JPH02291166A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02291166A
JPH02291166A JP1112522A JP11252289A JPH02291166A JP H02291166 A JPH02291166 A JP H02291166A JP 1112522 A JP1112522 A JP 1112522A JP 11252289 A JP11252289 A JP 11252289A JP H02291166 A JPH02291166 A JP H02291166A
Authority
JP
Japan
Prior art keywords
insulating film
region
film
insulating films
element isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1112522A
Other languages
Japanese (ja)
Other versions
JP2608470B2 (en
Inventor
Takehide Shirato
猛英 白土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1112522A priority Critical patent/JP2608470B2/en
Publication of JPH02291166A publication Critical patent/JPH02291166A/en
Application granted granted Critical
Publication of JP2608470B2 publication Critical patent/JP2608470B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make a semiconductor integrated circuit in extremely high reliability and integration also giving extremely high performance by a method wherein an element isolation region is formed by the first insulating films selectively provided on a semiconductor substrate as well as the second insulating films provided on the sidewalls of the first insulating films. CONSTITUTION:The first insulating films 2 are selectively provided on a p-type silicon (Si) substrate 1 and then the second insulating films 3 are provided on the sidewalls of the first insulating films 2 by RIE(reactive ion-etching) process in self-alignment. Next, an element isolation region is formed by the first insulating films 2 and the second insulating films 3. Through these procedures, a structure having no bird's beak at all can be formed without using so-called LOCOS process by the selective oxidation of the element isolation region.

Description

【発明の詳細な説明】 「1既 要」 半導体基板上に設けられる素子分離領域が、選択的に設
けられた第1の絶縁膜及び前記第1の絶縁膜の側壁にR
 J IE (反応性イオンエッチング)法によりセル
ファラインに設けられた第2の絶縁膜とにより形成され
な紹造を有しているためバーズビークの存在しない楢造
に形成できることによる素子領域の微細化、ゲーI′−
酸化膜耐圧の改善及びキャリア寿命の改善を、第1の絶
縁膜段差を側壁に形成する第2の絶縁膜で緩和できるこ
とによるステップ力バレソシの良い配線体の形成を、素
子分離領域形成用絶縁膜の膜へりを最少限に抑え、配線
体の容量を減少させることによる高速化を可能とした半
導体装置。
DETAILED DESCRIPTION OF THE INVENTION "1 Requirements" An element isolation region provided on a semiconductor substrate is provided with a first insulating film selectively provided and a sidewall of the first insulating film.
Since it has a structure that is not formed by the second insulating film provided on the self-line by JIE (reactive ion etching) method, it can be formed into a structure without bird's beak, which allows for miniaturization of the element area. Game I'-
The improvement of the oxide film withstand voltage and the carrier life can be alleviated by the second insulating film formed on the sidewall of the first insulating film, thereby forming a wiring body with good step force resistance. A semiconductor device that enables higher speeds by minimizing the edge of the film and reducing the capacitance of the wiring.

