JP2596117B2 - Method for manufacturing semiconductor integrated circuit - Google Patents

Method for manufacturing semiconductor integrated circuit

Info

Publication number
JP2596117B2
JP2596117B2 JP1057513A JP5751389A JP2596117B2 JP 2596117 B2 JP2596117 B2 JP 2596117B2 JP 1057513 A JP1057513 A JP 1057513A JP 5751389 A JP5751389 A JP 5751389A JP 2596117 B2 JP2596117 B2 JP 2596117B2
Authority
JP
Japan
Prior art keywords
region
impurity concentration
insulating film
type fet
concentration region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1057513A
Other languages
Japanese (ja)
Other versions
JPH02237037A (en
Inventor
康夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1057513A priority Critical patent/JP2596117B2/en
Publication of JPH02237037A publication Critical patent/JPH02237037A/en
Application granted granted Critical
Publication of JP2596117B2 publication Critical patent/JP2596117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ソース・ドレイン拡散層領域がチャネル形
成領域に近接した低不純物濃度領域とそれ以外の高不純
物濃度領域とからなるMIS型電界効果トランジスタ(FE
T)を含む半導体集積回路の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an MIS field effect in which a source / drain diffusion layer region is composed of a low impurity concentration region close to a channel formation region and a high impurity concentration region other than the low impurity concentration region. Transistor (FE
The present invention relates to a method for manufacturing a semiconductor integrated circuit including T).

〔従来の技術〕[Conventional technology]

MIS型FETの高耐圧化を目的として、ソース・ドレイン
拡散層領域のチャネル形成領域側端部に、同一の導電型
で比較的低不純物濃度の拡散層領域を設けた構造が現在
広く用いられている。第2図(a)〜(e)にそのよう
な構造のMOS型FETの製造方法におけるソース・ドレイン
領域への不純物導入方法を示す。まずP型シリコン基板
1上にゲート酸化膜2を介して形成された多結晶シリコ
ンゲート電極3をマスクとして、1×1013/cm2程度の低
ドーズ量でりん4のイオン注入を行う(第2図
(a))。次に、ゲート電極3およびソース・ドレイン
拡散層において低不純物濃度領域とするべき領域をフォ
トレジスト膜5で覆った後(第2図(b))、今度は5
×1015/cm2程度の高ドーズ量で再びりんのイオン注入を
行う(第2図(c))。次にフォトレジスト膜5を除去
したのち(第2図(d))、熱処理を行うことにより、
低不純物濃度および高不純物濃度のN型拡散領域6,7を
もつ高耐圧構造MOS型FETのソース・ドレイン拡散層領域
を形成する(第2図(e))。以上の工程によって形成
されたソース・ドレイン低不純物濃度拡散層6を含むMO
S型FETを用いれば、通常のMOS型FETと比較してドレイン
拡散層での電界集中が緩和されるため、ソース・ドレイ
ン間耐圧が向上する。
In order to increase the breakdown voltage of MIS type FETs, a structure in which a diffusion layer region of the same conductivity type and a relatively low impurity concentration is provided at the end of the source / drain diffusion layer region on the channel formation region side is widely used at present. I have. 2 (a) to 2 (e) show a method of introducing impurities into the source / drain regions in a method of manufacturing a MOS FET having such a structure. First, phosphorus 4 is ion-implanted at a low dose of about 1 × 10 13 / cm 2 using a polycrystalline silicon gate electrode 3 formed on a P-type silicon substrate 1 via a gate oxide film 2 as a mask. FIG. 2 (a)). Next, after a region to be a low impurity concentration region in the gate electrode 3 and the source / drain diffusion layers is covered with the photoresist film 5 (FIG. 2B), the region
Phosphorus ion implantation is performed again at a high dose of about × 10 15 / cm 2 (FIG. 2C). Next, after the photoresist film 5 is removed (FIG. 2 (d)), a heat treatment is performed.
A source / drain diffusion layer region of a high breakdown voltage structure MOS type FET having low impurity concentration and high impurity concentration N-type diffusion regions 6 and 7 is formed (FIG. 2E). MO including source / drain low impurity concentration diffusion layer 6 formed by the above steps
When the S-type FET is used, the electric field concentration in the drain diffusion layer is reduced as compared with a normal MOS-type FET, so that the withstand voltage between the source and the drain is improved.

