JP2602589B2 - Method for manufacturing LDD transistor - Google Patents

Method for manufacturing LDD transistor

Info

Publication number
JP2602589B2
JP2602589B2 JP3158627A JP15862791A JP2602589B2 JP 2602589 B2 JP2602589 B2 JP 2602589B2 JP 3158627 A JP3158627 A JP 3158627A JP 15862791 A JP15862791 A JP 15862791A JP 2602589 B2 JP2602589 B2 JP 2602589B2
Authority
JP
Japan
Prior art keywords
film
forming
polycrystalline silicon
impurity layer
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3158627A
Other languages
Japanese (ja)
Other versions
JPH04233238A (en
Inventor
政 錫 丘
Original Assignee
エル・ジー・セミコン・カンパニー・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エル・ジー・セミコン・カンパニー・リミテッド filed Critical エル・ジー・セミコン・カンパニー・リミテッド
Publication of JPH04233238A publication Critical patent/JPH04233238A/en
Application granted granted Critical
Publication of JP2602589B2 publication Critical patent/JP2602589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • H01L29/41783Raised source or drain electrodes self aligned with the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66492Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a pocket or a lightly doped drain selectively formed at the side of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はLDD(ライトリー ド
ープト ドレイン(ightly oped
ain))トランジスタの製造方法に関し、特に接合容
量及びボデーエフェクト並びに短チャネル効果を減少す
るのに適したLDDトランジスタの製造方法に関する。
BACKGROUND OF THE INVENTION This invention is LDD (lightly doped drain (L ightly D oped D r
It relates to a manufacturing method of ain)) transistor capacitor, a method of manufacturing a LDD transistor motor particularly suitable to reduce the junction capacitance and the body effect and the short channel effect.

【0002】[0002]

【従来の技術】従来のLDDトランジスタの構造を図8
及び図9に示す。
2. Description of the Related Art The structure of a conventional LDD transistor is shown in FIG.
And FIG.

【0003】図8は、従来のLDDトランジスタの第1
の例を示す断面図である。このトランジスタを作製する
には、まず、P型シリコン基板1上にゲート酸化膜3を
形成し、その上に多結晶シリコンを堆積してゲート電極
4を形成する。次に、シリコン基板1に硼素と燐をそれ
ぞれイオン注入して、P型不純物層6とN型低濃度不純
物層7を形成する。次に、酸化膜を堆積した後、リアク
ティブ イオン エッチングを行ってゲート電極4の両
側に側壁酸化膜11を形成し、その後、シリコン基板1
に砒素をイオン注入してN型高濃度不純物層8を形成し
て作製する。
FIG. 8 shows a first example of a conventional LDD transistor.
It is sectional drawing which shows the example of. To manufacture this transistor, first, a gate oxide film 3 is formed on a P-type silicon substrate 1, and polycrystalline silicon is deposited thereon to form a gate electrode 4. Next, boron and phosphorus are ion-implanted into the silicon substrate 1 to form a P-type impurity layer 6 and an N-type low concentration impurity layer 7. Next, after depositing an oxide film, reactive ion etching is performed to form sidewall oxide films 11 on both sides of the gate electrode 4.
Then, arsenic is ion-implanted to form an N-type high-concentration impurity layer 8.

【0004】図9は、従来のLDDトランジスタの第2
の例を示す断面図である。このトランジスタを作製する
には、まず、P型シリコン基板1にマスクを用いてチャ
ネル部分のみに硼素イオンを注入してP型不純物層12
を形成した後、半導体基板1上にゲート酸化膜3を形成
し、その上に多結晶シリコンを堆積してゲート電極4を
形成する。次に、シリコン基板1に燐をイオン注入して
N型低濃度不純物層7を形成し、次に、酸化膜を堆積し
た後、リアクティブ イオン エッチングを実施してゲ
ート電極4の両側に側壁酸化膜11を形成し、その後、
P型シリコン基板1に砒素をイオン注入してN型高濃度
不純物層8を形成して作製する。
FIG. 9 shows a second conventional LDD transistor.
It is sectional drawing which shows the example of. In order to fabricate this transistor, first, boron ions are implanted only into the channel portion of the P-type silicon substrate 1 using a mask to form the P-type impurity layer 12.
Is formed, a gate oxide film 3 is formed on the semiconductor substrate 1, and polycrystalline silicon is deposited thereon to form a gate electrode 4. Next, phosphorus is ion-implanted into the silicon substrate 1 to form an N-type low-concentration impurity layer 7, then, after depositing an oxide film, reactive ion etching is performed to oxidize the sidewalls on both sides of the gate electrode 4. After forming the film 11,
Arsenic is ion-implanted into a P-type silicon substrate 1 to form an N-type high-concentration impurity layer 8 for fabrication.