[産業上の利川分野] 本発明はMIS及びバイボーラ型半導体装置に係り、特
に、バーズビークのない素子分離領域を右ずる高集積な
半導体集積回路の形成を可能とした半導体装置に関する
9 従来、半導体集積回路の素子分離領域の形成は、窒化膜
を使用した選択酸化による、いわゆる1ココス法により
おこなわれてきたか、極めて集積度か上昇している今]
」、ロコス法により必ず生じてしまうスIヘレスを誘引
ずるバーズビークにより、素子形成領域の微細化力嘆L
しい、薄膜化されなゲート酸化膜の耐圧が劣化ずる、エ
レクIヘロン又はホールの容易なトラップにより寿命か
劣化する等の問題が顕著になってきており、高集積イヒ
への妨げになりつつある。そこでハーズビークが存在ぜ
す、しかも素子分離領域の段差を緩和した高集積な素子
分離を実現できる手段か要望されている、、[従来の技
術] 第5図は従来の半導体装置の模式側断而目1てある95
1はI)−型シリコン(Si)基板、52は丁)型ウエ
ル領域、5}3はn型ウエル領域、54はp型チャネル
ストッパー領域、55はrl型ヂャネルス1〜ツバー領
域、56はフィールIく酸化膜、57は丁l{型ソース
1−レイン領域、58はp十型ソーストレイン領域、5
9はゲート酸化膜、60はゲート電極、61はブロック
用酸化膜、62は燐珪酸ガラス(PSG)膜、63は八
)配線を示している、 同図において、p−型シリコン(S1)基板j]1に選
択的にp型ウエル領域52及び1゛}型ウエル領域53
か設けられており、前記1つ型ウエル領域52にはNチ
ャネル1一ランシスタか、前記ロ型ウエル領域53には
1)チャネル1ヘランジスタかそれそれ選択的に形成さ
れている。素子分高11領域は四コス法により形成され
ており、スI−1,スを内在するバースビークが存在し
ている91″Vコス法によれば、素子分離領域の段差を
バーズしークにより緩和でき、ステップ力バレッジの良
い配線体を形成できるという利点を持つが、一方、この
バーズビークの存在により、素子形成領域の微細化か難
しい、薄膜化されたゲー1−M化膜の耐圧か劣化ずる、
エレク1〜ロン又はボールの容易な1へラップにより9
q命が劣化する等の欠点かある,又、ロニ7ス法による
素子分離では素子分離絶縁膜を容易には厚くてきないな
め配線容量か大きくなり、高速化には不利であるという
欠点もある,、 1介明か解決しようとする問題点] 木発明か解決しようとする問題点は、IJ′(来例に示
されるように、ロコス法によるバーズビークの存在によ
り、素子形成領域の微細化か難しかっかこと、薄膜化さ
れたゲート酸化膜の耐圧が劣化ずること、エレクr−ロ
ン又はホールの容易なI−ラップにより寿命が劣化する
こと等の改善かできなかったこと及びロコス法による素
−j′−分ρIWでは素子分離絶縁膜を容易には厚くで
きないなめ配線容量か大きくなり、高速化が達成できな
かー)たことである。
[Industrial Field] The present invention relates to MIS and bibolar semiconductor devices, and particularly relates to a semiconductor device that enables the formation of highly integrated semiconductor integrated circuits with device isolation regions free of bird's beaks. Formation of element isolation regions in circuits has traditionally been carried out by selective oxidation using a nitride film, the so-called one-cos method.
'', the bird's beak that induces scratches that always occur with the Locos method reduces the ability to miniaturize the element formation area.
Problems such as deterioration of the withstand voltage of the thinner gate oxide film and deterioration of the lifespan due to the easy trapping of Elek I herons and holes are becoming more prominent, and these problems are becoming a hindrance to high integration. . Therefore, there is a need for a method that can realize highly integrated device isolation in which Her's beak exists and the level difference in the device isolation region is alleviated. [Prior art] Fig. 5 is a schematic side view of a conventional semiconductor device. There is one eye 95
1 is an I)-type silicon (Si) substrate, 52 is a D-type well region, 5}3 is an n-type well region, 54 is a p-type channel stopper region, 55 is an RL-type channel region 1 to tube region, 56 is a field 57 is a p-type source 1-rain region, 58 is a p-type source train region, 5
9 is a gate oxide film, 60 is a gate electrode, 61 is a block oxide film, 62 is a phosphosilicate glass (PSG) film, and 63 is 8) wiring. In the same figure, a p-type silicon (S1) substrate j] p-type well region 52 and 1゛}-type well region 53 selectively in 1.
In the one-type well region 52, an N-channel 1-channel transistor or in the R-type well region 53, a 1) channel 1-transistor is selectively formed. The element height 11 region is formed by the four-cos method, and according to the 91"V cos method in which there is a bird's beak containing I-1 and so, the step in the element isolation region is formed by the bird's seek. This bird's beak has the advantage of being able to relax and form a wiring body with a good stepping force barrier, but on the other hand, the presence of this bird's beak makes it difficult to miniaturize the element forming area and deteriorates the withstand voltage of the thinned Ga 1-M film. Cheating,
Elec 1 to Ron or ball easy 1 to 9 by wrap
There are disadvantages such as deterioration of Q life.Also, in element isolation using the Ronis method, the element isolation insulating film cannot be easily thickened, which increases the wiring capacitance, which is disadvantageous for increasing speed. ,, 1 Problem to be solved by the invention] The problem to be solved by the invention is IJ' (as shown in the next example, it is difficult to miniaturize the element forming area due to the presence of bird's beak in the Locos method). In addition, it was not possible to improve the breakdown voltage of the thinned gate oxide film, the deterioration of the life due to easy I-wrapping of electrons or holes, and the fact that the element-j using the Locos method could not be improved. In the case of ρIW, the device isolation insulating film cannot be easily thickened, so the wiring capacitance becomes large, and high speed cannot be achieved.

[問題点を解決するための手段] 上記問題点は、半導体基板上に選択的に設げられな第1
の絶縁膜及び前記第1の絶縁膜の{ijll壁に設けら
れた第2の絶縁膜と(、ごより素子分餅[領域が形成さ
れている本発明の半導体装置によって解決される。
[Means for solving the problem] The above problem is caused by the first
This problem is solved by the semiconductor device of the present invention in which an insulating film and a second insulating film provided on the wall of the first insulating film are formed.