ところで、近年の半導体集積回路装置においては、上
記のような高耐圧化を目的としたMIS型FETと、高速,高
集積化を目的とした微細なMIS型FETとを同一の基板上に
集積する技術が重要となっている。しかし、高速,高集
積化を目的としたFETと高耐圧化を目的としたFETとを同
一基板上に集積する場合、以下の問題点を克服する必要
がある。すなわち、高速,高集積化を目的としたFETは
比較的ゲート絶縁膜厚を薄くする必要があり、高耐圧化
を目的としたFETは比較的厚くすることが必要である。
ところが、従来の半導体装置においては、上記2種類の
FETを同一のゲート誘電膜上に作成していたため、高
速,高集積化と高耐圧化を同時に満足することは極めて
困難であった。そこで、この問題点を克服するための手
段として、同一基板上に2種類以上の膜厚のゲート誘電
膜を備えた構造の半導体装置が本出願人の特許出願にか
かる特願昭63−201473号明細書に記載されている。第3
図(a)〜(d)にこのような半導体装置におけるゲー
ト酸化膜形成工程の一例を示し、以下にその工程を説明
する。まず、通常の選択酸化法により素子領域以外のP
型Si基板1上にフィールド酸化膜8を形成した後、素子
領域に残された酸化膜を除去する(第3図(a))。次
いで乾燥酸素中の熱処理により、素子領域を含むウエハ
全面に1800Åのゲート酸化膜2を形成する(第3図
(b))。次に、高耐圧NチャネルMOS型FETを形成する
方の素子領域以外の部分をフォトレジスト膜5で覆った
後、前記素子領域部分のゲート酸化膜2をふっ酸による
ウェットエッチングにより除去する(第3図(c))。
その後、前記フォトレジスト膜5をO2プラズマによるレ
ジスト灰化により除去した後、乾燥酸素中の熱処理によ
り今度は素子領域を含むウエハ全面に400Åの厚さのゲ
ート酸化膜を形成する。以上の工程により高耐圧N型FE
Tの素子領域には2000Åの厚さのゲート酸化膜21,高集
積,高速N型FETの素子領域には400Åの厚さのゲート酸
化膜22を得ることができる(第3図(d))。
By the way, in a recent semiconductor integrated circuit device, the MIS type FET for the purpose of high breakdown voltage and the fine MIS type FET for the purpose of high speed and high integration are integrated on the same substrate. Technology is important. However, when integrating an FET for high speed and high integration and an FET for high breakdown voltage on the same substrate, it is necessary to overcome the following problems. That is, the FET for high speed and high integration needs to have a relatively thin gate insulating film, and the FET for high breakdown voltage needs to be relatively thick.
However, in the conventional semiconductor device, the above two types of
Since the FETs were formed on the same gate dielectric film, it was extremely difficult to satisfy high speed, high integration, and high breakdown voltage simultaneously. Therefore, as a means for overcoming this problem, a semiconductor device having a structure having two or more gate dielectric films on the same substrate is disclosed in Japanese Patent Application No. 63-201473, filed by the present applicant. It is described in the specification. Third
FIGS. 1A to 1D show an example of a gate oxide film forming process in such a semiconductor device, and the process will be described below. First, by a normal selective oxidation method, P
After forming the field oxide film 8 on the mold Si substrate 1, the oxide film left in the element region is removed (FIG. 3A). Next, a 1800 ° gate oxide film 2 is formed on the entire surface of the wafer including the element region by heat treatment in dry oxygen (FIG. 3B). Next, after a portion other than the element region where the high breakdown voltage N-channel MOS type FET is formed is covered with a photoresist film 5, the gate oxide film 2 in the element region is removed by wet etching with hydrofluoric acid. FIG. 3 (c)).
Thereafter, the photoresist film 5 is removed by ashing with O 2 plasma, and then a gate oxide film having a thickness of 400 ° is formed on the entire surface of the wafer including the element region by heat treatment in dry oxygen. With the above process, high breakdown voltage N-type FE
In the element region of T, a gate oxide film 21 having a thickness of 2000 mm can be obtained, and in the device region of a highly integrated, high-speed N-type FET, a gate oxide film 22 having a thickness of 400 mm can be obtained (FIG. 3D). .

