JPH023242A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH023242A
JPH023242A JP15056588A JP15056588A JPH023242A JP H023242 A JPH023242 A JP H023242A JP 15056588 A JP15056588 A JP 15056588A JP 15056588 A JP15056588 A JP 15056588A JP H023242 A JPH023242 A JP H023242A
Authority
JP
Japan
Prior art keywords
film
polysilicon
sio
field
sio2 film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15056588A
Other languages
Japanese (ja)
Inventor
Junichi Matsuda
順一 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP15056588A priority Critical patent/JPH023242A/en
Publication of JPH023242A publication Critical patent/JPH023242A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent deterioration of operation speed by element separation property between adjacent high concentration S/D areas, or increase of junction capacitance and oxide film capacity by keeping the shape of the end part and the thickness of a field SiO2 film as they are at the initial stage at the time of high concentration S/D area formation. CONSTITUTION:When forming a sidewall 29 by anisotropically etching the third SiO2 film 9, the field SiO2 film 2 is never etched by some overetching since the second polysilicon film 8 being the ground is protecting the field SiO2 film 2 from the overetching. Thereafter, with the field SiO2 film 2, the sidewall 29 and the polysilicon gate electrode as a mask, high concentration N type impurity is selectively introduced into a P type Si substrate through a second SiO2 film 5 and a second polysilicon film, and is annealed so as to form high concentration S/D areas 10 and 11. At this time, the end shape end the thickness of the field SiO2 film 2 are kept as they are at the initial stage.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は半導体装置の製造方法、特に素子分離の特性の
向上を図ることのできるLDD構造とサイドウオールス
ペーサを有するゲート構造とを有する半導体装置の製造
方法に関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to a method for manufacturing a semiconductor device, and in particular to a semiconductor device having an LDD structure and a gate structure having sidewall spacers that can improve element isolation characteristics. The present invention relates to a method for manufacturing a device.

(ロ)従来の技術 第2図(a) 、 (b) 、 (c)は従来の半導体
装置の製造方法を説明する要部工程の断面図である。
(b) Prior Art FIGS. 2(a), 2(b), and 2(c) are cross-sectional views of essential steps for explaining a conventional method for manufacturing a semiconductor device.

同図(a)において、先ずP形半導体基板(例えばSt
基板)(101)の能動領域となる部分を除いてフィー
ルド5i0*膜(102)を部分酸化の方法等を用いて
形成する。次に全面にSiO2膜(厚さ200人程度)
とポリシリコン膜(厚a4000人程度)を被着しポリ
シリコン膜にリンなどのN形不純物を導入する。その後
パターニングして前記能動領域の適当な位置にゲートS
iO2膜(123)とポリシリコンゲート電極(124
)を形成する。更に全面に薄(SiO2膜(105)を
形成し、このSiO2膜(105)を介してフィールド
SiO2膜(102)とポリシリコンゲート電極(12
4)をマスクにして、P形半導体基板(101)に低濃
度のN形不純物をイオンインプランテーション(以下I
Iと略称)技術を使い選択的に導入する。更にアニール
をおこない低濃度ソース領域(106)と低濃度ドレイ
ン領域(107)を形成する。
In the same figure (a), first, a P-type semiconductor substrate (for example, St
A field 5i0* film (102) is formed using a partial oxidation method or the like, except for a portion of the substrate (101) that will become an active region. Next, the entire surface is covered with a SiO2 film (about 200 people thick)
A polysilicon film (approximately 4000 mm thick) is deposited, and an N-type impurity such as phosphorus is introduced into the polysilicon film. After that, patterning is performed to place the gate S at an appropriate position in the active region.
iO2 film (123) and polysilicon gate electrode (124)
) to form. Furthermore, a thin (SiO2 film (105)) is formed on the entire surface, and the field SiO2 film (102) and polysilicon gate electrode (12) are connected via this SiO2 film (105).
4) as a mask, a low concentration of N-type impurity is applied to the P-type semiconductor substrate (101) by ion implantation (hereinafter referred to as I
selectively introduced using technology (abbreviated as I). Further annealing is performed to form a lightly doped source region (106) and a lightly doped drain region (107).

