JPS60235437A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60235437A
JPS60235437A JP59090966A JP9096684A JPS60235437A JP S60235437 A JPS60235437 A JP S60235437A JP 59090966 A JP59090966 A JP 59090966A JP 9096684 A JP9096684 A JP 9096684A JP S60235437 A JPS60235437 A JP S60235437A
Authority
JP
Japan
Prior art keywords
groove
mask
forming
film
channel stopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59090966A
Other languages
Japanese (ja)
Inventor
Shuichi Yamamoto
秀一 山本
Akira Nagai
亮 永井
Yoshio Sakai
芳男 酒井
Toshiaki Yamanaka
俊明 山中
Yoshitaka Tadaki
芳隆 只木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59090966A priority Critical patent/JPS60235437A/en
Publication of JPS60235437A publication Critical patent/JPS60235437A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To form a channel stopper on side faces of a groove in a self-aligning manner for preventing a parastic channel from being produced, by introducing an impurity only into a region for forming a groove with the use of a groove forming mask and by forming the groove so as to leave the impurity layer located under the mask. CONSTITUTION:An etching mask 32 is provided on the surface of a silicon substrate 31, and ions of p type impurity 33a such as boron are implanted in an aperture of the mask to provide a p type region 35a having a high impurity density. A p type impurity layer 35 is driven in by thermal treatment at a high temperature to form a p type region 36. The silicon substrate 31 is then etched anisotropically with the use of the film 32 as a mask so as to form a shallow groove 37. This process is repeated for several times according to a required depth of the groove, and finally a channel stopper layer 39 can be formed on the side faces of the deep groove.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体装置の寄生チャネルの発生を抑える方
法に係り、特に、深い溝の側壁に縦方向の寄生チャネル
を発生させないためのチャネルストッパ層の形成に好適
な半導体装置の製造方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for suppressing the generation of parasitic channels in a semiconductor device, and in particular, a channel stopper layer for preventing the generation of vertical parasitic channels on the side walls of deep trenches. The present invention relates to a method of manufacturing a semiconductor device suitable for forming a semiconductor device.

〔発明の背景〕[Background of the invention]

大規模集積回路(LSI)をさらに高集積化するため、
第1図に示すように、半導体基板11の中に形成された
深い溝12が近年、利用されている。しかし、この深い
溝の側壁部13は表面準位重度が多いことや不純物の再
分布等の理由によりその表面の導電形が反転し、寄生チ
ャネルが形成される。この寄生チャネルは素子間のリー
ク電流を増加させるなどの好ましくない影響を及ぼす。
In order to further increase the integration of large-scale integrated circuits (LSI),
As shown in FIG. 1, deep grooves 12 formed in a semiconductor substrate 11 have been utilized in recent years. However, the conductivity type of the surface of the side wall portion 13 of this deep groove is reversed due to the high density of surface states, redistribution of impurities, etc., and a parasitic channel is formed. This parasitic channel has undesirable effects such as increasing leakage current between elements.

従って、この寄生チャネルの発生を防止することは、第
1図に示される深い溝を利用する上で非常に重要である
Therefore, preventing the generation of this parasitic channel is very important when utilizing the deep groove shown in FIG.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記従来技術の問題点を解決し、LS
Iの高集積化に寄与する深い溝の側面に寄生チャネル発
生防止用のチャネルストッパーを自己整合的に形成する
半導体装置の製造方法を提供することにある。
An object of the present invention is to solve the problems of the prior art and to
It is an object of the present invention to provide a method for manufacturing a semiconductor device in which a channel stopper for preventing the generation of a parasitic channel is formed in a self-aligned manner on the side surface of a deep groove that contributes to high integration of I.

〔発明の背景〕[Background of the invention]

上記目的を達成するため、本発明では、半導体基板に溝
を形成するためのエツチング用のマスクを形成した後、
このマスクを利用して溝を形成する領域にのみ不純物を
導入し、熱処理により不純物を上記マスクの下にも回わ
り込ませ、しかる後、マスク下の不純物層を残すように
、異方性ドライエツチングによりサイドエッチの無い溝
形成を行うことを特徴としており、本発明により第2図
に示すように、半導体基板21表面に形成された深い溝
22の側面に不純物濃度が101g〜101101l1
”のチャネルストッパ一層23が形成される。
In order to achieve the above object, in the present invention, after forming an etching mask for forming a groove in a semiconductor substrate,
Using this mask, impurities are introduced only into the region where the groove will be formed, and heat treatment is used to introduce the impurities under the mask. The present invention is characterized in that grooves are formed without side etching by etching, and as shown in FIG.
” channel stopper layer 23 is formed.

【発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明を実施例を用いて説明する。 Hereinafter, the present invention will be explained in detail using examples.

実施例1 第3図は実施例1を示す工程図である。以下では低濃度
P形シリコン基板を用いた場合を例にとって説明する。
Example 1 FIG. 3 is a process diagram showing Example 1. In the following, a case using a low concentration P-type silicon substrate will be explained as an example.

まず、シリコン基板31の表面にホトレジスト膜やSi
O□ 膜によるエツチング用マスク32を形成し、マス
ク開口部にボロン等のp形不純物33aを10 ′2〜
1013am−’イオン打ち込みし、不純物濃度の高い
p影領域35aを形成する。なお、イオン打ち込み時に
、汚染やイオンのチャネリングを防ぐためシリコン基板
表面にはlO〜50nmの薄いSiO□ 膜34を形成
するのが好ましい(第3図(A))、次に、1000〜
1100℃の高温で熱処理し、イオン打ち込みされたp
形不純物層35をドライブインして深さ約1μm、不純
物濃度10 Ig〜10 ”cm−”のP影領域36を
形成する(第3図(B))。次に、膜32をマスクとし
てシリコン基板31を異方的に1〜2μmエツチングし
、浅い溝37を形成する。この時、マスク開口部内のp
影領域36をエツチングにより除去されるが、マスク3
2下にはP形不純物が回り込み拡散をしているためP影
領域36′が残る。
First, on the surface of the silicon substrate 31, a photoresist film or Si
An etching mask 32 made of an O□ film is formed, and a p-type impurity 33a such as boron is injected into the opening of the mask for 10'2 to 10 minutes.
1013 am-' ion implantation is performed to form a p shadow region 35a with a high impurity concentration. In order to prevent contamination and ion channeling during ion implantation, it is preferable to form a thin SiO□ film 34 with a thickness of 10 to 50 nm on the surface of the silicon substrate (FIG. 3(A)).
P heat treated at a high temperature of 1100℃ and ion implanted
A P shadow region 36 having a depth of about 1 .mu.m and an impurity concentration of 10 Ig to 10 "cm" is formed by driving in the shaped impurity layer 35 (FIG. 3(B)). Next, using the film 32 as a mask, the silicon substrate 31 is etched anisotropically by 1 to 2 μm to form a shallow groove 37. At this time, p inside the mask opening
Although the shadow area 36 is removed by etching, the mask 3
Since the P-type impurity wraps around and diffuses under 2, a P shadow region 36' remains.

その後、再びp形不純物33 b & 10 ”〜10
I310l3イオン打ち込みし、溝底部にp影領域35
bを形成する(第3図(C))。次に、再度高温の〜熱
処理によりp形不純物層35bをドライブインして溝周
辺にP影領域38を形成する(第3図(D))。このよ
うな工程を溝深さに応じて数回くり返しく第3図(E)
) 、最終的に第3図Fに示すような深い溝側面でのチ
ャネルストッパ一層39を形成する。
Then again the p-type impurity 33 b &10''~10
I310l3 ion implantation and p shadow area 35 at the bottom of the groove
b (Fig. 3(C)). Next, the p-type impurity layer 35b is driven in again by high-temperature heat treatment to form a P shadow region 38 around the trench (FIG. 3(D)). This process is repeated several times depending on the groove depth as shown in Figure 3 (E).
), finally forming a channel stopper layer 39 on the side surface of the deep groove as shown in FIG. 3F.

実施例2 第4図は本発明によるチャネルストッパー形成法を深い
溝内に形成された高抵抗素子に適用した実施例である。
Embodiment 2 FIG. 4 is an embodiment in which the channel stopper forming method according to the present invention is applied to a high resistance element formed in a deep groove.

この高抵抗素子は大容量スタティック形RAM (Ra
ndom Access Memory)のメモリセル
に用いられるものであり、その構造はn形シリコン41
表面領域に形成された深さ2〜6μmのP形つェル領域
42をつき抜けるように形成された深い溝43内部に、
Sin、等の絶縁膜44を介して10〜10′2Ωの高
抵抗多結晶シリコン45が埋め込まれている。n形シリ
コン基板41には電源電圧が印加されており高抵抗多結
晶シリコン45を通して微少電流がMOSトランジスタ
のドレイン拡散層47に供給される。Pウェル42は接
地電位であるため、深い溝47の側面には寄生チャネル
が形成される。この寄生チャネルの形成を防ぐため、溝
側面に本発明による方法でチャネルストッパー46が形
成されている。
This high resistance element is used in large capacity static RAM (Ra
It is used for memory cells of ndom access memory), and its structure is n-type silicon 41
Inside the deep groove 43 formed so as to pass through the P-shaped well region 42 with a depth of 2 to 6 μm formed in the surface region,
A high-resistance polycrystalline silicon 45 of 10 to 10'2 Ω is embedded through an insulating film 44 such as Sin. A power supply voltage is applied to the n-type silicon substrate 41, and a minute current is supplied to the drain diffusion layer 47 of the MOS transistor through the high resistance polycrystalline silicon 45. Since the P-well 42 is at ground potential, a parasitic channel is formed on the side surface of the deep groove 47. In order to prevent the formation of this parasitic channel, a channel stopper 46 is formed on the side surface of the groove by the method according to the invention.

第5図は第4図に示した高抵抗素子におけるチャネルス
トッパーの形成工程を示す図である。まず、第5図(A
)に示すように、熱酸化法により、表面に10〜50n
mの薄いシリコン酸化膜53を形成した半導体基板51
上に気相成長法により、100〜500nmの多結晶シ
リコン膜54および1〜2μmのシリコン酸化膜55の
重ね膜を形成した後、ホトエツチング法によりこの重ね
膜だけに窓開けを行い、薄いシリコン酸化膜53は残し
ておく。
FIG. 5 is a diagram showing a process for forming a channel stopper in the high resistance element shown in FIG. 4. First, Figure 5 (A
), a thermal oxidation method was used to deposit 10 to 50 nm on the surface.
A semiconductor substrate 51 on which a thin silicon oxide film 53 of m is formed.
After forming a stacked film of a polycrystalline silicon film 54 of 100 to 500 nm and a silicon oxide film 55 of 1 to 2 μm on top by vapor phase growth, a window is opened only in this stacked film by photoetching, and a thin silicon oxide film is formed. The film 53 is left.

次に、第5図(B)に示すように、残った重ね膜をマス
クに、薄いシリコン酸化膜53を通してシリコン基板5
1中にボロン56を10′3〜10150I11−2イ
オン打ち込みした後、1ooo℃程度の高温処理により
ボロンイオン重ね膜の下に拡散させ、P影領域56を形
成する。次に、第5図Cに示すように、再度残った重ね
膜をマスクとして異方性ドライエツチング法により深さ
2〜6μmのpウェルよりも深くシリコン基板中に溝5
8形成を行うと同時に、重ね膜の下に拡散したボロンイ
オン打ち込み層59をこの溝の周囲に残すことにより寄
生チャネルストッパーとする。最後に、第5図(D)に
示すように、上記シリコン基板中に形成した溝(第5図
Cの58)の側壁部にのみ100〜500nmのシリコ
ン酸化膜60を残し、さらに、埋込み形の高抵抗となる
多結晶シリコン61を底面で基板シリコン51を接触す
るように溝内に埋込む。なお、本実施例では、チャネル
ストッパ一層59はnウェル52内にのみ形成されれば
よい。
Next, as shown in FIG. 5(B), using the remaining overlapping film as a mask, the thin silicon oxide film 53 is passed through the silicon substrate 5.
After implanting 10'3 to 10150I11-2 ions of boron 56 into the substrate 1, the boron ions are diffused under the layered film by high-temperature treatment at about 100° C. to form a P shadow region 56. Next, as shown in FIG. 5C, using the remaining overlapping film as a mask, a trench is formed in the silicon substrate to a depth of 2 to 6 μm deeper than the p-well by an anisotropic dry etching method.
8 is formed, and at the same time, a diffused boron ion implantation layer 59 is left around this groove under the layered film to serve as a parasitic channel stopper. Finally, as shown in FIG. 5(D), a silicon oxide film 60 of 100 to 500 nm is left only on the side wall of the groove (58 in FIG. 5C) formed in the silicon substrate, and Polycrystalline silicon 61 having a high resistance is buried in the trench so that its bottom surface contacts the substrate silicon 51. In this embodiment, the channel stopper layer 59 only needs to be formed within the n-well 52.

実施例3 第6図は本発明によるチャネルストッパー形成法を相補
形MO3)−ランジスタ(以下CMO8と略記する)の
ウェルのアイソレーション構造に適用した実施例を示す
。本実施例では、シリコン基板71の表面に深さ2〜6
μmのp形つェル73とn形つェル74とが形成されて
おり、この両者を分離するため、その境界に深い溝72
が形成されている。深い溝72とp形つェルとの境界面
には寄生チャネルが発生しやすいため、深い溝72のP
ウェル側面部にのみチャネルストッパー75が形成され
ている。深い溝のnウェル側面部には寄生チャネルが発
生しにくく、本実施例ではチャネルストッパーは形成さ
れていない。このように深い溝の片側の側壁部にのみに
形成されたチャネルストッパーの構造はnウェルの不純
物濃度をnウェル中のチャネルストッパーの不純物濃度
より大きくすれば実現できる。
Embodiment 3 FIG. 6 shows an embodiment in which the channel stopper forming method according to the present invention is applied to a well isolation structure of a complementary MO3 transistor (hereinafter abbreviated as CMO8). In this embodiment, the surface of the silicon substrate 71 has a depth of 2 to 6 mm.
A p-type well 73 and an n-type well 74 of μm are formed, and a deep groove 72 is formed at the boundary to separate them.
is formed. Since parasitic channels are likely to occur at the interface between the deep groove 72 and the p-type well,
A channel stopper 75 is formed only on the side surface of the well. A parasitic channel is less likely to occur on the n-well side surface of the deep trench, and no channel stopper is formed in this embodiment. Such a structure in which the channel stopper is formed only on one side wall of the deep groove can be realized by making the impurity concentration of the n-well higher than the impurity concentration of the channel stopper in the n-well.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば半導体基板中に形
成された深い溝の側面に寄生チャネルの発生を抑えるた
めのチャネルストッパーを自己整合的に形成することが
できるので、大幅な製造工程の追加、変更を伴うことな
く、安定した製造工程と電気的特性の良好な深い溝形状
を実現することができ、LSIの高集積化に大きく寄与
する。
As explained above, according to the present invention, a channel stopper for suppressing the generation of a parasitic channel can be formed in a self-aligned manner on the side surface of a deep groove formed in a semiconductor substrate, thereby significantly reducing the manufacturing process. It is possible to realize a stable manufacturing process and a deep groove shape with good electrical characteristics without any additions or changes, which greatly contributes to higher integration of LSIs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は半導体基板中に形成した深い溝の断面構造図、
第2図は深い溝の側面に本発明により形成したチャネル
ストッパ一層の断面構造図、第3図は本発明のチャネル
ストッパ一層形成工程を示す断面構造図、第4図は本発
明のチャネルストッパー形成方法を深い溝内に形成され
て高抵抗素子に適用した実施例を示す断面構造図、第5
図は第4図に示した高抵抗素子におけるチャネルストッ
パ一層の形成工程を示す断面構造図、第6図は本発明に
よるチャネルストッパー形成法をCMO8のウェルアイ
ソレーション構造に適用した実施例を示す断面構造図で
ある。
Figure 1 is a cross-sectional structural diagram of a deep trench formed in a semiconductor substrate.
Fig. 2 is a cross-sectional structural diagram of a single layer of channel stopper formed on the side surface of a deep groove according to the present invention, Fig. 3 is a cross-sectional structural diagram showing the process of forming a single layer of channel stopper of the present invention, and Fig. 4 is a structural diagram of a channel stopper of the present invention. Cross-sectional structural diagram showing an example in which the method is applied to a high resistance element formed in a deep groove, No. 5
The figure is a cross-sectional structural diagram showing the process of forming a single layer of channel stopper in the high resistance element shown in FIG. 4, and FIG. 6 is a cross-sectional view showing an example in which the channel stopper forming method according to the present invention is applied to a CMO8 well isolation structure. It is a structural diagram.

Claims (1)

【特許請求の範囲】[Claims] 1、−導電型の半導体基板上に被膜を形成する工程と、
この被膜をマスクとして上記基板と同導電型不純物をイ
オン打込みした後熱処理を行う工程と、同被膜を再度マ
スクとして被膜下に回わり込んだ上記イオン打込み層が
側壁に残るように基板の素子形成領域に溝を形成する工
程とを含んでなる半導体装置の製造方法。
1. - Forming a film on a conductive type semiconductor substrate;
This film is used as a mask to ion-implant impurities of the same conductivity type as the substrate, followed by heat treatment, and the same film is used again as a mask to form elements on the substrate so that the ion-implanted layer that goes under the film remains on the side wall. A method of manufacturing a semiconductor device, comprising the step of forming a groove in a region.
JP59090966A 1984-05-09 1984-05-09 Manufacture of semiconductor device Pending JPS60235437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59090966A JPS60235437A (en) 1984-05-09 1984-05-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59090966A JPS60235437A (en) 1984-05-09 1984-05-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60235437A true JPS60235437A (en) 1985-11-22

Family

ID=14013236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59090966A Pending JPS60235437A (en) 1984-05-09 1984-05-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60235437A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318641A (en) * 1986-06-25 1988-01-26 ゼネラル・エレクトリック・カンパニイ Manufacture of semiconductor device
JPH01125971A (en) * 1987-11-11 1989-05-18 Seiko Instr & Electron Ltd C-mis semiconductor device and manufacture thereof
JPH0321039A (en) * 1989-06-19 1991-01-29 Takehide Shirato Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318641A (en) * 1986-06-25 1988-01-26 ゼネラル・エレクトリック・カンパニイ Manufacture of semiconductor device
JPH01125971A (en) * 1987-11-11 1989-05-18 Seiko Instr & Electron Ltd C-mis semiconductor device and manufacture thereof
JPH0321039A (en) * 1989-06-19 1991-01-29 Takehide Shirato Semiconductor device

Similar Documents

Publication Publication Date Title
US6580149B2 (en) Double LDD devices for improved DRAM refresh
US6271566B1 (en) Semiconductor device having a carbon containing insulation layer formed under the source/drain
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
KR900008207B1 (en) Semiconductor memory device
JP3003632B2 (en) Semiconductor integrated circuit and method of manufacturing the same
US5786265A (en) Methods of forming integrated semiconductor devices having improved channel-stop regions therein, and devices formed thereby
US4462151A (en) Method of making high density complementary transistors
JPH0244154B2 (en)
JP2624709B2 (en) Method for manufacturing semiconductor device
JPS60235437A (en) Manufacture of semiconductor device
JPH11121710A (en) Semiconductor device and its manufacturing method
JPH1055976A (en) Manufacture of semiconductor device having various buried regions
JP2750168B2 (en) Manufacturing method of MIS dynamic memory combining bipolar transistors
JP3309529B2 (en) Method for manufacturing semiconductor device
JP2000357792A (en) Manufacture of semiconductor device
JPH0387059A (en) Semiconductor integrated circuit
JPS60150642A (en) Complementary semiconductor device and manufacture thereof
JPS6251248A (en) Manufacture of semiconductor device
JPS5856450A (en) Complementary mos semiconductor device
JPH11345947A (en) Semiconductor integrated circuit device and manufacture thereof
JPS60226168A (en) Complementary mos semiconductor device
JPH01187870A (en) Semiconductor device and its manufacture
JP2925936B2 (en) Method for manufacturing semiconductor memory device
JPS61119075A (en) Manufacture of semiconductor device
JP2000188380A (en) Semiconductor device and its manufacture