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

第2図および第3図に示した製造方法は、それぞれ高
耐圧化を目的としたMIS型FETと、高速,高集積化を目的
としたMIS型FETとを同一基板上に作成することに適した
製造方法であり、両方の製造方法を組合わせることによ
って高耐圧MIS型FETと高速,高集積MIS型FETを同一基板
上に作成でき、しかもゲート絶縁膜厚を高耐圧FETでは
厚くし、高速,高集積FETでは薄くすることができる。
ところが、これらの製造方法を単純に組合わせた場合、
それぞれの目的に対応して追加された工程数は、単純に
加算されることになり、従来の標準的なMIS型FETの製造
工程に比べ非常に多くなってしまうという欠点があっ
た。
The manufacturing method shown in FIG. 2 and FIG. 3 is suitable for producing, on the same substrate, an MIS type FET for high breakdown voltage and an MIS type FET for high speed and high integration. By combining both manufacturing methods, a high-breakdown-voltage MIS type FET and a high-speed, high-integration MIS-type FET can be fabricated on the same substrate. In addition, the thickness can be reduced in a highly integrated FET.
However, when these manufacturing methods are simply combined,
The number of steps added corresponding to each purpose is simply added, and there is a drawback that the number of steps is much larger than that of a conventional standard MIS type FET manufacturing process.

本発明の目的は、高耐圧MIS型FETが異なる種類のMIS
型FETと同一半導体基板に集積する場合でも工程数が少
ない半導体集積回路の製造方法を提供することにある。
An object of the present invention is to provide a high-breakdown-voltage MIS type FET in which different types of MIS are used.
It is an object of the present invention to provide a method of manufacturing a semiconductor integrated circuit having a small number of steps even when integrated on the same semiconductor substrate as a type FET.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的の達成のために、本発明は、ソース・ドレ
イン拡散層領域がチャネル形成領域に近接した低不純物
濃度領域とそれ以外の高不純物濃度領域とからなる高耐
圧MIS型FETおよびソース・ドレイン拡散領域が高不純物
濃度領域のみからなる高速・高集積MIS型FETを含む半導
体集積回路の製造方法において、前記両FETのソース・
ドレイン領域を形成する領域上部全表面に絶縁膜を形成
し、前記両FETの高不純物濃度領域を形成する領域上部
の絶縁膜を除去し、再度全面に絶縁膜を形成して低不純
物濃度領域を形成する領域上部の膜厚の厚いゲート絶縁
膜と高不純物濃度領域を形成する領域上部の膜厚の薄い
ゲート絶縁膜との2種類の膜厚のゲート絶縁膜を形成
し、前記厚いゲート絶縁膜上に高耐圧MIS型FETのゲート
電極を,前記薄い絶縁膜上に高速・高集積MIS型FETのゲ
ート電極を形成し、これら両FETのゲート絶縁膜とゲー
ト電極とをそれぞれマスクにしてイオン注入を行い、前
記高耐圧MIS型FETの低不純物濃度領域と高不純物濃度領
域および高速・高集積MIS型FETの高不純物濃度領域を同
時に形成するものとする。
In order to achieve the above object, the present invention provides a high-breakdown-voltage MIS-type FET and a source / drain in which a source / drain diffusion layer region includes a low impurity concentration region close to a channel formation region and another high impurity concentration region. In a method of manufacturing a semiconductor integrated circuit including a high-speed and highly integrated MIS type FET in which a diffusion region includes only a high impurity concentration region,
An insulating film is formed on the entire surface above the region where the drain region is formed, the insulating film above the region where the high impurity concentration regions of both FETs are formed is removed, and an insulating film is formed again over the entire surface to form a low impurity concentration region. Forming two types of gate insulating films, a thick gate insulating film above a region to be formed and a thin gate insulating film above a region to form a high impurity concentration region; A gate electrode of a high-breakdown-voltage MIS type FET is formed thereon, and a gate electrode of a high-speed and highly-integrated MIS type FET is formed on the thin insulating film. To form simultaneously the low impurity concentration region and the high impurity concentration region of the high breakdown voltage MIS type FET and the high impurity concentration region of the high speed and high integration MIS type FET.

