JPH0316150A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPH0316150A
JPH0316150A JP1025975A JP2597589A JPH0316150A JP H0316150 A JPH0316150 A JP H0316150A JP 1025975 A JP1025975 A JP 1025975A JP 2597589 A JP2597589 A JP 2597589A JP H0316150 A JPH0316150 A JP H0316150A
Authority
JP
Japan
Prior art keywords
forming
layer
oxide film
photosensitive material
areas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1025975A
Other languages
Japanese (ja)
Inventor
Chang-Won Kahng
カン チャン ウォン
Sung-Ki Min
ミン スン キ
Jong Mil Youn
ヨン ジョン ミル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JPH0316150A publication Critical patent/JPH0316150A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/74Making of localized buried regions, e.g. buried collector layers, internal connections substrate contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76294Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using selective deposition of single crystal silicon, i.e. SEG techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE: To prevent the effective areas of a semiconductor element, etc., from becoming smaller, by forming a pure oxide layer for insulation and selectively growing an epitaxial layer as an area layer for forming the semiconductor element, etc. CONSTITUTION: After a first photosensitive material 3 is applied to the surface of a formed oxide film layer 2 and a window 4 is formed for forming an effective area, the material 3 is removed. Then, a second photosensitive material 5 is applied to the entire surface and, after windows 6-9 for forming n<+> -type buried layers are developed by using a mask layer, the material 5 is partially removed. After the material 5 is removed, n<+> -type ion implanted areas 10-13 are formed by implanting ions and n<+> -type areas 14 are formed by activating the areas 10-13. Thereafter, oxide film layers formed on areas 15-20 are removed by thermal oxidation and a p-type epitaxial layer 21 is grown. Therefore, the effective area of a semiconductor element, etc., formed between oxide film layers 2 can be prevented from becoming smaller.

Description

【発明の詳細な説明】 本発明は半導体素子の製造方法に関するものであり、更
に詳しくは、半導体素子を製造する時に選択的エビタキ
シャルN戊長技法を使用してバイボーラ1・ランジスク
、NMOSトランジスタ、PMOSトランジスタ等を同
一のICチップ上に高密度に内蔵することができる半導
体素子の製造方法に関するものである.半導体の製造工
程が進行し、種々の層とパターンが形成されることによ
って、シリコン基板上に多数機種の素子等が形成される
が、複雑な回路を構或する場合には、もっと多い層とパ
ターンとが要求される。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more particularly, the present invention relates to a method for manufacturing a semiconductor device, and more particularly, a method for manufacturing a bibolar 1-Landisque, NMOS transistor, This invention relates to a method of manufacturing a semiconductor device that allows PMOS transistors and the like to be built in high density on the same IC chip. As the semiconductor manufacturing process advances and various layers and patterns are formed, many types of devices are formed on a silicon substrate, but when constructing a complex circuit, many more layers and patterns are formed. pattern is required.

また、このように複雑な回路を構戒する場合、素子が形
成される有効面積を殖やすほど、高密度化を期して同一
半導体素子内に多くの回路を内蔵させることができる. しかしながら、従来の半導体素子の製造工程において素
子間の側面を分離する時に行う絶縁は、LOGOS(選
択的酸化技法)  : Local Oxidatio
n of Silicon)法を使用しているので、半
導体素子が形成される有効面積が大きく減少するもので
あった.即ち、第l図において、選択的酸化方法では、
半導体基仮31の上に薄い酸化膜層32を形戊し、この
酸化膜層32の上部に窒化膜Ji33を塗布する. また、素子間の分離のための領域を形成するため、フメ
トレジス1・34を窒化膜層33の上部に塗布した後、
写真ii!It刻工程によって窒化膜層33の一部をは
刻させて開口38を形成する。
Furthermore, when constructing such a complex circuit, the more the effective area on which the element is formed, the more circuits can be built into the same semiconductor element to achieve higher density. However, in the conventional semiconductor device manufacturing process, the insulation performed when separating the sides between devices is called LOGOS (Local Oxidation Technique).
Since this method uses the 300 nm (n of Silicon) method, the effective area on which semiconductor elements are formed is greatly reduced. That is, in FIG. 1, in the selective oxidation method,
A thin oxide film layer 32 is formed on the semiconductor substrate 31, and a nitride film Ji 33 is applied on top of this oxide film layer 32. Further, in order to form a region for isolation between elements, after coating the fumetresis 1.34 on the upper part of the nitride film layer 33,
Photo ii! A part of the nitride film layer 33 is carved out by the It etching process to form an opening 38.

