JPH0321039A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0321039A
JPH0321039A JP1156166A JP15616689A JPH0321039A JP H0321039 A JPH0321039 A JP H0321039A JP 1156166 A JP1156166 A JP 1156166A JP 15616689 A JP15616689 A JP 15616689A JP H0321039 A JPH0321039 A JP H0321039A
Authority
JP
Japan
Prior art keywords
region
impurity
regions
impurity well
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1156166A
Other languages
Japanese (ja)
Other versions
JPH0682755B2 (en
Inventor
Takehide Shirato
猛英 白土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1156166A priority Critical patent/JPH0682755B2/en
Publication of JPH0321039A publication Critical patent/JPH0321039A/en
Publication of JPH0682755B2 publication Critical patent/JPH0682755B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor integrated circuit of high performance, high reliability, and high integration by demarcating plural impurity well regions and element formation regions with the same trenches, and connecting adjacent impurity well regions with an impurity region provided at the side and the bottom of the trench. CONSTITUTION:Plural opposite conductivity type impurity well regions 2 and 3 and element formation regions formed at the one conductivity type semiconductor substrate 1 are demarcated by trenches 4 which are deeper than the impurity well regions 2 and 3 and are filled with insulating films 5, and the impurity well regions 2 are connected by opposite conductivity type impurity regions 6 formed at the sides and the bottoms of the trenches. Accordingly, the element isolating regions can be formed without using the LOCOS method by selective oxidation, so it can be formed in such structure that birds' beak including stress does not exist. Moreover, since the impurity well regions 2 and 3 can be formed in self alignment by insulating film isolation, an impurity well region 2, which includes a minute impurity well contact region 9, and boundary region can be formed. Hereby, a semiconductor integrated circuit of high performance, high reliability, and high integration can be obtained.

Description

【発明の詳細な説明】 [概 要1 複数の不純物ウエル領域及び素子形戊領域は、不純1勿
rンエル領域よりも深く、1士一)絶縁脱を卵め込んで
形成されたI−1/ンチによりセルファラ,イ冫(,こ
画定され、前記不純1勿ウエル領城は前記I・レンチの
側面部及び底部に形成さメ′シた反対導電型の不純物領
域により接続されている構造に形成されているため、素
子分離領域かバーズビークの存在しない構造に形成でき
ることによる素子領域の1紋細化、ゲーI−酸化膜耐圧
の改善及びキャリアJ7命の改善を、不純物ウエルFa
 J′Aがセルファラインに形成できることによる不純
物ウエル領域及び境界領域の微細化を、不純物ウエル領
域の絶縁膜分離によるラッチアッフ゜の改善を、不純物
ウエル領域間接続用の不純物領域をセルファライシ形成
できることによる不純物rlノエル頭J或の微6911
て容易な搗続を、ソーストレイン領域とチャネルス1ヘ
ツパー1心域を分tiltできることによる接a容31
1.の低j+曳1ヒ撓び接合耐圧の改善を実現した半導
体集積回路の形成を可能とした半導体装置, [産業上の利用分野] 本発明はMIS型半導体装置に[系り、特に微細な不純
物P7エルコンタクIヘ領域を含む微細な不純物ウエル
領域の画定及び微細な素子分離領域の形成に関する9 I−、ST.超1−S丁等、高集積1ヒされるMTS型
半々体製置(,.二おいては、半ノ,隼(4(素子の微
細1ヒにf−1’って素子分M[E領域が山める而f+
’jの化率か増大しつつあること、不純物ウエル領域の
形成がセルファラインでないこと、不純物ウエル領域へ
の接続を』3こなう不純物ウエルコンタク1ヘ領域が微
細でないこと等が高集積化f\の劾げになるという問題
が顕著(・こなってきている。そこて゛1紋郭1な不ξ
,屯1勿ウエルコンタクI一領域を含む不純物P7エル
領域のセルファライン化による微細化及び素子分離領域
の微細化を改善した比較的簡略プロセスにより実現でき
る手段が要望されている。
[Detailed Description of the Invention] [Summary 1] The plurality of impurity well regions and element-forming regions are deeper than the impurity well regions, and are formed by inserting an insulation layer into the I-1. The structure is such that the impurity well region is connected by an impurity region of opposite conductivity type formed on the side and bottom portions of the I-wrench. As a result, it is possible to form a structure in which there is no element isolation region or bird's beak, resulting in thinning of the element region, improvement of GaI-oxide film breakdown voltage, and improvement of carrier J7 life.
The impurity well region and boundary region can be miniaturized by forming J'A on the self-alignment line, the latch-up can be improved by separating the impurity well region with an insulating film, and the impurity region can be formed by self-alignment to form the impurity region for connection between the impurity well regions. RL Noel head J or fine 6911
Easy connection due to the ability to tilt the source train region and channels 1 hepar 1 heart region 31
1. [Industrial Application Field] The present invention relates to MIS type semiconductor devices, and is particularly applicable to MIS type semiconductor devices, in which fine impurity 9 I-, ST.9 regarding definition of fine impurity well region including P7 L contact I region and formation of fine element isolation region. For super 1-S, etc., highly integrated MTS type half-half assembly (,.2, half-half, Hayabusa (4) (f-1' for the fine 1 element of the element M[ The E area piles up, so f+
The formation of the impurity well region is not self-aligned, the impurity well contact area is not very fine, and so on. The problem of f\ being criticized is becoming more and more obvious.
There is a need for a means that can be realized by a relatively simple process that improves the miniaturization of the impurity P7 well region including the well contact I region by self-lining and the miniaturization of the element isolation region.

[従来の技術] 第4図はjK来の半導1本装置の模式側断面図で、51
はp−−型シリコン(Si)基板,52はI)一型不純
物ウエル領域、53はp−型不純’J!4Ny工/L領
域、1jAはr〕型チャネルス1ヘリパー’;j”j 
JrHQ、j)5はp:%(+!.=1− ヤネルスI
へツバー領域、56はフィールT’酸化膜、j]7はn
十型ソーストレイン領域、584;l.r)十型ソース
トレイン頗1或.59はp十型r’y エル:1ンタタ
I’ ii1′t J!r’見、60はn十聖rンエノ
レ:?ンクタ7−. iil.b+lj、61はゲー1
− 1俊1ヒI!,Σ、62L1ヶーI・′、ヒ4・9
j、63シ、1ブ1つ・ノタ川酸1ヒ膜、G4ハ’lA
珪酸カラス(PSG) IVA、65L:i.AI配線
を示している。
[Prior art] Fig. 4 is a schematic side sectional view of a single semiconductor device from JK.
is a p-type silicon (Si) substrate, 52 is an I) type impurity well region, and 53 is a p-type impurity 'J! 4Ny/L region, 1jA is r〕type channels 1 heliper';j"j
JrHQ, j) 5 is p:% (+!.=1- Janels I
Hetuber region, 56 is field T' oxide film, j]7 is n
ten-shaped source train region, 584; l. r) 10-type source train 1 or. 59 is p 10 type r'y L: 1 ntata I'ii1't J! r'see, 60 is n ten saints rn enore:? Nctor 7-. il. b+lj, 61 is game 1
- 1 Shun 1 Hi I! , Σ, 62L1 month I・', Hi 4・9
j, 63 shi, 1 bu, Notagawa acid 1 arsenic membrane, G4 ha'lA
Silicate glass (PSG) IVA, 65L: i. AI wiring is shown.

同図にわいては、L O C O S法{,こよる素子
5’,− ,+,f[を行っており、素子形成領域と素
子分HiL領域は比]咬的殴差か少なく形成できるか、
ハーズビータか土じるため、素子分i4 Fll’l域
の{;!(細化(1,二は限vtかきつつある。又、不
純物ウエル領域の画定に関しては、セノレファラインて
゛はないため、Ii一聖不♀.屯1勿ウエル領域52と
1)−型不純物ウエル領域53の間隔の決定には、両不
純物ウエル領域形成川の不純才勿の横方向拡散及ひ位置
合せ誤差を考慮しなければならず、微細化が行われてい
ないし、LOCOS法によるウエルコンタクト領域(5
9. 60)の形成も高集積化の妨げとなっている。1
κ来技術及び従来技術の延長では、素子形成領域の微細
化は可能であるが微細な不純物P7エルコンタクト領域
を含む不純物P7エル領域の微細化及び素子分離領域の
微細化ができないため高集積化が達戒できないという問
題があった。
In the same figure, the L O CO S method {, this element 5', -, +, f [is performed, and the element forming area and the element HiL area are the ratio], and the occlusal impact is formed with less. Can you do it,
Because the heart's beater is broken, the element i4 Fll'l area {;! (Thinning (1 and 2 are limited to VT). Also, regarding the definition of the impurity well region, since there is no senoreference line, the Ii ichisei un♀. tun 1 course well region 52 and 1) In determining the spacing between the regions 53, it is necessary to take into account the lateral diffusion of impurities in both well regions and the alignment error, and miniaturization has not been carried out, and the well contact region by the LOCOS method must be considered. (5
9. 60) is also an obstacle to high integration. 1
In the extension of the conventional technology and the conventional technology, although it is possible to miniaturize the element formation region, it is not possible to miniaturize the impurity P7L region including the fine impurity P7L contact region or to miniaturize the element isolation region, resulting in high integration. There was a problem that it was not possible to perform the Dakai.

[発明が解決しようとする問題点1 本発明が解決しようとする問題点は、従来例に示される
ように、極めて高集積な半導体集積回路を得るために、
微細な不純物ウエルコソタクI・領域を含む不純物ウエ
ル領域のセルファラインによる微細な画定及びL O 
C O S法による素子分離領域の形成をしのぐ微細な
素子分離領域の形成を可能とした半導体装置の尖現が困
難であったことである9 [問題点を解決するための手段] 」二記問題点は、一導電型半導体基板に形成された複数
の反対導電型不純物ウエル領域及び素子形成領域が前記
不純物ウエル領域より深・〈及び絶縁膜を埋め込んで形
成されたトレンチにより画定され、且つ前記不純物ウエ
ル領域か前記トレンチの側面部及び底部に形成された反
対導電型不純物領域により接続されている本発明による
半導体装置によって解決される。
[Problem to be Solved by the Invention 1 The problem to be solved by the present invention is that, as shown in the conventional example, in order to obtain an extremely highly integrated semiconductor integrated circuit,
Fine definition of the impurity well region including the fine impurity well region I and L O
It has been difficult to develop a semiconductor device that has made it possible to form a finer element isolation region that surpasses the formation of an element isolation region using the COS method. The problem is that a plurality of impurity well regions and element formation regions of opposite conductivity type formed in a semiconductor substrate of one conductivity type are defined by trenches formed deeper than the impurity well regions and buried with an insulating film. This problem is solved by a semiconductor device according to the present invention, in which the impurity well regions are connected by impurity regions of opposite conductivity type formed on the side and bottom portions of the trench.

[作 用] 即ち本発明の半導体装置においては、複数の不純物ウエ
ル領域及び素子形成領域は、不純物ウエル領域よりも深
く、且つ絶縁膜を埋め込んで形成さhた■〜レンチによ
りセルファラインに画定さ】゛シ、前記不純物ウエル領
域は前記トレンチの(jl11面部及び底部に形成され
た反対導電型の不純物頭國(・1二より接続されている
4’lS’l j貴(・こ形成されている,したがって
、素子分i:il[領域を3”;L: JR酸化に、Y
るいわ{(1)るL O C O S法を使用せずに形
戊できるため、即ちス1ヘレスを内在させるハーズヒー
タの存在しない’!+W 危に形成できるため、微細な
素子領域を形戊てきることによる高集積化を、ゲーI−
酸化膜の耐圧を改善できること(,こよる高性能化を、
エレク1・ロン又はポールか1ヘラ・ソプされにくくな
り、キャリア寿命を改善できることによる高信頼性を可
能にすることができる。又、不純fa r7エル領域を
絶縁膜分離によりセルファライン(,こ形成できるため
、微細な不純Jlq r’7エルコンタクI一領域を含
む不純物ウエル領域及び境界領域を形成できることによ
る高集積化を、ラ・ソチア・ソプを改善できること(,
こよる高性能化も可能にすることができる。さら(、こ
、ソーストレイン領域とヂャネルス1へツバー領域を分
高1[シて形成できるため、接合容量の低;戊1ヒによ
る高速化及び接合耐圧を改善をできることによる高性能
化をも可能にすることができる、.即ち、極めて高性能
、高信頼、高速且つ高集積な半導体集積回路の形成を可
能とした半導体装置を得ることができる。
[Function] That is, in the semiconductor device of the present invention, the plurality of impurity well regions and element formation regions are defined in self-alignment lines by wrenches that are deeper than the impurity well regions and are formed by burying an insulating film. 】゛, the impurity well region is an impurity head of the opposite conductivity type formed on the surface and bottom of the trench (4'lS'l jki() connected from 12). Therefore, element portion i:il [area 3''; L: JR oxidation, Y
Ruiwa {(1) Since it can be shaped without using the L O C O S method, there is no hard's heater that incorporates S1 Heres'! +W Since it is difficult to form
The ability to improve the withstand voltage of the oxide film (, resulting in higher performance)
High reliability can be achieved by making it difficult to be damaged by electric currents or poles, and improving carrier life. In addition, since the impurity FAR7 well region can be formed as a self-line by insulating film separation, high integration can be achieved by forming the impurity well region and boundary region including the fine impurity Jlq r'7L contact I region.・That Sochia Sopu can be improved (,
It is also possible to achieve higher performance. In addition, the junction capacitance is low because the source train region and the tube region can be formed with a height of 1 [1]. In other words, it is possible to obtain a semiconductor device which enables the formation of extremely high performance, highly reliable, high speed and highly integrated semiconductor integrated circuits.

[実施例1 以下本発明を、図示実施(ハ)Iにより具体的(1コ説
明する。
[Example 1] Hereinafter, the present invention will be specifically explained using illustrated embodiment (c) I.

第1図は本発明の半導体装置(1.:おげる第1の実施
例の模式側断面図、第2図は木発四の半導1本装置にお
ける第2の実施例の模式側断面図、第3図(a)〜(e
)は本発明の半導体装置における製遣方法の一実施例の
工程断面図である。
FIG. 1 is a schematic side sectional view of a first embodiment of the semiconductor device (1.) of the present invention, and FIG. 2 is a schematic side sectional view of a second embodiment of a single semiconductor device of the present invention. Figure 3 (a) to (e)
) is a process cross-sectional view of an embodiment of a manufacturing method for a semiconductor device of the present invention.

全目を通し同一対象物は同一符号で示ずー第1図はp型
シリコン(Si)基板を用いた際の本発明の半導体装置
における第1の実施例の模式側断面図で、]は10  
cm  程度のJ)−−型シリコン(Si)基板、2は
10  cm  程度のn一型不純物+fzエル領域、
3は10  cm  程度の1)一型不純物r゛7エル
領域、4は1へレンチ、5は1・レンチ埋め込み絶縁膜
、6ほ1016cm−”程度の不純物ウエル領域間接続
用のロー型不純物領域、7は1020cn13程度のn
+型ソースドレーイン領域、8は10  Cn+−3程
度のp+型ンースI<レイン領域、9は10  cnr
3程度のr】」−型不純物ウエルコンタクfヘ領域、1
0は1511 1l1程度のゲート酸化膜、11は30
0nm程度のゲーI〜電極、12は5011m程度のブ
ロック用酸化膜、13は800 nm程度の燐珪酸ガラ
ス(PSG)膜、14は1 ,um程度のAI配線を示
している。
Identical objects are indicated by the same reference numerals throughout. Figure 1 is a schematic side sectional view of the first embodiment of the semiconductor device of the present invention using a p-type silicon (Si) substrate; 10
J)--type silicon (Si) substrate of about 10 cm, 2 is an n-type impurity + fz L region of about 10 cm,
3 is a type 1 impurity r゛7 well region of about 10 cm, 4 is a trench in 1, 5 is an insulating film buried in the trench, and 6 is a low type impurity region for connection between impurity well regions of about 1016 cm. , 7 is n of about 1020cn13
+ type source drain region, 8 is 10 Cn+ -3 p+ type source drain region, 9 is 10 cnr
r of about 3]-type impurity well contact f region, 1
0 is 1511 1l1 gate oxide film, 11 is 30
12 is a block oxide film of about 5011 m, 13 is a phosphosilicate glass (PSG) film of about 800 nm, and 14 is an AI wiring of about 1.0 nm.

同図においては、複数のn一型不純物ウエル領域2及び
素子形成領域はn−型不純物ウエル領域2より深く且つ
絶縁股か理め込まれて形成さhた微細な1−レンチ(4
、5)によりセルファラインに微細に画定されており、
隣接する複数のn一型不純物ウエル領域2はI−レンチ
(4、5)の側面部及び底部に形成されたn一型不純物
領域6により接続されている。n一型不純物ウエル領域
2の一部にはn十型不純物ウエルコンタク1へ領域9か
形成されており、n十型不純物ウエルコンタクI〜領域
9に与えられたウエル電圧は「1+型不純物ウエルコン
タクト領域9を内蔵するn一型不純物ウエル領域2及び
n−型不純物領域6を介して隣接する複数のn一型不純
物ウエル領域2に与えられており、すべてのn一型不純
物P7エル領域2は同電位になっている。又、I〜レン
チ〈4、5)によりn一型不純物ウエル領域2とp一型
不純物ウエル領域3はセルファラインに微細に分離され
ている。したがって、素子分離領域を選択酸化によるL
OCOS法を使用せずに形成できるため、即ちストレス
を内在させるバーズビークの存在しない4”^1逍に形
成できるため、微細な素子Jjl或を113成できるこ
とによる高集積化を、ゲーI−酸化膜の耐圧を改善でき
ることによる高性能化を、エレクI一ロン又はボールか
1へラップさ!′シにくくなり、キャリア寿命を改善で
きることによる高信頼性を可能にすることができる9又
、不純物ウエル領域を絶縁膜分離によりセルファライン
に形成できるため、微細な不純物ウエルコンタクI・領
域を含む不純物ウエル領域及び境界領域を形成できるこ
とによる高集積化を、ラッチアップを改善できることに
よる高性能化も可能にすることかできる。さらに、ソー
ストレイン領域とチャネルス1ヘツパー領域を分離して
形或できるため、接合容量の低減化による高速化及び接
合耐圧を改善をできることによる高性能化をも可能にす
ることができる。
In the figure, a plurality of n-type impurity well regions 2 and an element formation region are formed by fine 1-wrenches (4) deeper than the n-type impurity well regions 2 and embedded in the insulation section.
, 5) are finely defined in the self-line,
A plurality of adjacent n-type impurity well regions 2 are connected by n-type impurity regions 6 formed on the side and bottom portions of the I-wrenches (4, 5). A region 9 is formed in a part of the n1 type impurity well region 2 to the n0 type impurity well contact 1, and the well voltage applied to the n0 type impurity well contact I to the region 9 is "1+ type impurity well contact 1". It is provided to a plurality of adjacent n-type impurity well regions 2 via the n-type impurity well region 2 containing the contact region 9 and the n--type impurity region 6, and all the n-type impurity P7 well regions 2 are at the same potential. Also, the n-type impurity well region 2 and the p-type impurity well region 3 are finely separated into self-alignment lines by the I~ wrench <4, 5). Therefore, the element isolation region L by selective oxidation
Since it can be formed without using the OCOS method, that is, it can be formed in a 4"^1 size without the presence of a bird's beak that causes stress, it is possible to achieve high integration by forming 113 fine elements. Improved performance by improving the withstand voltage of Elec I-ron or ball-wrapping! 9-pronged impurity well region that can enable high reliability by being less prone to cracking and improving carrier life. can be formed in a self-line by insulating film separation, which enables high integration by forming impurity well regions and boundary regions including fine impurity well contact I/regions, and high performance by improving latch-up. Furthermore, since the source train region and the channel 1 heparium region can be formed separately, it is possible to increase the speed by reducing the junction capacitance and to improve the performance by improving the junction breakdown voltage. can.

第2図は木発明の半導体装置における第2の実施例の模
式側断面図で、1、3〜5、7、8、10〜14は第1
図と同し1勿を、2aは第1のn−型不純物ウエル領域
、21)は第2のn−型不純物ウエル領域、6aは不純
物ウエル領域間接続用の第1のn一型不純物領域、6b
は不純物ウエル領域間接続用の第2のn一型不純物領域
、9aは第1のn十型不純物ウエルコンタクI一領域、
9[)は第2のn十型不純物ウエルコンタク1−領域を
示している。
FIG. 2 is a schematic side sectional view of the second embodiment of the semiconductor device of the invention, and 1, 3 to 5, 7, 8, 10 to 14 are the first
Same as the figure, 2a is the first n-type impurity well region, 21) is the second n-type impurity well region, and 6a is the first n-type impurity region for connection between the impurity well regions. , 6b
9a is a second n1-type impurity region for connection between impurity well regions; 9a is a first n10-type impurity well contact I-region;
9[) indicates the second n0-type impurity well contact 1- region.

同図においては、二種の異なるウエル電圧を持つn一型
不純物ウエル領域(2a、2b)を形成したもので、第
1のn十型不純物ウエルコンタク1・領域9aに与えら
れた第1のウエル電圧は第1のn型不純物領域6aを介
して第1のn−型不純物ウエル領域2aに与えられ、一
方、第2のn十型不純物ウエルコンタクト領域9bに与
えられた第2のウエル主圧は第2の11−聖不辛屯拘領
域6bを介して第2のn一型不純物ウエル領域2])に
与えられている点を除き第1図と同しである。第1図の
効果にくわえ、異電位の不純物ウエル領域の形成及び異
電位の不純1勿ウエル領域I\の接続の形成を容易に実
現できる。
In the figure, n1 type impurity well regions (2a, 2b) having two different well voltages are formed, and the first n1 type impurity well contact 1 given to the first n0 type impurity well contact region 9a is The well voltage is applied to the first n-type impurity well region 2a via the first n-type impurity region 6a, while the second well voltage is applied to the second n-type impurity well contact region 9b. The pressure is the same as in FIG. 1 except that the pressure is applied to the second n-type impurity well region 2] through the second 11-containing region 6b. In addition to the effect shown in FIG. 1, the formation of impurity well regions with different potentials and the formation of connections between impurity well regions I\ with different potentials can be easily realized.

次いで本発明(,こ係る半導体装置の製逍方決の一実施
例にツイて第]ffl(a) 〜(c) &び第コ12
1を参照して説明する9 第3図(a) p−一型シリコン(S1)基板]に5 0 n m程度
の酸fヒ1操15、5 0 n m程度の窒化脱16を
順次成長させる.次いで通常のフォ1ヘリソグラフィー
技術を利用し、選択的に窒化膜1G、酸化膜15、1}
−−一型シリコン(Si)基板]をエッチングしトレン
チ4を形成する9次いで通常のフォ1・リソグラフィー
技術を利用し、レジスi− (図示せず)及び窒化膜1
6をマスク層として、燐を回転イオン注入し、トレンチ
l1の側面部及び底部にn一型不純物領域6を選択的1
,こ形成する9 第3]夕1(+1) 次いで化学気相敗長法(,こより絶縁JN5を成』そさ
せ、異方性I−ライエッヂングによ’) l” I/冫
ヂ4に絶縁Jl! 5を理め込む、 第3図(C) 次いで通常のフォIへリソグラフィー技術を利用し、レ
ジスI一(図示せず〉及び絶縁膜5を埋め込んだトレン
チ(4、5)をマスク層として、燐をイオン注入してロ
ー型不純物ウェル領域2を、硼素をイオン注入して1)
一型不純物ウェル領域3をそれそれ選択的に画定する。
Next, the present invention (part 1, which describes an example of the method of manufacturing such a semiconductor device)
Fig. 3 (a) A p-type silicon (S1) substrate] was sequentially grown with about 50 nm of acidic atomization 15 and about 50 nm of nitriding 16. Let. Next, using a normal photolithography technique, a nitride film 1G and an oxide film 15, 1} are selectively formed.
-- Type 1 silicon (Si) substrate] is etched to form a trench 4.Next, using a conventional photolithography technique, a resist I- (not shown) and a nitride film 1 are etched.
6 is used as a mask layer, phosphorus is ion-implanted by rotation, and n-type impurity regions 6 are selectively implanted into the side and bottom portions of the trench l1.
, this is formed 9 3rd] E1 (+1) Next, the chemical vapor phase decomposition method (to form the insulation JN5 from this, anisotropic I-lyedging) Figure 3 (C) Next, using the usual photolithography technique, mask the resist I1 (not shown) and the trenches (4, 5) filled with the insulating film 5. As a layer, phosphorus is ion-implanted to form a low-type impurity well region 2, and boron is ion-implanted to form a low-type impurity well region 1).
Type 1 impurity well regions 3 are selectively defined.

次いで高温処理を施すことにより深さを調整し、I・レ
ンチ4より浅いn一型不純物ウエル領域2及びI)一型
不純物ウェル領域3を形成ずる。次いで窒化膜16、酸
化膜15をエツチ〉′グ除去ずるー 第3図((]) 次いで通常の技法を適用することによりゲー1一酸化膜
10及び多結晶シリコン膜11を成長する9次いで通常
のフォI〜リソグラフィー技術を利用し、多結晶シリコ
ン膜11をパターニングして、ゲーIヘ電極11を形成
ずる。
Next, the depth is adjusted by performing high-temperature treatment, and an n-type impurity well region 2 and an I)-type impurity well region 3, which are shallower than the I-wrench 4, are formed. Next, the nitride film 16 and the oxide film 15 are removed by etching. The polycrystalline silicon film 11 is patterned using the FoI lithography technique to form the Ge I electrode 11.

第3図(e) 次いで通常のフォI=リソグラフィー技術を利用し、1
/ジスIヘ(図示せず冫、絶縁膜5及びゲート電極11
をマスク層として、砒素をイオン注入してrl+型ソー
スドI/イン頑域7及びr1+型不純物rlzエルコン
タク■ヘ領域9を、硼素をイオン注入してp十型ソース
ドレイン領域8及びp十型不純物ウエルコンタクト領域
(図示せず)をそhそれ選択的に画定する。
FIG. 3(e) Next, using the usual photoI lithography technique, 1
/JIS I (not shown), insulating film 5 and gate electrode 11
Using as a mask layer, arsenic is ion-implanted to form the rl+ type source I/in region 7 and r1+ type impurity rlz el contact region 9, and boron is ion-implanted to form the p-type source/drain region 8 and p-type impurity. A well contact region (not shown) is then selectively defined.

第T図 次いで不要部のゲー1へ酸化膜10をエッチング除去す
る。次いで通常の技法を適用することによりブロック用
酸化′fI!Al2及び燐珪酸ガラス(PSG) II
I! 13の成長、高温熱処理によるn1一型ソースド
1/イン領域7、n十型不純物ウェルコンタク1へ領域
9、1)−1−型ソースドI/イン領域8及びp十聖不
純物rンエルコンタク1ヘ領域(図示せず)の深さの制
御、電極コンクク1〜窓の形成、AI配線14の形戊等
をよ5こなって半導体装置を完成する9 以上実施例に示したように゛、本発明の半導体装置によ
れば、素子分離領域を選択酸化によるL OCOS法を
使用せずに形戊できるため、即ちス1へレスを内在させ
るバーズビークの存在しない楕造13 1/1 に形成できるため、微細な素子領域を形成できること(
,こよる高集積化を、ゲート酸化膜の耐圧を改善できる
ことによる高性能化を、エレクIヘロン又はホールが1
ヘラップされにくくなり、キャリア寿命を改善できるこ
とによる高信頼性を可能にすることができる。又、不純
物ウエル領域を絶縁膜分RIEによりセルファラインに
形成できるため、微細な不純物ウエルコンタクIヘ領域
を含む不純物ウエル領域及び境界領域を形成できること
による高集積化を、ラッチアップを改善できることによ
る高性能化も可能にすることができる。さらに、ソース
ドレイン領域とチャネルストッパー領域を分離して形成
できるため、接合容量の低減化による高速化及び接合耐
圧を改善をできることによる高性能化をも可能にするこ
とができる。
Next, the oxide film 10 on the unnecessary portion of the gate 1 is removed by etching. The blocking oxidation 'fI!' is then applied by applying conventional techniques. Al2 and phosphosilicate glass (PSG) II
I! 13 growth, high-temperature heat treatment to form n1 type sourced 1/in region 7, n0 type impurity well contact 1 region 9, 1) -1- type sourced I/in region 8 and p ten impurity r well contact 1 region The semiconductor device is completed by controlling the depth (not shown), forming the electrode concavity 1 to the window, and shaping the AI wiring 14.9 As shown in the above embodiments, the present invention According to the semiconductor device, the element isolation region can be formed without using the LOCOS method using selective oxidation, that is, the element isolation region can be formed into an elliptical shape 13 1/1 without a bird's beak that includes an internal space. Being able to form fine element regions (
, Elec I Heron or Hall will be able to improve the performance by improving the breakdown voltage of the gate oxide film.
This makes it possible to achieve high reliability by making the carrier less likely to be damaged and improving carrier life. In addition, since the impurity well region can be formed as a self-line by insulating film RIE, high integration can be achieved by forming impurity well regions and boundary regions including fine impurity well contact I regions, and high integration can be achieved by improving latch-up. Performance can also be improved. Furthermore, since the source/drain region and the channel stopper region can be formed separately, it is possible to increase the speed by reducing the junction capacitance and to improve the performance by improving the junction breakdown voltage.

「発明の効果」 以上説明のように本発明によれば、MIS型半導体装置
において、複数の不純物ウエル領域及び素子形成領域を
同一の1へレンチで画定し、目,つ?ヘレンチの側面部
及び底部に設ける不純物領域に3七り隣接する不純物ウ
エル領域間の接続を達成する楢造に形成できるため、素
子分離領域かバーズビークの存在しない構造に形成でき
ることによる素子領域の微細化、ゲーI−酸化脱耐圧の
改善及びキャリア寿命の改善を、不純物ウエル領域がセ
ルファラインに形成できることによる不純物ウエル領域
及び境界領域の微細化を、不純物ウエル領域の絶縁膜分
離によるラッチアップの改善を、不純物ウエル領域間接
続用の不純物領域をセルファライン形成できることによ
る不純物ウエル領域の微細で容易な接続を、ソーストレ
イン領域とチャネルスI〜ツパー領域を分離できること
による接合容量の低減化及び接合耐圧の改善をも可能に
することができる。即ち、極めて高性能、高信頼、高速
且つ高集積な半導体集積回路の形成を可能とした半導体
装置を得ることができる。
"Effects of the Invention" As described above, according to the present invention, in a MIS type semiconductor device, a plurality of impurity well regions and element formation regions are defined by the same trench, Since it can be formed into a structure that achieves connection between the impurity well regions adjacent to the impurity regions provided at the side and bottom portions of the trench, it can be formed into a structure without device isolation regions or bird's beaks, resulting in miniaturization of the device region. , GaI-oxidation de-breakdown voltage and carrier lifetime improvement, miniaturization of the impurity well region and boundary region by forming the impurity well region on a self-aligned line, and improvement of latch-up by separating the impurity well region with an insulating film. , the impurity region for connection between the impurity well regions can be formed in a self-aligned manner, resulting in fine and easy connections between the impurity well regions, and the ability to separate the source train region from the channel I-thumper region reduces the junction capacitance and increases the junction withstand voltage. Improvements can also be made. That is, it is possible to obtain a semiconductor device that enables the formation of extremely high-performance, highly reliable, high-speed, and highly integrated semiconductor integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置における第1の実施例の模
式側断面図、 第2図は木発団の半導体装置における第2の実施例の模
式側断面図、 第3図(a)〜(e)は本発明の半導体装置における製
造方法の一実施例の工程断面図、 第4図は従来の半導体装置の模式側断面図である。 図において、 1はp−−型シリコン(Si)基板、 2はn一型不純物ウエル領域、 2aま第工のn一型不純物ウエル領域、2bi第2のn
一型不純物ウエル領域、3ip一型不純物ウエル領域、 4if〜レンチ、 5iトレンチ埋め込み絶縁膜、 6;l不純物ウエル領域間接続用のn一型不純物領域、 6aは不純物ウエル領域間接続用の第1のn−型不純物
領域、 61)は不純物ウエル領域間接続用の第2のn−型不純
物領域、 7,tn+型ソーストレイン領域、 8ip十型ソースI・レイン領域、 9,l:n十型不純物ウエルコンタク■ヘ領域、9aま
第1のn十型不純物ウエルコンタク■・領域9b,l:
第2のn十型不純物ウエルコンタク■ヘ領域10まゲー
ト酸化膜、 11まゲート電極、 12iブロック用酸化膜、 13ま燐珪酸ガラス(PSG)膜、 14..iAl配線 を示す。
FIG. 1 is a schematic side sectional view of a first embodiment of the semiconductor device of the present invention, FIG. 2 is a schematic side sectional view of the second embodiment of the semiconductor device of Kihatsudan, and FIGS. (e) is a process sectional view of an embodiment of the manufacturing method for a semiconductor device of the present invention, and FIG. 4 is a schematic side sectional view of a conventional semiconductor device. In the figure, 1 is a p-type silicon (Si) substrate, 2 is an n-type impurity well region, 2a is a first n-type impurity well region, and 2bi is a second n-type impurity well region.
1-type impurity well region, 3ip 1-type impurity well region, 4if ~ wrench, 5i trench-buried insulating film, 6; l n-type impurity region for connection between impurity well regions, 6a is a first type impurity region for connection between impurity well regions 61) is a second n-type impurity region for connection between impurity well regions, 7, tn+ type source train region, 8ip 10 type source I/rain region, 9, l: n 10 type source I/rain region. Impurity well contact region 9a, first n-type impurity well contact region 9b, l:
2nd n-type impurity well contact region 10 gate oxide film, 11 gate electrode, 12 i block oxide film, 13 phosphosilicate glass (PSG) film, 14. .. iAl wiring is shown.

Claims (2)

【特許請求の範囲】[Claims] (1)一導電型半導体基板に形成された複数の反対導電
型不純物ウェル領域及び素子形成領域が前記不純物ウェ
ル領域より深く及び絶縁膜を埋め込んで形成されたトレ
ンチにより画定され、且つ前記不純物ウェル領域が前記
トレンチの側面部及び底部に形成された反対導電型不純
物領域により接続されていることを特徴とする半導体装
置。
(1) A plurality of impurity well regions and element formation regions of opposite conductivity type formed in a semiconductor substrate of one conductivity type are defined by trenches formed deeper than the impurity well regions and filled with an insulating film, and the impurity well regions are connected by impurity regions of opposite conductivity type formed at the side and bottom portions of the trench.
(2)前記不純物ウェル領域の一部に形成された反対導
電型不純物ウエルコンタクト領域に与えられたウェル電
圧が前記不純物ウェルコンタクト領域を内蔵する前記不
純物ウェル領域及び前記不純物領域を介して隣接する不
純物ウェル領域に与えられたことを特徴とする特許請求
の範囲第1項記載の半導体装置。
(2) The well voltage applied to the opposite conductivity type impurity well contact region formed in a part of the impurity well region is applied to the impurity well region containing the impurity well contact region and adjacent impurities via the impurity region. 2. The semiconductor device according to claim 1, wherein the semiconductor device is provided in a well region.
JP1156166A 1989-06-19 1989-06-19 Semiconductor device Expired - Lifetime JPH0682755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1156166A JPH0682755B2 (en) 1989-06-19 1989-06-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1156166A JPH0682755B2 (en) 1989-06-19 1989-06-19 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0321039A true JPH0321039A (en) 1991-01-29
JPH0682755B2 JPH0682755B2 (en) 1994-10-19

Family

ID=15621796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1156166A Expired - Lifetime JPH0682755B2 (en) 1989-06-19 1989-06-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0682755B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859466A (en) * 1995-06-07 1999-01-12 Nippon Steel Semiconductor Corporation Semiconductor device having a field-shield device isolation structure and method for making thereof
CN100359665C (en) * 2002-07-24 2008-01-02 三星电子株式会社 Method for fabricating low well of semiconductor device using low energy ion implantation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235437A (en) * 1984-05-09 1985-11-22 Hitachi Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235437A (en) * 1984-05-09 1985-11-22 Hitachi Ltd Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859466A (en) * 1995-06-07 1999-01-12 Nippon Steel Semiconductor Corporation Semiconductor device having a field-shield device isolation structure and method for making thereof
US6274919B1 (en) 1995-06-07 2001-08-14 Nippon Steel Semiconductor Corporation Semiconductor device having a field-shield device isolation structure
CN100359665C (en) * 2002-07-24 2008-01-02 三星电子株式会社 Method for fabricating low well of semiconductor device using low energy ion implantation

Also Published As

Publication number Publication date
JPH0682755B2 (en) 1994-10-19

Similar Documents

Publication Publication Date Title
US6836001B2 (en) Semiconductor device having epitaxially-filled trench and method for manufacturing semiconductor device having epitaxially-filled trench
JPS59124141A (en) Manufacture of semiconductor device
JPH0719838B2 (en) Semiconductor device and manufacturing method thereof
JP2009038068A (en) Semiconductor device and manufacturing method thereof
JPH0548936B2 (en)
CN107785426A (en) A kind of semiconductor devices and its manufacture method
JP4684523B2 (en) Manufacturing method of semiconductor device
KR100787282B1 (en) Semiconductor device and manufacturing method thereof
KR0169278B1 (en) Semiconductor device and method for manufacturing thereof
JPH0321039A (en) Semiconductor device
JP2654607B2 (en) Method for manufacturing semiconductor device
JPH0629375A (en) Semiconductor device and its production
JPH05299498A (en) Semiconductor device
JPS5828734B2 (en) hand tai souchi no seizou houhou
JP3314341B2 (en) Method of forming C-MOS gate array and base contact
JPH02291166A (en) Semiconductor device
JP3435294B2 (en) MOS gate semiconductor device
JPS62213258A (en) Manufacture of semiconductor device
JP2910640B2 (en) Semiconductor device and manufacturing method thereof
JP2625373B2 (en) Method for manufacturing semiconductor device
CN117637823A (en) Groove type MOSFET and manufacturing method thereof
JPH0555494A (en) High-voltage mos ic
JPH0338742B2 (en)
KR100344839B1 (en) High Voltage Device and Method for the Same
JPS63237558A (en) Cmos field-effect transistor and manufacture thereof