【0005】[0005]

【発明が解決しようとする課題】このような従来のLD
Dトランジスタにおいては、トランジスタを微細化する
に従って短チャネル効果が生じ、パンチスルーを起こし
やすくなる。これを改善するために、図8に示すよう
に、ソース・ドレイン領域であるN型低濃度不純物層
7、N型高濃度不純物層8の周辺にP型不純物層6を設
けるか、図9に示すように、チャネル部分にP型不純物
層12を設ける方法がある。
SUMMARY OF THE INVENTION Such a conventional LD
In a D transistor, as the transistor is miniaturized, a short channel effect occurs, and punch-through easily occurs. In order to improve this, as shown in FIG. 8, a P-type impurity layer 6 is provided around the N-type low-concentration impurity layer 7 and the N-type high-concentration impurity layer 8 which are source / drain regions, or FIG. As shown, there is a method of providing a P-type impurity layer 12 in a channel portion.

【0006】しかし、P型不純物層6を設ける場合に
は、P型不純物層6の存在によって、N型高濃度不純物
層8とP型基板1間の接合容量が増加するという問題が
ある。
However, when the P-type impurity layer 6 is provided, there is a problem that the presence of the P-type impurity layer 6 increases the junction capacitance between the N-type high-concentration impurity layer 8 and the P-type substrate 1.

【0007】一方、チャネル部分にP型不純物層12を
設ける場合には、閾値電圧Vtには限度があるので、不
純物の濃度を高めるのに限度がある。更に、適当な閾値
電圧Vtを維持するとしても、ボデーエフェクト(Bo
dy Effect:バックバイアスによる閾値電圧V
tの変化)が大きくなるという問題がある。
On the other hand, when the P-type impurity layer 12 is provided in the channel portion, the threshold voltage Vt has a limit, so that there is a limit in increasing the impurity concentration. Further, even if an appropriate threshold voltage Vt is maintained, the body effect (Bo
dy Effect: threshold voltage V due to back bias
(change in t) becomes large.

【0008】本発明の目的は、ソース・ドレイン領域と
基板間の接合容量を減少するとともに、ボデーエフェク
トおよび短チャネル効果を減らして、動作速度を向上し
たLDDトランジスタの製造方法を提供することにあ
る。
An object of the present invention is to reduce the junction capacitance between the source and drain regions and the substrate, to reduce the body effect and the short-channel effect, to provide a manufacturing method of the LDD transistor capacitor with improved operating speed is there.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明のLDDトランジスタの製造方法は、第1導
電型の半導体基板上にフィールド酸化膜を形成する工程
と、上記半導体基板上に第1多結晶シリコン膜、窒化
膜、第2多結晶シリコン膜からなる積層体を選択的に形
成する工程と、上記積層体の側壁に側壁酸化膜を形成す
る工程と、上記工程を経た上記半導体基板上に第3多結
晶シリコン膜を形成した後、該第3多結晶シリコン膜に
不純物をドープする工程と、上記積層体上から上記フィ
ールド酸化膜上に至る部分を残して、上記第3多結晶シ
リコン膜を除去する工程と、上記工程を経た上記半導体
基板上をホトレジスト膜で覆い、上記第3多結晶シリコ
ン膜の頂部が露出するまでエッチバックする工程と、上
記窒化膜が露出するまで上記第3多結晶シリコン膜と上
記第2多結晶シリコン膜とをエッチングする工程と、上
記側壁酸化膜をエッチングにより除去する工程と、上記
ホトレジスト膜を除去した後、上記側壁酸化膜があった
箇所の上記半導体基板に不純物をドープして、第1導電
型不純物層と、上記第1導電型と逆の導電型の第2導電
型低濃度不純物層とをそれぞれ形成する工程と、上記工
程を経た上記半導体基板上に絶縁膜を形成した後、熱処
理を行って、ドーピングされた上記第3多結晶シリコン
膜から不純物を拡散させて上記半導体基板に第2導電型
高濃度不純物層を形成する工程と、上記第3多結晶シリ
コン膜上にコンタクト孔を設け、そこに導電膜を堆積し
て電気的接続をとる工程とを含むことを特徴とする。
[Means for Solving the Problems] In order to achieve the above purpose
According to the method of manufacturing an LDD transistor of the present invention , a field oxide film is formed on a semiconductor substrate of a first conductivity type, and a first polysilicon film, a nitride film, and a second polysilicon film are formed on the semiconductor substrate. Selectively forming a film stack, forming a side wall oxide film on the side wall of the stack, forming a third polycrystalline silicon film on the semiconductor substrate after the above steps, Doping the third polycrystalline silicon film with an impurity, removing the third polycrystalline silicon film while leaving a portion extending from above the stacked body to above the field oxide film; Covering the substrate with a photoresist film and etching back until the top of the third polycrystalline silicon film is exposed; and etching the third polycrystalline silicon film and the second polycrystalline silicon until the nitride film is exposed. Etching the film, removing the sidewall oxide film by etching, removing the photoresist film, and then doping impurities into the semiconductor substrate where the sidewall oxide film was located, thereby forming a first conductive film. Forming a second impurity layer and a second conductivity type low-concentration impurity layer having a conductivity type opposite to the first conductivity type, and forming an insulating film on the semiconductor substrate having undergone the above-described process. Forming a second conductivity type high concentration impurity layer in the semiconductor substrate by diffusing impurities from the doped third polycrystalline silicon film; and providing a contact hole on the third polycrystalline silicon film. And depositing a conductive film thereon to establish an electrical connection.