その後、前記シリコン半導体基板3lの導電形と同一導
電形の不′4FA物を高濃度に・イオン注入して、イオ
ン注入領域35を形成した後、前記フォトレジスト層3
4を除去する. 次に、高温の炉で酸化工程に付すと、第IB図に示すよ
うに、厚いフィールド酸化マスクとして働く窒化膜[3
3の存在しない部分で急速に戒長して、フィールド酸化
膜1536を形成し、前記窒化膜層33の端部でも側面
酸化が起こって、鳥嘴状39のような形状が生じ、前記
イオン注入した不純物が活性化されるとともに拡散が起
こってチャネルストソバ領域37が形戊される. その後、窒化膜層33を蝕刻除去し、酸化1111w3
2も選択的に除去すると、第IC図のようになる。従っ
て、第1C図に示すように、後に半導体素子(PMOS
トランジスタ,NMOSトランジスタ等)が形成される
半導体素子領域30a.30bが互いにフィールド酸化
膜層36とチャネルストソバ領域37とによって分離さ
れる。
After that, ions of non-4FA having the same conductivity type as that of the silicon semiconductor substrate 3l are implanted at a high concentration to form an ion implantation region 35, and then the photoresist layer 3
Remove 4. Next, when subjected to an oxidation process in a high-temperature furnace, a nitride film [3
A field oxide film 1536 is formed in the area where the nitride layer 33 is not present, and lateral oxidation also occurs at the end of the nitride film layer 33, resulting in a bird's beak shape 39. The impurities are activated and diffused to form the channel strike region 37. After that, the nitride film layer 33 is removed by etching, and the oxidized 1111w3
If 2 is also selectively removed, the result will be as shown in Fig. IC. Therefore, as shown in FIG. 1C, later a semiconductor device (PMOS)
transistor, NMOS transistor, etc.) are formed in the semiconductor element region 30a. 30b are separated from each other by a field oxide layer 36 and a channel buckle region 37.

しかしながら、このようなi!沢的な酸化方法は、フィ
ールド酸化膜層36の成長ずる時に形成される嘴部39
の拡張と、チャネルストソバ領域37の仰1面の拡敗に
よる素子領域30a.30bの縮小という問題点がある
。特に、メガビソト級以上の素子の!!!遣工程の時に
は、lμm以下を制御することができる製造技{・ト1
が必要なので、高集積を要求する半導体素子では、選択
的な酸化方法を使用することが出来なかった。
However, such i! The most common oxidation method is to remove the beak 39 formed during the growth of the field oxide layer 36.
, and the element region 30a. There is a problem of reduction of 30b. Especially for elements of megavisoto class or higher! ! ! During the shipping process, manufacturing technology that can control the thickness of 1μm or less is used.
Therefore, selective oxidation methods cannot be used in semiconductor devices requiring high integration.

本発明は、このような問題点を解決するために案出した
ものであり、本発明の目的は、半導体素子が形成される
有効領域の減少という問題を解決して高集積化すること
ができる半導体素子の製造方法を提供することにある. このような目的は、半導体素子等の間の絶縁のため純枠
な酸化層を形成し、及び半導体素子等が形成される領域
層としてのエビクキンヤル層を選択的に成長させて、半
導体素子等の有効領域の減少を防止するとともに素子間
の絶縁距離を減少することによって達戊することができ
る。
The present invention has been devised to solve these problems, and an object of the present invention is to solve the problem of reducing the effective area in which semiconductor elements are formed and to achieve high integration. The objective is to provide a method for manufacturing semiconductor devices. The purpose of this is to form a pure oxide layer for insulation between semiconductor devices, etc., and selectively grow an oxidized layer as a region layer where semiconductor devices, etc. are formed. This can be achieved by preventing a reduction in the effective area and reducing the insulation distance between elements.

本発明の特徴は、シリコン基板上に酸化膜層を形成した
後、第【感先物質を塗布し写真蝕刻工程によって窓を形
成する工程と、 第l感光物質を除去した後、第2感光物質を塗布し写真
工程によってn+理没層を形成する工程と、砒素等の5
価不純物をイオン注入してイオン注入領域を形成し、次
いで熱処理酸化及び′l3:透方法によってn+領域を
形戊する工程と、 蝕刻によって04 ,l域上部の酸化膜層を除去し、P
形エビタキシャル層を戒長させる工程とから戒る半導体
素子の製造方法にある。
The features of the present invention include the steps of forming an oxide film layer on a silicon substrate, applying a second photosensitive material and forming a window by a photolithography process, and removing the first photosensitive material and then applying a second photosensitive material. The process of coating and forming an n+ sink layer by photo process, and the process of applying 5
ion implantation of valence impurities to form an ion implantation region, then forming an n+ region by heat treatment oxidation and a transparent method, and removing the oxide film layer above the 04 and l regions by etching;
The method of manufacturing a semiconductor device includes a step of lengthening an epitaxial layer.

以下、本発明の実施例を添付図面について詳細に説明す
る. 第2図は、本発明による実施例を示す製造工程であって
、BiCMOS素子の製造工程図である.第2A図に示
すように、結晶方向が〈100〉であり、比抵抗率0.
2〜3オームcmのP形Lil桔品のシリコン基板lの
上部に、酸化処理工程によって厚さ1.5μm程度の酸
化膜層2を形成する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 2 is a manufacturing process diagram showing an embodiment of the present invention, and is a manufacturing process diagram of a BiCMOS device. As shown in FIG. 2A, the crystal direction is <100>, and the specific resistivity is 0.
An oxide film layer 2 having a thickness of about 1.5 .mu.m is formed on the top of a P-type silicon substrate 1 of 2 to 3 ohm cm by an oxidation process.

フォトレジスト5である第1感光物質3をその上に塗布
し、次いで写真工程による蝕刻方法によって素子を形成
する有効領域の形成のための窓4を形成した後、第1感
光物Tt3を除去する。ここで、第l感光物質3は窓4
を形成するためのマスク層として働く。第2B図に示す
ように、次の工程で第2感光物質5を全体的に塗布し、
後になってn埋没層を形成するための窓67.8.9を
、マスク層を使用した一般的な写真蝕刻工程によって現
像した後、部分的に第2感光物質5を残したまま第2感
光物質を除去する。その後、イオン注入装置によって砒
素等の5価不純物を80Keν程度の注入エネルギー及
び約IE15 10ms/ c−のドーズでイオン注入
し、♂イオン注入領域10〜l3を形成する. また、第2C図に示すように、第3工程では、砒素等の
5価不純物をイオン注入する時にマスク層として使用さ
れた第2感光物質5を除去し、そして熱処理酸化及び浸
透方法によって、イオン注入した不純物を活性化させて
n領域l4を形成する. その後、熱処理酸化方法により領域15〜20の上部に
形成された酸化膜層を、一般的な蝕刻工程により除去し
、第2D図のようにした後、領域15〜20の上部に5
ΩcI1程度のP形エピタキシャル層2lを約l.5μ
m程度成長させると、第2E図のような構造になる。次
にこのP形エピタキシャル11121に通常的な製造方
法によりPMOSトランジスタ、NMOShランジスタ
、バイポーラトランジスタ等を形成させると、第3図の
ようになる。
A first photosensitive material 3, which is a photoresist 5, is applied thereon, and then a window 4 for forming an effective area for forming a device is formed by etching using a photo process, and then the first photosensitive material Tt3 is removed. . Here, the first photosensitive substance 3 is the window 4
Acts as a mask layer for forming. As shown in FIG. 2B, in the next step, the second photosensitive material 5 is applied entirely,
After the windows 67.8.9 for later forming the n-buried layer are developed by a common photolithographic process using a mask layer, the second photosensitive material 5 is partially left and the second photosensitive material 5 is left. remove the substance; Thereafter, a pentavalent impurity such as arsenic is ion-implanted using an ion implantation device at an implantation energy of about 80 Keν and a dose of about IE15 of 10 ms/c- to form male ion-implanted regions 10 to 13. In addition, as shown in FIG. 2C, in the third step, the second photosensitive material 5 used as a mask layer when ion-implanting pentavalent impurities such as arsenic is removed, and the ions are removed by heat treatment, oxidation, and infiltration. The implanted impurities are activated to form n-region l4. Thereafter, the oxide layer formed on the regions 15 to 20 by the heat treatment oxidation method is removed by a general etching process to form the structure shown in FIG. 2D.
The P-type epitaxial layer 2l with a resistance of about ΩcI1 is about l. 5μ
When grown by about m, the structure becomes as shown in FIG. 2E. Next, when a PMOS transistor, an NMOSh transistor, a bipolar transistor, etc. are formed on this P-type epitaxial layer 11121 by a normal manufacturing method, the result is as shown in FIG.

即ち、本発明は、各素子等を分離するのに使用する絶縁
層を先ず写真工程によって形成した後、エビクキシャル
成長′層を形成させることによって、絶uFJを形成す
る酸化層の拡散及び鳥嘴状の廖状が生じることを防止す
ることができるものであって、第2図及び第3図を比較
して見ると、側聞絶縁層の酸化膜層2の側間距離が最初
と最後の工程を通して殆ど一定に維持されるので、酸化
膜N2の間に形成される半導体素子の有効領域の減少を
防止することができる。以上のように、本発明は、素子
等の間の絶縁方法を純枠な酸化膜の壁で形成し、選択的
なエビタキシャル層の威長方法を使用して、素子が形戊
される有効領域の減少という問題を解決するとともに素
子等の間の絶縁距離を1μm水準以下に形成することが
できるので、高集積素子等の製造工程の時に超微細力U
工を行うことができる効果がある.
That is, the present invention first forms an insulating layer used to separate each element, etc. by a photo process, and then forms an evixaxial growth layer to prevent the diffusion and bird's beak shape of the oxide layer forming the absolute uFJ. Comparing FIGS. 2 and 3, it can be seen that the distance between the oxide film layers 2 of the lateral insulating layers is the same as that of the first and last steps. Since it is maintained almost constant throughout, it is possible to prevent the effective area of the semiconductor element formed between the oxide films N2 from decreasing. As described above, the present invention provides an effective method for forming devices by using a pure oxide film wall as an insulation method between devices, and using a selective epitaxial layer growth method. This solves the problem of area reduction and allows the insulation distance between elements to be less than 1 μm, which reduces ultrafine force U during the manufacturing process of highly integrated devices.
It has the effect of allowing you to carry out a lot of work.

【図面の簡単な説明】[Brief explanation of the drawing]

第l図は、従東の半導体素子の製造方法を示す工程図、 第2図は、本発明による実施例を示す製造工程図、第3
図は、本発明による半導体素子の内部断面図であう・ 図面の各部に対する符号の説明 1:恭仮、  2.32=酸化膜層、 3:第1感光物質、 4,6,7,8,9,15,16,17,18,19.
2(l窓、 5:第2感光物質、 10,  11,  12 14:n領域● 1 3 : n”イオン注入領域、 FIG.1
Fig. 1 is a process diagram showing the manufacturing method of a semiconductor device by Juto; Fig. 2 is a manufacturing process diagram showing an embodiment according to the present invention;
The figure is an internal cross-sectional view of a semiconductor device according to the present invention. Explanation of the symbols for each part of the drawing 1: Kyoukari, 2.32 = oxide film layer, 3: first photosensitive material, 4, 6, 7, 8, 9 , 15, 16, 17, 18, 19.
2 (l window, 5: second photosensitive material, 10, 11, 12 14: n region● 1 3: n” ion implantation region, FIG. 1

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン基板1の上に酸化膜層2を形成した後、
第1感光物質3を塗布し写真蝕刻工程によって窓4を形
成する工程と、 第1感光物質3を除去した後、第2感光物質5を塗布し
写真工程によってn^+埋没層を形成する工程と、砒素
等の5価不純物をイオン注入してイオン注入領域10、
11、12、13を形成し、次いで熱処理酸化及び浸透
方法によってn^+領域14を形成する工程と、蝕刻に
よって領域15〜20の上部の酸化膜層を除去し、P形
エピタキシャル層21を成長させる工程と、から成る半
導体素子の製造方法。
(1) After forming the oxide film layer 2 on the silicon substrate 1,
A step of applying a first photosensitive material 3 and forming a window 4 by a photolithographic process; and a step of removing the first photosensitive material 3 and then applying a second photosensitive material 5 and forming an n^+ buried layer by a photolithographic process. Then, a pentavalent impurity such as arsenic is ion-implanted to form an ion-implanted region 10,
11, 12, and 13, and then forming an n^+ region 14 by heat treatment oxidation and infiltration method, and removing the oxide film layer on the upper part of regions 15 to 20 by etching, and growing a P-type epitaxial layer 21. A method for manufacturing a semiconductor device, the method comprising:
(2)前記工程等を遂行して、半導体素子等の間の側間
絶縁を行った後、エピタキシャル層21の上に一般的な
半導体製造工程によってPMOSトランジスタ、NMO
Sトランジスタ、バイポーラトランジスタ等を形成させ
る請求項1に記載の半導体素子の製造方法。
(2) After performing the above steps and performing side-to-side insulation between semiconductor elements, etc., a PMOS transistor, an NMO
2. The method of manufacturing a semiconductor device according to claim 1, further comprising forming an S transistor, a bipolar transistor, or the like.
JP1025975A 1988-05-20 1989-02-06 Manufacture of semiconductor element Pending JPH0316150A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019880005983A KR890017771A (en) 1988-05-20 1988-05-20 Semiconductor device manufacturing method
KR88-5983 1988-05-20

Publications (1)

Publication Number Publication Date
JPH0316150A true JPH0316150A (en) 1991-01-24

Family

ID=19274581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1025975A Pending JPH0316150A (en) 1988-05-20 1989-02-06 Manufacture of semiconductor element

Country Status (6)

Country Link
JP (1) JPH0316150A (en)
KR (1) KR890017771A (en)
DE (1) DE3903512A1 (en)
FR (1) FR2631741A1 (en)
GB (1) GB2218848B (en)
NL (1) NL8900241A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506271A (en) * 2004-07-15 2008-02-28 インフィネオン テクノロジーズ アクチエンゲゼルシャフト Formation of active region using semiconductor growth process without STI integration
US8530355B2 (en) 2005-12-23 2013-09-10 Infineon Technologies Ag Mixed orientation semiconductor device and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5010034A (en) * 1989-03-07 1991-04-23 National Semiconductor Corporation CMOS and bipolar fabrication process using selective epitaxial growth scalable to below 0.5 micron
GB2439357C (en) * 2006-02-23 2008-08-13 Innos Ltd Integrated circuit manufacturing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021560A (en) * 1983-07-15 1985-02-02 Toshiba Corp Complementary type mos semiconductor device and manufacture thereof
JPS6231153A (en) * 1985-08-02 1987-02-10 Matsushita Electric Ind Co Ltd Manufacture of mis semiconductor integrated circuit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4412868A (en) * 1981-12-23 1983-11-01 General Electric Company Method of making integrated circuits utilizing ion implantation and selective epitaxial growth
US4566914A (en) * 1983-05-13 1986-01-28 Micro Power Systems, Inc. Method of forming localized epitaxy and devices formed therein
GB2142185A (en) * 1983-06-22 1985-01-09 Rca Corp Mosfet fabrication method
DE3478170D1 (en) * 1983-07-15 1989-06-15 Toshiba Kk A c-mos device and process for manufacturing the same
JPS6118148A (en) * 1984-07-04 1986-01-27 Hitachi Ltd Manufacture of semiconductor device
KR880005690A (en) * 1986-10-06 1988-06-30 넬손 스톤 BiCMOS manufacturing method using selective epitaxial layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021560A (en) * 1983-07-15 1985-02-02 Toshiba Corp Complementary type mos semiconductor device and manufacture thereof
JPS6231153A (en) * 1985-08-02 1987-02-10 Matsushita Electric Ind Co Ltd Manufacture of mis semiconductor integrated circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506271A (en) * 2004-07-15 2008-02-28 インフィネオン テクノロジーズ アクチエンゲゼルシャフト Formation of active region using semiconductor growth process without STI integration
US7985642B2 (en) 2004-07-15 2011-07-26 Infineon Technologies Ag Formation of active area using semiconductor growth process without STI integration
US8173502B2 (en) 2004-07-15 2012-05-08 Infineon Technologies Ag Formation of active area using semiconductor growth process without STI integration
US8530355B2 (en) 2005-12-23 2013-09-10 Infineon Technologies Ag Mixed orientation semiconductor device and method
US9607986B2 (en) 2005-12-23 2017-03-28 Infineon Technologies Ag Mixed orientation semiconductor device and method

Also Published As

Publication number Publication date
NL8900241A (en) 1989-12-18
FR2631741A1 (en) 1989-11-24
GB2218848B (en) 1991-10-23
GB2218848A (en) 1989-11-22
GB8902401D0 (en) 1989-03-22
DE3903512A1 (en) 1989-11-30
KR890017771A (en) 1989-12-18

Similar Documents

Publication Publication Date Title
US4459325A (en) Semiconductor device and method for manufacturing the same
US6127242A (en) Method for semiconductor device isolation using oxygen and nitrogen ion implantations to reduce lateral encroachment
JPS6116571A (en) Manufacture of semiconductor device
JPS61237422A (en) Manufacture of semiconductor device
JP2521611B2 (en) Method of manufacturing CMOS having twin well
JPH0555484A (en) Manufacture of semiconductor device
US5106768A (en) Method for the manufacture of CMOS FET by P+ maskless technique
US5208181A (en) Locos isolation scheme for small geometry or high voltage circuit
JPS61242064A (en) Manufacture of complementary type semiconductor device
JPH02288359A (en) Method of forming one conductivity type well in silicon substrate
US5780347A (en) Method of forming polysilicon local interconnects
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
JPH0316150A (en) Manufacture of semiconductor element
JPH07307305A (en) Method of forming field oxidizing layer of which field injection region forms lower layer with low temperature oxidizing layer used on injection mask
JP2663946B2 (en) Method for manufacturing semiconductor device
JP2602142B2 (en) Method for manufacturing semiconductor device
JP2774407B2 (en) Method for manufacturing semiconductor device
JPS6142171A (en) Manufacture of nonvolatile semiconductor memory device
JPH10209450A (en) Narrow isolation oxide process
JPS59124767A (en) Manufacture of semiconductor-integrated circuit device
JPS6266678A (en) Manufacture of semiconductor device
JPH0480927A (en) Manufacture of semiconductor device
JPH0274042A (en) Manufacture of mis transistor
JPH053210A (en) Manufacture of semiconductor device
JPS5961177A (en) Manufacture of semiconductor device