1の表面に、膜厚30nm程度のシリコン酸化膜
7aを形成する。
Next, a polycrystal silicon film having a film thickness of about 600 nm is deposited by the CVD method, and the polycrystal silicon film is subjected to thermal diffusion of phosphorus to form an N-type polycrystal silicon film having a sheet resistance of about 18 Ω / □. To This N-type polycrystalline silicon film is patterned by a dry etching method,
The gate electrode 6 is formed. Next, after acid treatment, 1
A silicon oxide film 7a having a thickness of about 30 nm is formed on the surface of the gate electrode 6 and the surface of the silicon substrate 1 on which the silicon oxide film 4 is not formed by a thermal oxidation method at 000 to 1100 ° C.

【0012】次に、イオン注入により、順次、Nウェル
3,Pウェル2にそれぞれN- 型導電層9a,9bを形
成し、Pウェル2,Nウェル3にそれぞれP- 型導電層
10a,10bを形成する。N- 型導電層9a,9b,
およびP- 型導電層10a,10bの表面不純物濃度は
ぞれぞれ5×1017/cm3 程度である。
Next, by ion implantation, N --type conductive layers 9a and 9b are sequentially formed in the N well 3 and the P well 2, respectively, and P --type conductive layers 10a and 10b are respectively formed in the P well 2 and the N well 3. To form. N − type conductive layers 9a, 9b,
The surface impurity concentration of each of the P − type conductive layers 10a and 10b is about 5 × 10 17 / cm 3 .

【0013】次に、減圧CVD法により、膜厚100n
m程度のシリコン窒化膜8を全面に堆積する。続いて、
常圧CVD法により、リンの濃度が約10mol%,ボ
ロンの濃度が約20mol%のBPSG膜11を1μm
程度堆積し、H2 −O2 雰囲気で1000℃程度の熱処
理を施す〔図1(a)〕。
Next, a film thickness of 100 n is formed by a low pressure CVD method.
A silicon nitride film 8 of about m is deposited on the entire surface. continue,
1 μm of BPSG film 11 having a phosphorus concentration of about 10 mol% and a boron concentration of about 20 mol% by the atmospheric pressure CVD method.
About 100 ° C. and heat-treated at about 1000 ° C. in an H 2 —O 2 atmosphere [FIG. 1 (a)].

【0014】次に、公知のフォトリソグラフィ技術,ド
ライエッチング法により、BPSG膜11,シリコン窒
化膜8,シリコン酸化膜7aを順次エッチング除去し、
それぞれN- 型導電層9a,9b,およびP- 型導電層
10a,10bに達する開口部を形成する。酸処理を施
した後、1000℃,10分間の熱酸化により、これら
開口部の表面に、膜厚20nm程度のシリコン酸化膜7
bを形成する〔図1(b)〕。次に、イオン注入によ
り、それぞれこれらの開口部に自己整合的に、N- 型導
電層9a,9bにN+ 型導電層19を形成し、P- 型導
電層10a,10bにP+ 型導電層20を形成する。N
+ 型導電層19,およびP+ 型導電層20の表面不純物
濃度は、それぞれ1×1019/cm3 程度である〔図1
(c)〕。
Next, the BPSG film 11, the silicon nitride film 8 and the silicon oxide film 7a are sequentially removed by etching by a known photolithography technique and dry etching method.
Openings are formed to reach the N − type conductive layers 9a and 9b and the P − type conductive layers 10a and 10b, respectively. After the acid treatment, thermal oxidation is performed at 1000 ° C. for 10 minutes to form a silicon oxide film 7 having a film thickness of about 20 nm on the surfaces of these openings.
b is formed [FIG. 1 (b)]. Next, by ion implantation, in each self-aligned with these openings, N - type conductive layer 9a, an N + type conductive layer 19 is formed on 9b, P - type conductive layer 10a, 10b in the P + type conductive Form layer 20. N
The surface impurity concentrations of the + type conductive layer 19 and the P + type conductive layer 20 are about 1 × 10 19 / cm 3 respectively (FIG. 1).
(C)].