【0010】この場合、上記第3多結晶シリコンにドー
プする不純物として燐または砒素を用いることを特徴と
する。
In this case, phosphorus or arsenic is used as an impurity to be doped into the third polycrystalline silicon.

【0011】またこの場合、上記第1導電型不純物層を
形成するための不純物として硼素またはBF2を用いる
ことを特徴とする。
In this case, boron or BF 2 is used as an impurity for forming the first conductivity type impurity layer.

【0012】[0012]

【作用】第1導電型高濃度不純物層が、ゲートに隣接す
る部分にのみ存在するので、ソース・ドレイン領域と基
板間の接合容量が減少するとともに、ボデーエフェクト
が減少する。
Since the first conductivity type high-concentration impurity layer exists only in the portion adjacent to the gate, the junction capacitance between the source / drain region and the substrate is reduced, and the body effect is reduced.

【0013】第2導電型高濃度不純物層の上面に接して
多結晶シリコン膜が設けられており、該多結晶シリコン
膜の上面に接して導電膜が設けられているので、半導体
基板の第2導電型高濃度不純物領域と多結晶シリコン膜
との間、及び、該多結晶シリコン膜と導電膜との間の電
気的接続が形成される。
A polycrystalline silicon film is provided in contact with the upper surface of the second conductivity type high concentration impurity layer, and a conductive film is provided in contact with the upper surface of the polycrystalline silicon film. An electrical connection is formed between the conductive high-concentration impurity region and the polycrystalline silicon film, and between the polycrystalline silicon film and the conductive film.

【0014】また、第2導電型高濃度不純物層の上面に
接して多結晶シリコン膜が設けられているので、多結晶
シリコン膜と接続するための導電膜形成に際し、多結晶
シリコン膜との接続が良好になされるように導電膜をア
ライメントすることが可能となる。
Further, since the polycrystalline silicon film is provided in contact with the upper surface of the second-conductivity-type high-concentration impurity layer, when forming the conductive film for connecting to the polycrystalline silicon film, the polycrystalline silicon film is connected to the polycrystalline silicon film. It is possible to align the conductive film so that the satisfactorily performed.

【0015】第2導電型高濃度不純物層は、半導体基板
の表面に直接接して形成されている多結晶シリコン膜か
ら不純物を拡散させて形成するので、その形成が容易で
あり、かつ、第2導電型低濃度不純物層の厚さよりも薄
く形成することが可能である。
The second-conductivity-type high-concentration impurity layer is formed by diffusing impurities from a polycrystalline silicon film formed directly in contact with the surface of the semiconductor substrate. It can be formed thinner than the thickness of the conductive type low concentration impurity layer.

【0016】また、第2導電型高濃度不純物層の厚さ
を、第2導電型低濃度不純物層の厚さよりも薄くするこ
とにより短チャンネル効果が減少する。
Further, the short channel effect is reduced by making the thickness of the second conductivity type high concentration impurity layer smaller than the thickness of the second conductivity type low concentration impurity layer.

【0017】[0017]

【実施例】本実施例の一実施例であるLDDトランジス
タの製造工程断面図を図1〜図7に示し、その製造方法
及び構造を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 to 7 are cross-sectional views showing a manufacturing process of an LDD transistor according to an embodiment of the present invention, and a manufacturing method and a structure thereof will be described.

【0018】図1に示すように、P型シリコン基板1上
に窒化膜13を堆積した後、マスクを用いてフィールド
酸化膜2を形成する部分の窒化膜13をエッチングによ
り除去し、その場所にフィールド酸化膜2を形成する。
As shown in FIG. 1, after a nitride film 13 is deposited on a P-type silicon substrate 1, a portion of the nitride film 13 where a field oxide film 2 is to be formed is removed by etching using a mask. A field oxide film 2 is formed.

【0019】次に、図2に示すように、窒化膜13を除
去した後、ゲート酸化膜3を形成し、その上に、第1
結晶シリコン膜4a、窒化膜14、及び、第2多結晶シ
リコン膜4bを順次堆積し、マスクを用いてパターニン
グして積層体を形成する。
Next, as shown in FIG. 2, after the nitride film 13 is removed, a gate oxide film 3 is formed, on which a first polysilicon film 4a, a nitride film 14, and a second polysilicon film 14 are formed. A crystalline silicon film 4b is sequentially deposited and patterned using a mask to form a laminate.

【0020】次に、図3に示すように、公知の方法によ
り、上記積層体の両側に側壁酸化膜11を形成した後、
ドーピングしてない第3多結晶シリコン膜5を堆積し、
その後、例えば砒素または燐のような不純物を第3多結
晶シリコン膜5にイオン注入する。
Next, as shown in FIG. 3, after a sidewall oxide film 11 is formed on both sides of the laminate by a known method,
Depositing an undoped third polycrystalline silicon film 5,
After that, an impurity such as arsenic or phosphorus is ion-implanted into the third polysilicon film 5.

【0021】次に、図4に示すように、マスクを用い
て、上記積層体上からフィールド酸化膜2に至る部分を
残して、第3多結晶シリコン膜5を除去し、次に、ホト
レジスト膜15で覆った後、第3多結晶シリコン膜5が
現われるまでエッチバックして平坦化する。
Next, as shown in FIG. 4, the third polycrystalline silicon film 5 is removed by using a mask, leaving a portion extending from the above-mentioned laminate to the field oxide film 2, and then a photoresist film is formed. After covering with 15, the third polycrystalline silicon film 5 is flattened by etching back until it appears.

【0022】次に、図5に示すように、窒化膜14が現
われるまで第2多結晶シリコン膜4bと、第3多結晶シ
リコン膜5の一部とを、エッチングして除去する。
Next, as shown in FIG. 5, the second polysilicon film 4b and a part of the third polysilicon film 5 are removed by etching until the nitride film 14 appears.

【0023】次に、図6に示すように、側壁酸化膜11
をエッチングして除去し、ホトレジスト膜15を除去し
た後、側壁酸化膜11があった箇所のシリコン基板1
に、例えば硼素またはBF2のような不純物をイオン注
入してP型不純物層6を形成したうえで、砒素または燐
のような不純物をイオン注入してN型低濃度不純物層7
を形成する。
Next, as shown in FIG.
Is removed by etching, and the photoresist film 15 is removed.
Then, an impurity such as boron or BF 2 is ion-implanted to form a P-type impurity layer 6, and then an impurity such as arsenic or phosphorus is ion-implanted to form an N-type low-concentration impurity layer 7.
To form

【0024】次に、図7に示すように、SOG、BPS
G等からなる絶縁膜9を形成し、熱処理を行って、第3
多結晶シリコン膜5から不純物を拡散させ、N型低濃度
不純物層7よりも厚さが薄いN型高濃度不純物層8を形
成する。次に、第3多結晶シリコン膜5の上の絶縁膜9
の部分にコンタクト孔を設け、そこに導電膜10を堆積
して電気的接続をとり、LDDトランジスタを形成す
る。
Next, as shown in FIG.
An insulating film 9 made of G or the like is formed, and heat treatment is performed .
Impurities are diffused from the polycrystalline silicon film 5 to form an N-type high-concentration impurity layer 8 thinner than the N-type low-concentration impurity layer 7. Next, the insulating film 9 on the third polycrystalline silicon film 5
Is provided with a contact hole, and a conductive film 10 is deposited there to make an electrical connection to form an LDD transistor.

【0025】上記のように作製したLDDトランジスタ
においては、高濃度のP型不純物層6が、ゲート電極で
ある第1多結晶シリコン膜4aに隣接する部分にのみ存
在するので、ソース・ドレイン領域であるN型高濃度不
純物層8と基板1間の接合容量を減少するとともに、ボ
デーエフェクトが減少する。また、N型高濃度不純物層
8の厚さが、N型低濃度不純物層7の厚さよりも薄いの
で、短チャネル効果が減少する。
In the LDD transistor manufactured as described above, the high-concentration P-type impurity layer 6 exists only in the portion adjacent to the first polycrystalline silicon film 4a serving as the gate electrode. The junction capacitance between a certain N-type high-concentration impurity layer 8 and the substrate 1 is reduced, and the body effect is reduced. Further, since the thickness of the N-type high-concentration impurity layer 8 is smaller than the thickness of the N-type low-concentration impurity layer 7, the short channel effect is reduced.

【0026】[0026]

【発明の効果】以上説明したように、本発明のLDDト
ランジスタの製造方法によれば、ソース・ドレイン領域
と基板間の接合容量の減少、ボデーエフェクトの減少
短チャネル効果の減少が可能となり、トランジスタの動
作特性の向上と、チップの動作速度の向上が可能となる
という効果が有る。
As described above, the LDD transistor of the present invention
According to the method of manufacturing a transistor, the junction capacitance between the source / drain region and the substrate is reduced , the body effect is reduced ,
Short-channel effects can be reduced, and the operating characteristics of transistors and the operating speed of chips can be improved.
There is an effect that.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例であるLDDトランジスタの
製造工程を説明するための半導体装置の製造工程断面図
である。
1 is a manufacturing process sectional views of a semiconductor device for explaining a higher manufacturing processes of the LDD transistor which is one embodiment of the present invention.

【図2】本発明の一実施例であるLDDトランジスタの
製造工程を説明するための半導体装置の製造工程断面図
である。
2 is a manufacturing process sectional views of a semiconductor device for explaining a higher manufacturing processes of the LDD transistor which is one embodiment of the present invention.

【図3】本発明の一実施例であるLDDトランジスタの
製造工程を説明するための半導体装置の製造工程断面図
である。
3 is a manufacturing process sectional views of a semiconductor device for explaining a higher manufacturing processes of the LDD transistor which is one embodiment of the present invention.

【図4】本発明の一実施例であるLDDトランジスタの
製造工程を説明するための半導体装置の製造工程断面図
である。
4 is a manufacturing process sectional views of a semiconductor device for explaining a higher manufacturing processes of the LDD transistor which is one embodiment of the present invention.

【図5】本発明の一実施例であるLDDトランジスタの
製造工程を説明するための半導体装置の製造工程断面図
である。
5 is a manufacturing process sectional views of a semiconductor device for explaining a higher manufacturing processes of the LDD transistor which is one embodiment of the present invention.

【図6】本発明の一実施例であるLDDトランジスタの
製造工程を説明するための半導体装置の製造工程断面図
である。
6 is a manufacturing process sectional views of a semiconductor device for explaining a higher manufacturing processes of the LDD transistor which is one embodiment of the present invention.

【図7】本発明の一実施例であるLDDトランジスタの
製造工程を説明するための半導体装置の製造工程断面図
である。
7 is a manufacturing process sectional views of a semiconductor device for explaining a higher manufacturing processes of the LDD transistor which is one embodiment of the present invention.

【図8】従来のLDDトランジスタの断面図の第1例で
ある。
FIG. 8 is a first example of a sectional view of a conventional LDD transistor.

【図9】従来のLDDトランジスタの断面図の第2例で
ある。
FIG. 9 is a second example of a sectional view of a conventional LDD transistor.

【符号の説明】[Explanation of symbols]

1 P型シリコン基板 2 フィールド酸化膜 3 ゲート酸化膜 4 ゲート電極 4a 第1多結晶シリコン膜 4b 第2多結晶シリコン膜 5 第3多結晶シリコン膜 6 P型不純物層 7 N型低濃度不純物層 8 N型高濃度不純物層 9 絶縁膜 10 導電膜 11 側壁酸化膜 12 P型不純物層 13,14 窒化膜 15 トレジスト膜Reference Signs List 1 P-type silicon substrate 2 Field oxide film 3 Gate oxide film 4 Gate electrode 4 a First polycrystalline silicon film 4 b Second polycrystalline silicon film 5 Third polycrystalline silicon film 6 P-type impurity layer 7 N-type low-concentration impurity layer 8 N-type high concentration impurity layer 9 insulating film 10 conductive film 11 sidewall oxide film 12 P-type impurity layers 13, 14 nitride film 15 e Torejisuto film

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1導電型半導体基板上にフィールド酸化
膜を形成する工程と、上記半導体基板上に第1多結晶シ
リコン膜、窒化膜、第2多結晶シリコン膜からなる積層
体を選択的に形成する工程と、上記積層体の側面に側壁
酸化膜を形成する工程と、上記工程を経た上記半導体基
板上に第3多結晶シリコン膜を形成した後、該第3多結
晶シリコン膜に不純物をドープする工程と、上記積層体
から上記フィールド酸化膜上に至る部分を残して、上記
第3多結晶シリコン膜を除去する工程と、上記工程を経
た上記半導体基板上をホトレジスト膜で覆い、上記第3
多結晶シリコン膜の頂部が露出するまでエッチバックす
る工程と、上記窒化膜が露出するまで上記第3多結晶シ
リコン膜と上記第2多結晶シリコン膜とをエッチングす
る工程と、上記側壁酸化膜をエッチングにより除去する
工程と、上記ホトレジスト膜を除去した後、上記側壁酸
化膜があった箇所の上記半導体基板に不純物をドープし
て、第1導電型不純物層と、上記第1導電型と逆の導電
型の第2導電型低濃度不純物層とをそれぞれ形成する工
程と、上記工程を経た上記半導体基板上に絶縁膜を形成
した後、熱処理を行って、ドーピングされた上記第3多
結晶シリコン膜から不純物を拡散させて上記半導体基板
に第2導電型高濃度不純物層を形成する工程と、上記第
3多結晶シリコン膜上にコンタクト孔を設け、そこに導
電膜を堆積して電気的接続をとる工程とを含むことを特
徴とするLDDトランジスタの製造方法。
A step of forming a field oxide film on a semiconductor substrate of a first conductivity type, and selectively forming a laminate of a first polysilicon film, a nitride film and a second polysilicon film on the semiconductor substrate. Forming a sidewall oxide film on the side surface of the stacked body, forming a third polysilicon film on the semiconductor substrate after the above-described process, and then adding an impurity to the third polysilicon film. Doping, removing the third polycrystalline silicon film while leaving a portion from the laminate to the field oxide film, and covering the semiconductor substrate after the above process with a photoresist film, Third
Etching back until the top of the polycrystalline silicon film is exposed; etching the third polycrystalline silicon film and the second polycrystalline silicon film until the nitride film is exposed; Removing the photoresist film by etching, and after removing the photoresist film, doping impurities into the semiconductor substrate where the side wall oxide film was located, thereby forming a first conductivity type impurity layer and a first conductivity type opposite to the first conductivity type. Forming a second conductive type low-concentration impurity layer of a conductive type, forming an insulating film on the semiconductor substrate having undergone the above-described process, and then performing a heat treatment on the doped third polycrystalline silicon film. Forming a second-conductivity-type high-concentration impurity layer on the semiconductor substrate by diffusing impurities from the substrate; and forming a contact hole on the third polycrystalline silicon film, and depositing a conductive film on the contact hole. Method for producing a LDD transistor which comprises the step of taking a connection.
【請求項2】上記第3多結晶シリコンにドープする不純
物として燐または砒素を用いることを特徴とする請求項
記載のLDDトランジスタの製造方法。
2. A claim which comprises using the phosphorus or arsenic as an impurity doped in the third polysilicon
2. The method for manufacturing an LDD transistor according to item 1 .
【請求項3】上記第1導電型不純物層を形成するための
不純物として硼素またはBF2を用いることを特徴とす
請求項1記載のLDDトランジスタの製造方法。
3. The process for producing an LDD transistor according to claim 1, wherein the use of boron or BF 2 as an impurity for forming the first conductive type impurity layer.
JP3158627A 1990-06-30 1991-06-28 Method for manufacturing LDD transistor Expired - Fee Related JP2602589B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019900009896A KR930011031B1 (en) 1990-06-30 1990-06-30 Ldd structure and manufacturing method thereof
KR90-9896 1990-06-30

