JPH0794721A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH0794721A
JPH0794721A JP26176493A JP26176493A JPH0794721A JP H0794721 A JPH0794721 A JP H0794721A JP 26176493 A JP26176493 A JP 26176493A JP 26176493 A JP26176493 A JP 26176493A JP H0794721 A JPH0794721 A JP H0794721A
Authority
JP
Japan
Prior art keywords
insulating film
gate electrode
semiconductor substrate
film
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26176493A
Other languages
Japanese (ja)
Inventor
Shoichi Iwasa
昇一 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26176493A priority Critical patent/JPH0794721A/en
Publication of JPH0794721A publication Critical patent/JPH0794721A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates

Abstract

PURPOSE:To form an opening to put the channel region of a MOS transistor of SOI structure in contact with a substrate body in self-alignment manner with a gate electrode. CONSTITUTION:Oxygen 33 is implanted into a Si substrate 11 using a polycrystalline Si film 22, a gate electrode, as a mask, and a buried SiO2 layer 35 is thereby formed. Arsenic 36 is implanted into the Si substrate 11 using the polycrystalline Si film 22 as a mask, and a source and a drain 23 are thereby formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置及びその製造
方法に関し、特に、SOI(Silicon On Insulator 又は
Semiconductor On Insulator)基板に形成されたMOS
トランジスタ等の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly to an SOI (Silicon On Insulator
Semiconductor On Insulator) MOS formed on the substrate
The present invention relates to improvements in transistors and the like.

【0002】[0002]

【従来の技術】従来、SOI基板は、低寄生容量及びラ
ッチアップフリーという特徴を持ち、高速デバイス用の
基板として使われている。しかし、SOI基板には、そ
の構造上、本質的な欠点もある。第1に、基板部がフロ
ーティング状態となるために、動作スピードを速める効
果がある反面、電気特性が動作中に変動して安定しない
という問題がある。第2は、SOI基板にMOSデバイ
スを形成して不純物拡散層の底面を絶縁体層に接触させ
た場合、その拡散層底面部の接合容量がなくなるために
静電破壊に対して弱くなるという問題である。
2. Description of the Related Art Conventionally, SOI substrates have been used as substrates for high speed devices because of their characteristics of low parasitic capacitance and latch-up free. However, the SOI substrate also has an inherent defect in its structure. First, since the substrate portion is in a floating state, it has the effect of increasing the operation speed, but on the other hand, there is the problem that the electrical characteristics fluctuate during operation and become unstable. Secondly, when a MOS device is formed on an SOI substrate and the bottom surface of the impurity diffusion layer is brought into contact with the insulator layer, the junction capacitance at the bottom surface of the diffusion layer is lost, which makes it vulnerable to electrostatic breakdown. Is.

【0003】これらの問題点を克服するために、過去い
くつかの基板電位を固定するための技術が提案されてい
るが、そのうちの一つを図4〜図6に示す。
In order to overcome these problems, some techniques for fixing the substrate potential have been proposed in the past, one of which is shown in FIGS.

【0004】この従来技術をその製造方法に従って説明
すると、まず、図5(a)に示すように、Si基板11
の表面に熱酸化法により膜厚が500nm程度のSiO
2 膜12を形成する。
This prior art will be described according to its manufacturing method. First, as shown in FIG.
On the surface of the SiO 2 by thermal oxidation method with a film thickness of about 500 nm
2 The film 12 is formed.

【0005】次に、図5(b)に示すように、後にMO
Sトランジスタを形成する領域が開口したパターンのフ
ォトレジスト13をフォトリソグラフィ技術によりSi
2膜12の上に形成し、このフォトレジスト13をマ
スクにしたエッチングでSiO2 膜12を選択的に除去
する。
Next, as shown in FIG.
A photoresist 13 having a pattern in which a region for forming an S transistor is opened is formed by a photolithography technique into Si.
It is formed on the O 2 film 12, and the SiO 2 film 12 is selectively removed by etching using the photoresist 13 as a mask.

【0006】次に、図5(c)に示すように、フォトレ
ジスト13を除去した後、Si基板11の露出した部分
に熱酸化法により膜厚が50nm程度のSiO2 膜14
を形成する。
Next, as shown in FIG. 5C, after the photoresist 13 is removed, the exposed portion of the Si substrate 11 is thermally oxidized to form a SiO 2 film 14 having a thickness of about 50 nm.
To form.

【0007】次に、図6(a)に示すように、SiO2
膜14の部分に開口を有するパターンのフォトレジスト
15をフォトリソグラフィ技術によりSiO2 膜12及
び14の上に形成し、このフォトレジスト15をマスク
にしたエッチングでSiO2膜14にSi基板11に達
する開口16を形成する。
Next, as shown in FIG. 6 (a), SiO 2
A photoresist 15 having a pattern having an opening at a portion of the film 14 is formed on the SiO 2 films 12 and 14 by a photolithography technique, and the SiO 2 film 14 reaches the Si substrate 11 by etching using the photoresist 15 as a mask. The opening 16 is formed.

