JP2713940B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2713940B2
JP2713940B2 JP63010636A JP1063688A JP2713940B2 JP 2713940 B2 JP2713940 B2 JP 2713940B2 JP 63010636 A JP63010636 A JP 63010636A JP 1063688 A JP1063688 A JP 1063688A JP 2713940 B2 JP2713940 B2 JP 2713940B2
Authority
JP
Japan
Prior art keywords
film
shaft
layer
region
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63010636A
Other languages
Japanese (ja)
Other versions
JPH01187855A (en
Inventor
勝忠 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63010636A priority Critical patent/JP2713940B2/en
Publication of JPH01187855A publication Critical patent/JPH01187855A/en
Application granted granted Critical
Publication of JP2713940B2 publication Critical patent/JP2713940B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に係り、特にラツチアツプの問題
のない、したがつて高集積化に好適な相補型MOSトラン
ジスタに関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly, to a complementary MOS transistor which does not have a latch-up problem and is therefore suitable for high integration.

〔従来の技術〕[Conventional technology]

従来の相補型MOSトランジスタ(CMOSと記する)にお
いて、寄生バイポーラ効果によるラツチアツプ特性向上
を目的とする構造については、例えばアイ・イー・イー
・イー・インタナシヨナル・エレクトロン・デバイシイ
ズ・ミーテイング15.2(1985年)第403頁から406頁(IE
EE International Electron Devices Meeting 15.2(19
85)pp403−406において論じられており第2図(a)に
示すごとき構造を有していた。図において、100はn型S
i基板,200はp型ウエル拡散領域であり、下部に高エネ
ルギイオン注入によるP+埋込み領域181を有してい
た。P型ウエル200内にN+ソース拡散層11,N+ドレイ
ン拡散層12,ゲート電極8、及びP+接地電源Vss拡散層
15よりなるnチヤネルMOSトランジスタ(NMOSと記す)
が構成されている。N型ウエル101内にはP+ドレイン
拡散層13,P+ソース拡散層14,N+電源供給Vcc拡散層18
0、及びゲート電極81よりなるPチヤネルMOSトランジス
タ(PMOSと記す)が構成されている。ゲート電極8と81
は接続されておりインバータの入力として作用する。N
+ドレイン拡散層12とP+ドレイン拡散層13は金属電極
22で接続されており、インバータ出力として働く。第2
図(b)は第2図(a)の断面図に対応する等価回路図
である。
In a conventional complementary MOS transistor (hereinafter, referred to as CMOS), a structure aimed at improving the latch characteristic by a parasitic bipolar effect is disclosed in, for example, IEE International Electron Devices Meeting 15.2 (1985). Years pp. 403-406 (IE
EE International Electron Devices Meeting 15.2 (19
85) as discussed in pp. 403-406 and having the structure shown in FIG. 2 (a). In the figure, 100 is an n-type S
The i-substrate 200 is a p-type well diffusion region, and has a P + buried region 181 formed by high-energy ion implantation below. N + source diffusion layer 11, N + drain diffusion layer 12, gate electrode 8, and P + ground power supply Vss diffusion layer in P-type well 200
N-channel MOS transistor consisting of 15 (referred to as NMOS)
Is configured. In the N-type well 101, a P + drain diffusion layer 13, a P + source diffusion layer 14, an N + power supply Vcc diffusion layer 18
A P-channel MOS transistor (referred to as a PMOS) composed of 0 and a gate electrode 81 is configured. Gate electrodes 8 and 81
Are connected and act as inputs for the inverter. N
+ Drain diffusion layer 12 and P + drain diffusion layer 13 are metal electrodes
Connected by 22 and works as inverter output. Second
FIG. 2B is an equivalent circuit diagram corresponding to the sectional view of FIG.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術において、P+埋込み層181を高エネル
ギイオン注入で形成するか、又はSi基板1として、エピ
タキシヤルウエーハを用いて寄生バイポーラ効果による
ラツチアツプ現象の発生を抑制していた。寄生バイポー
ラ効果を抑制するためには寄生素子の電流経路となるウ
エル領域下部の低抵抗化により寄生トランジスタの電流
増幅率を低下させればよい。しかしながら高エネルギイ
オン注入法による高濃度P+拡散層の形成においてはイ
オン注入時に発生する結晶欠陥が通常の熱処理条件では
消滅できない問題があり、低抵抗埋込み層が実現できな
かつた。N型ウエル上へのエピタキシヤル層形成の場
合、Sb拡散層によるウエル底面部の低抵抗化が可能とな
る。しかしながらエピタキシヤル工程は大量処理に不適
切であり高価になる問題があつた。
In the above prior art, the P + buried layer 181 is formed by high-energy ion implantation, or an epitaxial wafer is used as the Si substrate 1 to suppress the occurrence of the latch-up phenomenon due to the parasitic bipolar effect. In order to suppress the parasitic bipolar effect, the current amplification factor of the parasitic transistor may be reduced by lowering the resistance in the lower part of the well region serving as the current path of the parasitic element. However, in the formation of a high-concentration P + diffusion layer by the high-energy ion implantation method, there is a problem that crystal defects generated during ion implantation cannot be eliminated under ordinary heat treatment conditions, and a low-resistance buried layer cannot be realized. In the case of forming an epitaxial layer on the N-type well, the resistance of the well bottom can be reduced by the Sb diffusion layer. However, there is a problem that the epitaxial process is unsuitable for mass processing and is expensive.

本発明の目的は結晶欠陥の問題なしにウエル領域底部
に低抵抗層を制御性よく廉価に構成することにある。本
発明の他の目的はウエル領域を半導体基板より完全に絶
縁しラツチアツプ現象を完全に解消することにある。
An object of the present invention is to form a low-resistance layer at the bottom of a well region with good controllability and low cost without the problem of crystal defects. Another object of the present invention is to completely insulate the well region from the semiconductor substrate and completely eliminate the latch-up phenomenon.

〔問題点を解決するための手段〕[Means for solving the problem]

上記目的を達成するために本発明においては、ウエル
電位供給領域に主表面と垂直方向の縦坑を形成し、縦坑
底部より結晶面方位に依存する異方性エツチングにより
主表面と平行な横坑を形成する。横坑の終点を確定させ
るため深溝絶縁膜よりウエル領域を囲つておく。縦坑及
び横坑には不純物添加の半導体膜を充填する。ウエル領
域を基板から絶縁する為いは少なくとも横坑底面部に絶
縁膜を形成すればよい。半導体主表面と平行な横坑を形
成するためには(111)主表面を用い、横坑方向を〈11
1〉と垂直な〈110〉方向に設定する。異方性エツチング
にはN2H4,又はK0Hを用いれば〈111〉方向,及びSiO
2膜,Si3N4膜のエツチングの進行は無視できる。充填半
導体膜への添加不純物もAs,P等が使用できる為、エピタ
キシヤル層下部への従来のSb埋込み層に比べ1/3以下の
低抵抗化が可能となる。
In order to achieve the above object, in the present invention, a vertical shaft is formed in the well potential supply region in a direction perpendicular to the main surface, and a horizontal shaft parallel to the main surface is formed by anisotropic etching depending on the crystal plane orientation from the bottom of the vertical shaft. Form a pit. In order to determine the end point of the shaft, the well region is surrounded by the deep groove insulating film. The vertical shaft and the horizontal shaft are filled with an impurity-added semiconductor film. To insulate the well region from the substrate, an insulating film may be formed at least on the bottom of the shaft. In order to form a horizontal shaft parallel to the semiconductor main surface, the (111) main surface is used and the horizontal shaft direction is set to <11.
Set in the <110> direction perpendicular to 1>. If N 2 H 4 or K 0 H is used for anisotropic etching, the <111> direction and SiO
The progress of the etching of the two films and the Si 3 N 4 film can be ignored. Since As, P or the like can be used as the impurity added to the filling semiconductor film, the resistance can be reduced to 1/3 or less as compared with the conventional Sb buried layer below the epitaxial layer.

〔作用〕[Action]

本発明に基づけば半導体主表面領域にNMOS,PMOS等を
形成した後、ウエル領域底部に埋込み層を形成できるの
で埋込み拡数層は余分の熱処理が及ぼさず、したがつて
急俊でかつ高不純物濃度分布を有する埋込み層が実現で
きる。さらに上記埋込み層領域ウエル領域を確定する深
溝絶縁膜領域で整合決定されるため制御性にも何ら問題
ない。埋込み層深さ(厚さ)は縦坑エツチング量の制御
のみに依存し、不純物濃度も上記厚さと独立である為、
所望の低抵抗値を正確に設定できる。したがってウエル
電位は電源電圧に固定されるため、寄生トランジスタ経
路が生じず、ウエル間隔を従来の3μm以下にしてもラ
ツチアツプの発生は抑止される。
According to the present invention, a buried layer can be formed at the bottom of the well region after forming an NMOS, a PMOS, etc. in the semiconductor main surface region, so that the buried expansion layer is not subjected to an extra heat treatment, and is therefore rapid and highly doped. A buried layer having a concentration distribution can be realized. Further, since the matching is determined in the deep groove insulating film region that defines the buried layer region well region, there is no problem in controllability. The buried layer depth (thickness) depends only on the control of the amount of shaft etching, and the impurity concentration is independent of the above thickness.
A desired low resistance value can be set accurately. Therefore, since the well potential is fixed at the power supply voltage, a parasitic transistor path does not occur, and the occurrence of a latch is suppressed even when the well interval is set to 3 μm or less.

本発明において、埋込み半導体層下部に絶縁膜を設置
する構造の場合、ウエルは半導体基板、及び隣接ウエル
から完全に隔離される為、ラツチアツプの発生はウエル
間隔によらず完全に解消される。したがつてCMOSの微細
化高集積化が実現される。
In the present invention, in the case of a structure in which an insulating film is provided below the buried semiconductor layer, the well is completely isolated from the semiconductor substrate and the adjacent well, so that the occurrence of the latch is completely eliminated regardless of the well interval. Therefore, miniaturization and high integration of CMOS are realized.

〔実施例〕〔Example〕

以下、本発明を実施例によつてさらに詳細に説明す
る。説明の都合上、図面をもつて説明するが要部が拡大
して示されているので注意を要する。また、説明を簡明
にするための各部の材質,半導体層の導電型、及び製造
条件を規定して述べるが材質,半導体層の導電型、及び
製造条件はこれに限定されるものではないことは言うま
でもない。
Hereinafter, the present invention will be described in more detail with reference to Examples. For convenience of explanation, the explanation will be made with reference to the drawings. In addition, for simplicity of description, the material of each part, the conductivity type of the semiconductor layer, and the manufacturing conditions are defined and described, but the material, the conductivity type of the semiconductor layer, and the manufacturing conditions are not limited thereto. Needless to say.

実施例1 第3図〜第5図は本発明による半導体装置の第1の実
施例を製造工程順に示した断面図である。
Embodiment 1 FIGS. 3 to 5 are cross-sectional views showing a first embodiment of a semiconductor device according to the present invention in the order of manufacturing steps.

第3図おいて、P導電型,抵抗率10Ω・cm,主表面が
(111)のSi基板1の所望領域に30nm厚のSiO2膜を介し
て加速エネルギー125KeV,注入量1.5×1013cm-2の条件で
Pイオン注入を選択的におこない、その後の熱処理によ
り表面濃度7×1016cm-3,接合深さ約2.5μmのN-型ウ
エル領域2を形成した。しかる後、熱酸化による20nm厚
のシリコン酸化膜(SiO2と記す)300と120nm厚の化学気
相反応(CODと記す)法によるシリコン窒化膜(Si3N4
と記す)4の形成とそのパターニングをおこなつた。上
記のパターニングにおいてSi基板1も深さ3μm(幅1
μm)で深溝を形成した。続いて深溝底部にBF2のイオ
ン注入を加速エネルギ60KeV,注入量3.5×1013cm-2の条
件で施し、その活性化熱処理の後、Si3N4膜4を酸化阻
止マスクにして深溝面に湿式熱酸化による0.3μm厚のS
iO2膜6を形成した。しかる後、CVD法により0.5μm厚
の多結晶(又は非晶質)Si薄膜7を全面に堆積して深溝
空隙内を充填してかる主表面上のSi薄膜7をマイクロ波
エツチングにより除去し、深溝空隙内に選択残置させ
た。次にSi3N4膜4の所望箇所を再びパターニングして
除去した後、上記深溝部イオン注入と同一条件のイオン
注入と活性化熱処理を施してから湿式熱酸化による0.5
μm厚のフイルド絶縁膜5を形成した(第3図)。
In FIG. 3, the acceleration energy is 125 KeV and the implantation amount is 1.5 × 10 13 cm through a 30 nm thick SiO 2 film in a desired region of a Si substrate 1 having a P conductivity type, a resistivity of 10 Ω · cm, and a main surface of (111). P ions were selectively implanted under the condition of -2 , and an N - type well region 2 having a surface concentration of 7 × 10 16 cm -3 and a junction depth of about 2.5 μm was formed by a subsequent heat treatment. Thereafter, the formation of a 20 nm thick silicon oxide film (denoted as SiO 2 ) 300 by thermal oxidation and the formation of a silicon nitride film (denoted as a Si 3 N 4 film) 4 by a 120 nm thick chemical vapor reaction (denoted as COD) The patterning was performed. In the above patterning, the Si substrate 1 was also 3 μm deep (width 1
μm) to form a deep groove. Subsequently, ion implantation of BF 2 is performed on the bottom of the deep groove under the conditions of an acceleration energy of 60 KeV and a dose of 3.5 × 10 13 cm −2 , and after the activation heat treatment, the Si 3 N 4 film 4 is used as an oxidation prevention mask to form a deep groove surface. 0.3μm thick S by wet thermal oxidation
An iO 2 film 6 was formed. Thereafter, a 0.5 μm-thick polycrystalline (or amorphous) Si thin film 7 is deposited on the entire surface by CVD, and the Si thin film 7 on the main surface filling the deep groove voids is removed by microwave etching. It was selectively left in the deep groove space. Next, after removing a desired portion of the Si 3 N 4 film 4 by patterning again, ion implantation and activation heat treatment are performed under the same conditions as the above-described deep groove portion ion implantation, and then 0.5 μm by wet thermal oxidation is performed.
A μm-thick field insulating film 5 was formed (FIG. 3).

第3図の状態よりSi3N4膜4,SiO2膜300を除去してから
露出されたSi基板1に通常のCMOS製造工程に従つて18nm
厚のゲートSiO2膜3,多結晶Si膜によるゲート電極8及び
81,ゲート保護絶縁膜9,ゲート側壁絶縁膜10,Asイオン注
入によるN+ソース拡散層11,N+ドレイン拡散層12、及
びBイオン注入によるP+ドレイン拡散層13,P+ソース
拡散層14,P+接地電位供給拡散層15を形成した。CMOSの
ドレイン拡散層にN-,P-拡散層も設けたいわゆるLDD構
造等を用いてもよい。次に全面に12nm厚のSi3N6膜16を
堆積してからウエル電位供給予定領域上のSi3N6膜16選
択除去とSi基板1への縦坑(深さ2μm)を形成した。
この状態よりSi3N4膜16を酸化阻止膜として熱酸化によ
る20μm厚のSiO2膜17を縦坑側壁に形成してから縦坑底
部をさらに0.5μm深さで掘り進めて縦坑底部側壁でSi
面を露出させた。次に80%抱水ヒドラジン(N2H4)とイ
ソプロパトル、及び1%トリトンX(商品名:界面活性
剤)を200:20:1の割合で混合したエツチング液を60℃に
昇温し、約2時間処理して深溝絶縁膜6に達する深さ約
5μmの横坑を形成した。上記処理において〈111〉方
向へのエツチングの進行はみられず主表面と平行な横坑
が深溝絶縁膜6で囲われた領域内すべてに形成された。
尚、上記のエツチングはヒドラジンによる必要はなく例
えば水酸化カリウム(KOH)水溶液等のごとく結晶面方
位にエツチング速度が強く依存するエツチング液、又は
気相エツチング法に基づいてもよい(第4図)。
After removing the Si 3 N 4 film 4 and the SiO 2 film 300 from the state shown in FIG. 3, the exposed Si substrate 1 is 18 nm thick in accordance with a normal CMOS manufacturing process.
Thick gate SiO 2 film 3, polycrystalline Si film gate electrode 8 and
81, gate protection insulating film 9, gate side wall insulating film 10, N + source diffusion layer 11 and N + drain diffusion layer 12 by As ion implantation, and P + drain diffusion layer 13, P + source diffusion layer 14 by B ion implantation and P + ground potential The supply diffusion layer 15 was formed. A so-called LDD structure or the like in which N and P diffusion layers are also provided in the drain diffusion layer of the CMOS may be used. Next, a Si 3 N 6 film 16 having a thickness of 12 nm was deposited on the entire surface, and then the Si 3 N 6 film 16 was selectively removed on the well potential supply scheduled area, and a shaft (2 μm deep) was formed on the Si substrate 1.
From this state, a 20 μm thick SiO 2 film 17 is formed on the side wall of the shaft by thermal oxidation using the Si 3 N 4 film 16 as an oxidation preventing film, and then the bottom of the shaft is dug further to a depth of 0.5 μm, and the side wall of the shaft is removed. In Si
The surface was exposed. Next, an etching solution obtained by mixing 80% hydrazine hydrate (N 2 H 4 ), isopropate, and 1% Triton X (trade name: surfactant) at a ratio of 200: 20: 1 was heated to 60 ° C. By processing for about 2 hours, a shaft having a depth of about 5 μm reaching the deep groove insulating film 6 was formed. In the above processing, etching did not proceed in the <111> direction, and a horizontal shaft parallel to the main surface was formed in the entire region surrounded by the deep groove insulating film 6.
The above-mentioned etching does not need to be performed by hydrazine, but may be based on an etching solution such as an aqueous solution of potassium hydroxide (KOH) whose etching speed strongly depends on the crystal plane orientation, or a gas phase etching method (FIG. 4). .

第4図の状態よりSiN4の低圧熱分解法においてpH3
導入することによりPが高濃度に添加された多結晶(又
は非晶質)Si膜18を1μm厚堆積し、横坑及び縦坑を充
填した。しかる後、主表面上の多結晶Si膜18をマイクロ
液ドライエツチングにより除去し、横坑内、及び縦坑内
にのみ選択残置させた。多結晶Si膜18の0.5μm厚にお
ける層抵抗は25Ω/□であつた。次に熱処理により浅い
N+拡散層19を形成してからSi3N4膜16を除去した。そ
の後、通常のCMOS製造工程順に従い、表面安定化膜20の
堆積と所望箇所への開孔、Alを主材料とする金属膜の蒸
着とパターニングにより接地電圧線21,出力電極22,及び
電源電圧線23を含む配線及び電極を形成した。尚、図示
してないがゲート電極8と81は上記の金属配線により接
続されており入力線を形成している(第5図)。
From the state shown in FIG. 4 , a polycrystalline (or amorphous) Si film 18 to which P was added at a high concentration was deposited to a thickness of 1 μm by introducing pH 3 in a low-pressure pyrolysis method of SiN 4 , and a horizontal shaft and a vertical shaft were formed. The well was filled. Thereafter, the polycrystalline Si film 18 on the main surface was removed by micro liquid dry etching, and was selectively left only in the horizontal shaft and the vertical shaft. The layer resistance of the polycrystalline Si film 18 at a thickness of 0.5 μm was 25Ω / □. Next, after forming a shallow N + diffusion layer 19 by heat treatment, the Si 3 N 4 film 16 was removed. Thereafter, in accordance with the normal CMOS manufacturing process sequence, the ground voltage line 21, the output electrode 22, and the power supply voltage are deposited by depositing the surface stabilizing film 20 and opening holes at desired locations, depositing and patterning a metal film mainly composed of Al. The wiring including the line 23 and the electrode were formed. Although not shown, the gate electrodes 8 and 81 are connected by the above-mentioned metal wiring and form an input line (FIG. 5).

上述の製造工程を経て本実施例の半導体装置、相補型
MOSトランジスタが製造される。本実施例によればウエ
ル領域2は深溝絶縁膜6と高不純物濃度多結晶Si膜18に
よりSi基板1より完全に分離されており、かつ多結晶Si
膜18の層抵抗も25Ω/□と低抵抗でウエル領域2全体を
電源電位に固定することができた。すなわち隣接するNM
OSとの間には1μm幅の深溝絶縁膜6による分離領域し
かないにもかかわらずラツチアツプ現象はまつたく発生
することがなかつた。上記は従来構造においてラツチア
ツプ現象の抑止の為に分離領域間隔を3〜5μm以上要
していたのと比較して、3倍以上改善できたことを示し
ている。
Through the above-described manufacturing process, the semiconductor device of this embodiment
A MOS transistor is manufactured. According to this embodiment, the well region 2 is completely separated from the Si substrate 1 by the deep trench insulating film 6 and the high impurity concentration polycrystalline Si film 18, and the polycrystalline Si
The layer resistance of the film 18 was as low as 25 Ω / □, and the entire well region 2 could be fixed at the power supply potential. Ie adjacent NM
Even though there is only an isolation region between the OS and the deep trench insulating film 6 having a width of 1 μm, the ratchet-up phenomenon did not occur quickly. The above shows that the separation interval can be improved by three times or more as compared with the conventional structure, in which the separation region interval is required to be 3 to 5 μm or more for suppressing the latch-up phenomenon.

本実施例に基づく埋込み多結晶Si膜18の層抵抗値は従
来素子のエピタキシヤル層下部のSb埋込み拡散層の場合
に比べ同一層厚で約1/3にまで低減されている。尚、本
実施例において多結晶Si膜18をモノシラン(SiH4)の低
圧熱分解法により形成する例につき説明したが上記はジ
シラン(Si2H6)、ジクロルシラン(SiH2Cl2)、又はト
リクロルシラン等他の原料に基づいてもよく、さらに添
加不純物もPに限定されることなくAs等によつてもよ
い。
The layer resistance value of the buried polycrystalline Si film 18 according to the present embodiment is reduced to about で with the same layer thickness as that of the Sb buried diffusion layer below the epitaxial layer of the conventional device. In this embodiment, an example in which the polycrystalline Si film 18 is formed by a low-pressure pyrolysis method of monosilane (SiH 4 ) has been described, but the above description is based on disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), or trichloro. Other raw materials such as silane may be used, and the added impurities may be based on As or the like without being limited to P.

実施例2 第6図〜第7図、及び第1図は本発明の他の実施例を
製造工程順に示した断面図である。前記第1の実施例に
おいて、最初に形成する縦坑は2μm深さであつたが本
実施例においては1.8μmに設定した。さらに縦坑側壁S
iO2膜17形成後の第2回目の縦坑形成を0.4μm深さで実
施した後、再びSi3N4膜271を5nm厚で堆積してから反応
性イオンエツチングにより主表面と垂直方向へのエツチ
ングを行い、縦坑側壁部にSi3N4膜241を選択残置した。
続いて縦坑底面部をマイクロ波エツチングにより0.4μ
m深さエツチングしてから前記第1の実施例に従つて縦
坑底部より深溝絶縁膜6に達する横坑はウエル領域2下
部全域にわたり形成した。次に露出されている横坑底
面、及び天井面に高圧熱酸化を施し、50nm厚のSiO2膜2
4、及び25を形成してからAsが添加された多結晶Si膜181
を0.5μm堆積することにより横坑を充填した。この段
階では縦坑内にも多結晶Si膜が充填されているのでマイ
クロ波イオンエツチングでSi3N4膜271が全面的に露出さ
れるまで縦坑内多結晶Si膜を除去した(第6図)。
Embodiment 2 FIGS. 6 to 7 and FIG. 1 are sectional views showing another embodiment of the present invention in the order of manufacturing steps. In the first embodiment, the shaft initially formed had a depth of 2 μm, but in the present embodiment, it was set to 1.8 μm. Shaft shaft S
After the second vertical shaft formation after the formation of the iO 2 film 17 was performed at a depth of 0.4 μm, the Si 3 N 4 film 271 was deposited again to a thickness of 5 nm, and then, in a direction perpendicular to the main surface by reactive ion etching. Then, the Si 3 N 4 film 241 was selectively left on the side wall of the shaft.
Subsequently, the bottom of the shaft was 0.4μ by microwave etching.
According to the first embodiment, a horizontal shaft reaching the deep trench insulating film 6 from the bottom of the vertical shaft after etching by m depths was formed over the entire lower region of the well region 2. Next, high-pressure thermal oxidation is applied to the exposed bottom of the shaft and the ceiling, and a 50 nm thick SiO 2 film 2
Polycrystalline Si film 181 to which As is added after forming 4 and 25
Was filled by 0.5 μm to fill the shaft. At this stage, since the polycrystalline Si film is also filled in the shaft, the polycrystalline Si film in the shaft was removed by microwave ion etching until the entire surface of the Si 3 N 4 film 271 was exposed (FIG. 6). .

第6図の状態より縦坑側壁のSi3N4膜271を酸化マスク
として多結晶Si膜181の露出面を酸化し、薄いSiO2膜を
形成する。しかる後、縦坑側壁のSi3N4膜271を除去し、
縦坑側壁の一部領域のSi面を露出させてからSiO2膜25及
び26をエツチングマスクとして前記第1の実施例に示し
た手法により再び横坑を形成した(第7図)。
From the state shown in FIG. 6, the exposed surface of the polycrystalline Si film 181 is oxidized using the Si 3 N 4 film 271 on the shaft wall as an oxidation mask to form a thin SiO 2 film. Thereafter, the Si 3 N 4 film 271 on the side wall of the shaft was removed,
After exposing the Si surface in a part of the side wall of the vertical shaft, the horizontal shaft was formed again by the method shown in the first embodiment using the SiO 2 films 25 and 26 as an etching mask (FIG. 7).

第7図の状態より露出されているSiO2膜25を除去して
多結晶Si膜181を露出させてから再びAsが添加された多
結晶Si膜18を1μm厚で堆積することにより横坑、及び
縦坑内を完全に充填させた。続いて、主表面上の多結晶
Si膜18をマイクロ波エツチングにより除去して横坑及び
縦坑内にのみ選択残置させてからSi3N4膜27も除去し、
前記第1の実施例に従つてその後の製造工程を実施した
(第1図)。
By removing the exposed SiO 2 film 25 from the state of FIG. 7 to expose the polycrystalline Si film 181 and then depositing the polycrystalline Si film 18 to which As is added again to a thickness of 1 μm, And the inside of the shaft was completely filled. Then, the polycrystalline on the main surface
The Si film 18 was removed by microwave etching and selectively left only in the horizontal shaft and the vertical shaft, and then the Si 3 N 4 film 27 was also removed.
Subsequent manufacturing steps were performed according to the first embodiment (FIG. 1).

上記の製造工程により本実施例の半導体装置、CMOSト
ランジスタが製造されるが本実施例によればN型ウエル
2がSiO2膜24及び6によりSi基板1より完全に絶縁さ
れ、ラツチアツプ現象を生じさせる寄生トランジスタが
完全に消滅される。すなわち、隣接トランジスタとの間
隔にかかわらずラツチアツプ現象は生じなくなつた。さ
らにウエル電位も低抵抗の埋込み多結晶Si膜18の設置に
よりウエル領域2全面が固定される為、高電圧動作によ
り発生する少数キヤリアの影響が抑えられて閾電圧値の
変動、及びトランジスタの劣化も低減された。
The semiconductor device and the CMOS transistor of this embodiment are manufactured by the above manufacturing steps. According to this embodiment, the N-type well 2 is completely insulated from the Si substrate 1 by the SiO 2 films 24 and 6, and a latch-up phenomenon occurs. The parasitic transistor is completely extinguished. That is, the latch-up phenomenon does not occur regardless of the distance between adjacent transistors. Further, since the well potential is fixed to the entire surface of the well region 2 by providing the buried polycrystalline Si film 18 having a low resistance, the influence of a small number of carriers generated by the high voltage operation is suppressed, so that the threshold voltage changes and the transistor deteriorates. Was also reduced.

本実施例において埋込み多結晶Si膜18をn型ウエル2
底部に形成する例について示したが、P型ウエルを用い
るCMOSにおいてはP型ウエル底部にP+型埋込み多結晶
層、又は所望により不純物を添加しない多結晶半導体層
を形成する構成にしてもよい。
In this embodiment, the buried polycrystalline Si film 18 is
Although an example of formation at the bottom is shown, in a CMOS using a P-type well, a P + -type buried polycrystalline layer or a polycrystalline semiconductor layer to which an impurity is not added as required may be formed at the bottom of the P-type well.

〔発明の効果〕〔The invention's effect〕

本発明によればウエル領域側面を絶縁膜により、底面
を低抵抗埋込み層、さらには絶縁膜によりSi基板から隔
離できるのでラツチアツプ現象を完全に解消することが
できる。すなわち、従来CMOSにおいてラツチアツプ現象
抑止の為に3〜5μmのウエル間、又は素子間、間隔を
要していたのが本発明に基づけば素子間分離絶縁膜形成
に要する最小寸法、1μm幅以下に設定することができ
る。したがつて相補型MOSトランジスタの微細化が格段
に進展される。
According to the present invention, the side surface of the well region can be isolated from the Si substrate by the insulating film, the bottom surface can be isolated from the Si substrate by the low-resistance buried layer, and furthermore, the insulating film can completely eliminate the latch-up phenomenon. That is, in the conventional CMOS, a gap of 3 to 5 μm was required between wells or between elements in order to suppress a latch-up phenomenon. However, according to the present invention, the minimum dimension required for forming an element isolation insulating film is reduced to 1 μm or less. Can be set. Accordingly, the miniaturization of the complementary MOS transistor is remarkably advanced.

さらに本発明によればウエル電位も低抵抗埋込み層に
よりウエル領域全面で均一に保持することができ、少数
キヤリアの影響すなわち閾電圧値の変動やトランジスタ
の劣化も低減できる。
Further, according to the present invention, the well potential can be uniformly maintained over the entire well region by the low-resistance buried layer, and the influence of a small number of carriers, that is, fluctuation of the threshold voltage value and deterioration of the transistor can be reduced.

本発明によれば低抵抗埋込み層は上部活性領域形成後
に設けることができる。したがつて低抵抗埋込み層とし
て金属膜を用いても本発明の精神を逸脱しない。さらに
横坑底面の絶縁膜もSiO2に限定されずSi3N4,Al2O3,Ta
2O5等の他の絶縁層であつてもよい。
According to the present invention, the low resistance buried layer can be provided after forming the upper active region. Therefore, the use of a metal film as the low resistance buried layer does not depart from the spirit of the present invention. Furthermore, the insulating film on the bottom of the shaft is not limited to SiO 2, but is also Si 3 N 4 , Al 2 O 3 , Ta
Another insulating layer such as 2 O 5 may be used.

【図面の簡単な説明】[Brief description of the drawings]

第1図、及び第6図と第7図は本発明の第2の実施例を
製造工程順に示した断面図、第2図(a)は従来の半導
体装置を示す断面図、第2図(b)はその等価回路図、
第3図乃至第5図は本発明の第1の実施例を製造工程を
示した図である。
1 and FIGS. 6 and 7 are cross-sectional views showing a second embodiment of the present invention in the order of manufacturing steps. FIG. 2 (a) is a cross-sectional view showing a conventional semiconductor device. b) is its equivalent circuit diagram,
FIG. 3 to FIG. 5 are views showing manufacturing steps of the first embodiment of the present invention.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1の導電型を有する一対の領域が第2の
導電型を有する第1の領域内に設けられ、第2の導電型
を有する一対の領域が第1の導電型を有する第2の領域
内に設けられた半導体装置において、第1の領域下部は
第2の導電型を有する多結晶質、又は非晶質半導体層を
介して単結晶半導体基板に接するごとく構成されたこと
を特徴とする半導体装置。
1. A pair of regions having a first conductivity type are provided in a first region having a second conductivity type, and a pair of regions having a second conductivity type have a first conductivity type. In the semiconductor device provided in the second region, a lower portion of the first region is configured to be in contact with a single crystal semiconductor substrate via a polycrystalline or amorphous semiconductor layer having a second conductivity type. A semiconductor device characterized by the above-mentioned.
【請求項2】半導体層から絶縁膜を介して半導体基板に
接するごとく構成されたことを特徴とする特許請求の範
囲第1項記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the semiconductor device is configured to be in contact with the semiconductor substrate from the semiconductor layer via an insulating film.
JP63010636A 1988-01-22 1988-01-22 Semiconductor device Expired - Lifetime JP2713940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63010636A JP2713940B2 (en) 1988-01-22 1988-01-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63010636A JP2713940B2 (en) 1988-01-22 1988-01-22 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH01187855A JPH01187855A (en) 1989-07-27
JP2713940B2 true JP2713940B2 (en) 1998-02-16

Family

ID=11755694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63010636A Expired - Lifetime JP2713940B2 (en) 1988-01-22 1988-01-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2713940B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2803187B2 (en) * 1989-07-10 1998-09-24 日産自動車株式会社 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JPH01187855A (en) 1989-07-27

Similar Documents

Publication Publication Date Title
US4422885A (en) Polysilicon-doped-first CMOS process
US6787410B2 (en) Semiconductor device having dynamic threshold transistors and element isolation region and fabrication method thereof
US6933569B2 (en) Soi mosfet
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
JPH0355984B2 (en)
JPH0680724B2 (en) Method of manufacturing isolated CMOS FET integrated device
US6166412A (en) SOI device with double gate and method for fabricating the same
TW200903721A (en) Small geometry MOS transistor with thin polycrystalline surface contacts and method for making
JP2007005575A (en) Semiconductor device and its manufacturing method
JPS62156873A (en) Semiconductor device
JP2713940B2 (en) Semiconductor device
JPS6360549B2 (en)
JPH01130542A (en) Semiconductor device having interelement isolation region and manufacture thereof
KR19980081139A (en) Method of forming a CMOS circuit device
JPH0661482A (en) Mos-type transistor and its manufacture
JPH0575041A (en) Cmos semiconductor device
JPH0794721A (en) Semiconductor device and manufacture thereof
JPS5940563A (en) Manufacture of semiconductor device
JPH10223785A (en) Semiconductor device and fabrication thereof
JPS60244037A (en) Semiconductor device and manufacture thereof
JPS60235437A (en) Manufacture of semiconductor device
JPH01243446A (en) Semiconductor device
JPH1174504A (en) Semiconductor device and its manufacture
JPH05259270A (en) Semiconductor device for element separation and its manufacture
JPS61256740A (en) Manufacture of semiconductor device