1作 用] 即ち木発明の半導体装置においては、半導体基板上に設
けられる素子分8ff領域が、jπ択的(、ご設けられ
た第1の絶縁膜及ひ前記第1の絶縁膜の側壁にR I 
E (反応性イオンエッチンク)法(.Zよりセルファ
ライン(1こ設けろi−Lか第2の絶縁膜とにより形成
された’41造を有している3、したかって、素子分離
領域を選択酸化による、いわゆるロコス法を使用せずに
形成できるなめ、即ちスI− 1/スを内在さぜるハー
スヒークカ存在しないイ゛II11造に形成できるなめ
、微細な素子領域を形成できることによる高集積化を、
ゲーIヘ酸化膜の耐圧を改善できることによる高性能化
を、工I/ク1ヘロン又はホールか1・ラップされにく
くなり、キャリアノf命が改善できることによる高信頼
性を可能にすることかできる。又、第1の絶縁膜段差を
側壁に形成する第2の絶縁膜で緩和できることに3J:
るステップ力バレッジの良い配線体の形成をも可能にす
ることかできる,さlコ,に、素子分高11領域形成川
絶縁膜の膜べりをエッチングスI−ツパー膜の形成によ
り、最少限に抑えることかできるなめ配線体の容量を減
少させることができることによる高速化をも可能にする
ことかできる。即ち、極めて高性能、高信頼且つ高集積
な半導体集積回路の形成を可能とした半導体装置を得る
ことかてきる、 1]実施例」 以下木発明を、図示実施例により貝体的に1;(L明ず
る3第1図は木発明に係る半導体装置の原理を示す模式
側断面図、第21図は木発明の半導体装置にお(つる第
1の実施例の模式側断101国、第3レ1は本発明の半
導体装置における第2の実施例の模式{111J断面図
、第./11ン1(a)へ2(e)は木発明の製造方法
の一実施例の工程断面1タlである、、全レlを通し回
一対象物は同−1)−号で示す,第1図は■)型シリコ
ン基板を用いた際の本弁明の原理を模式的に示している
。1は10  cm  程度のr)−型シリコン($1
)基板、2は0.8Pm程度の第1の絶縁膜、3は第2
の絶縁膜く側壁絶縁膜)、6・1は10  cm  程
度のp型ウエル領域、5は10  cm程度の丁〕型ウ
エル領域、6は10  Cnl  程度のn −1−型
ソースr’レイン領域、7ほ1020Cm−3程度ノ「
)+型ンース1−レイン領域、8は2 0 n m程度
のゲーI−酸化膜、9は300 nm程度のケー1へ電
極、1(》は.’liOnm程度のフロック用酸化膜、
11は0.87m程度の燐珪酸ガラス(+)SG)膜、
12はリmP,j度のAI配線を示す,同図において、
p−型シリコン(Si)基板]に選択的に第1の絶縁膜
2か設けられており、前記第1の絶縁膜2の側壁にR 
I E (反応性イオンエッチンク)法によりセルファ
ラインに第2の絶縁膜3か設けらノ工ており、前記第1
の絶縁膜2及び第2の絶縁膜3とにより素子分Mft領
域が形成されている,7したがって、素子分離領域を選
択酸化による、いわゆるロコス法を使川ぜすに形成でき
るなめ、即ちストレスを内在させるバーズビークの存在
しないm遣に形成できるなめ、微細な素子領域を形成で
きることによる高集積化を、ゲーIヘ酸化膜の耐圧を改
善できることによる高性能化を、エレクIヘロン又はホ
ールかトラップされにくくなり、キャリアJf命か改善
できることによる高(,−頼性を可能にすることかでき
る。又、第1−の絶縁膜段差を側壁に形成する第2の絶
縁膜て緩和できることによるスデップカハレッジの良い
配線体の形成も可能にすることかできる。さらに、素子
分離領域形成川絶縁膜の膜べりをエッチングスIヘツバ
ー膜の形成により、最少限に抑えることかできるなめ配
線体の容量を減少させることかできることによる高速化
をも可能(1こずることかできる..(エリチンクスI
ヘツバ一j模は1図示されていない、.)第21メ1は
本介明の半導木装置(..l J;ける第1の実施例の
模式側断面図を示している,1−〜−12は第千レ1と
同じ物を示している。
1 action] That is, in the semiconductor device of the invention, an 8ff region for an element provided on a semiconductor substrate is R I
The E (reactive ion etching) method (. It can be formed by selective oxidation without using the so-called LOCOS method, that is, it can be formed into an I-II11 structure in which there is no hearthstone that contains I-1/s, and it is possible to form a fine element region, resulting in high integration. ,
It is possible to improve performance by improving the withstand voltage of the oxide film, and to achieve high reliability by making it difficult to wrap the metal or hole, and improving carrier life. . In addition, 3J: The step difference in the first insulating film can be alleviated by the second insulating film formed on the side wall.
It is also possible to form a wiring body with a good stepping force barrier.Finally, by forming an element height 11 region and etching the film thinning of the insulating film, the formation of an I-thumper film can be minimized. It is also possible to increase the speed by reducing the capacitance of the diagonal wiring body. That is, it is possible to obtain a semiconductor device that enables the formation of an extremely high-performance, highly reliable, and highly integrated semiconductor integrated circuit. (L Akizuru 3 Figure 1 is a schematic side sectional view showing the principle of the semiconductor device according to the invention, and Figure 21 is a schematic side sectional view of the semiconductor device of the invention. 3. Le 1 is a schematic cross-sectional view of the second embodiment of the semiconductor device of the present invention. Figure 1 schematically shows the principle of this defense when a ■) type silicon substrate is used. . 1 is about 10 cm r)-type silicon ($1
) substrate, 2 is the first insulating film of about 0.8Pm, 3 is the second
6.1 is a p-type well region of about 10 cm, 5 is a di]-type well region of about 10 cm, and 6 is an n-1-type source r' rain region of about 10 Cnl. , 7 about 1020cm-3
) + type non-1-rain region, 8 is about 20 nm GaI-oxide film, 9 is about 300 nm electrode to Kay 1, 1 (》 is about .'liOnm oxide film for flocking,
11 is a phosphosilicate glass (+)SG) film of about 0.87 m,
12 shows the AI wiring of rimP,j degree, in the same figure,
A first insulating film 2 is selectively provided on the p-type silicon (Si) substrate, and R is formed on the side wall of the first insulating film 2.
A second insulating film 3 is provided on the Selfa line by an IE (reactive ion etching) method, and the first insulating film 3 is
The element Mft region is formed by the insulating film 2 and the second insulating film 3.7 Therefore, the element isolation region can be formed by selective oxidation, the so-called LOCOS method, without stress. Since it can be formed in a micro pattern without the inherent bird's beak, it is possible to achieve high integration by forming a fine device area, and to improve performance by improving the withstand voltage of the oxide film. This makes it possible to improve the carrier Jf life, thereby making it possible to achieve high reliability.Also, it is possible to reduce the step difference in the first insulating film by reducing the step difference in the second insulating film formed on the sidewall. It is also possible to form a wiring body with a good edge.Furthermore, by etching the film sagging of the insulating film forming the element isolation region and forming a hetuber film, the capacitance of the slanted wiring body can be minimized. It is also possible to increase the speed by reducing the
The Hetsuba model is not shown in the figure. ) The 21st page 1 shows a schematic side sectional view of the first embodiment of the semiconductor device (..l J;) of the present invention. It shows.