〔作用〕[Action]

ゲート絶縁膜の異なる領域上にイオン注入で不純物導
入を行うことにより、一度だけのイオン注入により2種
類の不純物濃度をもった拡散層領域を形成することがで
き、これにより高耐圧化を目的としたMIS型FETのソース
・ドレイン拡散層の不純物濃度領域および高不純物濃度
領域が、例えば高速,高集積化を目的としたMIS型FETの
ソース・ドレイン拡散層と同一工程で同一半導体基板に
形成できるので、工程数を低減することができる。
By introducing impurities by ion implantation on different regions of the gate insulating film, it is possible to form a diffusion layer region having two types of impurity concentrations by ion implantation only once, thereby achieving a high breakdown voltage. The impurity concentration region and the high impurity concentration region of the source / drain diffusion layer of the MIS type FET can be formed on the same semiconductor substrate in the same process as the source / drain diffusion layer of the MIS type FET for high speed and high integration, for example. Therefore, the number of steps can be reduced.

〔実施例〕〔Example〕

第1図(a)〜(e)は本発明の一実施例における製
造工程を高耐圧MOS型FETの部分について各図の左側に、
同一基板上の高速,高集積MOS型FETについて各図の右側
にそれぞれ示したものであり、第2図,第3図と共通の
部分には同一の符号が付されている。まず第3図に示し
た方法と同様に1800Åのゲート酸化膜2をP型Si基板上
全面に形成し(第1図(a))、その酸化膜の選択エッ
チングと乾燥酸素中の熱処理により2種類の膜厚のゲー
ト酸化膜21,22を形成する(第1図(b))。この際、
高耐圧MOS型FETにおいては低不純物濃度拡散層を作成す
る領域上のゲート酸化膜22の厚さは2000Å、高不純物濃
度拡散層を作成する領域上のゲート酸化膜21の厚さは40
0Åとする。また高速,高集積MOS型FETにおいては膜厚4
00Åのゲート酸化膜21を形成する。次に多結晶シリコン
によってゲート電極3を形成したのち(第1図
(c))、ゲート電極3をマスクとして自己整合的にり
ん4のイオン注入を行う(第1図(d))。このときの
イオン注入条件は、P31 +イオンを用いて加速電圧90keV,
ドーズ量3.5×1015/cm2である。この際P型シリコン基
板に到達するP31 +イオンの量は、その基板表面にあるゲ
ート酸化膜厚に依存し、ゲート酸化膜厚が厚いほどシリ
コン基板に到達するP31 +イオンの量は少ない。従って窒
素雰囲気中で熱処理を行い、P31 +イオンを拡散・活性化
してN型拡散層を形成した場合(第1図(e))、膜厚
2000Åのゲート酸化膜22の下の拡散層はN型低不純物濃
度拡散層のソース・ドレイン領域6、膜厚400Åのゲー
ト酸化膜21の下の拡散層は、N型高不純物濃度拡散層の
ソース・ドレイン領域7となる。上記拡散層の農度分布
を第4図,第5図に示す。第4図はN型高不純物濃度拡
散層7の濃度分布、第5図はN型低不純物濃度拡散層6
の濃度分布となっている。両図において線11がN型、線
12がP型の濃度分布である。この図からわかるように、
N型高不純物濃度拡散層7は高速,高集積FETを駆動さ
せるのに適した濃度分布となっており、またN型低不純
物濃度拡散層6は高耐圧FETにおいてドレイン部電界集
中を緩和するのに十分な濃度分布となっている。
1 (a) to 1 (e) show the manufacturing process in one embodiment of the present invention for the high breakdown voltage MOS type FET on the left side of each drawing.
High-speed, highly-integrated MOS FETs on the same substrate are shown on the right side of each drawing, and the same reference numerals are given to the parts common to FIGS. 2 and 3. First, similarly to the method shown in FIG. 3, a gate oxide film 2 of 1800.degree. Is formed on the entire surface of the P-type Si substrate (FIG. 1 (a)), and the oxide film is selectively etched and heat-treated in dry oxygen. Gate oxide films 21 and 22 having various thicknesses are formed (FIG. 1B). On this occasion,
In the high breakdown voltage MOS type FET, the thickness of the gate oxide film 22 on the region where the low impurity concentration diffusion layer is formed is 2,000 mm, and the thickness of the gate oxide film 21 on the region where the high impurity concentration diffusion layer is formed is 40 μm.
0 °. For high-speed, highly integrated MOS type FETs,
A gate oxide film 21 of 00 ° is formed. Next, after the gate electrode 3 is formed of polycrystalline silicon (FIG. 1 (c)), ions of phosphorus 4 are implanted in a self-aligned manner using the gate electrode 3 as a mask (FIG. 1 (d)). The ion implantation conditions at this time are as follows: acceleration voltage 90 keV using P 31 + ions,
The dose amount is 3.5 × 10 15 / cm 2 . At this time, the amount of P 31 + ions reaching the P-type silicon substrate depends on the gate oxide film thickness on the surface of the substrate, and the larger the gate oxide film thickness, the smaller the amount of P 31 + ions reaching the silicon substrate. . Therefore, when heat treatment is performed in a nitrogen atmosphere to diffuse and activate P 31 + ions to form an N-type diffusion layer (FIG. 1E),
The diffusion layer under the gate oxide film 22 of 2000 mm is the source / drain region 6 of the N type low impurity concentration diffusion layer, and the diffusion layer under the gate oxide film 21 of 400 nm thickness is the source of the N type high impurity concentration diffusion layer. -It becomes the drain region 7. Fig. 4 and Fig. 5 show the agricultural degree distribution of the diffusion layer. FIG. 4 shows the concentration distribution of the N-type high impurity concentration diffusion layer 7, and FIG.
Concentration distribution. In both figures, line 11 is N-type, line
12 is the P type concentration distribution. As you can see from this figure,
The N-type high impurity concentration diffusion layer 7 has a concentration distribution suitable for driving a high-speed, highly integrated FET, and the N-type low impurity concentration diffusion layer 6 reduces the electric field concentration at the drain in a high breakdown voltage FET. The density distribution is sufficient.