しかる後同図(b)のサイドウオールスペーサ(112
)形成用のSiO2膜(113)をP形半導体基板全面
に被着する。
After that, install the side wall spacer (112) in the same figure (b).
) A SiO2 film (113) for formation is deposited on the entire surface of the P-type semiconductor substrate.

次に同図(b)において、サイドウオールスペーサ(1
12)を形成する為同図(a)のSiO2膜(113)
を異方性エツチングをおこなうが、しばしばフィールド
SiO2膜(102)の端部A部のSiO2膜がオーバ
ーエツチングされこの部分のSi基板が露出する。又フ
ィールドSiO2膜(102)そのものも浮きが薄くな
る。
Next, in the same figure (b), the side wall spacer (1
In order to form 12), the SiO2 film (113) shown in FIG.
Although anisotropic etching is performed, the SiO2 film at end A of the field SiO2 film (102) is often overetched and the Si substrate in this area is exposed. Furthermore, the field SiO2 film (102) itself becomes less floating.

次に同図(c)において、ブロッキング用SiO2膜(
114) (厚き数百人)をSi基板に被着した後、サ
イドウオールスペーサ(112)とフィール)’Sin
g膜(102)とポリシリコンゲート電極(104)を
マスクにして高濃度のN形不純物をSi基板に導入し、
高濃度S/D領域(110)(111)を形成する。
Next, in the same figure (c), the blocking SiO2 film (
114) (several hundred thick) on the Si substrate, sidewall spacer (112) and field)'Sin
Using the G film (102) and the polysilicon gate electrode (104) as masks, a high concentration of N-type impurity is introduced into the Si substrate.
High concentration S/D regions (110) (111) are formed.

(ハ)発明が解決しようとする課題 しかし上述の従来方法によると、第2図(b)のA部に
示されるように、サイドウオールスペーサ(112)の
異方性エツチングの際に、オーバーエツチングの為フィ
ールドSiO2膜(102)の端部のSi O。
(c) Problems to be Solved by the Invention However, according to the above-mentioned conventional method, over-etching occurs during anisotropic etching of the sidewall spacer (112), as shown in part A of FIG. SiO at the edge of the field SiO2 film (102).

膜も除去され、高濃度S/D領域(110)(111)
を形成した時、同図(c)に示すように高濃度S/D領
域の幅が広がるとともに、隣接する高濃度S/D領域と
の間隔も狭くなる。従ってP形Si基板(101)と高
濃度S/D領域(110)(111)とで形成される接
合容量が増加し高速化のさまたげになるとともに分離特
性にとっても望ましくない。
The film is also removed and the high concentration S/D area (110) (111)
When a high concentration S/D region is formed, the width of the high concentration S/D region increases, and the distance between adjacent high concentration S/D regions becomes narrower, as shown in FIG. 3(c). Therefore, the junction capacitance formed between the P-type Si substrate (101) and the high-concentration S/D regions (110) (111) increases, which hinders high speed operation and is also undesirable for the isolation characteristics.

又フィールド5i0*膜(102)そのものの厚きも薄
くなることは、フィールドSiO2膜(102)上に配
線されるAj2電極等により、フィールド5i0を膜(
102)直下のP形Si基板も影響を受は易くなり分離
特性上好ましくない。
Also, the thickness of the field 5i0* film (102) itself becomes thinner because the Aj2 electrode etc. wired on the field SiO2 film (102) reduces the thickness of the field 5i0* film (102).
102) The P-type Si substrate immediately below is also easily affected, which is unfavorable in terms of separation characteristics.

そこで本発明は、以上の問題点を解決し半導体装置の性
能の向上を図ることを目的とする。
Therefore, an object of the present invention is to solve the above problems and improve the performance of a semiconductor device.