同図においては、■)−型シリコン(S1)基板I(,
二選択的にp型ウエル領域4及ひn型ウエル領域5か設
けられており、前記p型ウエル領域/−1にはNチャネ
ルトランシスタが、前記n型ウエル領域5にはPチャネ
ルIヘランジスタかそれぞれj巽択的に形成されている
。素子分離領域は第1図と同じ第1の絶縁膜2及ひ前記
第1の絶縁膜2の側壁にRJle(反応性イオンエッチ
ング)法によりセルファラインに設けられた第2の絶縁
膜3とにより形成さノ上でおり、ハーズビークか存在し
ないので、第1図同様の効果を得ることかできる。なお
同実h色例においては、チャネノレス1・ツバー;if
i JF!!は1寺(・ご形成されてよ3らす、素子分
jjilE饋賎にセルファラインに形成するやや高濃度
のp型ウエル領域・1及ひ11型ウエル領域5かその役
割を兼ねている4,第3図は本発明の半導体装置におけ
る第2の実施例の模式側断面図を示している。1・〜1
2は第1図と同じ物を、13はp型チャネルス1・ツバ
ー領域、14はD型チャネルスl−ツパー領域を示す。
In the figure, ■)-type silicon (S1) substrate I(,
A p-type well region 4 and an n-type well region 5 are selectively provided, and the p-type well region /-1 is provided with an N-channel transistor, and the n-type well region 5 is provided with a P-channel I transistor. Each of them is formed selectively. The element isolation region is formed by the same first insulating film 2 as in FIG. 1 and a second insulating film 3 provided on the side wall of the first insulating film 2 in a self-aligned manner by RJle (reactive ion etching) method. Since it is formed on the top and there is no Her's beak, the same effect as in FIG. 1 can be obtained. In addition, in the same real h color example, if
i JF! ! The p-type well region with a slightly high concentration to be formed in the self-line in the element portion 1 and 11 type well region 5 or 4 which also serves as the role , FIG. 3 shows a schematic side sectional view of a second embodiment of the semiconductor device of the present invention.1.~1
2 is the same thing as in FIG. 1, 13 is a p-type channel 1-tube region, and 14 is a D-type channel 1-tube region.

同図においては、チャネルスhツパー領域の形成を除い
ては、ほほ第2図と同し構成に形成されている。p型チ
ャネルストッパー領域13及びrl型チャネルス?−ツ
バー領域14はそれそれ口十型ソースIくレイン領域6
及びp十型ソーストレイン領域7とは素子分離領域の一
部を形成する第2の絶縁膜(側壁絶縁膜)の厚さたけ概
略離れて形成されており、接合容量の低減及び接合耐圧
の」二昇か期待できる。同実施例においてら、素子分硅
[.領域にはバーズビークか存在しないので、第1図同
様の効果を得ることかできる9 次いて木発明に係る半導体装置の製造方法の−実施例に
ついて第711タ1(,l) ・へ−(e)及ひ第2レ
jを参照して説明する9 第4図(a) 通常の技法を適用することにより、p−型シリコン(S
i)基板1に酸化膜2及び窒化膜15を順次成長する。
In this figure, the structure is almost the same as that in FIG. 2 except for the formation of the channel stopper region. p-type channel stopper region 13 and rl-type channels? - The tube region 14 has a ten-shaped source I and the rain region 6.
The p-type source train region 7 is formed approximately as far away as the thickness of the second insulating film (sidewall insulating film) forming a part of the element isolation region, thereby reducing the junction capacitance and increasing the junction breakdown voltage. I can hope for second rank. In the same embodiment, the element division [. Since there is no bird's beak in the region, it is possible to obtain the same effect as in FIG. ) and second layer j. 9 FIG. 4(a) By applying conventional techniques, p-type silicon (S
i) An oxide film 2 and a nitride film 15 are sequentially grown on the substrate 1.

第4図(b) 次いで通常のフォ■へリソグラフィー技術を利用し、選
択的に前記窒化膜15及び酸化膜2を順次エッチング除
去し、素子分離領域の一部を形成する第1の絶縁膜2、
膜べり防止膜(窒化膜)15を形成する。次いで素子分
離領域の一部を横成ずる第2の絶縁膜3を形成するため
に化学気相成長酸化膜3を成長する。
FIG. 4(b) Next, using a normal photolithography technique, the nitride film 15 and the oxide film 2 are selectively etched and removed one after another to form a first insulating film 2 that forms a part of the element isolation region. ,
A film anti-film erosion film (nitride film) 15 is formed. Next, a chemical vapor deposition oxide film 3 is grown to form a second insulating film 3 that extends over a portion of the element isolation region.

第4図(C) 次いで前記化学気相成長酸化膜3をR I l=: (
反応性イオンエッチング)法により異方性Iくライエッ
チングし、第1の絶縁膜2の側壁にセルファラインで第
2の絶縁膜(側壁絶縁膜)3を残し素子分離領域を形成
する。次いで通常のフォIへリンクラフィー技術を利用
し、レジスIヘ<図示ぜず)、第1の絶縁膜2及び第2
の絶縁膜(側壁絶縁膜)3をマスク層として、硼素をイ
オン注入してp型ウエル領域4を、炒をイオン注入して
n型ウエル領域5をそれそれ選択的に画定する。次いで
高温でランニングし所望の深さを持つp型ウエル領域4
及びn型ウエル領域5を形成ずる。
FIG. 4(C) Next, the chemical vapor deposition oxide film 3 is formed by R I l=: (
Anisotropic lie etching is performed using a reactive ion etching method to form an element isolation region by leaving a second insulating film (side wall insulating film) 3 on the side wall of the first insulating film 2 in a self-aligned manner. Next, by using the usual FoI link roughy technique, the resist I (not shown), the first insulating film 2 and the second insulating film 2 are formed.
Using the insulating film (sidewall insulating film) 3 as a mask layer, boron ions are implanted to selectively define the p-type well region 4, and boron ions are implanted to selectively define the n-type well region 5. Then run at high temperature to form a p-type well region 4 with a desired depth.
Then, an n-type well region 5 is formed.

第4図((1) 次いでゲート酸化膜8、多結晶シリコン膜を順次成長さ
せる9次いで通常のフオ1−リソグラフィー技術を利用
し、前記多結晶シリコン膜をバターニングし、ゲート電
極9を形成する。
FIG. 4 ((1) Next, a gate oxide film 8 and a polycrystalline silicon film are sequentially grown.Next, the polycrystalline silicon film is patterned using a normal photolithography technique to form a gate electrode 9. .

第4図(e) 次いで通常のフオI・リソグラフィー技術を利用し、レ
ジスト(図示せず)、第1の絶縁膜2、第2の絶縁膜(
側壁絶縁膜)3及びゲー1〜電極9をマスク層として、
砒素をイオン注入してn+型ソース1くレイン領域6を
、硼素をイオン注入してp十型ソーストレイン領域7を
それそれ選択的に画定する。
FIG. 4(e) Next, a resist (not shown), a first insulating film 2, a second insulating film (
Using sidewall insulating film) 3 and gates 1 to 9 as mask layers,
Arsenic is ion-implanted to selectively define the n+ type source 1 and drain region 6, and boron is ion-implanted to selectively define the p-type source train region 7.

第2図 次いて膜べり防止膜(窒化膜)15をボイルした燐酸に
よりエッチング除去する9次いで不要部のゲー1ヘ酸化
膜8をエッチング除去する。次いでブロック用酸化膜1
0、熔珪酸ガラス(PSG)膜11を順次成長させる9
次いてやや高温処理を施し所望の深さを持つn十型ソー
スF I/イン領域6及ひ乍十型ソース■−レイン領域
7を形成する9次いで通常の技法を適用することにより
電極コンタクrヘ窓の形成、八1配線12の形成等をお
こない半導体装置を完成する9 上記製造方法においては、第1の絶縁膜上に膜べり防止
膜(窒化膜)を設けているか、第1の絶縁膜の側壁に第
2の絶縁膜を形成する際、第1の絶縁膜が十分残される
エツチンクか可能であれば前記膜べり防止膜(窒化膜)
は省略してもさしつかえない9又、膜べり防止膜(窒化
膜)をそのまま残し,素子分離領域形成用の第1の絶縁
膜の一部としてもよい。
2. Next, the anti-film slipping film (nitride film) 15 is removed by etching with boiled phosphoric acid. 9Then, the unnecessary portions of the oxide film 8 on the gate 1 are removed by etching. Next, block oxide film 1
0. Sequential growth of fused silicate glass (PSG) film 11 9
Next, a slightly high temperature process is performed to form an n-type source F I/in region 6 and a 5-type source F I/in region 6 and a 5-type source F I/in region 7 with a desired depth.Next, by applying a conventional technique, the electrode contactor is formed. 9. Forming windows, 81 forming wiring 12, etc. to complete the semiconductor device. When forming the second insulating film on the side wall of the film, use etching to leave enough of the first insulating film, or if possible, use the film anti-slip film (nitride film).
It is also possible to omit the film anti-slip film (nitride film) as it is and use it as a part of the first insulating film for forming the element isolation region.

第3図に示されるように、素子分離領域の第1の絶縁膜
の下にチャネルス1ヘツバー領域を形成する方法は、ま
ずイオン注入により、p型ウエル領域及びn型ウエル領
域を形成する。次いて厚い酸化膜(第1の絶縁膜となる
)、工・ソチングスIヘツバー用の下地窒化膜、多結晶
シリコン膜及び酸化防止用の窒化膜を順次成長させる。
As shown in FIG. 3, the method for forming the channel 1 hetuber region under the first insulating film in the element isolation region is to first form a p-type well region and an n-type well region by ion implantation. Next, a thick oxide film (which will become the first insulating film), a base nitride film for the I-hetuber, a polycrystalline silicon film, and a nitride film for preventing oxidation are successively grown.

次いで素子形成領域をI/ジス1ヘてマスクし、素子分
離領域の酸化防止用の窒化膜をエッチング除去後、硼素
をイオン注入してチャネルスIヘツパー領域を形成する
9次いでI/ジス■〜を除去し、露出した素子分離領域
の多結晶シリコン膜を酸化し、酸化膜に変える。次いで
前記酸化膜をマスク層として素子形成領域の窒化膜、多
結晶シリコン膜、下地窒化膜を順次エッチング除去する
。次いで酸化膜を全面エッチングすれば素子形成領域は
シリコン基板が露出し、一方、素子分離領域はエッチン
グス■ヘツパー用の下地窒化膜のために厚い酸化膜を残
すことができる。即ち、下部にチャネルストッパー領域
を有する第1の絶縁膜が形成できる。以後は前記実施例
の製造方法に準ずる。
Next, the element formation region is masked with I/DIS 1, and the nitride film for preventing oxidation in the element isolation region is etched away, and boron ions are implanted to form a channel I hepar region. The polycrystalline silicon film in the exposed element isolation region is oxidized and converted into an oxide film. Next, using the oxide film as a mask layer, the nitride film, polycrystalline silicon film, and base nitride film in the element formation region are sequentially removed by etching. Next, by etching the entire surface of the oxide film, the silicon substrate is exposed in the element forming region, while a thick oxide film can be left in the element isolation region as a base nitride film for the etching process. That is, a first insulating film having a channel stopper region underneath can be formed. Thereafter, the manufacturing method of the above embodiment is followed.

以上実施例に示したように、本発明の半導体装置によれ
ば、素子分離領域を選択酸化による、いわゆる口二7ス
法を使川ぜずに形成できるため、即ちス1・レスを内在
さぜるバーズビークの存在しないイ溝造に形成できるた
め、微細な素子領域を形成できることによる高集積化を
、ケーIヘ酸化膜θ)耐圧を改善できることによる高性
能化を、エレクI・ロン又はホールが1へラップされに
くくなり、キャリア寿命が改善できることによる高偕頼
性を可ffUにずることかてきる9又、第1の絶縁膜段
差を側壁に形成する第2の絶縁膜で緩和できることによ
るステップカハI/ツジの良い配線体の形成も可能にす
ることかできる。さらに、素子分tllf.領域形成川
絶縁膜の膜べりをエッチングスh ツパー膜の形成によ
り、最少限に抑えることができるため配線体の容量を減
少させることかできることによる高速化をも可能にする
ことかできる9 [介明の効果] 以上説明のように木発明によれば、M I S及びハイ
ボーラ型半導体装置において、第1の絶縁膜及び前記第
1の絶縁j模の側壁にセルファラインに設けられた第2
の絶縁膜とにより素子分離領域か形成されているため、
バースビークの存在しない楢造に形成できることによる
素子領域の微細化、ゲート酸化膜耐圧の改善及びキャリ
ア’M命の改善を、第1の絶縁膜段差を側壁に形成する
第2の絶縁膜で緩和できることによるステップカバI/
ツジの良い配線体の形成を、素子分離領域形成用絶縁膜
の膜べりを最少限に抑え、配線体の容量を減少させるこ
とによる高速化を可能にすることかできる9即ち、碌め
て高性能、高信頼「1.つ高集積を併せ持つ半導体集積
回路を得ることかできる。
As shown in the embodiments above, according to the semiconductor device of the present invention, an element isolation region can be formed by selective oxidation without using the so-called 27-strip method, that is, it is possible to form an element isolation region by selective oxidation without using any internal scratches. Since it can be formed in a groove structure without a bird's beak, it is possible to achieve high integration by forming a fine element area, and to improve performance by improving the breakdown voltage of the oxide film θ). This makes it difficult for carriers to be wrapped into 1 and improves the carrier life, which makes it possible to increase the reliability to ffU. It is also possible to form a wiring body with good step strength. Furthermore, the element tllf. By forming a region forming layer and an insulating film, film erosion of the insulating film can be minimized by etching. This also makes it possible to increase the speed by reducing the capacitance of the wiring body9. [Bright Effect] As explained above, according to the invention, in the MIS and high-vola semiconductor devices, the second insulating film and the second insulating layer provided in the self-alignment line on the side wall of the first insulating pattern are
Since an element isolation region is formed by the insulating film,
The miniaturization of the element region, improvement of gate oxide film breakdown voltage, and improvement of carrier 'M life due to the ability to form a structure with no birth beaks can be alleviated by the second insulating film formed on the sidewall of the first insulating film step. Step Cover I/
It is possible to increase the speed of forming a wiring body with good stiffness by minimizing the film deterioration of the insulating film for forming an element isolation region and reducing the capacitance of the wiring body9. It is possible to obtain a semiconductor integrated circuit that has both high performance and high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は木発明の゛1′.導体装置の原理を示す模式側
断面図、第2国は本発明の半導体装置における第1−の
実施例の模式側断面レ1、第3図は木発明の半導体装置
における第2の実施例の模式側断面レl、第4レ1(a
)・へ2(e)は本発明の半導体装置における製造方法
の−実施例の二「稈断面国、第5レ1は17(来の半導
体装置の模式側断面Nである。 図において、 ] よ丁)−型シリコン・(Si)基4反、2士第1の
絶縁膜、 3,1:第2の絶縁膜(側壁絶縁股)、・11Y)型ウ
エル饋域、 5土11型ウエル饋域、 6..i:ロ十型ソースIヘレイン領域、7 j p−
1型ソース1くレイン領域、81ゲ゛一I−酸1ヒj模
、 9iケーIへ電極、 10=Ii:ブロック用酸化j模、 11土禁珪酸力゛ラス(PSG) I摸、121八1配
t泉、 13;lp型チャネルスI・ツバー領域、1/Iま11
型チャネルスI・ツパー領域、1!+jl模べり防止1
模(窒化j模)を示ず,
Figure 1 is ``1'' of the wooden invention. A schematic side cross-sectional view showing the principle of a conductor device, the second figure is a schematic side cross-sectional view of the first embodiment of the semiconductor device of the present invention, and FIG. 3 is a schematic side cross-sectional view of the second embodiment of the semiconductor device of the invention. Schematic side cross-section level l, fourth level 1 (a
)・2(e) is the second embodiment of the manufacturing method for the semiconductor device of the present invention. 4-type silicon (Si)-based, 2-layer first insulating film, 3,1: second insulating film (side wall insulation crotch), 11Y)-type well space, 5-type 11-type well region, 6..i: Lox-type source I region, 7 j p-
1 type source 1 drain region, 81 Ge I-acid 1 Hj model, 9i K I electrode, 10 = Ii: Block oxide J model, 11 Soil-free silicate glass (PSG) I model, 121 81 distribution, 13; lp type channels I/tuber region, 1/I and 11
Type Channels I Thupah area, 1! +jl imitation prevention 1
It does not show any pattern (nitride pattern),

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に選択的に設けられた第1の絶縁膜
及び前記第1の絶縁膜の側壁に設けられた第2の絶縁膜
とにより素子分離領域が形成されていることを特徴とす
る半導体装置。
(1) An element isolation region is formed by a first insulating film selectively provided on a semiconductor substrate and a second insulating film provided on a side wall of the first insulating film. semiconductor devices.
(2)前記第1の絶縁膜が異なる複数の絶縁膜からなる
ことを特徴とする特許請求の範囲第1項記載の半導体装
置。
(2) The semiconductor device according to claim 1, wherein the first insulating film is composed of a plurality of different insulating films.
JP1112522A 1989-05-01 1989-05-01 Semiconductor device and manufacturing method thereof Expired - Lifetime JP2608470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1112522A JP2608470B2 (en) 1989-05-01 1989-05-01 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1112522A JP2608470B2 (en) 1989-05-01 1989-05-01 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02291166A true JPH02291166A (en) 1990-11-30
JP2608470B2 JP2608470B2 (en) 1997-05-07

Family

ID=14588751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1112522A Expired - Lifetime JP2608470B2 (en) 1989-05-01 1989-05-01 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2608470B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028361A (en) * 1994-03-14 2000-02-22 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing of semiconductor device having low leakage current
US6414352B2 (en) 1997-09-11 2002-07-02 Nec Corporation Semiconductor device having an electronically insulating layer including a nitride layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972759A (en) * 1982-10-20 1984-04-24 Toshiba Corp Semiconductor device and manufacture thereof
JPS60234326A (en) * 1984-05-07 1985-11-21 Toshiba Corp Manufacture of semiconductor device
JPH027558A (en) * 1988-06-27 1990-01-11 Matsushita Electron Corp Semiconductor device and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972759A (en) * 1982-10-20 1984-04-24 Toshiba Corp Semiconductor device and manufacture thereof
JPS60234326A (en) * 1984-05-07 1985-11-21 Toshiba Corp Manufacture of semiconductor device
JPH027558A (en) * 1988-06-27 1990-01-11 Matsushita Electron Corp Semiconductor device and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028361A (en) * 1994-03-14 2000-02-22 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing of semiconductor device having low leakage current
US6514834B2 (en) 1994-03-14 2003-02-04 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device having a low leakage current
US6414352B2 (en) 1997-09-11 2002-07-02 Nec Corporation Semiconductor device having an electronically insulating layer including a nitride layer

Also Published As

Publication number Publication date
JP2608470B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
US7132347B2 (en) Semiconductor device with trench structure and method for manufacturing the same
US4494304A (en) Forming chan-stops by selectively implanting impurity ions through field-oxide layer during later stage of MOS-device fabrication
US20020115268A1 (en) Silicon-on-insulator (SOI) substrate and method for manufacturing the same
JPS61226942A (en) Isolating method between elements for semiconductor integrated circuit
JPH02291166A (en) Semiconductor device
JPS6242382B2 (en)
JPS5828734B2 (en) hand tai souchi no seizou houhou
JPS60226120A (en) Electrode leading method in semiconductor device
JP3360970B2 (en) Method for manufacturing semiconductor device
JPS59168675A (en) Manufacture of semiconductor device
JPS63314870A (en) Insulated-gate field-effect transistor and manufacture thereof
JP2596848B2 (en) Method for manufacturing semiconductor device
JPS6322065B2 (en)
JPH023257A (en) Semiconductor device having field shield structure and its manufacture
JPH0321056A (en) Semiconductor device
JPH0917779A (en) Formation method of oxide film for element isolation of semiconductor device
JPH0382033A (en) Semiconductor device
JPH0321039A (en) Semiconductor device
JPH02211633A (en) Semiconductor device and manufacture thereof
JPH06275839A (en) Manufacture of vertical semiconductor element
JPH0358470A (en) Semiconductor device
JPH02137233A (en) Manufacture of semiconductor integrated circuit device
JPH03284849A (en) Semiconductor and manufacture thereof
JPH03112164A (en) Semiconductor device
JPH03155639A (en) Manufacture of semiconductor device