以上の方法によれば、ゲート酸化膜厚を2種類、同一
基板上に作成する第3図に示した従来方法による製造工
程を全く変えずに、ゲート酸化膜厚をエッチングにより
2種類に分けるためのパターンの高耐圧MOS型FETにおけ
るソース・ドレイン部のみを変化させることによって、
第2図に示したような高耐圧FETを高速,高集積FETと同
一基板上に作成することができた。つまり第2図および
第3図における従来方法を組合わせた場合と比較して、
第2図における低不純物濃度拡散層形成工程、第2図
(a),(b)が省略できることになる。
According to the above method, the gate oxide film is divided into two types by etching without changing the manufacturing process of the conventional method shown in FIG. 3 in which two types of gate oxide films are formed on the same substrate. By changing only the source / drain part in the high voltage MOS type FET with the pattern
The high breakdown voltage FET as shown in FIG. 2 could be formed on the same substrate as the high-speed, highly integrated FET. That is, as compared with the case where the conventional method in FIGS. 2 and 3 is combined,
The steps of forming the low impurity concentration diffusion layer in FIG. 2 and FIGS. 2A and 2B can be omitted.

〔発明の効果〕〔The invention's effect〕

本発明によれば、高耐圧MIS型FETと高速,高集積MIS
型FETとの厚さの異なるゲート絶縁膜を同一基板上に形
成する既出願の方法に基づく工程を利用し、高耐圧MIS
型FETのソース・ドレイン部のゲート絶縁膜の膜厚を2
種類に分けるためのパターンを用意するのみで、1回の
イオン注入工程で高耐圧MIS型FETと、例えば高速,高集
積MIS型FETとのソース・ドレイン部が同時に形成でき、
高,低不純物濃度のソース・ドレイン拡散層領域を必要
とする高耐圧MIS型FETを含む半導体集積回路の製造の際
の工程数低減に極めて有効である。
According to the present invention, a high breakdown voltage MIS type FET and a high speed, highly integrated MIS
Utilizing a process based on the method of the patent application of forming a gate insulating film with a different thickness on the same substrate as the
The thickness of the gate insulating film at the source / drain of the FET is 2
The source / drain portions of the high-breakdown-voltage MIS type FET and, for example, a high-speed, high-integration MIS type FET can be formed simultaneously in a single ion implantation step only by preparing a pattern for dividing the type.
This is extremely effective in reducing the number of steps in the manufacture of a semiconductor integrated circuit including a high-breakdown-voltage MIS type FET requiring high and low impurity concentration source / drain diffusion layer regions.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)〜(e)は本発明の一実施例における製造
工程を高耐圧MOS型FETの部分について各図の左側に、高
速,高集積MOS型FETについて各図の右側にそれぞれ順次
示した断面図、第2図(a)〜(e)は従来の高耐圧MO
S型FETの製造工程を順次示す断面図、第3図(a)〜
(d)は同一半導体基板に2種類のゲート酸化膜を形成
する既出願の工程を順次示す断面図、第4図は本発明の
一実施例により形成された高不純物濃度N型拡散層の濃
度分布図、第5図は同じく低不純物濃度N型拡散層の濃
度分布図である。 1:P型シリコン基板、2:1800Åゲート酸化膜、21:400Å
ゲート酸化膜、22:2000Åゲート酸化膜、3:ゲート電
極、4:りんイオン、6:N型低不純物濃度ソース・ドレイ
ン拡散層、7:N型高不純物濃度ソース・ドレイン拡散
層。
1 (a) to 1 (e) show a manufacturing process in one embodiment of the present invention on the left side of each drawing for a high breakdown voltage MOS type FET portion, and on the right side of each drawing for a high speed and highly integrated MOS type FET, respectively. The cross-sectional views shown in FIGS. 2 (a) to 2 (e) show a conventional high breakdown voltage MO.
FIG. 3A to FIG. 3C are cross-sectional views sequentially showing the manufacturing process of the S-type FET.
FIG. 4D is a cross-sectional view sequentially showing the steps of a patent application for forming two types of gate oxide films on the same semiconductor substrate, and FIG. 4 is a graph showing the concentration of a high impurity concentration N-type diffusion layer formed according to an embodiment of the present invention. FIG. 5 is a distribution diagram of the low impurity concentration N-type diffusion layer. 1: P-type silicon substrate, 2: 1800Å gate oxide film, 21: 400Å