【0008】次に、図6(b)に示すように、1100
〜1200℃の温度でSiH4 を含む雰囲気中において
選択エピタキシャル成長を行う。すると、開口16にお
いて露出したSi基板11が成長の種(核)として機能
し、その結晶方位に準じてエピタキシャル層17が成長
する。
Next, as shown in FIG.
Selective epitaxial growth is performed at a temperature of up to 1200 ° C. in an atmosphere containing SiH 4 . Then, the Si substrate 11 exposed in the opening 16 functions as a seed (nucleus) for growth, and the epitaxial layer 17 grows according to its crystal orientation.

【0009】次に、図6(c)に示すように、SiO2
膜12よりも上に突出したエピタキシャル層17の部分
を表面研磨法で除去し、SOI基板を形成する。
Next, as shown in FIG. 6 (c), SiO 2
The portion of the epitaxial layer 17 protruding above the film 12 is removed by a surface polishing method to form an SOI substrate.

【0010】しかる後、図6(d)に示すように、ゲー
ト絶縁膜としてのSiO2 膜21とゲート電極としての
多結晶Si膜22を夫々形成し、この多結晶Si膜22
の両側のエピタキシャル層17にソース/ドレインとし
ての不純物拡散層23を形成する。その後、図4に示す
ように、層間絶縁膜24、コンタクト孔25及びAl電
極26を夫々形成して、MOSトランジスタを作成す
る。
Thereafter, as shown in FIG. 6D, a SiO 2 film 21 as a gate insulating film and a polycrystalline Si film 22 as a gate electrode are formed respectively, and this polycrystalline Si film 22 is formed.
Impurity diffusion layers 23 as source / drain are formed in the epitaxial layers 17 on both sides of. After that, as shown in FIG. 4, an interlayer insulating film 24, a contact hole 25, and an Al electrode 26 are formed, respectively, to form a MOS transistor.

【0011】この構造のMOSトランジスタでは、基板
部であるエピタキシャル層17とSi基板11とが開口
16を通じて互いにコンタクトして、エピタキシャル層
17の電位が固定されるようになっている。このMOS
トランジスタは、実際には、基板バイアスが必要なDR
AMのトランスファーゲートとして使用される。
In the MOS transistor having this structure, the epitaxial layer 17 and the Si substrate 11, which are the substrate portion, are in contact with each other through the opening 16, and the potential of the epitaxial layer 17 is fixed. This MOS
Transistors are actually DRs that require substrate bias
Used as a transfer gate for AM.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、上述し
た従来の製造方法では、ゲート電極である多結晶Si膜
22とSiO2 膜12の開口16とは互いに独立した工
程で形成されるので、それらの間の位置整合性が保証さ
れないという問題があった。特に、微細化されてゲート
電極幅が狭くなった場合に、開口16が不純物拡散層2
3の真下にきて、エピタキシャル層17とSi基板11
とがコンタクトしなくなることは充分に起こり得、その
場合には、MOSトランジスタの基板部であるエピタキ
シャル層17がフローティング状態となるので、既述し
たSOI基板の問題点は解消されなくなる。要するに、
上述した従来の製造方法では、今後の微細化に対応する
ことが難しいという問題があった。
However, in the above-mentioned conventional manufacturing method, since the polycrystalline Si film 22 which is the gate electrode and the opening 16 of the SiO 2 film 12 are formed in the steps independent of each other, these There was a problem that the positional consistency between them was not guaranteed. In particular, when the gate electrode width is narrowed due to miniaturization, the opening 16 is formed in the impurity diffusion layer 2
3 directly below, the epitaxial layer 17 and the Si substrate 11
It is possible that the contact between and does not come into contact sufficiently, and in that case, since the epitaxial layer 17 that is the substrate portion of the MOS transistor is in a floating state, the above-mentioned problems of the SOI substrate cannot be solved. in short,
The conventional manufacturing method described above has a problem that it is difficult to cope with future miniaturization.

【0013】そこで本発明の目的は、例えばMOSトラ
ンジスタの基板部の電位を固定するためのコンタクト部
をゲート電極と自己整合的に形成することにより微細化
に対応した半導体装置及びその製造方法を提供すること
である。
Therefore, an object of the present invention is to provide a semiconductor device corresponding to miniaturization by forming a contact portion for fixing the potential of a substrate portion of a MOS transistor, for example, in a self-aligned manner with a gate electrode, and a manufacturing method thereof. It is to be.

【0014】[0014]

【課題を解決するための手段】上述した課題を解決する
ために、本発明の半導体装置の製造方法は、第1導電型
の半導体基板上に第1の絶縁膜としてゲート絶縁膜を形
成する工程と、前記ゲート絶縁膜上にゲート電極材料及
び第2の絶縁膜を順次堆積する工程と、前記ゲート電極
材料及び前記第2の絶縁膜をゲート電極パターンに加工
する工程と、前記ゲート電極パターンをマスクにして前
記半導体基板内に酸素を導入し、前記半導体基板の所定
深さ位置に埋め込み酸化物層を形成する工程と、しかる
後、前記ゲート電極パターンをマスクにして前記半導体
基板内に第2導電型の不純物を導入し、前記半導体基板
の表面近傍部分に第2導電型の不純物拡散層を形成する
工程とを有する。
In order to solve the above-mentioned problems, a method of manufacturing a semiconductor device according to the present invention comprises a step of forming a gate insulating film as a first insulating film on a semiconductor substrate of a first conductivity type. A step of sequentially depositing a gate electrode material and a second insulating film on the gate insulating film, a step of processing the gate electrode material and the second insulating film into a gate electrode pattern, and a step of forming the gate electrode pattern. Introducing oxygen into the semiconductor substrate as a mask to form a buried oxide layer at a predetermined depth position in the semiconductor substrate, and then using the gate electrode pattern as a mask to form a second oxide in the semiconductor substrate. Introducing a conductivity type impurity to form a second conductivity type impurity diffusion layer in the vicinity of the surface of the semiconductor substrate.

【0015】本発明の一態様による半導体装置の製造方
法は、第1導電型の半導体基板上に第1の絶縁膜として
ゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上に
多結晶シリコン膜及び第2の絶縁膜を順次堆積する工程
と、前記多結晶シリコン膜及び前記第2の絶縁膜をゲー
ト電極パターンに加工する工程と、前記ゲート電極パタ
ーンをマスクにして前記半導体基板内に酸素を導入し、
前記半導体基板の所定深さ位置に埋め込み酸化物層を形
成する工程と、しかる後、前記第2の絶縁膜を除去する
工程と、しかる後、前記多結晶シリコン膜に第2導電型
の不純物を導入するとともに、前記多結晶シリコン膜を
マスクにして前記半導体基板内に第2導電型の不純物を
導入し、前記半導体基板の表面近傍部分に第2導電型の
不純物拡散層を形成する工程とを有する。
A method of manufacturing a semiconductor device according to an aspect of the present invention includes a step of forming a gate insulating film as a first insulating film on a semiconductor substrate of the first conductivity type, and a polycrystalline silicon film on the gate insulating film. And a step of sequentially depositing a second insulating film, a step of processing the polycrystalline silicon film and the second insulating film into a gate electrode pattern, and oxygen in the semiconductor substrate using the gate electrode pattern as a mask. Introduced,
Forming a buried oxide layer at a predetermined depth of the semiconductor substrate; then removing the second insulating film; and thereafter adding impurities of the second conductivity type to the polycrystalline silicon film. Introducing the second conductivity type impurity into the semiconductor substrate using the polycrystalline silicon film as a mask, and forming a second conductivity type impurity diffusion layer in the vicinity of the surface of the semiconductor substrate. Have.

【0016】本発明の別の一態様による半導体装置の製
造方法は、第1導電型の半導体基板上に第1の絶縁膜と
してゲート絶縁膜を形成する工程と、前記ゲート絶縁膜
上にゲート電極材料及び第2の絶縁膜を順次堆積する工
程と、前記ゲート電極材料及び前記第2の絶縁膜をゲー
ト電極パターンに加工する工程と、前記ゲート電極パタ
ーンの一方の側の領域を第3の絶縁膜で覆う工程と、前
記第3の絶縁膜及び前記ゲート電極パターンをマスクに
して、前記ゲート電極パターンの他方の側の領域の前記
半導体基板内に酸素を導入し、前記他方の側の領域の前
記半導体基板の所定深さ位置に埋め込み酸化物層を形成
する工程と、しかる後、前記第3の絶縁膜を除去する工
程と、しかる後、前記ゲート電極パターンをマスクにし
て前記半導体基板内に第2導電型の不純物を導入し、前
記半導体基板の表面近傍部分に第2導電型の不純物拡散
層を形成する工程とを有する。
A method of manufacturing a semiconductor device according to another aspect of the present invention includes a step of forming a gate insulating film as a first insulating film on a semiconductor substrate of the first conductivity type, and a gate electrode on the gate insulating film. A step of sequentially depositing a material and a second insulating film, a step of processing the gate electrode material and the second insulating film into a gate electrode pattern, and a region on one side of the gate electrode pattern with a third insulating film. A step of covering with a film, and using the third insulating film and the gate electrode pattern as a mask, oxygen is introduced into the semiconductor substrate in the region on the other side of the gate electrode pattern, Forming a buried oxide layer at a predetermined depth of the semiconductor substrate, then removing the third insulating film, and then using the gate electrode pattern as a mask And a step of a second conductivity type impurity is introduced to form a second conductivity type impurity diffusion layer near the surface portion of said semiconductor substrate.

【0017】本発明の半導体装置は、第1導電型の半導
体基板上にゲート絶縁膜を介して形成されたゲート電極
と、前記半導体基板の表面近傍部分に形成された一対の
不純物拡散層と、前記一対の不純物拡散層の一方の直下
にのみ形成された埋め込み絶縁体層とを有する。
A semiconductor device of the present invention comprises a gate electrode formed on a first conductivity type semiconductor substrate via a gate insulating film, and a pair of impurity diffusion layers formed in the vicinity of the surface of the semiconductor substrate. And a buried insulator layer formed just below one of the pair of impurity diffusion layers.

【0018】[0018]

【作用】本発明の半導体装置の製造方法では、例えばM
OSトランジスタのソース/ドレインとなる不純物拡散
層の直下の絶縁体層の形成を、そのMOSトランジスタ
のゲート電極のパターンをマスクとした酸素のイオン注
入により行っているため、その埋め込み酸化物層をゲー
ト電極に対して位置整合性良く形成することができる。
In the method of manufacturing a semiconductor device of the present invention, for example, M
Since the insulator layer immediately below the impurity diffusion layer serving as the source / drain of the OS transistor is formed by oxygen ion implantation using the gate electrode pattern of the MOS transistor as a mask, the buried oxide layer is used as a gate. It can be formed with good positional alignment with respect to the electrodes.

【0019】また、ゲート電極の一方の側の半導体基板
中にのみ埋め込み酸化物層を形成することができるの
で、例えば、α線によるソフトエラーの耐性を向上させ
るために埋め込み酸化物層と接触させる必要がある側の
不純物拡散層ではない側の不純物拡散層の直下には埋め
込み酸化物層を形成しないことにより、静電破壊に対す
る耐性を向上させることが可能である。
Since the buried oxide layer can be formed only in the semiconductor substrate on one side of the gate electrode, the buried oxide layer is brought into contact with the buried oxide layer in order to improve the resistance to soft error due to α-rays, for example. By not forming the buried oxide layer directly below the impurity diffusion layer on the side that is not the necessary impurity diffusion layer, it is possible to improve the resistance to electrostatic breakdown.

【0020】[0020]

【実施例】以下、本発明を実施例につき図1〜図3を参
照して説明する。なお、以下の実施例において、図4〜
図6に示した従来例と対応する構成部分には同一の符号
を付す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments with reference to FIGS. In addition, in the following examples, FIG.
Components corresponding to those of the conventional example shown in FIG. 6 are designated by the same reference numerals.

【0021】図1(a)及び図2に本発明の第1の実施
例を示す。この第1の実施例では、まず、図2(a)に
示すように、P型のSi基板11の素子分離領域の表面
に通常の選択酸化(LOCOS)法によりSiO2 膜3
1を形成し、このSiO2 膜31で囲まれた領域を素子
形成領域とする。
1A and 2 show a first embodiment of the present invention. In the first embodiment, first, as shown in FIG. 2A, the SiO 2 film 3 is formed on the surface of the element isolation region of the P-type Si substrate 11 by a normal selective oxidation (LOCOS) method.
1 is formed, and the region surrounded by the SiO 2 film 31 is used as an element formation region.

【0022】次に、図2(b)に示すように、800〜
900℃の水蒸気雰囲気でSi基板11を熱酸化し、ゲ
ート絶縁膜としてのSiO2 膜21を形成する。その
後、膜厚が300nm程度で且つN型不純物を含有する
多結晶Si膜22と、膜厚が1μm程度のSiO2 膜3
2とをCVD法で順次に全面に堆積させた後、SiO2
膜32と多結晶Si膜22とをフォトリソグラフィ技術
及び異方性ドライエッチングでゲート電極のパターンに
加工する。
Next, as shown in FIG.
The Si substrate 11 is thermally oxidized in a water vapor atmosphere at 900 ° C. to form a SiO 2 film 21 as a gate insulating film. After that, the polycrystalline Si film 22 having a film thickness of about 300 nm and containing an N-type impurity, and the SiO 2 film 3 having a film thickness of about 1 μm.
2 and 2 are sequentially deposited on the entire surface by the CVD method, and then SiO 2
The film 32 and the polycrystalline Si film 22 are processed into a gate electrode pattern by photolithography and anisotropic dry etching.

【0023】次に、図2(c)に示すように、SiO2
膜31、32と多結晶Si膜22とをマスクにして、S
i基板11内の深さ約0.5μmの位置に濃度プロファ
イルのピークを有するように、150〜200keVの
加速エネルギー及び1×1016/cm-2のドーズ量で酸
素33をイオン注入する。そして、1000〜1200
℃の熱処理を行って、多結晶Si膜22の直下にのみ間
隙34を有する埋め込みSiO2 層35を形成する。
Next, as shown in FIG. 2C, SiO 2
Using the films 31 and 32 and the polycrystalline Si film 22 as a mask, S
Oxygen 33 is ion-implanted at an acceleration energy of 150 to 200 keV and a dose amount of 1 × 10 16 / cm −2 so that the i-substrate 11 has a concentration profile peak at a depth of about 0.5 μm. And 1000 to 1200
℃ heat treated go of, to form a buried SiO 2 layer 35 having a gap 34 only just below the polycrystalline Si film 22.

【0024】次に、図2(d)に示すように、SiO2
膜32を除去した後、再びSiO2膜31と多結晶Si
膜22とをマスクにして、N型の不純物、例えばヒ素3
6をSi基板11にイオン注入し、SiO2 膜21と埋
め込みSiO2 層35とに挟まれた不純物拡散層、即
ち、Si基板11の表面近傍部分にあって埋め込みSi
2 層35と接する不純物拡散層23を形成する。な
お、多結晶Si膜22中の不純物濃度を調整する必要が
ない場合には、ヒ素のイオン注入を、SiO2 膜32を
除去する前に行ってもよい。
Next, as shown in FIG. 2D, SiO 2
After removing the film 32, the SiO 2 film 31 and the polycrystalline Si are again formed.
Using the film 22 as a mask, N-type impurities such as arsenic 3
6 is ion-implanted into the Si substrate 11, and an impurity diffusion layer sandwiched between the SiO 2 film 21 and the embedded SiO 2 layer 35, that is, a portion near the surface of the Si substrate 11 is filled with the embedded Si.
The impurity diffusion layer 23 that contacts the O 2 layer 35 is formed. If it is not necessary to adjust the impurity concentration in the polycrystalline Si film 22, arsenic ion implantation may be performed before removing the SiO 2 film 32.

【0025】その後、図4に示した従来例と同様、層間
絶縁膜24、コンタクト孔25及びAl電極26を夫々
形成して、図1(a)に示すMOSトランジスタを形成
する。
Thereafter, similarly to the conventional example shown in FIG. 4, the interlayer insulating film 24, the contact hole 25 and the Al electrode 26 are formed respectively to form the MOS transistor shown in FIG.

【0026】図1(b)及び図3に本発明の第2の実施
例を示す。この第2の実施例では、図3(a)に示すよ
うに、上述の第1の実施例と同様の工程を実行して、S
iO2 膜32と多結晶Si膜22とをゲート電極のパタ
ーンに加工した後、SiN膜41をCVD法により全面
に堆積させる。
A second embodiment of the present invention is shown in FIGS. 1 (b) and 3. In this second embodiment, as shown in FIG. 3A, the same steps as those in the above-mentioned first embodiment are executed and S
After the iO 2 film 32 and the polycrystalline Si film 22 are processed into the pattern of the gate electrode, the SiN film 41 is deposited on the entire surface by the CVD method.

【0027】次に、図3(b)に示すように、ゲート電
極である多結晶Si膜22の一方の側の領域を覆うよう
にフォトレジスト42をパターン形成した後、このフォ
トレジスト42をマスクにした異方性ドライエッチング
で多結晶Si膜22の他方の側の領域のSiN膜41を
除去する。
Next, as shown in FIG. 3B, a photoresist 42 is patterned so as to cover a region on one side of the polycrystalline Si film 22 which is a gate electrode, and then the photoresist 42 is used as a mask. The anisotropic dry etching is performed to remove the SiN film 41 in the region on the other side of the polycrystalline Si film 22.

【0028】次に、図3(c)に示すように、SiO2
膜31、32と多結晶Si膜22とSiN膜41とをマ
スクにして、上述の第1実施例と同じ条件で酸素33を
Si基板11にイオン注入し、更に同じ条件で熱処理を
行って、多結晶Si膜22の他方の側の領域のSi基板
11中にのみ埋め込みSiO2 層35を形成する。
Next, as shown in FIG. 3C, SiO 2
Using the films 31 and 32, the polycrystalline Si film 22, and the SiN film 41 as a mask, oxygen 33 is ion-implanted into the Si substrate 11 under the same conditions as in the above-described first embodiment, and heat treatment is performed under the same conditions. The embedded SiO 2 layer 35 is formed only in the Si substrate 11 in the region on the other side of the polycrystalline Si film 22.

【0029】次に、図3(d)に示すように、残ってい
たSiN膜41を除去し、SiO2膜31、32と多結
晶Si膜22とをマスクにして、N型の不純物、例えば
ヒ素36をSi基板11にイオン注入して、Si基板1
1の表面近傍部分にその一方が埋め込みSiO2 層35
と接する不純物拡散層23を形成する。
Next, as shown in FIG. 3D, the remaining SiN film 41 is removed, and the SiO 2 films 31 and 32 and the polycrystalline Si film 22 are used as a mask to remove N-type impurities, for example, By implanting arsenic 36 into the Si substrate 11 by ion implantation,
One of which is embedded in the vicinity of the surface of No. 1 SiO 2 layer 35
Impurity diffusion layer 23 in contact with is formed.

【0030】そして、SiO2 膜32を除去した後、図
4に示した従来例と同様、層間絶縁膜24、コンタクト
孔25及びAl電極26を夫々形成して、図1(b)に
示すMOSトランジスタを形成する。
Then, after removing the SiO 2 film 32, the interlayer insulating film 24, the contact hole 25 and the Al electrode 26 are respectively formed as in the conventional example shown in FIG. 4, and the MOS shown in FIG. Form a transistor.

【0031】この第2実施例の構成では、MOSトラン
ジスタの一方の不純物拡散層23の直下には埋め込みS
iO2 層35が形成されない。従って、例えば、1トラ
ンジスタ1キャパシタ型のMOS・DRAMにおいて、
α線によるソフトエラーの耐性を向上させるために埋め
込みSiO2 層35と接触させる必要があるドレイン側
の不純物拡散層23ではないソース側の不純物拡散層2
3の直下には埋め込みSiO2 層を形成しないことによ
り、ソース底面で接合容量を大きくとることができ、埋
め込みSiO2 層35が全くないバルクMOSの場合と
ほぼ同程度の静電破壊強度を得ることができる。
In the structure of the second embodiment, the buried S is provided immediately below one impurity diffusion layer 23 of the MOS transistor.
The iO 2 layer 35 is not formed. Therefore, for example, in a 1-transistor 1-capacitor type MOS / DRAM,
The impurity diffusion layer 2 on the source side, which is not the impurity diffusion layer 23 on the drain side that needs to be in contact with the embedded SiO 2 layer 35 in order to improve the resistance to the soft error due to α rays
By not forming the embedded SiO 2 layer directly under 3, it is possible to obtain a large junction capacitance at the bottom surface of the source, and to obtain an electrostatic breakdown strength almost the same as in the case of a bulk MOS having no embedded SiO 2 layer 35. be able to.

【0032】図1(c)に本発明の第3の実施例を示す
が、この第3の実施例は、素子分離領域のSiO2 膜4
3の形成方法が相違する以外は、図1(a)及び図2に
示した第1の実施例と実質的に同じである。
FIG. 1 (c) shows a third embodiment of the present invention. In the third embodiment, the SiO 2 film 4 in the element isolation region is used.
3 is substantially the same as the first embodiment shown in FIGS. 1A and 2 except that the forming method is different.

【0033】また、図1(d)に本発明の第4の実施例
を示すが、この第4の実施例は、LDD構造である以外
は、図1(c)に示した第3の実施例と実質的に同じで
ある。
FIG. 1 (d) shows a fourth embodiment of the present invention. This fourth embodiment is the third embodiment shown in FIG. 1 (c) except that it has an LDD structure. Substantially the same as the example.

【0034】[0034]

【発明の効果】本発明の半導体装置の製造方法によれ
ば、埋め込み酸化物層及び不純物拡散層が共にゲート電
極に対して自己整合的に形成されるので、素子サイズに
よらずゲート電極下に形成されるチャネル領域と半導体
基板本体部との間のコンタクトが保証され、素子の基板
電位を固定することができる。従って、動作中の電気特
性の安定した半導体装置を提供することができる。
According to the method of manufacturing a semiconductor device of the present invention, both the buried oxide layer and the impurity diffusion layer are formed in a self-aligned manner with respect to the gate electrode. The contact between the formed channel region and the semiconductor substrate body is guaranteed, and the substrate potential of the device can be fixed. Therefore, a semiconductor device having stable electric characteristics during operation can be provided.

【0035】また、一方の不純物拡散層の下にのみ埋め
込み酸化物層を形成することにより、静電破壊に対して
強い半導体装置を得ることができる。
By forming the buried oxide layer only under one of the impurity diffusion layers, it is possible to obtain a semiconductor device resistant to electrostatic breakdown.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1〜第4実施例の半導体装置の構成
を夫々示す縦断面図である。
FIG. 1 is a vertical sectional view showing a configuration of a semiconductor device of each of first to fourth embodiments of the present invention.

【図2】本発明の第1実施例の半導体装置の製造方法を
工程順に示す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing the method of manufacturing a semiconductor device of the first embodiment of the present invention in the order of steps.

【図3】本発明の第2実施例の半導体装置の製造方法を
工程順に示す縦断面図である。
FIG. 3 is a vertical cross-sectional view showing a method of manufacturing a semiconductor device of a second embodiment of the present invention in process order.

【図4】従来の半導体装置の縦断面図である。FIG. 4 is a vertical cross-sectional view of a conventional semiconductor device.

【図5】従来の半導体装置の製造方法を工程順に示す縦
断面図である。
FIG. 5 is a vertical cross-sectional view showing a method of manufacturing a conventional semiconductor device in the order of steps.

【図6】従来の半導体装置の製造方法を工程順に示す縦
断面図である。
FIG. 6 is a vertical cross-sectional view showing a method of manufacturing a conventional semiconductor device in the order of steps.

【符号の説明】[Explanation of symbols]

11 Si基板 21 SiO2 膜 22 多結晶Si膜 23 不純物拡散層 33 酸素 35 埋め込みSiO2 層 36 ヒ素11 Si substrate 21 SiO 2 film 22 Polycrystalline Si film 23 Impurity diffusion layer 33 Oxygen 35 Embedded SiO 2 layer 36 Arsenic

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の半導体基板上に第1の絶縁
膜としてゲート絶縁膜を形成する工程と、 前記ゲート絶縁膜上にゲート電極材料及び第2の絶縁膜
を順次堆積する工程と、 前記ゲート電極材料及び前記第2の絶縁膜をゲート電極
パターンに加工する工程と、 前記ゲート電極パターンをマスクにして前記半導体基板
内に酸素を導入し、前記半導体基板の所定深さ位置に埋
め込み酸化物層を形成する工程と、 しかる後、前記ゲート電極パターンをマスクにして前記
半導体基板内に第2導電型の不純物を導入し、前記半導
体基板の表面近傍部分に第2導電型の不純物拡散層を形
成する工程とを有することを特徴とする半導体装置の製
造方法。
1. A step of forming a gate insulating film as a first insulating film on a semiconductor substrate of a first conductivity type, and a step of sequentially depositing a gate electrode material and a second insulating film on the gate insulating film. Processing the gate electrode material and the second insulating film into a gate electrode pattern, introducing oxygen into the semiconductor substrate using the gate electrode pattern as a mask, and burying the oxygen at a predetermined depth position in the semiconductor substrate. Forming an oxide layer, and then introducing a second conductivity type impurity into the semiconductor substrate using the gate electrode pattern as a mask, and diffusing the second conductivity type impurity into a portion near the surface of the semiconductor substrate. And a step of forming a layer.
【請求項2】 第1導電型の半導体基板上に第1の絶縁
膜としてゲート絶縁膜を形成する工程と、 前記ゲート絶縁膜上に多結晶シリコン膜及び第2の絶縁
膜を順次堆積する工程と、 前記多結晶シリコン膜及び前記第2の絶縁膜をゲート電
極パターンに加工する工程と、 前記ゲート電極パターンをマスクにして前記半導体基板
内に酸素を導入し、前記半導体基板の所定深さ位置に埋
め込み酸化物層を形成する工程と、 しかる後、前記第2の絶縁膜を除去する工程と、 しかる後、前記多結晶シリコン膜に第2導電型の不純物
を導入するとともに、前記多結晶シリコン膜をマスクに
して前記半導体基板内に第2導電型の不純物を導入し、
前記半導体基板の表面近傍部分に第2導電型の不純物拡
散層を形成する工程とを有することを特徴とする半導体
装置の製造方法。
2. A step of forming a gate insulating film as a first insulating film on a semiconductor substrate of the first conductivity type, and a step of sequentially depositing a polycrystalline silicon film and a second insulating film on the gate insulating film. And a step of processing the polycrystalline silicon film and the second insulating film into a gate electrode pattern, introducing oxygen into the semiconductor substrate using the gate electrode pattern as a mask, and setting a predetermined depth position of the semiconductor substrate. And a step of removing the second insulating film, and then introducing a second conductivity type impurity into the polycrystalline silicon film and removing the polycrystalline silicon film. Introducing a second conductivity type impurity into the semiconductor substrate using the film as a mask,
And a step of forming an impurity diffusion layer of the second conductivity type in the vicinity of the surface of the semiconductor substrate.
【請求項3】 第1導電型の半導体基板上に第1の絶縁
膜としてゲート絶縁膜を形成する工程と、 前記ゲート絶縁膜上にゲート電極材料及び第2の絶縁膜
を順次堆積する工程と、 前記ゲート電極材料及び前記第2の絶縁膜をゲート電極
パターンに加工する工程と、 前記ゲート電極パターンの一方の側の領域を第3の絶縁
膜で覆う工程と、 前記第3の絶縁膜及び前記ゲート電極パターンをマスク
にして、前記ゲート電極パターンの他方の側の領域の前
記半導体基板内に酸素を導入し、前記他方の側の領域の
前記半導体基板の所定深さ位置に埋め込み酸化物層を形
成する工程と、 しかる後、前記第3の絶縁膜を除去する工程と、 しかる後、前記ゲート電極パターンをマスクにして前記
半導体基板内に第2導電型の不純物を導入し、前記半導
体基板の表面近傍部分に第2導電型の不純物拡散層を形
成する工程とを有することを特徴とする半導体装置の製
造方法。
3. A step of forming a gate insulating film as a first insulating film on a semiconductor substrate of the first conductivity type, and a step of sequentially depositing a gate electrode material and a second insulating film on the gate insulating film. Processing the gate electrode material and the second insulating film into a gate electrode pattern, covering a region on one side of the gate electrode pattern with a third insulating film, the third insulating film, Using the gate electrode pattern as a mask, oxygen is introduced into the semiconductor substrate in the region on the other side of the gate electrode pattern, and a buried oxide layer is formed at a predetermined depth position of the semiconductor substrate in the region on the other side. And a step of removing the third insulating film, followed by introducing a second conductivity type impurity into the semiconductor substrate using the gate electrode pattern as a mask to form the semiconductor substrate. And a step of forming an impurity diffusion layer of the second conductivity type in the vicinity of the surface of the plate.
【請求項4】 第1導電型の半導体基板上にゲート絶縁
膜を介して形成されたゲート電極と、 前記半導体基板の表面近傍部分に形成された一対の不純
物拡散層と、 前記一対の不純物拡散層の一方の直下にのみ形成された
埋め込み絶縁体層とを有することを特徴とする半導体装
置。
4. A gate electrode formed on a semiconductor substrate of the first conductivity type via a gate insulating film, a pair of impurity diffusion layers formed in the vicinity of the surface of the semiconductor substrate, and a pair of impurity diffusions. A semiconductor device having a buried insulator layer formed only directly below one of the layers.
JP26176493A 1993-09-24 1993-09-24 Semiconductor device and manufacture thereof Withdrawn JPH0794721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26176493A JPH0794721A (en) 1993-09-24 1993-09-24 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26176493A JPH0794721A (en) 1993-09-24 1993-09-24 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0794721A true JPH0794721A (en) 1995-04-07

Family

ID=17366374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26176493A Withdrawn JPH0794721A (en) 1993-09-24 1993-09-24 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0794721A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670388A (en) * 1994-09-22 1997-09-23 International Business Machines Corporation Method of making contacted body silicon-on-insulator field effect transistor
KR100480578B1 (en) * 1997-12-27 2005-05-16 삼성전자주식회사 Method for mos transistor fabrication having source/drain area upon field oxide
KR100489586B1 (en) * 1997-12-30 2005-09-06 주식회사 하이닉스반도체 Method of forming junction part of semiconductor device
JP2007519239A (en) * 2004-01-08 2007-07-12 インターナショナル・ビジネス・マシーンズ・コーポレーション Differentiated SOI structure without oxide buried under DC node diffusion region and having oxide hole

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670388A (en) * 1994-09-22 1997-09-23 International Business Machines Corporation Method of making contacted body silicon-on-insulator field effect transistor
KR100480578B1 (en) * 1997-12-27 2005-05-16 삼성전자주식회사 Method for mos transistor fabrication having source/drain area upon field oxide
KR100489586B1 (en) * 1997-12-30 2005-09-06 주식회사 하이닉스반도체 Method of forming junction part of semiconductor device
JP2007519239A (en) * 2004-01-08 2007-07-12 インターナショナル・ビジネス・マシーンズ・コーポレーション Differentiated SOI structure without oxide buried under DC node diffusion region and having oxide hole

Similar Documents

Publication Publication Date Title
EP0166218B1 (en) Silicon-on-insulator transistors
JPH0355984B2 (en)
JPH1074921A (en) Semiconductor device and manufacturing method thereof
US6373119B1 (en) Semiconductor device and method of manufacturing the same
US6184070B1 (en) Thin film transistor and method of manufacturing the same
JPH0824144B2 (en) Method for manufacturing semiconductor device
JPH077773B2 (en) Method for manufacturing semiconductor device
JPH05865B2 (en)
JPS59208851A (en) Semiconductor device and manufacture thereof
JP3502509B2 (en) Integrated circuit having CMOS structure and method of manufacturing the same
JPH0794721A (en) Semiconductor device and manufacture thereof
JPH08167646A (en) Simox substrate, manufacture of simox substrate and manufacture of semiconductor device
JP3134344B2 (en) Semiconductor device
US20020033536A1 (en) Semiconductor device and manufacturing method thereof
JP2734434B2 (en) Semiconductor device and manufacturing method thereof
JP3521921B2 (en) Method for manufacturing semiconductor device
JPH0548108A (en) Semiconductor device and its manufacture
JP3584866B2 (en) Method for manufacturing semiconductor device
JP3910301B2 (en) Semiconductor device and manufacturing method thereof
JPH0779126B2 (en) Method for manufacturing semiconductor device
JPS61292371A (en) Semiconductor device
JP2713940B2 (en) Semiconductor device
JP2001257346A (en) Semiconductor integrated circuit device
JPS61134058A (en) Manufacture of semiconductor device
JPH1187530A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001128