Publications (2)

Publication Number Publication Date
JPH04233238A JPH04233238A (en) 1992-08-21
JP2602589B2 true JP2602589B2 (en) 1997-04-23

Family

ID=19300752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3158627A Expired - Fee Related JP2602589B2 (en) 1990-06-30 1991-06-28 Method for manufacturing LDD transistor

Country Status (3)

Country Link
JP (1) JP2602589B2 (en)
KR (1) KR930011031B1 (en)
DE (1) DE4121456C2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010000789A (en) * 2000-10-19 2001-01-05 김주연 Manufacturing Method of Elvan Contain Synthesize Resin Molding

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4442589A (en) * 1981-03-05 1984-04-17 International Business Machines Corporation Method for manufacturing field effect transistors
EP0071335B1 (en) * 1981-07-27 1986-10-15 Xerox Corporation Field effect transistor
EP0083447B1 (en) * 1981-12-30 1989-04-26 Thomson Components-Mostek Corporation Triple diffused short channel device structure
JPS60263468A (en) * 1984-06-12 1985-12-26 Toshiba Corp Manufacture of semiconductor device
US4697198A (en) * 1984-08-22 1987-09-29 Hitachi, Ltd. MOSFET which reduces the short-channel effect
EP0227971A1 (en) * 1985-12-17 1987-07-08 Siemens Aktiengesellschaft MOS transistor with a short gate for highly integrated circuits, and method for its production
DE3737144A1 (en) * 1986-11-10 1988-05-11 Hewlett Packard Co Metal-oxide semiconductor field-effect transistor (MOSFET) and method for producing it

Also Published As

Publication number Publication date
JPH04233238A (en) 1992-08-21
KR920001743A (en) 1992-01-30
KR930011031B1 (en) 1993-11-19
DE4121456C2 (en) 1996-08-29
DE4121456A1 (en) 1992-01-09

Similar Documents

Publication Publication Date Title
US5489546A (en) Method of forming CMOS devices using independent thickness spacers in a split-polysilicon DRAM process
US5714393A (en) Diode-connected semiconductor device and method of manufacture
US7285449B2 (en) Semiconductor device manufacture method including process of implanting impurity into gate electrode independently from source /drain and semiconductor device manufactured by the method
JPH0697190A (en) Manufacture of mos transistor
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
JP2602589B2 (en) Method for manufacturing LDD transistor
US5920784A (en) Method for manufacturing a buried transistor
KR0170515B1 (en) A semiconductor device with a gold structure and a method of fabricating the same
JPH07130834A (en) Semiconductor device and manufacture thereof
KR950001152B1 (en) Semiconductor device and manufacturing method thereof
KR100247694B1 (en) Method for fabricating semiconductor device
JPH0521789A (en) Field effect type transistor and its manufacture
KR0165421B1 (en) Process of fabricating mos transistor
KR100202194B1 (en) Method of manufacturing semiconductor device
KR100188093B1 (en) High speed bicmos transistor and manufactruing method thereof
KR100247813B1 (en) Semiconductor device and method for manufacturing the same
JP3848782B2 (en) Manufacturing method of semiconductor device
JPH0536716A (en) Semiconductor device and its manufacture
JP2001127291A (en) Semiconductor device and its manufacturing method
KR100216320B1 (en) Method for fabricating mosfet
KR100365416B1 (en) Method for manufacturing semiconductor device
KR100388218B1 (en) Method of fabricating a semiconductor device
JPH0438834A (en) Manufacture of mos transistor
JPH07106569A (en) Semiconductor device and its manufacture
JPS63150965A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees