JPS6266678A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6266678A
JPS6266678A JP20722285A JP20722285A JPS6266678A JP S6266678 A JPS6266678 A JP S6266678A JP 20722285 A JP20722285 A JP 20722285A JP 20722285 A JP20722285 A JP 20722285A JP S6266678 A JPS6266678 A JP S6266678A
Authority
JP
Japan
Prior art keywords
diffused region
type diffused
phosphorus
arsenic
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20722285A
Other languages
Japanese (ja)
Inventor
Mitsuhisa Watanabe
渡辺 光久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Device Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Microelectronics Corp filed Critical Toshiba Corp
Priority to JP20722285A priority Critical patent/JPS6266678A/en
Publication of JPS6266678A publication Critical patent/JPS6266678A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the steps and the manufacturing time of a semiconductor device by using two different impurities having large diffusion coefficient at the same temperature in a semiconductor substrate. CONSTITUTION:An element separating field oxide film 3, a gate oxide film 2 and a polycrystalline silicon gate 1 are formed on a semiconductor substrate 4. After a P<+> type diffused region is coated with a resist, phosphorus P<+> ions are implanted to form an N<-> type diffused region through a thin oxide film formed on source and drain forming regions, and a low density phosphorus-doped layer 13 is formed on the substrate 4, arsenic (As<+>) ions are similarly implanted through an oxide film 6 to form an N<+> type diffused region to form a high density arsenic-doped layer 14 in the vicinity of the surface of the substrate. Then, a heat treatment is executed to activate two impurities of phosphorus and arsenic having different diffusion coefficient, thereby simultaneously forming a high density N<-> type diffused region 15 and a high density N<+> type diffused region 16. Thereafter, a CVD film 10 is coated, a contacting hole 11 is opened, and a wiring pattern 12 is contacted therethrough with the N<+> type diffused region.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は半導体装置の製造方法に関するもので、特に2
重の濃度分布を持つ拡散層の形成に使用されるものであ
る。
Detailed Description of the Invention (Technical Field of the Invention) The present invention relates to a method for manufacturing a semiconductor device, and particularly relates to a method for manufacturing a semiconductor device.
It is used to form a diffusion layer with a heavy concentration distribution.

〔発明の技術的前日〕[Technical day before invention]

MO8型半導体装肖1は高耐圧化と微細化とが進んでお
り、これに伴うドレイン端での電界集中によるデバイス
の劣化を避けるため、ドレイン領t4端のチャネル領域
に従来のトレイン領域よりも低濃度の拡散領域を設けた
構造(以下GDD:Grade Disused Dr
ainという)が採用されている。
The MO8 type semiconductor device 1 is becoming more and more high-voltage and smaller, and in order to avoid deterioration of the device due to electric field concentration at the drain end, the channel region at the end of the drain region t4 is made larger than the conventional train region. A structure with a low concentration diffusion region (hereinafter referred to as GDD: Grade Disused Dr.
ain) has been adopted.

以下、第2図を参照して従来のGDD構造を持つ半導体
装置の製造方法を説明1“る。第2図は従来の製造方法
による工程別の素子断面を示したものである。まず、第
2図(A)に示すように半導体基板4の表面に、周知の
製造方法によりゲート酸化膜2、素子分離のためのフィ
ールド酸化膜3および多結晶シリコンゲート1を形成す
る。ついで第2図<8)に示すように、多結晶シリコン
ゲ−ト1とソースおよびドレイン予定領域とを酸化して
薄い酸化膜6を形成したのちに1図示しないp+拡散領
域をレジストで保護してn−拡散予定領域を形成するた
めにP 〈リン)のイオン注入をおこない、リンドープ
層5を形成づる。ついで第2図(C)に示すように、図
示しないレジストをいったん除去してN2雰囲気中でア
ニールし、ドープしたリン(P  )を活性化してn−
拡散領域7を形成する。
Hereinafter, a conventional method for manufacturing a semiconductor device having a GDD structure will be explained with reference to FIG. 2. FIG. As shown in FIG. 2(A), a gate oxide film 2, a field oxide film 3 for element isolation, and a polycrystalline silicon gate 1 are formed on the surface of a semiconductor substrate 4 by a well-known manufacturing method. As shown in 8), after oxidizing the polycrystalline silicon gate 1 and the planned source and drain regions to form a thin oxide film 6, the p+ diffusion region (not shown) is protected with a resist and the planned n- diffusion region is formed. In order to form phosphorus, ion implantation of P (phosphorus) is performed to form a phosphorus-doped layer 5.Then, as shown in FIG. Activates phosphorus (P) and converts it into n-
A diffusion region 7 is formed.

次に第2図(D)に示すように、同一の開口部+   
                  +からn 拡散
領域形成用のA  (ヒ素)のイオン注入をおこない、
ヒ素ドープ層8を形成する。
Next, as shown in FIG. 2(D), the same opening +
Perform ion implantation of A (arsenic) for forming + to n diffusion regions,
An arsenic doped layer 8 is formed.

このとき、図示しないp 拡散領域をレジストでカバー
するのは、第2図(B)に示すリンドープ層5の形成時
と同様である。ついでレジストを除去した後、N2また
は02′B囲気中で熱処理をおこなってドープしたヒ素
を活性化し、第2図(E)に示すようにn 拡散領域9
を形成する。後続の工程では、周知の製造方法によって
第2図(F)に示すようにCVD膜10を被着し、コン
タクトホール11を設ける。そして、このコンタクトホ
ール11を介して配線パターン12をn 拡散領1ii
t9と接触させ、半導体装置を完成させる。
At this time, the p 2 diffusion region (not shown) is covered with a resist, as in the case of forming the phosphorus-doped layer 5 shown in FIG. 2(B). After removing the resist, a heat treatment is performed in an N2 or 02'B atmosphere to activate the doped arsenic and form an n diffusion region 9 as shown in FIG. 2(E).
form. In the subsequent process, a CVD film 10 is deposited and a contact hole 11 is formed as shown in FIG. 2(F) by a well-known manufacturing method. Then, the wiring pattern 12 is connected to the n diffusion region 1ii through this contact hole 11.
t9 to complete the semiconductor device.

〔背景技術の問題点〕[Problems with background technology]

以上説明したように、GDD構造を有するMO8型トラ
ンジスタの製造工程においては、通常の工程に比較して
n−拡散領域とn 拡散領域とを形成する必要がある。
As explained above, in the manufacturing process of an MO8 type transistor having a GDD structure, it is necessary to form an n-diffusion region and an n-diffusion region, compared to a normal process.

このため同様な工程を繰り返しおこなう必要があり、従
って単一不純物をソース、ドレインに注入するデバイス
に比して工程が長くなるという欠点があった。
For this reason, it is necessary to repeat similar steps, which has the disadvantage that the steps are longer than devices in which a single impurity is implanted into the source and drain.

〔発明の目的〕[Purpose of the invention]

本発明゛は上記事情を考慮してなされたもので、GDD
eM造を有するMO8型半導体装置の製造工程の短縮を
図ることのできる半導体装置の製造方法を提供すること
を目的とする。
The present invention was made in consideration of the above circumstances, and the GDD
It is an object of the present invention to provide a method for manufacturing a semiconductor device that can shorten the manufacturing process of an MO8 type semiconductor device having an eM structure.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するため本発明は、半導体基板上の注
入阻止膜に設けた開口部を介して、半導体基板に対する
拡散係数が大きい第1の不純物を低濃度に注入すると共
に、拡散係数が小さい第2の不純物を同一の開口部を介
して高濃度に注入する第1の工程と、単一の熱処理を施
して2重の濃度分布を持つ拡散層を形成する第2の工程
とを有する半導体装置の製造方法を提供するものである
In order to achieve the above object, the present invention injects a first impurity having a large diffusion coefficient into the semiconductor substrate at a low concentration through an opening provided in an injection blocking film on the semiconductor substrate, and also implants a first impurity having a small diffusion coefficient into the semiconductor substrate. A semiconductor having a first step of implanting a second impurity at a high concentration through the same opening, and a second step of performing a single heat treatment to form a diffusion layer with a double concentration distribution. A method for manufacturing the device is provided.

〔発明の実施例〕[Embodiments of the invention]

以下第1図を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to FIG.

第1図は一実施例に係る製造方法を説明するための工程
別素子断面図である。なお第2図に示したものと同一部
分には同一符号を付し、その詳細説明は省略する。
FIG. 1 is a cross-sectional view of an element according to steps for explaining a manufacturing method according to an embodiment. Note that the same parts as shown in FIG. 2 are denoted by the same reference numerals, and detailed explanation thereof will be omitted.

第1図(A)に示す素子分離用のフィールド酸化膜3、
ゲート酸化plI!2、多結晶シリコンゲート1を半導
体基板4の表面に形成する工程は、第2図は(A)に示
す従来技術と同様である。第1図(B)に示すように、
図示しないp+拡散領域をレジストでカバーした後、ソ
ースおよびドレイン予定領域に形成された薄い酸化膜6
を介してn−拡散領域形成用にリン(P  )のイオン
注入をおこない、半導体基板4の表面に低濃度のリンド
ープ層13を形成する。
Field oxide film 3 for element isolation shown in FIG. 1(A),
Gate oxidation plI! 2. The process of forming the polycrystalline silicon gate 1 on the surface of the semiconductor substrate 4 is similar to the conventional technique shown in FIG. 2(A). As shown in Figure 1 (B),
After covering the p+ diffusion region (not shown) with resist, a thin oxide film 6 is formed in the source and drain regions.
Phosphorus (P) ions are implanted to form an n-diffusion region through the semiconductor substrate 4 to form a lightly doped phosphorus layer 13 on the surface of the semiconductor substrate 4.

ついで、同−開化部を介して同様にソースおよびドレイ
ン拡散領域予定部の薄い酸化F!6を介し+     
                   +てn 拡散
領域用にヒ素(A   >のイオン注入をおこない、高
濃度のヒ素ドープ層14を半導体基板4の表面近傍に形
成する。
Next, thinly oxidized F is applied to the planned source and drain diffusion regions via the same opening. via 6+
Ion implantation of arsenic (A>) is performed for the +tn diffusion region to form a highly concentrated arsenic doped layer 14 near the surface of the semiconductor substrate 4.

ついで第1図(C)に承りように、レジストを除去した
のちN2雰囲気で熱処理を施し、拡散係数の異なる2つ
の不純物リンおよびヒ素を活性化させ、低濃度のn−拡
散領域15と高濃度のn+拡散領1416とを同時に形
成させる。このようにすると、n+領域用のヒ素は拡散
係数が小さいためn+拡散領域16は浅く形成され、ま
たn−領域用のリンは拡散係数が大きいためn−拡散領
域15は深く形成される。以下周知の製造技術により、
第2図(D)に示すようにCVD1lul Oを被着し
たのち、コンタクトホール11を開孔し、このコンタク
トホール11を介して配線パターン12をn+拡散領域
と接触させ、素子を完成させる。
Next, as shown in FIG. 1(C), after removing the resist, heat treatment is performed in an N2 atmosphere to activate two impurities, phosphorus and arsenic, which have different diffusion coefficients, and form a low-concentration n-diffusion region 15 and a high-concentration n-diffusion region 15. n+ diffusion region 1416 is formed at the same time. In this way, arsenic for the n+ region has a small diffusion coefficient, so the n+ diffusion region 16 is formed shallowly, and phosphorus for the n- region has a large diffusion coefficient, so the n- diffusion region 15 is formed deeply. Using the following well-known manufacturing technology,
As shown in FIG. 2(D), after CVD lulO is deposited, a contact hole 11 is opened, and the wiring pattern 12 is brought into contact with the n+ diffusion region through the contact hole 11, thereby completing the device.

なお、上述した工程を採用する際には、リンのイオン注
入のための加速電圧をヒ素のイオン注入のための加速電
圧より低くし、かつリンの注入間をヒ素の注入mより、
低く押えることが望ましい。
In addition, when adopting the above-mentioned process, the acceleration voltage for ion implantation of phosphorus is lower than the acceleration voltage for implantation of arsenic ions, and the time between phosphorus implantations is lower than that of arsenic implantation m.
It is desirable to hold it low.

しかし、本発明はこれに限定されるものではなく、不純
物の拡散係数と拡散層の深さに応じて調整することもで
きる。
However, the present invention is not limited thereto, and can be adjusted depending on the diffusion coefficient of impurities and the depth of the diffusion layer.

このような条件により2つの不純物を同一の開口部を介
して注入し、1回の熱処理を施すことにより2重の濃度
分布を持つ拡散層を形成することができも。
Under these conditions, it is possible to form a diffusion layer with a double concentration distribution by injecting two impurities through the same opening and performing a single heat treatment.

以上説明した実施例では、半導体基板としてシリコンを
用い、2つの不純物としてそれぞれリンおよびヒ素を用
いたが、半導体基板に対して同一温度で拡散係数が大き
く異なる2つの不純物を用いることにより、シリコン以
外の半導体基板に対しても同様に適用することが可能で
ある。またヒ。
In the embodiments described above, silicon was used as the semiconductor substrate and phosphorus and arsenic were used as the two impurities, respectively. However, by using two impurities with significantly different diffusion coefficients at the same temperature for the semiconductor substrate, The present invention can be similarly applied to other semiconductor substrates. Hey again.

素の代りにアンチモン等も利用することができる。Antimony etc. can also be used instead of the raw material.

n型不純物だけでなくn型不純物についても適用できる
It can be applied not only to n-type impurities but also to n-type impurities.

〔発明の効果〕〔Effect of the invention〕

以上の通り本発明では、半導体基板に対する拡散係数が
大きい第1の不純物を低濃度で注入すると共に、拡散係
数が小さい第2の不純物を高ig1度で注入し、単一の
熱処理を施して2川の濃度分布を持つ拡散層を形成する
ようにしているので、GDD構造を有するMO8型半導
体装nの形成に当って工程の短縮と冒造時間の短縮が図
れる半導体5A直の製造方法が得られる。
As described above, in the present invention, a first impurity having a large diffusion coefficient into a semiconductor substrate is implanted at a low concentration, a second impurity having a small diffusion coefficient is implanted at a high ig of 1 degree, and a single heat treatment is performed. Since a diffusion layer having a concentration distribution of 300 nm is formed, a direct manufacturing method for semiconductor 5A can be obtained that can shorten the process and shorten the fabrication time when forming an MO8 type semiconductor device having a GDD structure. It will be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するための工程別素子
断面図、第2図は従来の製造方法を説明するための工程
別素子断面図である。 13・・・リンドープ層、14・・・ヒ素ドープ層、1
5°・・・n−拡散領域、16・・・n+拡散領域。 出願人代理人  佐  膝  −雄 第1図 第2図
FIG. 1 is a sectional view of an element according to steps for explaining an embodiment of the present invention, and FIG. 2 is a sectional view of an element according to steps for explaining a conventional manufacturing method. 13... Phosphorus doped layer, 14... Arsenic doped layer, 1
5°...n-diffusion region, 16...n+ diffusion region. Applicant's representative: Sa Hi-O Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、半導体基板上の注入阻止膜に設けた同一の開口部を
介して濃度の異なる2種類の不純物を拡散し、2重の濃
度分布を持つ拡散層を形成する半導体装置の製造方法に
おいて、 前記半導体基板に対する拡散係数が大きい第1の不純物
を前記開口部を介して低濃度に注入すると共に、拡散係
数が小さい第2の不純物を前記開口部を介して高濃度に
注入する第1の工程と、単一の熱処理を施して2重の濃
度分布を持つ前記拡散層を形成する第2の工程とを有す
ることを特徴とする半導体装置の製造方法。 2、前記半導体基板をシリコンとし、前記第1および第
2の不純物をそれぞれリンおよびヒ素とする特許請求の
範囲第1項記載の半導体装置の製造方法。
[Claims] 1. A semiconductor device in which two types of impurities with different concentrations are diffused through the same opening provided in an injection blocking film on a semiconductor substrate to form a diffusion layer with a double concentration distribution. In the manufacturing method, a first impurity having a large diffusion coefficient into the semiconductor substrate is implanted at a low concentration through the opening, and a second impurity having a small diffusion coefficient is implanted at a high concentration through the opening. and a second step of forming the diffusion layer having a double concentration distribution by performing a single heat treatment. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor substrate is silicon, and the first and second impurities are phosphorus and arsenic, respectively.
JP20722285A 1985-09-19 1985-09-19 Manufacture of semiconductor device Pending JPS6266678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20722285A JPS6266678A (en) 1985-09-19 1985-09-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20722285A JPS6266678A (en) 1985-09-19 1985-09-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6266678A true JPS6266678A (en) 1987-03-26

Family

ID=16536264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20722285A Pending JPS6266678A (en) 1985-09-19 1985-09-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6266678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453461A (en) * 1987-05-19 1989-03-01 Seiko Epson Corp Semiconductor device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453461A (en) * 1987-05-19 1989-03-01 Seiko Epson Corp Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
JPS61179567A (en) Manufacture of self-aligning laminated cmos structure
JPS62287670A (en) Manufacture of double diffusion metal oxide semiconductor transistor
JPS6016456A (en) Semiconductor device
JPS63219152A (en) Manufacture of mos integrated circuit
JPS63305546A (en) Manufacture of semiconductor integrated circuit device
JPH11191597A (en) Semiconductor device
JPS5843912B2 (en) Method for manufacturing semiconductor integrated circuit device
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
JPH0481866B2 (en)
JPS6266678A (en) Manufacture of semiconductor device
JP3097095B2 (en) Method for manufacturing semiconductor device
JPH0575041A (en) Cmos semiconductor device
JPH0316150A (en) Manufacture of semiconductor element
JPH0794721A (en) Semiconductor device and manufacture thereof
JPS61251166A (en) Manufacture of semiconductor device
JP3344162B2 (en) Method for manufacturing field effect semiconductor device
JP3309529B2 (en) Method for manufacturing semiconductor device
JPH02189965A (en) Manufacture of semiconductor device
JPS59231863A (en) Insulated gate semiconductor device and manufacture thereof
JPH0541516A (en) Semiconductor device and its manufacture
JP2774407B2 (en) Method for manufacturing semiconductor device
JPS6039868A (en) Manufacture of semiconductor device
JP2988067B2 (en) Manufacturing method of insulated field effect transistor
JP3848782B2 (en) Manufacturing method of semiconductor device
JPH0750306A (en) Manufacture of bipolar transistor