(ニ)課題を解決するための手段 上記課題は一導電形の半導体基板上適当な位置に部分的
にフィールドSiO2膜を形成する工程と、該フィール
ドSiO2膜の形成された該一導電形の半導体基板全面
にゲート5iot膜となる第1のSiO2膜を形成する
工程と、該第1のSiOを膜上に第1のボッシリコン膜
を形成する工程と、該第1のポリシリコン膜を反対導電
形の不純物を導入する工程と、前記フィールドSiO2
膜の形成されていない適当な部分に該第1のポリシリコ
ン膜をパターニングしてポリシリコンゲート電極とゲー
トSiO2膜とを形成する工程と、該ポリシリコンゲー
ト電極とゲートSiO2膜及び前記フィールドSiO2
膜の載った前記一導電形の半導体基板全面に第2のSi
n!膜を形成する工程と、該ポリシリコンゲート電極と
前記フィールドSiO2膜とをマスクとして前記第1と
第2のSiO2膜を介して選択的に反対導電形の低濃度
不純物を該一導電形の半導体基板に導入する工程と、該
一導電形の半導体基板全面に第2のポリシリコン膜を形
成する工程と、該第2のポリシリコン膜上に第3のSi
O2膜を形成する工程と、該第3のSin!膜を前記ポ
リシリコンゲート電極の周囲にのみ残すように異方性エ
ツチングしてサイドウオールを形成する工程と、該サイ
ドウオールと前記ポリシリコン電極と前記フィールドS
iO2膜とをマスクにして前記第2のポリシリコン膜お
よび前記第1と第2のSiO、膜を介して選択的に反対
導電形の高濃度不純物を前記一導電形の半導体基板に導
入する工程と、前記第3のSiO2膜と前記第2のポリ
シリコン膜とをエツチングして除去する工程とを含むこ
とを特徴とする半導体装置の製造方法によって解決され
る。
(d) Means for solving the problem The above problem involves a step of partially forming a field SiO2 film at an appropriate position on a semiconductor substrate of one conductivity type, and a semiconductor of the one conductivity type on which the field SiO2 film is formed. A step of forming a first SiO2 film to become a gate 5iot film on the entire surface of the substrate, a step of forming a first SiO2 film on the first SiO film, and a step of forming the first polysilicon film with opposite conductivity. The step of introducing impurities in the form of SiO2
a step of patterning the first polysilicon film in an appropriate portion where no film is formed to form a polysilicon gate electrode and a gate SiO2 film;
A second Si layer is deposited on the entire surface of the semiconductor substrate of one conductivity type on which the film is placed.
n! a step of forming a film, and using the polysilicon gate electrode and the field SiO2 film as a mask, a low concentration impurity of an opposite conductivity type is selectively introduced into the semiconductor of the one conductivity type through the first and second SiO2 films. a step of forming a second polysilicon film on the entire surface of the semiconductor substrate of one conductivity type; and a step of forming a third silicon film on the second polysilicon film.
The step of forming an O2 film and the third Sin! forming a sidewall by anisotropic etching so that a film is left only around the polysilicon gate electrode, and etching the sidewall, the polysilicon electrode, and the field S.
selectively introducing high concentration impurities of opposite conductivity type into the semiconductor substrate of one conductivity type through the second polysilicon film and the first and second SiO films using the iO2 film as a mask; and a step of etching and removing the third SiO2 film and the second polysilicon film.

(*)作用 即ち、本発明は高濃度S/D領域の形成のためのマスク
とするSiOよ膜によるサイドウオールの形成の異方性
エツチングのとき、下地にポリシリコン膜を全面に敷き
サイドウオール形成時のオーバーエツチングに対しても
このポリシリコン膜がバッファの役目をしてフィールド
Sign膜がエツチングされることを防止する。
(*) In other words, in the present invention, when anisotropic etching is performed to form a sidewall using a SiO film as a mask for forming a high concentration S/D region, a polysilicon film is spread over the entire surface as a base layer to form a sidewall. This polysilicon film also acts as a buffer against over-etching during formation and prevents the field Sign film from being etched.

これによって隣接する高濃度S/D領域の間隔が狭くな
ることもなく、かつフィールドSiO2膜の厚さも初期
のままに保たれるので半導体装置の動作スピード及び素
子分離特性の劣化が防止される。
As a result, the interval between adjacent high concentration S/D regions does not become narrow, and the thickness of the field SiO2 film is maintained at its initial value, thereby preventing deterioration of the operating speed and element isolation characteristics of the semiconductor device.

(へ)実施例 以上、本発明を図示の一実施例により具体的に説明する
(f) Example The present invention will now be described in detail with reference to an illustrated example.

第1図(a)〜(f)は本発明に係る半導体装置の製造
方法を説明する要部工程の断面図である。
FIGS. 1(a) to 1(f) are cross-sectional views of main steps for explaining the method for manufacturing a semiconductor device according to the present invention.

同図(a)において、(1)はP形半導体基板(例えば
Si基板)で能動素子などの形成される領域を除いて適
当な位置に素子分離用のフィールドSiO2膜(2)が
選択的に形成される8次に全面にゲート510w膜((
b)図(23))となる厚さ〜200人程度0第1のS
iO2膜が熱酸化法により、ポリシリコンゲート電極(
(b)図(24))となる厚き4000人程度0第1の
ポリシリコン膜(4)がCVD法によりそれぞれ形成さ
れる。しかる後第1のポリシリコン膜(4)をN形化す
るためにリンなどのN形不純物が熱拡散又はII等によ
り導入される。
In the same figure (a), (1) is a P-type semiconductor substrate (for example, a Si substrate), and a field SiO2 film (2) for element isolation is selectively placed at an appropriate position except for the area where active elements are formed. A gate 510w film ((
b) Thickness as shown in Figure (23)) ~ 200 people 0 1st S
The iO2 film is formed into a polysilicon gate electrode (
(b) A first polysilicon film (4) having a thickness of about 4,000 layers as shown in FIG. 24 is formed by CVD. Thereafter, to make the first polysilicon film (4) N-type, an N-type impurity such as phosphorus is introduced by thermal diffusion or II.

次に同図(b)のようにフィールドSiO2膜の形成さ
れた領域以外の適当な部分に選択的にエツチングにより
ポリシリコンゲート電極(24)とゲートSiO2膜(
23)とが形成される。
Next, as shown in the same figure (b), the polysilicon gate electrode (24) and the gate SiO2 film (
23) is formed.

しかる後同図(c)に示すように、厚さ200人程鹿の
ブロッキング用の第2のSiO2膜(5〉を形成し、更
にこのSiO2膜を介してフィールドSiO2膜り2)
とポリシリコンゲート電極<24)とをマスクにして、
低濃度N形不純物をIIによりP形Si基板に選択的に
導入し、アニールをおこなって低濃度S/D領域を形成
する。
After that, as shown in the same figure (c), a second SiO2 film (5) for blocking of about 200 people is formed, and then a field SiO2 film (2) is formed through this SiO2 film.
and polysilicon gate electrode <24) as a mask,
A low concentration N-type impurity is selectively introduced into the P-type Si substrate using II, and annealing is performed to form a low concentration S/D region.

次に同図(d)に示すように上記工程の完了した半導体
基板上に本発明のポイントとなる第2のボッシリコン膜
(8)(厚さ500人程変りと第3のSiO2膜(9)
(厚t2000人程度)とをCVD法により堆積する。
Next, as shown in FIG. 4(d), a second SiO2 film (8) (with a thickness of about 500 mm) and a third SiO2 film (9 )
(thickness approximately 2,000 mm) is deposited by the CVD method.

次に同図(e)において、第3のSiOx膜(9)を異
方性エツチングしサイドウオール(29)を形成する。
Next, in the same figure (e), the third SiOx film (9) is anisotropically etched to form a sidewall (29).

このとき下地の第2のポリシリコン膜(8)がフィール
ドSiO2膜(2)をオーバーエツチングから保護して
いるので多少のオーバーエツチングによってはフィール
ドSiか膜がエツチングされることはない。
At this time, since the underlying second polysilicon film (8) protects the field SiO2 film (2) from over-etching, the field Si film will not be etched even if there is some over-etching.

しかる後、フィールドSign膜(2)とサイドウオー
ル(29)とポリシリコンゲート電極とをマスクにして
、第2の5xOt膜(5)と第2のポリシリコン膜とを
介して高濃度N形不純物をP形Si基板に選択的に導入
し、アニールして高濃度S/D領域(10)(11)を
形成する。このとき上述のようにフィールドSiO2膜
(2)は、端部形状及びその厚さが初期のまま保たれて
いるのでフィールドSiO2膜を介して隣接する高濃度
S/D領域間の素子分離特性や容量接合および酸化膜の
増加による動作スピードの劣化は防止できる。
After that, using the field Sign film (2), sidewall (29), and polysilicon gate electrode as a mask, high concentration N-type impurity is applied through the second 5xOt film (5) and the second polysilicon film. is selectively introduced into a P-type Si substrate and annealed to form high concentration S/D regions (10) and (11). At this time, as mentioned above, the end shape and thickness of the field SiO2 film (2) are maintained as they were at the initial stage, so the element isolation characteristics between adjacent high concentration S/D regions can be improved through the field SiO2 film. Deterioration in operating speed due to increase in capacitive junctions and oxide film can be prevented.

以上の工程の後、同図(f)のようにサイドウオール(
10)と第2のポリシリコン膜をエツチング除去する。
After the above steps, the sidewall (
10) and the second polysilicon film are removed by etching.

以下通常の工程により半導体装置が完成されるが説明は
省略する。
The semiconductor device is completed by following the usual steps, but the explanation will be omitted.

上述の説明はP形Si基板に対しておこなったが、N形
Si基板に逆タイプの不純物を使う製造方法に対しても
有効なことは言うまでもない。
Although the above explanation was made for a P-type Si substrate, it goes without saying that it is also effective for a manufacturing method that uses impurities of the opposite type in an N-type Si substrate.

(ト)発明の効果 以上のように本発明によれば、高濃度S/D領域形成時
にフィールド5iot膜の端部形状及びその厚さが初期
のまま保たれているので、フィールドSiO2膜を介し
て隣接する高濃度S/D領域間の素子分離特性や接合容
量および酸化膜容量の増加による動作スピードの劣化の
防止に有効である。
(G) Effects of the Invention As described above, according to the present invention, when forming a high concentration S/D region, the end shape and thickness of the field 5iot film are maintained as they were at the initial stage. This is effective in preventing deterioration in device isolation characteristics between adjacent high-concentration S/D regions, and in operating speed due to increases in junction capacitance and oxide film capacitance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f>は本発明に係る半導体装置の製造
方法を説明する要部工程の断面図、第2図輸)〜(c)
は従来例の半導体装置の製造方法を説明する要部工程の
断面図である。 図において、(1) 、 <101)・・・P形半導体
基板、(2) 、 (102)・・・フィールドSiO
2膜、 (3)・・・第1のSiOよ膜、 (4)・・
・第1のポリシリコン膜、(5)・・・第2のSiO2
膜、 (6) 、 (106)・・・低濃度ソース領域
、 (7) 、 (107)・・・低濃度ドレイン領域
、 (8)・・・第2のポリシリコン膜、 (9)・・
・第3 (7)SiO。 膜、 (10) 、 (110)・・・高濃度ソース領
域、 (11)。 (111)・・・高濃度ドレイン領域、 (105) 
、 (113)・・・Si0g膜、  (23) 、 
(123)・・・ゲートSiか膜、 (24)。 (124)・・・ポリシリコンゲート電極、(29)・
・・サイドウオール、 (12) 、 (112)・・
・サイドウオールスペーサを示す。
FIGS. 1(a) to (f) are cross-sectional views of main steps for explaining the method for manufacturing a semiconductor device according to the present invention, and FIGS. 2(a) to (c)
FIG. 2 is a cross-sectional view of main steps for explaining a conventional method for manufacturing a semiconductor device. In the figure, (1), <101)...P-type semiconductor substrate, (2), (102)...field SiO
2 film, (3)...first SiO film, (4)...
・First polysilicon film, (5)...second SiO2
Film, (6), (106)...Low concentration source region, (7), (107)...Low concentration drain region, (8)...Second polysilicon film, (9)...
・Third (7) SiO. Film, (10), (110)...high concentration source region, (11). (111)...high concentration drain region, (105)
, (113)...Si0g film, (23) ,
(123)...Gate Si film, (24). (124)...Polysilicon gate electrode, (29)...
・・Side wall, (12), (112)・・
・Side wall spacer is shown.

Claims (1)

【特許請求の範囲】[Claims] (1)LDD(Lightly Doped Drai
n)構造とサイドウォールスペーサを有するゲート構造
とを有する半導体装置において、 一導電形の半導体基板上の適当な位置に部分的にフィー
ルドSiO_2膜を形成する工程と、該フィールドSi
O_2膜の形成された該一導電形の半導体基板全面にゲ
ートSiO_2膜となる第1のSiO_2膜を形成する
工程と、 該第1のSiO_2膜上に第1のポリシリコン膜を形成
する工程と、 該第1のポリシリコン膜に反対導電形の不純物を導入す
る工程と、 前記フィールドSiO_2膜の形成されていない適当な
部分に該第1のポリシリコン膜をパターニングしてポリ
シリコンゲート電極とゲートSiO_2膜とを形成する
工程と、 該ポリシリコンゲート電極とゲートSiO_2膜及び前
記フィールドSiO_2膜の載った前記一導電形の半導
体基板全面に第2のSiO_2膜を形成する工程と、該
ポリシリコンゲート電極と前記フィールドSiO_2膜
とをマスクとして前記第1と第2のSiO_2膜を介し
て選択的に反対導電形の低濃度不純物を該一導電形の半
導体基板に導入する工程と、 該一導電形の半導体基板全面に第2のポリシリコン膜を
形成する工程と、 該第2のポリシリコン膜上に第3のSiO_2膜を形成
する工程と、 該第3のSiO_2膜を前記ポリシリコンゲート電極の
周囲にのみ残すように異方性エッチングしてサイドウォ
ールを形成する工程と、 該サイドウォールと前記ポリシリコン電極と前記フィー
ルドSiO_2膜とをマスクにして前記第2のポリシリ
コン膜および第1と第2のSiO_2膜を介して選択的
に反対導電形の高濃度不純物を前記一導電形の半導体基
板に導入する工程と、 前記第3のSiO_2膜と第2のポリシリコン膜とをエ
ッチングして除去する工程とを含むことを特徴とする半
導体装置の製造方法。
(1) LDD (Lightly Doped Drai)
n) In a semiconductor device having a structure and a gate structure having sidewall spacers, a step of partially forming a field SiO_2 film at an appropriate position on a semiconductor substrate of one conductivity type;
a step of forming a first SiO_2 film to become a gate SiO_2 film on the entire surface of the semiconductor substrate of one conductivity type on which an O_2 film is formed; a step of forming a first polysilicon film on the first SiO_2 film; , a step of introducing impurities of opposite conductivity type into the first polysilicon film, and patterning the first polysilicon film in an appropriate portion where the field SiO_2 film is not formed to form a polysilicon gate electrode and a gate. a step of forming a second SiO_2 film on the entire surface of the semiconductor substrate of one conductivity type on which the polysilicon gate electrode, the gate SiO_2 film and the field SiO_2 film are mounted; selectively introducing low concentration impurities of opposite conductivity type into the semiconductor substrate of the one conductivity type through the first and second SiO_2 films using the electrode and the field SiO_2 film as a mask; forming a second polysilicon film on the entire surface of the semiconductor substrate; forming a third SiO_2 film on the second polysilicon film; and depositing the third SiO_2 film on the polysilicon gate electrode. a step of forming a sidewall by anisotropic etching so as to leave it only on the periphery; and a step of etching the second polysilicon film and the first and second polysilicon films using the sidewall, the polysilicon electrode, and the field SiO_2 film as a mask. selectively introducing high concentration impurities of the opposite conductivity type into the semiconductor substrate of the one conductivity type through the second SiO_2 film; and etching and removing the third SiO_2 film and the second polysilicon film. A method for manufacturing a semiconductor device, comprising the steps of:
JP15056588A 1988-06-17 1988-06-17 Manufacture of semiconductor device Pending JPH023242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15056588A JPH023242A (en) 1988-06-17 1988-06-17 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15056588A JPH023242A (en) 1988-06-17 1988-06-17 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH023242A true JPH023242A (en) 1990-01-08

Family

ID=15499661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15056588A Pending JPH023242A (en) 1988-06-17 1988-06-17 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH023242A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04251938A (en) * 1991-01-09 1992-09-08 Sharp Corp Manufacture of semiconductor device
US5679589A (en) * 1989-10-17 1997-10-21 Lucent Technologies Inc. FET with gate spacer
US5783475A (en) * 1995-11-13 1998-07-21 Motorola, Inc. Method of forming a spacer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156448A (en) * 1984-08-28 1986-03-22 Toshiba Corp Manufacture of complementary semiconductor device
JPS6346773A (en) * 1986-08-15 1988-02-27 Citizen Watch Co Ltd Manufacture of mos transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156448A (en) * 1984-08-28 1986-03-22 Toshiba Corp Manufacture of complementary semiconductor device
JPS6346773A (en) * 1986-08-15 1988-02-27 Citizen Watch Co Ltd Manufacture of mos transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679589A (en) * 1989-10-17 1997-10-21 Lucent Technologies Inc. FET with gate spacer
JPH04251938A (en) * 1991-01-09 1992-09-08 Sharp Corp Manufacture of semiconductor device
US5783475A (en) * 1995-11-13 1998-07-21 Motorola, Inc. Method of forming a spacer

Similar Documents

Publication Publication Date Title
EP0356202B1 (en) Mosfet and fabrication method
US5342796A (en) Method for controlling gate size for semiconduction process
JPH04348077A (en) Thin-film transistor
JP3746907B2 (en) Manufacturing method of semiconductor device
JPH0712058B2 (en) Semiconductor device and manufacturing method thereof
JPH04278534A (en) Element separation method of semiconductor device
JPH023242A (en) Manufacture of semiconductor device
JP3283458B2 (en) Method for manufacturing semiconductor device
JP2856603B2 (en) Method for manufacturing semiconductor device
JP3088556B2 (en) Semiconductor device manufacturing method
US7244641B2 (en) Process sequence and mask layout to reduce junction leakage for a dual gate MOSFET device
JPH067557B2 (en) Method for manufacturing semiconductor integrated circuit device
JP2858384B2 (en) Method for manufacturing semiconductor device
JP3521921B2 (en) Method for manufacturing semiconductor device
JPH0521789A (en) Field effect type transistor and its manufacture
KR0146079B1 (en) Manufacturing method of semiconductor device
JPH0335528A (en) Manufacture of semiconductor device
JP3052293B2 (en) Method for manufacturing solid-state imaging device
JPH05190854A (en) Manufacture of semiconductor device
JPH03171674A (en) Thin film transistor and manufacture thereof
JP2556618B2 (en) Method for manufacturing field effect semiconductor device
JPH05198567A (en) Manufacture of semiconductor device
JPS63224363A (en) Manufacture of semiconductor integrated circuit
JPH06188259A (en) Manufacture of semiconductor device
JPH0722624A (en) Semiconductor element and its manufacture