Gate oxide film, 22: 2000ÅGate oxide film, 3: Gate electrode, 4: Phosphorus ion, 6: N-type low impurity concentration source / drain diffusion layer, 7: N-type high impurity concentration source / drain diffusion layer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ソース・ドレイン拡散層領域がチャネル形
成領域に近接した低不純物濃度領域とそれ以外の高不純
物濃度領域とからなる高耐圧MIS型FETおよびソース・ド
レイン拡散領域が高不純物濃度領域のみからなる高速・
高集積MIS型FETを含む半導体集積回路の製造方法におい
て、前記両FETのソース・ドレイン領域を形成する領域
上部全表面に絶縁膜を形成し、前記両FETの高不純物濃
度領域を形成する領域上部の絶縁膜を除去し、再度全面
に絶縁膜を形成して低不純物濃度領域を形成する領域上
部の膜厚の厚いゲート絶縁膜と高不純物濃度領域を形成
する領域上部の膜厚の薄いゲート絶縁膜との2種類の膜
厚のゲート絶縁膜を形成し、前記厚いゲート絶縁膜上に
高耐圧MIS型FETのゲート電極を,前記薄いゲート絶縁膜
上に高速・高集積MIS型FETのゲート電極を形成し、これ
ら両FETのゲート絶縁膜とゲート電極とをそれぞれマス
クにしてイオン注入を行い、前記高耐圧MIS型FETの低不
純物濃度領域と高不純物濃度領域および高速・高集積MI
S型FETの高不純物濃度領域を同時に形成することを特徴
とする半導体集積回路の製造方法。
1. A high-breakdown-voltage MIS type FET in which a source / drain diffusion region is composed of a low impurity concentration region close to a channel formation region and another high impurity concentration region, and a source / drain diffusion region is only a high impurity concentration region. High speed
In a method of manufacturing a semiconductor integrated circuit including a highly integrated MIS type FET, an insulating film is formed on an entire surface of a region where source / drain regions of both FETs are formed, and a region above which a high impurity concentration region of both FETs is formed. The insulating film is removed and an insulating film is formed again on the entire surface to form a low impurity concentration region. A thick gate insulating film above a region where a high impurity concentration region is formed and a thin gate insulating film above a region where a high impurity concentration region is formed. A gate insulating film having two types of thicknesses is formed, and a gate electrode of a high-breakdown-voltage MIS type FET is formed on the thick gate insulating film, and a gate electrode of a high-speed and highly integrated MIS type FET is formed on the thin gate insulating film. Are formed, and ion implantation is performed using the gate insulating film and the gate electrode of these two FETs as masks, respectively, to form the low impurity concentration region and the high impurity concentration region and the high speed / high integration MI of the high breakdown voltage MIS type FET.
A method for manufacturing a semiconductor integrated circuit, comprising simultaneously forming a high impurity concentration region of an S-type FET.
JP1057513A 1989-03-09 1989-03-09 Method for manufacturing semiconductor integrated circuit Expired - Fee Related JP2596117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1057513A JP2596117B2 (en) 1989-03-09 1989-03-09 Method for manufacturing semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1057513A JP2596117B2 (en) 1989-03-09 1989-03-09 Method for manufacturing semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH02237037A JPH02237037A (en) 1990-09-19
JP2596117B2 true JP2596117B2 (en) 1997-04-02