【0015】その後、1000℃の窒素雰囲気で10分
間程度の熱処理を施す。次に、HFを用いた酸処理法に
より、30nm程度のシリコン酸化膜7bを除去した
後、タングステンシリサイド膜12,およびアルミニウ
ム膜13を順次堆積し、この積層膜をパターニングして
熱処理を施すことにより上記第1の実施例によるLDD
構造のCMOSトランジスタが得られる〔図1
(d)〕。
After that, heat treatment is performed in a nitrogen atmosphere at 1000 ° C. for about 10 minutes. Next, after removing the silicon oxide film 7b of about 30 nm by an acid treatment method using HF, a tungsten silicide film 12 and an aluminum film 13 are sequentially deposited, and this laminated film is patterned and heat-treated. LDD according to the first embodiment
A CMOS transistor having a structure can be obtained [Fig. 1
(D)].

【0016】半導体装置の製造方法を説明するための工
程順の断面図である図2を参照すると、本発明の第2の
実施例は、ゲート電極6の形成,酸処理までは上記第1
の実施例と同様に行ない、N- 型導電層9a,9b,お
よびP- 型導電層10a,10bを形成する。次に、全
面に減圧CVD法により膜厚100nm程度のCVDシ
リコン酸化膜13を堆積する。続いて、ドライエッチン
グ法により、このCVDシリコン酸化膜13のエッチバ
ックを行ない、ゲート電極6の側面にのみCVDシリコ
ン酸化膜13を残す。次に、洗浄を行なった後、上記第
1の実施例と同様に、減圧CVD法により、膜厚100
nm程度のシリコン窒化膜8を全面に堆積する。続い
て、常圧CVD法によりBPSG膜11を1μm程度堆
積し、H2−O2 雰囲気で1000℃,20分間程度の
熱処理を施し、BPSG膜11の表面を平坦化する〔図
2(a)〕。
Referring to FIG. 2 which is a sectional view in the order of steps for explaining a method for manufacturing a semiconductor device, the second embodiment of the present invention is the same as the first embodiment until formation of the gate electrode 6 and acid treatment.
In the same manner as in the above embodiment, N type conductive layers 9a and 9b and P − type conductive layers 10a and 10b are formed. Next, a CVD silicon oxide film 13 having a film thickness of about 100 nm is deposited on the entire surface by a low pressure CVD method. Subsequently, the CVD silicon oxide film 13 is etched back by a dry etching method, and the CVD silicon oxide film 13 is left only on the side surface of the gate electrode 6. Then, after cleaning, a film thickness of 100 is obtained by the low pressure CVD method as in the first embodiment.
A silicon nitride film 8 having a thickness of about nm is deposited on the entire surface. Subsequently, the BPSG film 11 is deposited to a thickness of about 1 μm by the atmospheric pressure CVD method, and heat-treated at 1000 ° C. for about 20 minutes in an H 2 —O 2 atmosphere to flatten the surface of the BPSG film 11 [FIG. ].

【0017】以下、上記第1の実施例と同様に、それぞ
れN- 型導電層9a,9b,およびP- 型導電層10
a,10bに達する開口部を形成する。酸処理を施した
後、1000℃,10分間の熱酸化により、これら開口
部の表面に、膜厚20nm程度のシリコン酸化膜7bを
形成する。次に、イオン注入により、N+ 型導電層1
9,P+ 型導電層20を形成する。〔図2(b)〕。
Thereafter, similar to the first embodiment, the N --type conductive layers 9a and 9b and the P --type conductive layer 10 are respectively formed.
Apertures reaching a and 10b are formed. After the acid treatment, thermal oxidation is performed at 1000 ° C. for 10 minutes to form a silicon oxide film 7b having a film thickness of about 20 nm on the surfaces of these openings. Next, by ion implantation, the N + type conductive layer 1 is formed.
9, P + type conductive layer 20 is formed. [FIG. 2 (b)].

【0018】その後、1000℃の窒素雰囲気で10分
間程度の熱処理を施す。次に、HFを用いた酸処理法に
より、30nm程度のシリコン酸化膜7bを除去した
後、タングステンシリサイド膜12,およびアルミニウ
ム膜13を順次堆積し、この積層膜をパターニングして
熱処理を施すことにより上記第2の実施例によるLDD
構造のCMOSトランジスタが得られる〔図2
(c)〕。
After that, heat treatment is performed in a nitrogen atmosphere at 1000 ° C. for about 10 minutes. Next, after removing the silicon oxide film 7b of about 30 nm by an acid treatment method using HF, a tungsten silicide film 12 and an aluminum film 13 are sequentially deposited, and the laminated film is patterned and heat-treated. LDD according to the second embodiment
A CMOS transistor having a structure can be obtained [Fig. 2
(C)].

【0019】上記第2の実施例によれば、N- 型導電層
9a,9b,およびP- 型導電層10a,10bの上記
開口部が形成される領域において、シリコン窒化膜8が
これらN- 型導電層9a,9b,およびP- 型導電層1
0a,10bの表面に直接に堆積されているため、上記
開口部形成のためのドライエッチング,およびその後の
酸処理に際して、サイドエッチングによる開口部の径の
拡大は起らない。また、上記第1の実施例では、この開
口部が形成される領域ではシリコン酸化膜7aとシリコ
ン窒化膜8とが積層されているため、開口部形成のエッ
チングでシリコン酸化膜7aのアンダーカットが生じや
すかったが、本実施例では起らない。このため、本実施
例では、上記第1の実施例に較べて、タングステンシリ
サイド膜12およびアルミニウム膜13からなる金属配
線とN+ 型導電層19,P+ 型導電層20との間のコン
タクト性は非常に良好となる。
[0019] According to the second embodiment, N - type conductive layer 9a, 9b, and P - type conductive layer 10a, in the region where the opening is formed in 10b, the silicon nitride film 8 of these N - Type conductive layers 9a and 9b, and P − type conductive layer 1
Since they are deposited directly on the surfaces of 0a and 10b, the diameter of the opening is not enlarged by the side etching during the dry etching for forming the opening and the subsequent acid treatment. Further, in the first embodiment, since the silicon oxide film 7a and the silicon nitride film 8 are laminated in the region where the opening is formed, the undercut of the silicon oxide film 7a is caused by the etching for forming the opening. Although it is likely to occur, it does not occur in this embodiment. Therefore, in this embodiment, as compared with the first embodiment, the contact property between the metal wiring made of the tungsten silicide film 12 and the aluminum film 13 and the N + type conductive layer 19 and the P + type conductive layer 20 is improved. Will be very good.

【0020】[0020]

【発明の効果】以上説明したように本発明によれば、L
DD構造のソース・ドレインの低濃度領域(N- 型導電
層,P- 型導電層)を形成後,BPSG膜の堆積の前
に、全面にシリコン窒化膜を堆積するため、BPSG膜
のリフローのための熱処理に際してこの膜からの高濃度
のリン,およびボロンがソース・ドレインの低濃度領域
に拡散されることがなくなる。その結果、この低濃度領
域の表面の不純物濃度が減少,あるいは増加することは
避けられ、Nチャネル,Pチャネルそれぞれのトランジ
スタにおける接合耐圧の低下,ソース・ドレイン間の直
列抵抗の増大が起らず、良好なトランジスタ特性を有す
るCMOSトランジスタが得られる。
As described above, according to the present invention, L
After the low concentration regions (N − type conductive layer, P − type conductive layer) of the source / drain of the DD structure are formed and before the BPSG film is deposited, the silicon nitride film is deposited on the entire surface, so that the reflow of the BPSG film is performed. During this heat treatment, high-concentration phosphorus and boron from this film will not diffuse into the low-concentration regions of the source / drain. As a result, a decrease or increase in the impurity concentration on the surface of the low concentration region can be avoided, and a decrease in junction breakdown voltage and an increase in source / drain series resistance do not occur in each of N-channel and P-channel transistors. Thus, a CMOS transistor having good transistor characteristics can be obtained.

【0021】さらに本発明によれば、半導体素子の微細
化に伴ないさらにリン,およびボロンの濃度が高くなっ
ても、良好なBPSG膜のリフロー状態を得ることが可
能となり、今後の微細化技術において有効な手段とな
る。
Further, according to the present invention, it becomes possible to obtain a good reflow state of the BPSG film even if the concentrations of phosphorus and boron are further increased with the miniaturization of the semiconductor element, and the miniaturization technology in the future. It becomes an effective means in.

【0022】例えば、本発明により製造したCMOSト
ランジスタでは、リン,およびボロンの濃度を20mo
l%,および30mol%程度まで高くしても、Nチャ
ネル,およびPチャネルMOSトランジスタのP−N接
合耐圧は45V程度と非常に高く、安定している。ま
た、ゲート電極の幅,間隔が1.5μm,1.2μm程
度であり、シリコン基板表面からゲート電極上のBPS
G膜表面までの高さが1μm程度(アスペクト比が高く
なる)の場合でも、信頼性の高いCMOSトランジスタ
が得られら。
For example, in a CMOS transistor manufactured according to the present invention, the concentration of phosphorus and boron is 20 mo.
Even if it is increased up to about 1% and about 30 mol%, the PN junction breakdown voltage of the N-channel and P-channel MOS transistors is very high at about 45 V and is stable. Further, the width and spacing of the gate electrodes are about 1.5 μm and 1.2 μm, and the BPS on the gate electrodes from the surface of the silicon substrate is
Even if the height to the G film surface is about 1 μm (the aspect ratio becomes high), a highly reliable CMOS transistor can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を説明するための工程順
の断面図である。
1A to 1D are cross-sectional views in order of processes for explaining a first embodiment of the present invention.

【図2】本発明の第2の実施例を説明するための工程順
の断面図である。
2A to 2D are cross-sectional views in order of a process, for illustrating a second embodiment of the present invention.

【図3】従来のLDD構造のCMOSトランジスタの製
造方法を説明するための工程順の断面図である。
3A to 3D are cross-sectional views in order of processes for explaining a method for manufacturing a conventional CMOS transistor having an LDD structure.

【符号の説明】[Explanation of symbols]

1 P型のシリコン基板 2 Pウェル 3 Nウェル 4,7a,7b,17 シリコン酸化膜 5 ゲート酸化膜 6 ゲート電極 8 シリコン窒化膜 9a,9b N- 型導電層 10a,10b P- 型導電層 11 BPSG膜 12 タングステンシリサイド膜 13,23a,23b アルミニウム膜 19 N+ 型導電層 20 P+ 型導電層1 P-type silicon substrate 2 P-well 3 N-well 4, 7a, 7b, 17 Silicon oxide film 5 Gate oxide film 6 Gate electrode 8 Silicon nitride film 9a, 9b N − type conductive layer 10a, 10b P − type conductive layer 11 BPSG film 12 Tungsten silicide film 13, 23a, 23b Aluminum film 19 N + type conductive layer 20 P + type conductive layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板の表面に素子分離領域を形
成する工程と、 前記シリコン基板の第1導電型領域の表面の第2チャネ
ル型のトランジスタ形成予定領域,および前記シリコン
基板の第2導電型領域の表面の第1チャネル型のトラン
ジスタ形成予定領域に、第1の絶縁膜を介して、ゲート
電極を形成する工程と、 少なくとも前記ゲート電極の表面を含む前記第1チャネ
ル型のトランジスタ形成予定領域,および前記第2チャ
ネル型のトランジスタ形成予定領域の全面に第2の絶縁
膜を形成し、前記ゲート電極をマスクとした第1導電型
の不純物の導入により前記第1チャネル型のトランジス
タ形成予定領域にソース・ドレインとなる第1導電型の
第1導電層を形成し,前記ゲート電極をマスクとした第
2導電型の不純物の導入により前記第2チャネル型のト
ランジスタ形成予定領域にソース・ドレインとなる第2
導電型の第1導電層を形成する工程と、 第3の絶縁膜を形成し、全面に不純物を含んだ層間絶縁
膜を形成し、熱処理を施す工程と、 前記層間絶縁膜と前記第2,第3の絶縁膜とをパターニ
ングして前記第1導電型の第1導電層,前記第2導電型
の第1導電層に達する開口部を形成し、前記開口部の底
面に第4の絶縁膜を形成し、熱処理を施す工程と、 第1導電型の不純物の導入により前記第1導電型の第1
導電層の前記第4の絶縁膜の直下の領域に前記第1導電
型の第1導電層より不純物濃度の高い第1導電型の第2
導電層を形成し,第2導電型の不純物の導入により前記
第2導電型の第1導電層の前記第4の絶縁膜の直下の領
域に前記第2導電型の第1導電層より不純物濃度の高い
第2導電型の第2導電層を形成する工程とを含むことを
特徴とする半導体装置の製造方法。
1. A step of forming an element isolation region on a surface of a silicon substrate, a region for forming a second channel type transistor on a surface of a first conductivity type region of the silicon substrate, and a second conductivity type of the silicon substrate. A step of forming a gate electrode in the first channel type transistor formation scheduled area on the surface of the region via a first insulating film; and the first channel type transistor formation scheduled area including at least the surface of the gate electrode , And a second insulating film is formed on the entire surface of the second channel type transistor formation planned region, and the first conductivity type impurity is introduced by using the gate electrode as a mask to introduce the first channel type transistor formation planned region. A first conductive type first conductive layer serving as a source / drain is formed on the substrate, and the second conductive type impurity is introduced by using the gate electrode as a mask. Second as the source and drain in the transistor formation region of the second channel type
A step of forming a first conductive type conductive layer, a step of forming a third insulating film, a step of forming an interlayer insulating film containing impurities on the entire surface, and a heat treatment; A third insulating film is patterned to form an opening reaching the first conductive type first conductive layer and the second conductive type first conductive layer, and a fourth insulating film is formed on the bottom surface of the opening. And heat treatment, and introducing a first conductivity type impurity into the first conductivity type first
In the region of the conductive layer directly below the fourth insulating film, the second conductive type second having a higher impurity concentration than the first conductive type first conductive layer is formed.
A conductive layer is formed, and the impurity concentration of the second conductive type is lower than that of the first conductive layer of the second conductive type in the region immediately below the fourth insulating film of the first conductive layer of the second conductive type. And a step of forming a second conductive layer having a high second conductivity type.
【請求項2】 前記第3の絶縁膜がシリコン窒化膜であ
ることを特徴とする請求項1記載の半導体装置の製造方
法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the third insulating film is a silicon nitride film.
JP4176312A 1992-07-03 1992-07-03 Manufacture of semiconductor device Withdrawn JPH0621373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4176312A JPH0621373A (en) 1992-07-03 1992-07-03 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4176312A JPH0621373A (en) 1992-07-03 1992-07-03 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0621373A true JPH0621373A (en) 1994-01-28

Family

ID=16011387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4176312A Withdrawn JPH0621373A (en) 1992-07-03 1992-07-03 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0621373A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933565B2 (en) 2000-06-08 2005-08-23 Renesas Technology Corp. Semiconductor device and method of manufacturing the same
US7931961B1 (en) * 2007-07-11 2011-04-26 Touchstone Research Laboratory, Ltd. Composite exhaust flue

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933565B2 (en) 2000-06-08 2005-08-23 Renesas Technology Corp. Semiconductor device and method of manufacturing the same
US7393731B2 (en) 2000-06-08 2008-07-01 Renesas Technology Corp. Semiconductor device and method of manufacturing the same
US7838349B2 (en) 2000-06-08 2010-11-23 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US7931961B1 (en) * 2007-07-11 2011-04-26 Touchstone Research Laboratory, Ltd. Composite exhaust flue

Similar Documents

Publication Publication Date Title
JP2591927B2 (en) DRAM cell manufacturing method
JPH11297852A (en) Semiconductor device and manufacture thereof
JPH0348457A (en) Semiconductor device and manufacture thereof
JPH1012744A (en) Manufacture of semiconductor device
JP3393956B2 (en) Vertical field effect transistor, method of manufacturing the same, and complementary vertical field effect transistor
JP2990497B2 (en) Method for manufacturing CMOS analog semiconductor device
JPH05110003A (en) Semiconductor integrated circuit device and manufacture thereof
JPH098135A (en) Manufacture of semiconductor device
JPH0621373A (en) Manufacture of semiconductor device
JPH0661482A (en) Mos-type transistor and its manufacture
KR100609239B1 (en) Method For Manufacturing Semiconductor Devices
JP2513312B2 (en) Method for manufacturing MOS transistor
JP3567465B2 (en) Method for manufacturing semiconductor device
JP2968548B2 (en) Semiconductor device and manufacturing method thereof
JP2919690B2 (en) Method for manufacturing semiconductor device
JPS6156448A (en) Manufacture of complementary semiconductor device
JP2982762B2 (en) Method for manufacturing semiconductor device
JPH0574735A (en) Semiconductor device
JPH0629310A (en) Semiconductor device and manufacture thereof
JP3123598B2 (en) LSI and manufacturing method thereof
JPS6154661A (en) Manufacture of semiconductor device
JP2001267558A (en) Method of manufacturing for semiconductor device
JPH0582784A (en) Manufacture of mis-type semiconductor device
JPH07122741A (en) Manufacture of semiconductor device
JPH0737992A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005