JPH0521789A - Field effect type transistor and its manufacture - Google Patents

Field effect type transistor and its manufacture

Info

Publication number
JPH0521789A
JPH0521789A JP17088291A JP17088291A JPH0521789A JP H0521789 A JPH0521789 A JP H0521789A JP 17088291 A JP17088291 A JP 17088291A JP 17088291 A JP17088291 A JP 17088291A JP H0521789 A JPH0521789 A JP H0521789A
Authority
JP
Japan
Prior art keywords
groove
channel
gate electrode
transistor
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17088291A
Other languages
Japanese (ja)
Inventor
Koji Taniguchi
浩二 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17088291A priority Critical patent/JPH0521789A/en
Publication of JPH0521789A publication Critical patent/JPH0521789A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To provide a MOS transistor with an improved reliability by controlling a short-channel phenomenon even if dimensions of the transistor become small. CONSTITUTION:A groove 17 for channel is dug on a silicon substrate 11 and a gate electrode 13 is formed on the groove 17 through a ground gate oxide film 12. Then, impurity diffusion regions 15 and 16 which become source/drain are formed in self-alignment manner with this gate electrode 13 as a mask, thus enabling a MOS transistor with a longer channel than mask dimensions when patterning the gate to be formed and enabling a short-channel effect to be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、短チャネル現象を抑制
できる電界効果型トランジスタ及びその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field effect transistor capable of suppressing a short channel phenomenon and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来から一般に周知のLDD(Lightly
Doped Drain)構造の電界効果型トランジスタ(以下、
MOSトランジスタという)においては図3の断面図で
示されるように構成され、トランジスタのゲート酸化
膜,及びゲート電極は平坦なシリコン基板上に形成され
ている。この図3における符号1はシリコン基板、2は
ゲート酸化膜、3はゲート電極、4は上敷酸化膜、5は
サイドウォール、6はシリコン基板1と逆導電型の低濃
度の不純物拡散領域、7は同じくシリコン基板1と逆導
電型の高濃度の不純物拡散領域であり、そのトランジス
タの製造方法を図4を用いて説明する。
2. Description of the Related Art LDD (Lightly
Doped drain structure field effect transistor (hereinafter,
A MOS transistor) is constructed as shown in the sectional view of FIG. 3, and the gate oxide film and the gate electrode of the transistor are formed on a flat silicon substrate. In FIG. 3, reference numeral 1 is a silicon substrate, 2 is a gate oxide film, 3 is a gate electrode, 4 is an overlay oxide film, 5 is a sidewall, 6 is a low-concentration impurity diffusion region of a conductivity type opposite to that of the silicon substrate 1, 7 Is a high-concentration impurity diffusion region of the opposite conductivity type to the silicon substrate 1, and a method of manufacturing the transistor will be described with reference to FIG.

【0003】図4において、まず、一導電型として例え
ばP型のシリコン基板1を用意し、このシリコン基板1
を全面的に覆う酸化膜を堆積させる。そして、この酸化
膜上にシリコン基板1とは逆導電型、すなわちN型の不
純物であるリンなどを含むポリシリコン膜を堆積させ、
かつこのポリシリコン膜上に酸化膜を堆積させた後、図
4(a)で示すように、これらをパターニングすることに
よってトランジスタのゲート酸化膜2,ゲート電極3、
上敷酸化膜4を形成する。さらに、これらをマスクとし
てリンなどの不純物をシリコン基板1中にイオン注入す
ることにより、トランジスタのソース・ドレイン(以
下、S/D略称する)領域となる濃度の低い不純物拡散
領域6を形成する(図4(b))。
In FIG. 4, first, a silicon substrate 1 of, for example, P type as one conductivity type is prepared.
An oxide film covering the entire surface is deposited. Then, on the oxide film, a polysilicon film containing phosphorus or the like having an opposite conductivity type to the silicon substrate 1, that is, N type impurities is deposited.
Moreover, after depositing an oxide film on this polysilicon film, as shown in FIG. 4A, by patterning these, the gate oxide film 2, the gate electrode 3 of the transistor,
The overlay oxide film 4 is formed. Further, impurities such as phosphorus are ion-implanted into the silicon substrate 1 using these as a mask to form a low-concentration impurity diffusion region 6 serving as a source / drain (hereinafter abbreviated as S / D) region of the transistor ( Figure 4 (b)).

【0004】その後、図4(c)で示すように、シリコン
基板全面にわたって酸化膜を堆積させたうえ、異方性エ
ッチングによって選択的にパターニングしてサイドウォ
ール5を形成した後、シリコン基板1中にイオン注入す
ることにより、トランジスタのS/D領域となる濃度の
濃い不純物拡散領域7を形成する。その結果、図3で示
したようなLDD構造をもつMOSトランジスタが完成
することになる。
After that, as shown in FIG. 4 (c), an oxide film is deposited over the entire surface of the silicon substrate, and then selectively patterned by anisotropic etching to form sidewalls 5. Is ion-implanted to form a high-concentration impurity diffusion region 7 to be the S / D region of the transistor. As a result, the MOS transistor having the LDD structure as shown in FIG. 3 is completed.

【0005】[0005]

【発明が解決しようとする課題】しかし、このような従
来例のMOSトランジスタにおいては、高集積化の要求
からトランジスタのゲート長を短くした場合、MOSト
ランジスタの短チャネル化現象と呼ばれるしきい値電圧
thの低下,S/D間耐圧の低下を引き起こし、MOS
トランジスタとして正常な動作が行えなくなるという問
題点があった。
However, in such a conventional MOS transistor, when the gate length of the transistor is shortened due to the demand for high integration, a threshold voltage called a short channel phenomenon of the MOS transistor is obtained. V th and S / D breakdown voltage are reduced, and
There is a problem that the transistor cannot operate normally.

【0006】本発明は上記のような問題点を解消するた
めになされたもので、トランジスタの寸法が小さくなっ
ても、短チャネル現象を抑制して信頼性を向上させたM
OSトランジスタとその製造方法を提供することを目的
としている。
The present invention has been made in order to solve the above-mentioned problems, and even if the size of the transistor is reduced, the short channel phenomenon is suppressed and the reliability is improved.
It is an object to provide an OS transistor and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明にかかるMOSトランジスタは、一導電型
の半導体基板上に写真製版技術を用いてチャネル用の溝
を堀り、その溝上にゲート絶縁膜を介してゲート電極を
形成して、このゲート電極をマスクとして自己整合的に
ソース・ドレイン領域を形成することにより、ゲートの
マスク寸法より長いチャネル長をもつトランジスタを形
成することを特徴とする。
In order to achieve the above object, a MOS transistor according to the present invention has a groove for a channel formed on a semiconductor substrate of one conductivity type by using a photoengraving technique, and the groove is formed on the groove. It is possible to form a transistor having a channel length longer than the mask size of the gate by forming a gate electrode via a gate insulating film and forming a source / drain region in a self-aligned manner using this gate electrode as a mask. Characterize.

【0008】また、本発明にかかるMOSトランジスタ
の製造方法は、一導電型の半導体基板上に写真製版技術
によってチャネル用の溝を掘り、その溝上に下地のゲー
ト絶縁膜を介してゲート電極を形成したのち、このゲー
ト電極をマスクとして自己整合的にソース・ドレイン領
域をを形成する工程を含むことを特徴としている。
Further, in the method of manufacturing a MOS transistor according to the present invention, a channel groove is formed on a semiconductor substrate of one conductivity type by a photolithography technique, and a gate electrode is formed on the groove via a base gate insulating film. After that, the method is characterized by including a step of forming source / drain regions in a self-aligned manner using the gate electrode as a mask.

【0009】[0009]

【作用】本発明においては、MOSトランジスタのチャ
ネルは半導体基板上の溝に沿って形成されるために、S
/D拡散層間の距離よりも長いチャネル長を有するMO
Sトランジスタを形成することが可能となり、短チャネ
ル現象を抑制することができる。
In the present invention, since the channel of the MOS transistor is formed along the groove on the semiconductor substrate, S
MO with channel length longer than the distance between the / D diffusion layers
It becomes possible to form an S transistor and suppress the short channel phenomenon.

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は本発明によるMOSトランジスタの一実施
例を示す構造断面図であり、図2はその製造方法の手順
を示す工程断面図である。図1における符号11はシリ
コン基板、12はゲート酸化膜、13はゲート電極、1
4は上敷酸化膜、15,16はそれぞれシリコン基板1
1と逆導電型の低濃度の不純物拡散領域,高濃度の不純
物拡散領域、17はシリコン基板11上のチャネル用溝
である。
Embodiments of the present invention will be described below with reference to the drawings. 1 is a structural sectional view showing an embodiment of a MOS transistor according to the present invention, and FIG. 2 is a process sectional view showing a procedure of a manufacturing method thereof. In FIG. 1, reference numeral 11 is a silicon substrate, 12 is a gate oxide film, 13 is a gate electrode, 1
4 is an overlay oxide film, and 15 and 16 are silicon substrates 1 respectively.
A low-concentration impurity diffusion region having a conductivity type opposite to that of 1 and a high-concentration impurity diffusion region, and 17 are channel grooves on the silicon substrate 11.

【0011】すなわち、本実施例のMOSトランジスタ
は、例えばP型のシリコン基板11上に、通常の写真製
版技術を用いてトランジスタのチャネルとなるべき凹型
溝17を形成し、この溝17内にそれを埋め込むように
ゲート酸化膜12とゲート電極13および上敷酸化膜1
4を順次積層して形成する。そして、この上敷酸化膜1
4を含むゲート電極13をマスクとして自己整合的にN
型の不純物をイオン注入してS/Dとなる濃度の低い不
純物拡散領域15と高濃度の不純物拡散領域16を順次
積層形成して、図1に示すような2重拡散構造もつMO
Sトランジスタを形成したものである。
That is, in the MOS transistor of this embodiment, a concave groove 17 to be a channel of the transistor is formed on a P-type silicon substrate 11 by using an ordinary photolithography technique, and the groove 17 is formed in the groove 17. Oxide film 12, gate electrode 13 and overlay oxide film 1 so that
4 are sequentially laminated and formed. And this overlay oxide film 1
N in a self-aligned manner using the gate electrode 13 containing 4 as a mask.
Type impurities are ion-implanted to form an S / D low-concentration impurity diffusion region 15 and a high-concentration impurity diffusion region 16 which are sequentially laminated to form a MO having a double diffusion structure as shown in FIG.
The S transistor is formed.

【0012】次に、本実施例のMOSトランジスタの製
造方法を図2に基づいて説明する。まず、P型のリコン
基板11を用意し、通常の写真製版技術を用いてMOS
トランジスタのチャネルとなる部分に凹型の溝17を掘
る(図2(a))。そしてこの溝17を含むシリコン基板
11上の全面にわたって第1の酸化膜,N型のポリシリ
コン,第2の酸化膜を順次堆積させたうえ、それらをパ
ターニングすることにより、凹型溝17上にゲート酸化
膜12,ゲート電極13,上敷酸化膜14を形成する
(図2(b))。
Next, a method of manufacturing the MOS transistor of this embodiment will be described with reference to FIG. First, a P-type recon substrate 11 is prepared, and a MOS is formed by using an ordinary photoengraving technique.
A concave groove 17 is dug in a portion which will be a channel of the transistor (FIG. 2 (a)). Then, a first oxide film, N-type polysilicon, and a second oxide film are sequentially deposited over the entire surface of the silicon substrate 11 including the groove 17, and then they are patterned to form a gate on the concave groove 17. An oxide film 12, a gate electrode 13, and an overlay oxide film 14 are formed (FIG. 2 (b)).

【0013】さらに、これらをマスクとしてリンなどの
N型不純物をシリコン基板11中にイオン注入して濃度
の低い不純物拡散領域15を形成し、続いてヒ素などの
不純物を注入して高濃度の不純物拡散領域16を形成す
ることにより(図2(c))、図1に示すような2重拡散
構造のS/DをもつMOSトランジスタが完成する。
Further, N-type impurities such as phosphorus are ion-implanted into the silicon substrate 11 using these as a mask to form a low-concentration impurity diffusion region 15, and then impurities such as arsenic are injected to highly-concentrate impurities. By forming the diffusion region 16 (FIG. 2 (c)), a MOS transistor having a double diffusion structure S / D as shown in FIG. 1 is completed.

【0014】このように上記実施例のMOSトランジス
タによると、シリコン基板11上にチャネル用の凹型溝
17を設け、その溝17にゲート酸化膜12とゲート電
極13および上敷酸化膜14を形成することにより、ゲ
ートのパターニング時の寸法より長いチャネルのMOS
トランジスタを得ることができる。そのため、短チャネ
ル効果を抑制できる。また、S/D拡散層が低濃度の不
純物拡散領域15と高濃度の不純物拡散領域16との2
重拡散構造を有しているので、そのドレイン付近の電界
強度をさらに緩和することができる。
As described above, according to the MOS transistor of the above-described embodiment, the concave groove 17 for the channel is provided on the silicon substrate 11, and the gate oxide film 12, the gate electrode 13, and the overlay oxide film 14 are formed in the groove 17. Allows the MOS of the channel longer than the dimension when the gate is patterned.
A transistor can be obtained. Therefore, the short channel effect can be suppressed. In addition, the S / D diffusion layer is composed of a low-concentration impurity diffusion region 15 and a high-concentration impurity diffusion region 16.
Since it has a heavy diffusion structure, the electric field strength near the drain can be further relaxed.

【0015】[0015]

【発明の効果】以上説明したように本発明によれば、シ
リコンなどの半導体基板上にチャネル用の溝を掘り、そ
の溝の上部にゲート絶縁膜を介してゲート電極を形成し
て、MOSトランジスタのチャネル領域を平面的なもの
から立体的なものになるようにしたので、ゲート電極を
パターニングする時のマスクの寸法よりも長いチャネル
を持ったMOSトランジスタを形成することが可能とな
り、MOSトランジスタの短チャネル現象を抑制するこ
とができる。そのため、Vth劣化を防止できるととも
に、S/D間耐圧の向上がはかれ、MOSデバイスの信
頼性向上に優れた効果がある。
As described above, according to the present invention, a trench for a channel is formed on a semiconductor substrate such as silicon, and a gate electrode is formed above the trench through a gate insulating film to form a MOS transistor. Since the channel region of is changed from a planar one to a three-dimensional one, it becomes possible to form a MOS transistor having a channel longer than the size of the mask when patterning the gate electrode. The short channel phenomenon can be suppressed. Therefore, Vth deterioration can be prevented, and the S / D breakdown voltage can be improved, which is an excellent effect in improving the reliability of the MOS device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるMOSトランジスタの一実施例を
示す断面図である。
FIG. 1 is a sectional view showing an embodiment of a MOS transistor according to the present invention.

【図2】その製造方法の手順を示す工程断面図である。FIG. 2 is a process sectional view showing a procedure of the manufacturing method.

【図3】従来例によるMOSトランジスタの構造を示す
断面図である。
FIG. 3 is a sectional view showing the structure of a conventional MOS transistor.

【図4】その製造方法の手順を示す工程断面図である。FIG. 4 is a process cross-sectional view showing the procedure of the manufacturing method.

【符号の説明】[Explanation of symbols]

11 シリコン基板 12 ゲート酸化膜 13 ゲート電極 14 上敷酸化膜 15 低濃度の不純物拡散領域 16 高濃度の不純物拡散領域 17 シリコン基板上のチャネル用溝 11 Silicon substrate 12 Gate oxide film 13 Gate electrode 14 Overlay oxide film 15 Low concentration impurity diffusion region 16 High concentration impurity diffusion region 17 Channel groove on silicon substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一導電型の半導体基板上に写真製版技術
を用いて形成されたチャネル用の溝と、この溝にその溝
を埋めるようにゲート絶縁膜を介して形成されたゲート
電極と、このゲート電極をマスクとして半導体基板上に
自己整合的に形成されたソース・ドレイン領域とを備え
たこを特徴とする電界効果型トランジスタ。
1. A groove for a channel formed on a semiconductor substrate of one conductivity type by using a photoengraving technique, and a gate electrode formed in the groove via a gate insulating film so as to fill the groove. A field effect transistor, comprising: a source / drain region formed in a self-aligned manner on a semiconductor substrate using the gate electrode as a mask.
【請求項2】 一導電型の半導体基板上に写真製版技術
によってトランジスタのチャネルとなるべき溝を形成す
る工程と、この溝の形成された半導体基板上に絶縁膜,
ゲート用ポリシリコン膜を順次堆積してパターニングし
たうえ、該半導体基板上の溝の上部にのみゲート絶縁膜
を介してゲート電極を形成する工程と、このゲート電極
をマスクとして半導体基板上に自己整合的にソース・ド
レイン領域を形成する工程とを含むことを特徴とする電
界効果型トランジスタの製造方法。
2. A step of forming a groove to be a channel of a transistor by a photolithography technique on a semiconductor substrate of one conductivity type, and an insulating film on the semiconductor substrate in which the groove is formed,
A step of sequentially depositing and patterning a polysilicon film for a gate, and then forming a gate electrode only above a groove on the semiconductor substrate via a gate insulating film; and using this gate electrode as a mask, self-alignment on the semiconductor substrate And a step of selectively forming a source / drain region.
JP17088291A 1991-07-11 1991-07-11 Field effect type transistor and its manufacture Pending JPH0521789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17088291A JPH0521789A (en) 1991-07-11 1991-07-11 Field effect type transistor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17088291A JPH0521789A (en) 1991-07-11 1991-07-11 Field effect type transistor and its manufacture

Publications (1)

Publication Number Publication Date
JPH0521789A true JPH0521789A (en) 1993-01-29

Family

ID=15913065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17088291A Pending JPH0521789A (en) 1991-07-11 1991-07-11 Field effect type transistor and its manufacture

Country Status (1)

Country Link
JP (1) JPH0521789A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479041A (en) * 1994-06-13 1995-12-26 United Microelectronics Corporation Non-trenched buried contact for VLSI devices
US6130454A (en) * 1998-07-07 2000-10-10 Advanced Micro Devices, Inc. Gate conductor formed within a trench bounded by slanted sidewalls
US6140677A (en) * 1998-06-26 2000-10-31 Advanced Micro Devices, Inc. Semiconductor topography for a high speed MOSFET having an ultra narrow gate
US6800899B2 (en) * 2001-08-30 2004-10-05 Micron Technology, Inc. Vertical transistors, electrical devices containing a vertical transistor, and computer systems containing a vertical transistor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479041A (en) * 1994-06-13 1995-12-26 United Microelectronics Corporation Non-trenched buried contact for VLSI devices
US6140677A (en) * 1998-06-26 2000-10-31 Advanced Micro Devices, Inc. Semiconductor topography for a high speed MOSFET having an ultra narrow gate
US6130454A (en) * 1998-07-07 2000-10-10 Advanced Micro Devices, Inc. Gate conductor formed within a trench bounded by slanted sidewalls
US6800899B2 (en) * 2001-08-30 2004-10-05 Micron Technology, Inc. Vertical transistors, electrical devices containing a vertical transistor, and computer systems containing a vertical transistor
US7041556B2 (en) 2001-08-30 2006-05-09 Micron Technology, Inc. Vertical transistor and method of making
US7355244B2 (en) 2001-08-30 2008-04-08 Micron Technology, Inc. Electrical devices with multi-walled recesses

Similar Documents

Publication Publication Date Title
US6551870B1 (en) Method of fabricating ultra shallow junction CMOS transistors with nitride disposable spacer
JP2897004B2 (en) CMOSFET manufacturing method
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
JPH11121739A (en) Semiconductor device and manufacture thereof
JPH0557741B2 (en)
JPH0521789A (en) Field effect type transistor and its manufacture
JPS62155565A (en) Insulated-gate field effect transistor and manufacture thereof
KR100353402B1 (en) Method of fabricating a semiconductor device
KR100390907B1 (en) Method for manufacturing of semiconductor device
US5920784A (en) Method for manufacturing a buried transistor
JPS6025028B2 (en) Manufacturing method of semiconductor device
JPH02196434A (en) Manufacture of mos transistor
KR100415191B1 (en) Method for fabricating asymmetric cmos transistor
JP3394562B2 (en) MOSFET manufacturing method
JPH07106557A (en) Semiconductor device and manufacture of the same
JPS61210673A (en) Mis type semiconductor device
WO2022133652A1 (en) Field effect-transistor and manufacturing method therefor
JP2856603B2 (en) Method for manufacturing semiconductor device
JPS63305566A (en) Semiconductor device and manufacture thereof
JP2602589B2 (en) Method for manufacturing LDD transistor
JP3274254B2 (en) Semiconductor device and manufacturing method thereof
JP2001060686A (en) Ldmos type semiconductor device and manufacture thereof
JPS6039868A (en) Manufacture of semiconductor device
KR100214077B1 (en) Mosfet and method for fabricating the same
JPH11233774A (en) Thin film transistor and its manufacture