Family

ID=13057818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1057513A Expired - Fee Related JP2596117B2 (en) 1989-03-09 1989-03-09 Method for manufacturing semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP2596117B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2564725B2 (en) * 1991-12-24 1996-12-18 株式会社半導体エネルギー研究所 Method of manufacturing MOS transistor
US6090646A (en) 1993-05-26 2000-07-18 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
TW344897B (en) * 1994-11-30 1998-11-11 At&T Tcorporation A process for forming gate oxides possessing different thicknesses on a semiconductor substrate
JPH08236771A (en) * 1996-03-22 1996-09-13 Semiconductor Energy Lab Co Ltd Mos-type transistor
KR100552296B1 (en) * 1998-11-04 2006-06-07 삼성전자주식회사 Manufacturing Method of Polycrystalline Silicon Thin Film Transistor Board
US6268251B1 (en) * 2000-07-12 2001-07-31 Chartered Semiconductor Manufacturing Inc. Method of forming MOS/CMOS devices with dual or triple gate oxide
JP5481526B2 (en) * 2012-06-13 2014-04-23 ラピスセミコンダクタ株式会社 High voltage field effect transistor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161870A (en) * 1983-03-07 1984-09-12 Oki Electric Ind Co Ltd Manufacture of semiconductor device
IT1191558B (en) * 1986-04-21 1988-03-23 Sgs Microelettronica Spa MOS TYPE INTEGRATED SEMICONDUCTOR DEVICE WITH NON-UNIFORM DOOR OXIDE THICKNESS AND ITS MANUFACTURING PROCEDURE
JPS63252459A (en) * 1987-04-09 1988-10-19 Seiko Epson Corp Semiconductor device

Also Published As

Publication number Publication date
JPH02237037A (en) 1990-09-19

Similar Documents

Publication Publication Date Title
JPH09102550A (en) Lddcmos formation
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
JPS63219152A (en) Manufacture of mos integrated circuit
JP2730535B2 (en) Method for manufacturing semiconductor device
JPH0345548B2 (en)
JP2003249567A (en) Semiconductor device
JPH056961A (en) Manufacture of semiconductor device
JPS6074663A (en) Manufacture of complementary type semiconductor device
JPS62190862A (en) Manufacture of complementary mos integrated circuit
JP3344162B2 (en) Method for manufacturing field effect semiconductor device
JPH02219237A (en) Mis type semiconductor device
JP3309529B2 (en) Method for manufacturing semiconductor device
JP3128481B2 (en) Method for manufacturing CMOS semiconductor device
JPS6286752A (en) Manufacture of semiconductor integrated circuit
JPH04368171A (en) Manufacture of bi-cmos integrated circuit
JPS61166154A (en) Manufacture of mis type semiconductor device
JPS6142171A (en) Manufacture of nonvolatile semiconductor memory device
JPH0737994A (en) Manufacture of semiconductor device
JPH0964361A (en) Manufacture of semiconductor device
JPH0231427A (en) Manufacture of semiconductor device
JPH0529340A (en) Manufacture of semiconductor device
JPH07135256A (en) Manufacture of semiconductor device
JPS61269358A (en) Semiconductor device and manufacture thereof
JPS6266678A (en) Manufacture of semiconductor device
JPH02155239A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees